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A polynomial-time approximation scheme for the
minimum-weighted independent dominating set
problem in wireless networks

Student: Sih-Sian Wu Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

Due to different capabilities of nodes (for example, different remaining battery lives or dif-
ferent costs for transmitting a message) in a wireless network, it is desirable to model the
underlying network topology by a node-weighted graph. A minimum-weighted indepen-
dent dominating set of a node-weighted graph is a vertex subset with the minimum weight
being both independent and dominating.—In this thesis, we present a polynomial-time ap-
proximation scheme (PTAS) for'ecomputing a minimum-weighted independent dominating
set in a node-weighted polynomially growth bounded graph, which is in a class of graphs
that include the well-known unit disk graphs, unit ball graphs, and quasi unit disk graphs.
To the best of our knowledge, our PTAS is the first PTAS for the minimum-weighted inde-
pendent dominating set problem in wireless networks: Furthermore, when all the weights
are identical, our PTAS turns out to be-a simple 1-stage PTAS for computing an inde-
pendent dominating set in a polynomially‘growth bounded graph and hence simplifies the
2-stage PTAS proposed by Hurink and Nieberg in [15].

Key words: Dominating set; Independent dominating set; Minimum-weighted
independent dominating set; Approximation algorithms; Polynomial-time approximation
scheme.
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1. Introduction

1.1. Minimum independent dominating set problem

Most works on optimization problems that arise in wireless networks model networks
by graphs. In this thesis, graphs refer to simple undirected graphs. Let G = (V| E) be a
graph with vertex set V' and edge set E. A subset I of V' is an independent set if no two
vertices in [ are adjacent. A subset D of V is a dominating set if every vertex in V' \ D
has a neighbor in D. The following two problems have been extensively studied in the
literature: the Mazimum Independent Set Problem (MIS) and the Minimum Dominating
Set Problem (MDS). The former asks for finding an independent set with the maximum
cardinality and the latter, finding a dominating set with the minimum cardinality. Since
the above two problems have beén extensively studied in the literature [5, 6, 7, 9, 11, 12,
13, 16, 17, 18], the Minimum Independent Dominating Set Problem (MIDS), which is
to find a subset of vertices that'is both an independent and a dominating set with the
smallest cardinality, has received much-attention in-the literature [2, 9, 15, 19]. A mazimal
independent set is an independent set that is not a subset of any other independent set.
It is well-known that any independent dominating set is a maximal independent set, and
vice versa. Therefore, MIDS is also known as the Minimum Mazimal Independent Set
Problem.

It has been proven that MIDS is N P-complete in general graphs [12]. Furthermore,
Halldérsson [13] showed that MIDS in general graphs can not be approximated within
the ratio n'~° unless P = NP. In addition, MIDS remains N P-complete under strict
restrictions: for example, for bipartite graphs and comparability graphs [7], for planar
graphs, triangle-free graphs and claw-free graphs [2], for line graphs [20], and for 2 Ps-free
graphs [19]. On the other hand, MIDS can be solved in polynomial time for chordal
graphs [9], cocomparability graphs [16], and asteroidal triple-free graphs [3]. In [15],

Hurink and Nieberg presented a 2-stage polynomial-time approximation scheme (PTAS)



for MIDS in polynomially growth bounded graphs. For more details, see [2, 19].

1.2. Minimum-weighted independent dominating set problem

In real world applications, nodes in a wireless network usually have different capabil-
ities (for example, different remaining battery lives or different costs for transmitting a
message). Therefore, in this thesis we assume there are positive weights on vertices of
a graph and we call such a graph a node-weighted graph. For convenience, a vertex of a
graph is also called a node. The Minimum-Weighted Independent Dominating Set Prob-
lem (MWIDS) is to find an independent dominating set €2 of a node-weighted graph such
that the sum of weights of nodes in 2 is minimized. MWIDS is clearly a generalization
of MIDS since the latter can be reduced to the former by letting all nodes have the same
positive weight.

In this thesis, we mainly concern with MWIDS in node-weighted polynomially growth
bounded graphs. The class of polynomially growth bounded graphs includes most of the
graphs used to model wireless networks such as“Unit Disk Graphs, Quasi Unit Disk
Graphs, Unit Ball Graphs, and Coverage Area Graphs [15, 17], where a Unit Disk Graph
(UDG) is defined as the intersection graph of equal radius disks in the Euclidean plane
(see Figure 1). Since MIDS is a special case of MWIDS and MIDS is N P-complete
in general graphs, it follows that MWIDS is N P-complete in general graphs. Chang [4]
showed that MWIDS is N P-complete for chordal graphs. Farber presented a linear time
algorithm to locate a minimum weight independent dominating set in a chordal graph
with 0-1 vertex weights [9], which is a bit different from the original MWIDS problem.
Farber et al. also used polynomial time to deal with MWIDS in permutation graphs
[11] and strongly chordal graphs [10].

For node-weighted polynomially growth bounded graphs, many researchers considered
the Minimum-Weighted Dominating Set Problem (MWDS) and the Minimum-Weighted

Connected Dominating Set Problem (MWCDS); see [1, 8, 14, 21, 22]. Till now, the best



Figure 1: A unit disk graph.

known approximation ratios for MWDS and MWCDS in UDGs are obtined by Zou et
al. in [22]; they presented a (4 + ¢)-approximation algorithm for MWDS and a (5 + ¢)-
approximation algorithm for MWCDS in UDGs. To the best of our knowledge, there is

no related result for MWIDS in polynomially growth bounded graphs in the literature.

1.3. Our result

In this thesis, we present a PTAS for MWIDS in a subclass of node-weighted poly-
nomially growth bounded graphs. In particular, we prove that if the weight function of
a node-weighted graph satisfies the following weight-constraint, then there exists a PTAS
for MWIDS.

Weight-constraint: There exists a constant ¢ > 0 such that for every pair u,v of
nodes of a node-weighted graph G, w(u) < t-w(v) holds.
This constraint is reasonable in real world applications as, for example, the difference
between the remaining battery lives of any two nodes or the difference between the costs
for transmitting a message from any two nodes cannot be unbounded. Do notice that by
assigning the same weight to every node, our PTAS turns out to be a simple 1-stage PTAS
for MIDS in polynomially growth bounded graphs and hence simplifies the 2-stage PTAS
proposed by Hurink and Nieberg in [15]. For convenience, we call the PTAS proposed by
Hurink and Nieberg in [15] HN PTAS in the remaining sections.

This thesis is organized as follows: Section 2 gives the preliminaries including the

definitions and terminologies. We present our PTAS for MWIDS in polynomially growth



bounded graphs in Section 3. A comparison between Our PTAS with HN PTAS are given

in Section 4. Concluding remarks are given in Section 5.

2. Preliminaries

polynomially growth bounded

2.1. polynomially growth bounded graphs

For any two vertices u and v of G, let d(u,v) denote the number of hops in a shortest

path from u to v. The following definitions are crucial in this thesis. The r-neighborhood

of v, denoted by N, [v], is defined by

N, [v=4u € V. |.d(u, v) < r}.

So, No[v] = {v} and Nj[v] is the set of v and the neighbors of v. For convenience, let

Nv] = Ni[v]. Analogously, for-a subset U-of V- let N[U] = |,y N[u]. The following

uelU

definition is given by Hurink and Nieberg [15].

Definition 1. Let G = (V| E') be a graph. If there exists a function f(-) such that every r-
neighborhood in G contains at most f(r) independent vertices, then G is f-growth-bounded.
Furthermore, we say that G has polynomially bouuded growth is for some constant ¢ > 1,

f(r) is bounded by a polynomial of maximal degree ¢, i.e., f(r) = O(r°).

In [15], Hurink and Nieberg mentioned that the growth function f(-) does not depend
on the number of vertices in the given graph, but on the radius of the neighborhoods only.

For example, a UDG has p(r) = (2r + 1)? = O(r?); see [18].
2.2. Terminologies
For a given optimization problem, an algorithm is called a p-approximation algorithm

for some p > 1 if it always returns a feasible solution of relative error no more than p. Here

p is called the approximation ratio and the solution derived is called a p-approximation.
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For a given optimization problem, an algorithm is called a polynomial-time approximation
scheme (PTAS) if it is an approximation algorithm that takes as input not only an instance
of the problem but also a value € > 0 such that it is a (1 4 €)-approximation algorithm
and for any fixed € > 0, it runs in time polynomial in the size n of its input instance.

In the remaining discussion, we assume that G = (V, E) is a node-weighted p-growth-
bounded graph where p(+) is a polynomial function, and n is used to denote the number
of vertices of G. For a subset U of V', the subgraph induced by U is denoted by G[U]. Let
Wopt be a minimum-weighted independent dominating set of G' and w,,: be the weight
of Wy, where the weight of a vertex subset is the sum of weights of all vertices in this
subset. For a subset of vertices U of G, define W*(U) to be a function that returns a
minimum-weighted independent dominating set for U'in G. We denote w*(U) to be the
weight of W*(U). Note that W*(U) is-always computed with respect to the entire graph
G which is updated after an iteration of algorithm; therefore, the set returned by W*(U)
may contain vertices outside U (but the set returned by W*(U) is always contained in

N[U]J). For example, consider in Figure 2. Suppose all nodes have the same weight. Then

W*({v1,v2}) = {vs} € {v1, v}, but W*({vy,ve}) C N[{v1,v2}]. Clearly,

Weope = WH(V) and wep = w* (V).

V,y:2 V7.3
[ [
v,:3 V3:3 V5:5 Vgl Vg:2 Vip:2
° ® ® ® ® °
vl Vg4 .
® ® ID:Weight

Figure 2: An example of node-weighted graph with W,,, = {vs,vs} and we, = 5.

A d-separated collection is a collection {S,Ss, ..., Sk}, where S; CV, i =1,2,... k,

with the property that for any two vertices s € S;, 5 €S}, i # j, d(s,5) > d holds. The

5



subgraphs induced by subsets in a d-separated collection divide the original graph into
smaller parts so that it becomes easier to solve a given optimization problem. In [18],
Nieberg and Hurink successfully used a 2-separated collection to derive a PTAS for MDS
in polynomially growth bounded graphs. They also used the same idea to derive a PTAS

for MIDS in polynomially growth bounded graphs in [15].

3. A PTAS for the MWIDS problem on node-weighted polynomially growth
bounded graphs

In order to present our PTAS, we first propose statement (1) and Lemma 3.1. For v €
V', let I,[v] denote a maximum independent set of N,[v]. Since a maximum independent

set is also a dominating set, we have

| W (Ne[o]) | < | Lfol | < p(r)- (1)

The following lemma says that ebtaining an optimal solution W*(N,[v]) for N,[v] can

be done in polynomial time if r is bounded.

Lemma 3.1. Let G = (V, E) be a node-weighted graph. Then for any neighborhood N,.[v],

we can obtain W*(N,[v]) in n®®") time.

Proof. By statement 1, we know the cardinality of W*(N,[v]) is at most p(r). It becomes
clear that we can obtain W*(N,[v]) in n®®() time. O

Before going further, we need two lemmas.

Lemma 3.2. Let G = (V, E) be a node-weighted graph. For a d-separated collection

{S1,S2,...,Sk}, where S; CV, i=1,2,...,k, in G with d > 2, we have
Wopt Z Z?:l w*(SZ)

Proof. For each subset S; C V, consider the neighborhood N[S;]. By definition, N[S;]

and N[S;] are pairwise disjoint, for all 4,5 € {1,2,...,k}, ¢ # j, and thus we get wyy >



Zle w(Wope N N[S;]). Since W, N N[S;] dominates S; and is independent in G, we have

w(Wope N N[S;]) > w*(S;). This implies
Wopt 2 Sy W(Wop N N[SI]) = S0, w(S5).
O]

Lemma 3.3. Let {S1,S,...,Sk} be a d-separated collection in a node-weighted graph
G=(V,E),d>2, andlet Ty, Ts, ..., Ty be subsets of V with S; C T; for alli =1,2,... k.
If there exists a bound p > 1 such that w*(T;) < p-w*(S;) holds for all i = 1,2,...,k,
then

Zf:l W (Ty) (< p - Wopt-
Moreover, if Ule W*(T;) is a minimum-weighted independent dominating set of G, then

it is a p-approximation of a minimum-weighted independent dominating set of G.

Proof. This lemma follows from

Z?:l w* (1) < Zf:l p=w (S;) < p - Wopt.

We now are ready to introduce our PTAS; it is presented in Algorithm 1.

Our PTAS works as follows. Initially, set the independent dominating set {2 to be
the empty set. Start with an arbitrary vertex v € V and consider the r-neighborhood
N, [v], for r = 0,1,2, and so on. For each r, compute minimum-weighted independent
dominating sets for the neighborhoods N, s[v] and N,[v] and compute their total weight
whenever

w*(Npi2lv]) > (14 &) - w* (N, [o]).

After stopping increasing the radius r of the neighborhoods, the desired bound on the
weight of an independent dominating set is obtained. Update {2 and update the remaining

vertices. Repeat the above process until V' is empty.

7



Algorithm 1 An algorithm for the MWIDS problem.
Input: a node-weighted polynomially growth bounded graph G = (V, E) and a constant
e>0
Output: an independent dominating set {2 of G which is a (14 €)-approximation for the
MWIDS problem
1. Q=0;i=0;
2: while V # @ do
1=1+1; > the ¢-th iteration
Pick v € V;
r=0;
while w*(N,o[v]) > (1 +¢) - w*(N,[v]) do
r=r+1;
end while
Q= QUW*(N,y2[v]);
10: V =V \ N[W*(N,2v])];
11: end while
12: return (Q;

We now analyze Algorithm 1. First-of all, the following lemma shows that the radius of
the largest neighborhood we need to examine for each vertex picked in line 3 of Algorithm 1
is bounded by a constant that-only depends.on.the growth function p and the given

constant . In other words, the number of iterations of the inner while-loop is constant.

Lemma 3.4. Let G = (V, E) be a node-weighted p-growth-bounded graph and the weight
function satisfies the weight-constraint. Then for the i-th iteration of Algorithm 1, there
exists a constant ¢ (only depends on €) such that the number of iterations in lines 6-8 is

at most c.

Proof. Let the growth function p be p(r) = O(r?) for some constant d > 1. Consider
a vertex v picked in line 3 in the i-th iteration of Algorithm 1. Let 7 denote the first r
which violates the inequality in line 6. Now we consider any value r < 7. Let v* be the

vertex in N, o[v] with the maximum weight. If r is even, then by (1), we have

p(r+2)-w(*) > w*(Ny42[v])
> (1+¢)- w*(N,[v])
> ()it wr (Nolo))
— (14 &)zt - w(x), for some z € N[v].



Recall that there exists a constant ¢ > 0 such that for every pair of vertices u,v in G,
w(u) < t-w(v) holds. Hence we have (14-¢)3+ < t-p(r+2) = O((r+2)%); this inequality
will be violated for some large enough r. Therefore, there must exist a constant ¢ (which

depends on ¢) such that r < ¢ holds. Similar arguments can be applied for odd 7. O]

Theorem 3.5. Algorithm 1 is a PTAS with approximation ratio (1+¢) for the MWIDS
problem on node-weighted polynomially growth bounded graphs G = (V, E) if the weight

function satisfies the weight-constraint.

Proof. We first prove that Algorithm 1 generates a minimum-weighted independent dom-
inating set with approximation ratio (1+4¢). Suppose at the end of Algorithm 1, the value
of 7 is k; that is, suppose there are total % iterations of the while-loop in lines 2-11. For
each i, let v; be the vertex picked in line-3 and let 7; be the radius which is the first value

violating the inequality in line 6. Then we have
w* (NpZalu] o (THE) - w (V5 [vi]). (2)

Let S; = N,,[v;] and T; = N, yolv;] for ¢ =1,2,... k. It is not difficult to verify that
S = {51,5,...,5} forms a 2-separated collection. Clearly, S; C T;. By (2), w*(T;) <
(1+¢)-w*(5;) holds for all i = 1,2,..., k. By Lemma 3.3, Zle w*(T;) < (14¢) - wopt

Algorithm 1 returns Q = Ji_, W*(T;). If we can further prove that €2 is an independent
dominating set of G, then by Lemma 3.3, Q is a (1 4 ¢)-approximation for a minimum-
weighted independent dominating set of G. () is a dominating set of GG since in the
i-iteration, the removed neighborhood N[W*(N,, 2[v;])] is dominated by W*(T;). Q is an
independent set of G since for each i, W*(T;) is independent and if there exist two vertices
a,b with a € W*(T;),b € W*(T;), for some i # j, then b ¢ N[W*(T;)] and a ¢ N[W*(1})]
and therefore W*(T;) U W*(1}) is also independent. From the above discussion, 2 is a
(1 + e)-approximation of a minimum-weighted independent dominating set of G.

By Lemma 3.4, the radius of the largest neighborhood we need to consider is bounded



by a constant ¢ = c(e). It has been shown in [15] and [18] that c¢(¢) = O(flogl). By
Lemma 3.1, for each ¢, finding each of the local optimal solutions W*(Ny[v;]), W*(N1[vy]),

.., W*(N,, 45[v;]) can be done in polynomial time n®(82). Thus the total execution
time spent on line 6 is bounded by a polynomial in n. Since the overall running time of

Algorithm 1 is dominated by the total execution time spent on line 6, Algorithm 1 takes

polynomial time. O

4. Comparing our PTAS with HN PTAS

To compare our PTAS with HN PTAS, we vary the number of nodes n from 50 to
100 with the increment of 10 and for.each n, we generate one hundred unit disk graphs
(UDGs). The method to generate a UDG. with n nodes is to randomly place n nodes in a
square of area size 100 x 100m?2. If the distance between any two nodes is within 1, there
is an edge between them. It is well known that UDGs are polynomially growth bounded
graphs.

HN PTAS [15] is a 2-stage algorithm; see Algorithm 2 and Algorithm 3 in Appendix.
If the output of the first stage is not an independent set, then the second stage will be
initiated in order to deal with those dependent vertices. The second stage will remove
non-independent vertices from the output of first stage and adds independent ones by
using maximal independent set scheme on vertices which have not been dominated. We
implement our PTAS and HN PTAS by using the C programming language. See Figures 3,
4 and 5 for an example. Note that the vertices colored red in Figures 4 and 5 are the
vertices in the output (i.e., the independent dominating set).

From Figure 4(a), we know that the first stage of HN PTAS produces 12 vertices and
two of them are dependent. Thus the second stage of HN PTAS is initiated to tackle the
problem; one of the two dependent vertices is removed and two vertices are added to the

output; see Figure 4(b). The cardinality of the output of HN PTAS is therefore 13. For

10



Area of network: 100 X 100
Transmission range of nodes: 20
Size of network: 50

Figure 3: Ansinput graphy e =41.5 andradius = 20.

the same graph, the cardinality-of the output of our PTAS is only 10; see Figure 5.

From the experimental results, we observe that the second stage of HN PTAS may
add many vertices to the output of the first stage.”We observe that the performance of
our PTAS (when considering the cardinality ‘of the generated independent dominating
set) outperforms that of HN PTAS; see Figures 6 and 7.

Note that both our PTAS and HN PTAS need to use brute force to obtain local optimal
solutions. Since the local area that our PTAS needs to apply the brute force method is
always no greater than that of HN PTAS, it is clear that our PTAS is more efficient than
HN PTAS. But, how efficient? We give a threshold of 10 seconds, meaning that if a brute
force execution exceeds 10 seconds, then the corresponding graph will be removed from
the experimental set. From Figures 8 and 9, we see that the successful ratio (the ratio of
graphs that do not exceed the threshold of 10 seconds) of our PTAS outperforms that of

HN PTAS.

11



firea of network: 100 X 100 firea of network: 100 X 100

Transmission range of nodes: 20 Transmission range of nodes: 20

Size of network: 50 Size of network: 50

Size of independent dominating set: 12 Size of independent dominating set: 13

Independent dominating set: 12,19,18,30,14,33,11,13,43,17, 26,48, Independent dominating set: 12,18,30,14,33,11,13,43,17,26,48,0,8,

Figure 4: An output of HN PTAS when € = 1.5 and radius = 20: (a) after stage 1, (b) after stage 2.

firea of network: 100 X 100

Transmission range of nodes: 20

3ize of network: 50

Size of independent dominating set: 10

Independent dominating =et: 4, 6, 3, 27, 1, 32, 5, 9, 415, 18,

Figure 5: An output of our PTAS when € = 1.5 and radius = 20.

5. Concluding remarks

In this thesis, we consider the minimum-weighted independent dominating set problem
on node-weighted polynomially growth bounded graphs. We have proven that if the
weight function satisfies the weight-constraint: for every pair u, v of vertices, there exists

a constant ¢ > 0 such that w(u) < ¢ - w(v) holds, then our algorithm is a PTAS for

12



Cardinality
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19 p ——

= "

185

18 . d // —o—Our PTAS

175 M o —m—HN PTAS
17

16.5 —/

16
15.5
15 T T T T T )

50 60 70 80 90 100  Network size

Figure 6: Comparing the cardinality of independent dominating set when ¢ = 1.5 and radius = 15.

Cardinality

16

14

2 ‘Evs"‘di::

10 =& 0ur PTAS
8 ——HN PTAS
6
4
2
0 . ; . . . .

50 60 70 80 90 100 Network size

Figure 7: Comparing the cardinality of independent dominating set when ¢ = 1.5 and radius = 20.

the MWIDS problem on node-weighted polynomially growth bounded graphs. To the
best of our knowledge, this is the first result for the MWIDS problem. Our PTAS has
O(%log%

approximation ratio (14¢) and it can be done in polynomial time n ). Our algorithm

can also be used to solve the minimum independent dominating set problem.
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Successful ratio(%)

100 o
80
60 . == QOur PTAS
\ —m—HN PTAS
40
20
0 T T T T T 1
50 60 70 80 90 100  Network size

Figure 8: A comparison on successful ratio of algorithm in case ¢ =1.5, radius = 15.

Successful ratio(%)

100 -
. \
60 == Qur PTAS
\\.\ —m—HN PTAS
20
-
0 T " A T T " & 1

50 60 70 80 90 100 Network size

Figure 9: A comparison on successful ratio of algorithm in case e =1.5, radius = 20.
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6. Appendix

Algorithm 2 The first stage of HN PTAS.

Input: G = (V, E) polynomially growth bounded graph ¢ > 0
Output: Dominating set D
1: D=g;i=0;
2: while V # @ do
Pick v € V;
ri=0; .
while Df«:)%(v) > (14¢)- DY (v) do
T, =T+ 1;
end while ‘
Color vertices in Dﬁ:)%(v) with color i
D=DU Dﬁflg(v);
10: V=V\T,3(v);
11: 1=1+1;
12: end while

Algorithm 3 The second stage of HN PTAS.

Input: G = (V, E), Dominating set D, v-€ D
1: Assert that v is conflicting;
: D =D\ {v};
. V' =V \I(D);
. Compute maximal independent set I on G[V'];
. D=DU I

U o= W N
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/[File Name: PTAS_for_MIDS.cpp

/[Author: i RU&F

/[Email Address: smallhau@gmail.com

/[Description: This program is a PTAS (polynomial-time approximation scheme)
/[ for the minimum independent dominating set problem on unit disk graphs.
/Input: One hundred adjacency matrices; each matrix represents a unit disk

/I graph and the entries of each matrix are generated randomly.

/[Output: The average cardinality and the average execution time for generating
/I the independent dominating sets of the one hundred unit disk graphs.

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <time.h>
#include <cstdlib>
using namespace std;

#define NETWORK_SIZE 50 //F%%—_‘ NETWORK [1¥ size.

int check(int adj[ [INETWORK_SIZE+1], int IDS[], int N[ ], int nb_size, int size);
IIEVpY : F|]*] adjacency matrix adj ﬂ\"?ﬂ"éﬁ’?ﬁﬁ%%ﬁ% IDS ﬂ?} E QN A

/I an independent dominating set of a given r-Neighborhood N.

//ﬁ?’f”—[@ * flipuEREl o adj, IDS, N, id, size

O

AC U A ey || USRS SR SR GUETE A FJF[

1= adj : ¥ Kb unit disk graph 1Y adjacency matrix.

113507 IDS : & hrSs I’[E'i%i%ﬁ@%ﬁ% J‘JI'EI?[J%%,%F} £% local independent dominating
set.

11725 N © &%y r-Neighborhood Fllﬁﬁﬂﬁ”vﬂ%ﬁ;

/178 nb_size : ¥ ¥t r-Neighborhood [i*J size.

/%57 size - %Efg&ﬁ% fY size.

int Neib( int node, int r, int adj[ ]INETWORK_SIZE+1], int N[ ], int wb[ ]);
IETFY ﬁ%ﬁ%ﬁnode f* r-Neighborhood.
//3?}&[@ * =gl node, 1, adj, whb

I =g N
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/I{&[pit = node (1Y r-Neighborhood [V size.

/1% 5node < 11 node 35! 14%, 55kl r-Neighborhood.

I8 r: [ﬁj check &

[/%radj : [ﬁj check [FEY:

128N - [ﬁ ] check ﬁ*gl(f

I1Z=Hrwb : F{, BRI |*‘1Eﬁiﬁ‘[JEﬂj‘ 55 neighborhood ElfJE\ﬂj‘ 5, BU‘ET%T‘%LI
I 5 Fukrﬁgﬁ wb B”jsfj RS jci%ﬁa [ﬂ#a@7 Jﬁzj@t‘ﬁfui‘.

Il whb L1 FA =05 J&}irﬂj wbi 0 A o M.

void bruteforce(int node, int r, int adj[ [[INETWORK_SIZE+1], int IDS[ ],
int N[ ], int wb[ ], int &size);

IETES J%}l Jiii‘j\“'%!‘node fi* r-Neighborhood [~ minimum independent

/I dominating set (MIDS)!"] = [F=MIDS f¥ size.

/11#=function ¢7 L] function Neib * function check

//ﬁjT”f” [ flipu=2El - node, r, adj, N, wb

//%ﬁﬁﬁ?“'@p Uzt IDS, size

/% node : [ﬂ | Neib pyE?:

I=8rr - [ﬁj check &

[/%radj - [ﬁ | check [FEY:

1179 node iV r-Neighborhood [ MIDS =4S £ |22 Ei-IDS it}

125 1DS © F% |[ﬂﬁ§ A% fl1 function check 2{J& T kL local independent

/I dominating set, ![] "fﬁ’!{%}{jﬂl IDS [EEM,

128N - [ﬂ check [FEY:

I1%5rwb : [ﬁj Neib [FE7:

125 size : Rirnode fi5 r-Neighborhood i MIDS [ size, ("] il

int GRAPH_num = 100; //%Jd'-cd 100 %[ﬁi

int radius = 10; e AL%!T CIPEEE [ 4 radius, ﬁ#ﬁ@%i%

double epsi = 1.5; //F%Ju PATS [ IiVEEE epsi.

int threshold = 10; //F%EE ,hiﬁqﬂiikﬁmﬁﬂ all=Lys ?F,J i 10 #F, A5 N '—{p'

int main(void)
{
time_t t1, t2;
time(&t1);  IRTFIUFR ] A t1 Ay,
int first, i, j, k, r, node, id, round,;
int Wo[NETWORK_SIZE];
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int size, size2; //7+ %Y local independent dominating set fi*J size.

FILE* fptr;

char temp;

char filename[7];

char output[40];

sprintf(output, "V _epsi=%.1f radius=%d_size=%d_thresh=%d.txt",
epsi,radius, NETWORK_SIZE threshold);

int total_cardi = 0; //{& & independent dominating set [*J size.

IWD[NETWORK_SIZE] 5léés (FERL fy = A b o

ofstream outf;
outf.open(output,ios::out);

I HTRELER 100 -5 7 AT R

for(round = 1; round <= GRAPH_num; round++)

{
int adj[NETWORK_SIZE][NETWORK_SIZE+1]; //515 Vo3 ST
int N2[NETWORK_SIZE]; //F"tlé;ﬁé%ﬁﬁfj(ﬁzyNeighborhood.
int N[INETWORK_SIZE]; //,%E'é;ﬁé%ﬁﬁlf} r-Neighborhood.
int omega[ NETWORK< SIZE]; //r—thlé‘;ﬁéﬂ fff=t1pY independent

/[dominating set.

sprintf(filename, "%d.txt", round+ GRAPH_num);
fptr = fopen( filename, "r");

VY HTRRLY | = SRS FEI o 2V [ OR6A .
for (1=0;i<NETWORK_SIZE; i++)

{
whb[i] = 0;
for (j=0; j< NETWORK_SIZE+1; j++)
{
temp = fgetc( fptr );
adj[i][j] = atoi( &temp );
}
}
fclose(fptr);
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int index = 0;

)™ HERELIE id 'J‘EIU%JEI ;#[J"g";ﬂTFéf, s LF\IU@EL“ﬁj[J.
for(i=0; i < NETWORK_ SIZE; i++)
{
if (WDLil) S R g
{
int Nr_IDS[NETWORK_SIZE];
int Nrtwo_IDS[NETWORK _SIZE];
node = i;
r=0;

) HRREVRRT THETE O while SIE!

do

{
bruteforce(node, r+2, adj, Nrtwo_IDS, N2, wb, size2);
bruteforce(node, r, adj, Nr_IDS, N, wb, size);
r =r+l,

}

while(size2 >'(1+epsi)*size);

if (Isize2)

{
index = 0;
break;

}

size2 = size2 + index;

N7} A LA 2 VR, 2 omega Ff,
//i"'r}{%]’ﬂﬂﬂf‘kﬁé omega %E[fﬁfljfztﬁjum AR 1.
for(j = index; j < size2; j++)
{
omegalj] = Nrtwo_IDSJj-index];
wb[omega[j]] = 1;
for(k = 0; k < NETWORK_SIZE; k++)
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if(adj[k][omegal[j]])
wb[k] = 1;

index = size2;

total_cardi = total_cardi + index;

(void) time(&t2); //F?tl%@’ﬂ ESINFEy LPE\JJ‘ fifl.

/11"~ £ output = {{Frf~1 . the-average cardinality of independent
//dominating set ﬂlgﬁ:f[ﬁ%,ﬂ AEC R E\ﬂj fH].
outf<<(float)total_cardi/GRAPH_num <<endl;
outf<<(int)t2-t1<<"s"<<endl;

outf.close( );

system("pause™);
return O;

int check(int adj[ ]INETWORK_SIZE+1], int IDS[ ], int N[ ], int nb_size, int s)

{

int i, j, flag;

1] HEREL check i%ji%ﬁlf%ﬁ;% IDS fgg\[ independent
for(i=0;1<s-1; it++)
for(j=i+1;j<s; j++)
if(adj[1DS [i]][ 1DS [ill)
return 0;

/1]~ HEREL check 3% fgﬁf}%ﬁ% IDS fQL_F\[ ﬂﬂﬁjﬂ%
for(i = 0; i < nb_size; i++)

{
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flag = 0;

for(j=0;j<s; j++)

{
if((1DS [j] == N[i) | (adj[N[i]][ 1DS [i]] == 1))
{
flag = 1;
break;
}
}
if (!flag)
return 0;
}
return 1,

int Neib(int node, int r, int adj[ ][NETWORK SIZE+1], int N[ ], int wb[ ])

{

intid =1,

int current = 1;

int i,j,k,temp;

int node_ wb[NETWORK_SIZE];
N[O0] = node;

I HERRLN | node_wh %E[fﬁ]ﬁ'?vr%%ﬁ P, R R A
for(i = 0; i < NETWORK_SIZE; i++)
node_wbl[i] = 0;

node_wb[node] = 1,

117~ H R 1-Neighborhood

for(i = 0; i < NETWORK_SIZE; i++)

{
if (((adj[N[O]][i]) && (‘node_wbl[i])) && (*whli]))
{
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N[id] =1i;
node_wbl[i] = 1;
id++;

117~ H R r-Neighborhood
for(k =1; k <r; k++)

{
temp = id;
for(j = current; j <temp ; j++)
{
for(i=0; i< NETWORK_ SIZE; i++)
{
if (((@djINBHND && (Inode.wb[i])) && ('whbl[i]))
{
N[id] =1,
node_wbfi] =1;
id++;
}
}
}
current = temp;
}
return id;

void bruteforce(int node, int r, int adj[ |[NETWORK_SIZE+1],
int IDS[ ], int N[ ], int wb[ ], int &size)

int first, 1, s, nb_size;

time_t t3, t4;

(void) time(&t3); //F‘?d%ﬁiﬂ—“ﬂﬁﬁl ok EIUT?J&F"[E\JJ‘ il
int [NETWORK_SIZE];
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nb_size = Neib(node,r,adj,N,wb);

if (nb_size ==1)

{
IDS[0] = N[O0];
size = 1;
return;

}

T )7 WY ] T i
for(s=1; s <nb_size; s++)

{

(void) time(&t4); //r:,t[%« Pﬁﬁf EHJEF

)™ HERRLA] %‘.ﬁhﬁﬁﬂjf I?F,le‘} 10 7}, {91 ?F,J;ﬁi}:[p'[ﬂ? 0.
if ((int)t4-t3 > threshold)

{
size = 0;
return ;
}
int flag = 0;

for(1=0;i<s;it++)

{
b[i] = i;
IDS[i] = NJi];
}
if (check(adj, IDS, N, nb_size, s))
{
size = s;
return;
}
while(!flag)
{
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flag = 1,

for(1=s-1;1>=0;i--)

{
if (b[i] !'= (nb_size —s + 1))
{
first = 1;
flag = 0;
break;
}
}
if (Iflag)
{
b[first] = b[first]+1;
IDS [first] = N[b[first]];
for( 1= first+1;1<s; i++)
{
b[i] =b[i-1]+1;
IDS [i] = N[bfi]];
}
if (check(adj, IDS, N, nb_size, s))
{
size =s;
return;
}
}
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