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摘要 

 

在過去，Nearest Neighbor演算法通常都是用來處理資料屬性全部都是數值

的例子。在這樣的屬性當中，這些事例都是被視為點，而且彼此之間的距離都適

用標準的定義(如歐幾里得距離為基準)。而在符號的領域當中，我們通常需要對

特徵向量空間做更複雜的處理;處理符號屬性空間的 Nearest Neighbor 演算法

則，是利用特定的距離表，產生事例之間彼此的實值距離，而且指派一些權重在

某些有效或可靠事例，以進一步修正特徵空間中的架構。 

 

    此篇論文，我們在符號領域中，有效的提出一種典型符號的學習方式，這種

典型可以藉由最小距離分類器，學習處理關於符號屬性的問題、屬性的權重、以

及在每一種類別當中找到一個典型符號，如此我們都可以由符號性質最近均值分

類器(symbolic nearest mean classifier)進行分類。 

 

    除了上述之每一種類中當學到典型符號的方法，另外，我們可以把在同一類

別當中所有典型的分量均予考慮，這樣我們就可以在同一個類別當中，設計出一

個模糊式的典型符號，我們再由模糊典型符號之最近均值分類器(symbolic 
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nearest mean classifier with fuzzy prototype)進行分類。 

 

我們使用上述演算法，處理機器學習領域中的三個(其中兩個為生物資訊)

問題：鏡片辨識、辨識 Promoter 的基因序列及計算 Splice 的接面，皆呈現極佳

的分類準確率。藉由不同的測試評估方法，和其他的學習演算法做比較，我們的

演算法在那三個所要測試的資料領域中，都是勝過其他演算法或是可與其匹敵

的；除此之外，我們的演算法具有訓練簡單及速度快的優點。最後，模擬實驗結

果可以證明 Nearest-Neighbor 演算法及相關的延續發展在處理符號屬性資料的

辨識是具優勢的。 
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Abstract 

In the past, nearest neighbor algorithms for learning from examples have worked 

very well in domains in which all features had numeric values. In such domains, the 

examples can be treated as points and distance metrics can be exploited using 

standard definitions, such as Euclidean distance. In symbolic domains, a more 

sophisticated treatment of the feature space is required. The nearest neighbor 

algorithm used for the symbolic feature space calculates distance tables that allow it 

to produce real-valued distances between instances, and attaches weight to the 

instances to further modify the structure of feature space.  

 

    In this thesis, we present an empirical analysis of symbolic prototype learners for 

discrete domains. Our symbolic prototype learner is derived from modifying the 

minimum distance classifier to solve problems with symbolic attributes and attribute 

weighting, and learns a prototype to each class. And then the classification is 

implemented in symbolic nearest mean classifier. 
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   In addition to a prototype to each class, we can consider the contributions of the 

component prototypes for all samples in each class. Then we can design a fuzzy 

prototype approach and implement the symbolic nearest mean by fuzzy prototype 

setting. 

 

We validate our proposed algorithms and on three data sets, majority of them are 

bioinformatics problems; that have been studied by machine learning researchers, 

such as Lenses recognition, identifying DNA promoter sequences, and Splice-junction 

determination. From experimental comparisons with the other learning algorithms, 

our simulation result has shown that our proposed algorithms are superior or 

comparable in the classification accuracy. In addition, our algorithms have advantages 

in training speed, simplicity, and perspicuity. Experimental evidence has demonstrated 

the promising sign to continue development of nearest neighbor algorithms for 

symbolic data domains. 
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Chapter 1. Introduction  

 

1.1  Introduction to Nearest Neighbor 

     

    Different approaches from pattern recognition, machine learning, and expert 

systems have been used in intelligent diagnostic systems. One of the most significant 

developments in this domain is the nearest neighbor algorithm. But the above- 

mentioned approaches used for classification and approximation are not able to 

handle symbolic attributes directly. In the past, the nearest neighbor is used to deal 

with the continuous domain. But recent work suggests that the conventional Euclidean 

measure does not adequately model the symbolic data set. So the nearest neighbor  

requires us to define a distance function differ from the Euclidean distance to measure 

differences among items in a data set, and then to compute the closest items to a query 

point with respect to this measure. That is to say how to define an appropriate distance 

function between instances is very important.  

 

Instance-based learning (IBL) programs also called exemplar-based introduced 

by Salzberg [1] or nearest neighbor introduced by Cover and Hart [2], which learn by 

storing examples as points in a feature space, require some means of measuring 

distance between examples and the more advanced concepts are introduced by Aha 

[3], Aha and Kibler [4], Salzberg [5], Cost and Salzberg [6]. An example is usually a 

vector of feature values plus a category label. When the features are numeric, 

normalized Euclidean distance can be used to compare examples. However, when the  
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feature values have symbolic, unordered values (e.g., the letters of the alphabet, which  

have no natural inter-letter “distance”), nearest neighbor methods typically resort to 

much simpler metrics, such as counting the features that match. Towell et al. [7] 

recently used this metric for the nearest neighbor algorithm in their comparative study. 

Simpler metrics may fail to capture the complexity of the problem domains, and as a 

result may not perform well. Cost and Salzberg [8] proposed an algorithm PEBLS. It 

constructs “modified value difference metric” introduced by Stanfill and Waltz [9] to 

produce a non-Euclidean distance metric and the distance is modified by a weighting 

scheme that weights instances in memory according to their performance history [5], 

[10]. On the other hand, Datta and Kibler [11], [12] proposed a symbolic prototype 

learning algorithm and the prototypes are learned by modifying the minimum-distance 

classifier to solve problems with symbolic attributes. And the above-mentioned 

algorithms can be applied in the pronouncing English text, and bioinformatics, such as 

identifying promoter sequences and predicting protein secondary structure. 

 

 

1.2  Introduction to K-Nearest Neighbor for Learning with Continuous Features 

 

    Nearest neighbor classifiers are based on learning by analogy. The training 

samples are described by n-dimensional numeric attributes. Each sample represents a  

point in an n-dimensional space. In this way, all of the training samples are stored in  

an n-dimensional pattern space. When given an unknown sample, a k-nearest  

neighbor classifier searches the pattern space for k training samples that are closest to  

the unknown sample. The k training samples are the k “nearest neighbors” of the  
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unknown sample. “Closeness” is defined in terms of Euclidean distance, where the 

Euclidean distance between two points,  and Y  is X = (x1, x2,...,xn) = (y1, y2,...,yn)

d(X, Y) =
P
i=1

n

(xi à yi)2

s
 (1.1) 

 

   Consider the case of m classes  and a set of N sample patterns 
è
Ci

ém

i=1

è
yi

éN

i=1 

whose classification is a priori known. Let  denote an arbitrary incoming pattern. x

xThe nearest neighbor classification approach classifies  in the pattern class of its  

nearest neighbor in the set 
è

,  i.e., if yi

éN

i=1

wwx à yj

ww = min
1ôiôN

wwx à yi

ww then 

x ∈ Cj . This scheme which is basically another type of minimum-distance 

classification, can be modified by considering the k nearest neighbors to  and using 

a majority-rule type classifier. Its advantage is overcoming class noise in the training 

set. And the example is shown in Fig. 1.1 : 

x

 

 

y 

 

 

 

 
 

x 

          Fig. 1.1. Simple 2-D case, each instance is described only by two values  

(x, y co–ordinates). The class is either    or    . 
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Inside the circle of Fig. 1.1, we can easily see that the class of simple-NN (1-NN) 

is , and the class of 5-NN is   .  (    is the testing data) 

 

Nearest neighbor classifiers are instance-based or lazy-learners in that they  

store all of the training samples and do not build a classifier until a new (unlabeled) 

sample needs to be classified. This contrasts with eager learning methods, such as 

decision tree induction and back propagation, which construct a generalization model 

before receiving new samples to classify. Lazy learners can incur expensive 

computational costs when the number of potential neighbors (i.e., stored training 

samples) with which to compare a given unlabeled sample is great. Therefore, they 

require efficient indexing techniques. As expected, lazy learning methods are faster at 

training than eager methods, but slower at classification since all computation is 

delayed to that time. Unlike decision tree induction and back propagation, nearest 

neighbor classifiers assign equal weight to each attribute. This may cause confusion 

when there are many irrelevant attributes in the data. 

 

Nearest neighbor classifiers can also be used for prediction, that is, to return a 

real-valued prediction for a given unknown sample. In this case, the classifier returns 

the average value of the real-valued labels associated with the k nearest neighbors of 

the unknown sample. 
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1.3  Introduction to Minimum Distance Classifier 

 

Nearest neighbor learning method is a traditional statistical pattern recognition 

method for classifying unseen examples. These methods store the training set of 

examples. To classify an example from the test set, the closet example in the training 

set is found and the class of that example is predicted. In order to reduce the number 

of training examples stored, some researchers have stored only a subset of the 

examples or a generalization of the examples. They finally discuss a variation of the 

nearest neighbor classifier termed the minimum-distance classifier. This classifier 

works similarly to the nearest neighbor classifier except that instead of storing each  

training example, the mean of each class is stored as a prototype. During classification 

time, the class of closest prototype is predicted. And the detail is shown in the  

following: 

 

Let ..C  .denote. m .pattern .classes. in R , represented. by. the .single  1, ..., Cm
n

prototype vectors  respectively. The distance between an incoming pattern 

 and the prototype vectors are  

y1, ..., ym

x

 

Di =k x à yi k=
à
(x à yi)T(x à yi)

á1/2
, 1 ô i ô m    (1.2) 

 

and a minimum-distance classifier will classify  at C  x j

à
or to yj

á
 for which D   j

is minimum, i.e., 

 

Dj = min x yi , 1 i mk à k ô ô             (1.3) 
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If the minimum is achieve by several by several j’s,  is classified at the first  x Cj

(for example) for which a minimum is found, or not classified at all. Minimizing  D2
i

is equivalent to minimizing  but is more convenient . Indeed Di

 

D2 = (x à yi)T(x à yi) = xTx à 2xTyi + yTyii
           (1.4) 

 

and since the constant x  can be removed, we should only minimize   Tx

 

à 2xTyi + yT
i yi or instead maximize 

 

2xTyi à yT
i yi, 1 ô i ô m             (1.5) 

 

Thus, we can define  

 

di(x) = xTyi à 2
1
yT

i yi, 1 ô i ô m             (1.6) 

as decision functions and apply the classifier 

 

   x                   (1.7) ∈ Ci iff di(x) > dj(x), 6=ij

The decision functions are linear, i.e., 

 

di(x) = wT
i x, 1 ô i ô m             (1.8) 

 

where  is the augmented vector  and  x (x1,x2,..., xn, 1)T
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wi = (wi1, wi2, ..., win, wi,n+1)
T, 1 ô i ô m are determined by  

 

yi = (yi1, yi2, ..., yin)T, 1 ô i ô m  as 

 

               w  ij = yij; 1 ô i ô m, 1 ô j ô n

                                                                 (1.9) 

wi,n+1 = à 2
1
yT

i yi, 1 ô i ô m 

 

For example, in the case of two pattern classes the decision boundary associated 

with the minimum-distance classification is  

 

d12(x) = d1(x) à d2(x) = xT(y1 à y2) à 2
1
yT

1y1 + 2
1
yT

2y2 = 0          (1.10) 

 

This is a hyper plane in nominal direction to the vector y  By substituting 

 in Eq. (1.10) we get 

1 à y2.

x = (y1 + y2)/2

 

d12(x) = 2
1(y1 + y2)T(y1 à y2) à 2

1
yT

1y1 + 2
1
yT

2y2 = 0             (1.11) 

 

The decision boundary is therefore the hyper plane which is perpendicular to the vec- 

tor connecting the two prototypes and bisects it (Fig. 1.2). 
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y1ày2

y1

y2

+ à
d12(x) = 0

 

Fig. 1.2. Minimum-distance classification－two single prototype case. 

 

 

Some researchers have stored only a subset of the examples or a generalization 

of the examples, such as Duda and Hart [13], Aha et al [14], Zhang [15], Skalak [16], 

and Datta and Kibler [17]. Duda and Hart discussd a variation of the nearest neighbor 

classifier termed the minimum-distance classifier. This classifier works similarly to 

the nearest neighbor classifier except that the mean to each class is stored as a 

prototype. During classification time, the class of closest prototype is predicted. 

 

But the minimum-distance has some drawbacks. It can not use symbolic 

(nominal) attributes since the mean for symbolic attributes and the distance between 

two attribute values is not pre-defined. Another drawback is its inability to weigh 

attributes. Attributes no relevant for classification may distract the classifier.  
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In this thesis, we propose three classification algorithms. First, we construct a 

“value difference” tables in the style of Stanfill and Waltz [9] to produce a 

non-Euclidean distance metric so that we can deal with the symbolic data and add the 

information gain to improve classification effectiveness. Second, we use the MVDM 

metric combing with information gain to select the prototype to each class for 

different attributes by selecting the minimal variance one. Our method can resolve the 

problem of the minimum-distance classifier not able to be exploited for symbolic data. 

Third, we propose the fuzzy prototype to each class, in which each class prototype 

admits partial belonging to each symbol in each attribute. Finally, we use the MVDM 

metric and the information gain to predict the class of the data. 

 

The rest of the thesis is structured as follows. We begin with constructing our 

MVDM metric in Chapter II. We use the information gain to be our weighting for 

attributes. In Chapter III, we develop two kinds of algorithms. One is the modified 

Symbolic Nearest Mean and the other is Symbolic Nearest Mean with the fuzzy 

prototype. In Chapter IV, the result of some experiments on some data sets is 

presented. Chapter V presents our conclusions. 
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Chapter 2. Nearest Neighbor Algorithm for learning with symbolic  

Features 

 
 
2.1  Overlap Metric 

 

The most basic metric that works for patterns with symbolic features is the 

overlap metric given in Eq. (2.1) and Eq. (2.2); where î(X, Y) is the distance 

between instances X and Y, represented by n features, and î  is the distance per 

feature. The distance between two patterns is simply the sum of the differences 

between the features. The k-NN algorithm with this metric is called IB1 introduced by 

Aha et al. [14] Usually k is set to 1. 

 

î(X, Y ) =
P
i=1

n ⏐⏐Xi à Yi

⏐⏐k                         (2.1) 

 
where 

 

î(xi, yi) =

abs(maxiàmini

xiàyi ), if

0, if
1, if

⎧⎪⎨
⎪⎩ xi = yi

xi 6= yi

   (2.2) 
numeric, else 

 

But the overlap metric has a disadvantage that it could not decide the real 

intrinsic instances in symbolic domain. When the instances are not equal, it assigns a  

1 of value to their distance. This assumes that each different symbolic value is 

equi-distant from another which leads to problems when two different values should  

be considered equal, and where symbolic values should have varying distances among 

them. However the rule is ambiguous, since it could not find the degree of difference  
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between the instances. So the overlap metric is not a proper distance metric for 

calculating the distance among those instances. We propose a different distance metric 

for symbolic attributes latter. 

 

 

2.2  Information Gain Feature Weighting 

 

The distance metric in Eq. (2.2) simply counts the number of (mis)matching 

feature-values in both patterns. In the absence of information about feature relevance, 

this is a reasonable choice. Otherwise, we can add domain knowledge bias to weight 

or select different features (see e.g., .Cardie [18] for an application of linguistic bias in 

a language processing task), or look at the behavior of features in the set of examples 

used for training. We can compute statistics about the relevance of features by looking 

at which features are good predictors of the class labels. Information theory [19], [20] 

gives us a useful tool for measuring feature relevance in this way. 

 

Information Gain (IG) weighting looks at each features in isolation, and 

measures how much information it contributes to our knowledge of the correct class 

label. The Information Gain of feature i is measured by computing the difference in  

uncertainty (i.e., entropy) between the situations without and with knowledge of the 

value of that feature (Eq. (2.3)). 

 

wi = H(c) à
P
v∈Vi

P (v) â H(C
⏐⏐v)                (2.3) 
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where C is the set of class labels,  is the set of values for feature i, and H(C) 

= –
P

  is the entropy of the class labels. The probabilities are 

estimated P from relative frequencies in the training set. 

Vi

c C P (c)log2P (c)∈

 

It is important to realize that the IG weight is really a probability-weighted aver-

age of the informativity of the different values of the feature. On the one hand, this 

pre-empts the consideration of values with low frequency but high informativity. 

Such values “disappear” in the average. On the other hand, this also makes the IG 

weight very robust to estimation problems. Each parameter (weight) is estimated on 

the whole data set. 

 

Information Gain, however, tends to overestimate the relevance of features with 

large numbers of values. Imagine a data set of hospital patients, where one of the 

available features is a unique “patient ID number”. This feature will have very high 

Information Gain, but it does not give any generalization to new instances. To  

normalize Information Gain for features with different numbers of values, Quinlan 

[20] has introduced a normalized version, called Gain Ratio, which is  

Information Gain divided by s  (split info), the entropy of the feature-values i(i)

(Eq. 2.5) is given by  

 

wn
i = si(i)

H(C) à P
v∈Vi

P (v)âH(C | v)

                (2.4) 

 

 

si(i) = à
P
v∈Vi

P (v)log2P (v)                    (2.5) 
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The resulting Gain Ratio values can then be used as weights i in the weighted 

distance metric (Eq. 2.6). The k-NN algorithm with this metric is called IB1-IG [21]. 

w

 

4(X, Y ) =
P
i=1

n

wn
i î(xi,yi)                   (2.6) 

 

The possibility of automatically determining the relevance of features implies 

that many different and possibly irrelevant features can be added to the feature set. 

This is a very convenient methodology if domain knowledge does not constrain the 

choice enough beforehand, or if we wish to measure the importance of various  

information sources experimentally. However, because IG values are computed for 

each feature independently, this is not necessarily the best strategy. Sometimes better 

results can be obtained by leaving features out than by letting them in with a low  

weight. Very redundant features can also be challenging for IB1-IG, because IG will  

overestimate their joint relevance. Imagine an informative feature which is duplicated.  

This results in an overestimation of IG weight by a factor two, and can lead to 

accuracy loss, because the doubled feature will dominate the distance metric. 

 

 

2.3  Modified Value Difference Metric 
 

Overlap and IG Overlap, are limited to exact match between feature-values. 

This means that all values of a feature are seen as equally dissimilar. However, if we 

think of an imaginary task in e.g. the phonetic domain, we might want to use the 

information that ‘b’ and ‘p’ are more similar than ‘b’ and ‘a’. For this purpose a 

metric was defined by Stanfill and Waltz and further refined by Cost and Salzberg . It  
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is called the (Modified) Value Difference Metric, and it is a method to determine the 

similarity of the values of a feature by looking at co-occurrence of values with target 

classes. For the distance between two values,  and v  of a feature, we compute 

the difference of the conditional distribution of the classes C  for these values is 

defined in Eq. (2.7): 

v1 2

i

 

î(v1, v2) =
P
i=1

n

| P (Ci | v1) à P (Ci | v2) |             (2.7) 

=
P
i=1

n ⏐⏐
C1

C1i à
C2

C2i
⏐⏐k

 

 

In the equation, v  and v  are two possible values for the feature and the 

distance between the values is a sum over all  classes. C  is the number of times 

 was classified into category   is the total number of times value 1 occurred, 

and k is constant, usually set to 1. 

1 2

n 1i

v1 i, C1

 

Using Eq. (2.7), we compute a matrix of value differences for each feature in the 

input data. It is interesting to note that the value difference matrices computed in the 

experiments below are quite similar overall for different features, although they differ  

significantly for some value pairs. 

 

  The idea behind this metric is that we wish to establish that values are similar if 

they occur with the same relative frequency for all classifications. The term  C1 /C1i

v1

represents the likelihood that the central residue will be classified as i given that the  

feature in question has value . Thus we say that two values are similar if they give  

similar likelihood for all possible classifications. Eq. (2.7) computes overall  
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similarity between two values by finding the sum of the differences of these 

likelihood over all classifications. 

 

Consider the following example. Say we have a pool of instances for which we 

examine a single feature that takes one of three values, A, B, and C. Two 

classifications,  and ì , are possible. From the data we construct Table I, in which 

the table entries represent the number of times an instance had a given feature value 

and classification. From this information we construct a table of distances as follows. 

The frequency of occurrence of A for class  is 57.14%, since there were 4 instances 

classified as ë  out of 7 instances with value A. Similarly, the frequencies of 

occurrence for B and C are 28.57% and 66.67%, respectively. The frequency of 

occurrence of A for class ì is 42.86%, and so on. In order to find the distance 

between A and B, we use Eq. (2.7), which yields 

4. The complete table of distances is shown in 

Table II. Note that we construct a different value difference table for each feature; if 

there are 20 features, we will construct 20 tables. 

ë

ë

| à | | 3/7 à 7 |= 0.5714/7 2/7 + 5/

 

TABLE I 

NMBER OF OCCURENCES OF EACH VALUE TO EACH CLASS 
 

                             Class 

Feature Values ë  ì  

A  4 3 

B  2 5 

C  4 2 
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TABLE II 

VALUE DIFFERENCE TABLE 
 

             Feature values 

 A B C 

A 0.0000 0.5714 0.1905 

B 0.5714 0.0000 0.7619 

C 0.1905 0.7619 0.0000 

 

 

We can find that the distance between A and C is very small. This is due to their  

occurrence numbers in the ë and ì are very similar. Eq. (2.7) defines geometric  

distance on a fixed, finite set of values. The distances are symmetric, and they obey 

the triangle inequality. We summarize these properties as follows: 

 

i. î(a, b) > 0, a6=b 

ii. î(a, b) = î(b, a)  

iii. î(a, a) = 0  

iv. î(a, b) + î(b, c) õ î(a, c) 

 

The total distance 4  between two instances is given by Eq. (2.6). X and Y 

represent two instances with X being an exemplar in memory (training example) and 

Y a new example (test example). The variables x  and y  are values of the ith 

feature for X and Y, where each example has n features and  is the information  

i i

wi

gain constructed by the data set. That is to say that we can calculate the weights   

so that we could find the importance for each feature in advance. 
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    The distance between X and Y is shown in the following figure, Fig. 2.1 : 

 

X à Y = (x1, x2, ...xn) à (y1, y2, ...yn) 

 

(x1 à y1) + (x2 à y2) + ... + (xn à yn)  

 

 

 

vdm table of feature 1    vdm table of feature 2      vdm table of feature n 

Fig. 2.1. The distance between instances X and Y. 

 

 

2.4  Tie Breaking 

 

Thus far we have described the last step of k-NN classification as taking the 

majority category among the set of nearest neighbors. Especially in case of 

unweighted voting, ties can occur; e.g., of a set of ten nearest neighbors, five votes for 

class A, and the other five for B. The procedure for breaking this tie in the k-NN 

classifier in our algorithm is as follows. First, the value of the k parameter is 

incremented by 1, and the additional nearest neighbors at this new kth distance are 

added to the current nearest neighbor set (k is subsequently reset to its user-specified  

value). If the tie in the class distribution persists, then the class label is selected with  

the highest overall occurrence in the training set. If that is also equal, then the first 

class is taken that was encountered when reading the training instance file. Optionally, 
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our algorithm can be set to avoid ties by making a random choice of a classification 

from a class distribution in a nearest-neighbor set, weighted by the distribution of the 

classes in the set. 

 

 

2.5  K- Nearest Neighbor Algorithm 

 

    The k-NN algorithm is summarized in the following flow chart (Fig. 2.2): 

 

Step 1 ) 
 

Consider, the case of learning a discrete-valued target 

function of the form : 

f : Rn V,→ where V  is the finite set {V .} 1 2 s, V , ...V

 

 

 

 

Step 2 ) 
 

 For each training example < x, f(x) >, add the example to 

the list of training examples  

 

 

Step 3 ) 
 

Construct value difference matrices by the training data  
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Step 4 ) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Given a query instance  to be classified xq

 

 1. Let x  denote the k instances from training 1,..., k

xq

∈

ise

x

examples that are nearest to  

 2. Return  

fê(xq) ← arg max
v V

P
i=1

k

îs(V, f(xi))  

            where î  s(a, b) = 1 if a = b

= otherw  
 

To avoid ties by making a random choice of a 
classification from a class distribution in a nearest 
neighbor set, weighted by the distribution of the classes in 
the set. 

0

Fig. 2.2. The steps of k-NN algorithm (IBL). 
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Chapter 3. .Learning Symbolic Prototypes 

 

3.1  Distance Between Values Combing Information Gain 

 

The distance metric for nearest neighbor and minimum-distance classifier is 

crucial to their predictive capabilities. Euclidean distance, a commonly used 

metric, is defined as 

 

    E(x, y) =
P
i=1

a

d(xi, yi)2

s
                        (3.1) 

 

where  and y  are two examples, a is the number of attributes and x  refers x i

à |

to the ith attribute value for example x . For real-value attributes d  is (xi, yi)

defined as their absolute difference (i.e., | ). For symbolic attributes the 

distance between two values is defined as Eq. (2.4) and Eq. (2.6). 

xi yi

 

 

3.2  Mean of Symbolic Prototype 

 

The simplest method for determining the mean of a symbolic attribute is to choose 

the most common value; however, this does not yield the best classification accuracy. 

In addition, the mean of a symbolic attribute must be one of its possible values. For 

numeric data the mean is the value that minimizes the variance. We generalize this  

notion to deal with symbolic attributes as well. We define the mean of a set of symbolic  
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values by finding the value of  minimizing the variance, that is u

 

u = arg min(
P

v∈J D(v, u))                  (3.2) 

 

. But u is not necessarily where J is the set of values and  is a symbolic value in v J

a single value. It may be more than one value. So we can find the value in the  which 

occurs the most frequently in the J, that is  

u

ui

 

ui = arg max
1ôiôn

P
v∈J îm(v, ui)                  (3.3) 

where îs(a, b) =
1 if
0 oth

ú
= b

 

 will act as the best constan

the mean for the real values.

as  and the symbolic value ui

J. We define the mean of a set

where  denotes the mean o

.  

Aiu

S

 

 

3.3  Nearest Mean Classifier

 

We have developed an al

uses the MVDM and the defini

to each class, classifies examp

 

a

 erwise

t approximation for the symbolic values in J similar to 

 Computationally, each symbolic value will be tried 

that minimizes the variance will become the mean for 

 of examples, S, to be the vector  

f the ith attribute. We call this vector the prototype for 

<A1u, A2u, ..., Anu>

 Algorithm 

gorithm called SNM (Symbolic Nearest Mean). SNM  

tion of mean described above. SNM learns a prototype 

les by finding the closest prototype using Euclidean  
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distance, and predicts the prototype’s class. And the flow chart is shown in the 

followings: 

 

Step 1 ) 
 

 Consider, the case of learning a discrete-valued target 

function of the form : 

f : Rn → V, where V  is the finite set {V  1, V2, ..., Vs)

 

 

 

 

Step 2 ) 
 

For each training example <.x, f(x).>, add the example to 

the list of training examples 
 

 

 

 

Step 3 ) 
 

Construct the value difference matrix by the training data  

 

 

Step 4 ) 

Construct the mean of each class for different attributes in 

the training data 
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Step 5 ) 
 

Given a query instance  to be classified xq

 

1. Given  denote k means to each class in the 

training data. 

x , x , ..., x1 2 k

 
2.  

          x  i = arg min
1ôiôk

î(xq, xi)

          where î  s(a, b) = 1 if a = b

.=  otherwise

   Return 
          f    ê(xq)← f(xi)

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. The steps of 

 

 

3.4  Mean of Symbolic Fuzzy Prototype 

 

In the preceding context, we calculate t

attributes. This is called Symbolic Nearest M

develop another algorithm different from SN

the contribution of all the possible symbols i

class for different features is composed of eac

of occurrence ratio. And the equation is thus

(3.4): 
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SNM algorithm. 

he prototype to each class for different 

ean classifier. In this section, we will 

M. For each attribute, we will consider 

n the same class. So the mean of each 

h symbolic value multiplied by its factor 

 defined as the following equation, Eq. 



ut =
P
i=1

n

uiVt

Vi

                          (3.4) 

 

where  is the mean and  are the symbol values in the set ,(k  

is the kth feature in the data set),  is the occurrence number of  in the set, and 

 is the total occurrence number in the set. So  is called the Fuzzy Prototype.  

ut <u1, u2, ..., un >k Jk

Vi ui

Vt ut

 

 

3.5  Nearest Mean Classifier with Fuzzy Prototype Algorithm 

 

We also develop the algorithm Fuzzy Symbolic Nearest Mean classifier (FSNM). 

It also uses the MVDM and the mean as defined in Eq. (3.4). FSNM learns a 

prototype composed of each value to each class. Like SNM, it classifies examples by 

finding the closest prototype using Euclidean distance, and predicts the prototype’s 

class. And the flow chart of FSNM is shown in the following figure, Fig. 3.2 : 

 

Step 1 ) 
   

Consider, the case of learning a discrete-valued target 

function of the form : 

f : Rn → V, where V  is the finite set {V  1, V2, ..., Vs)

 

 

 

 

 

Step 2 ) 
 

For each training example <x, f(x)>, add the example to 

the list of training examples 
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Step 3 ) 

Construct the value difference matrix by the training data 
 

 

 

 

Step 4 ) 
 

 

 

Fig. 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Given a query instance  to be classified xq

 
1. Given are the symbol values in the 

training set J .(k  is the kth feature in the data set), 
where  are their occurrence number and 

 is the total occurrence number. 

<u1, u2, ..., un >k

k

v1, v2, ..., vn

vt

 

ut =
P
i=1

n

ui Vt

Vi

 

 
2. Given.x c

 denote c means composed of each t1, xt2, ..., xt

symbol value each class for different features in the 
training data,  

 

xti
= arg min

1ôiôc
î(xq, xti

) 

              where î  can be found in the  (xq,xti
)

              vdm matrix  
 
   Return 
             f  ê(xq)← f(xti

)

Fig. 3.2. The steps of FSNM algorithm. 
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Chapter 4. Simulation and Experiment 

 

 

4.1  Introduction to Data Sets 

 

We will use three data sets to test the three our proposed algorithm composed of 

k-NN with our MVDM, SNM, and FSNM. We will use other prediction methods and 

compare the simulation results of ours with PEBLS [8] and SNM [11], [12] in the 

next section. Before presenting the result, we provide brief descriptions of the data 

sets. 

 

Lenses [22], [23]: The Lenses data set with 24 points has four attributes and three 

classes named the patient should be fitted with hard contact lenses, the patient should 

be fitted with soft contact lenses, the patient should not be fitted with contact lenses. 

The features are age of the patient (young, pre-presbyopic, presbyopic), spectacle 

prescription (myope, hypermetrope), astigmatic (no, yes), tear production rate 

(reduced, normal) and the number of missing attribute value is zero. This database is 

complete (all possible combinations of attribute-value pairs are represented). Each 

instance is complete and correct and there are 9 rules cover the training set. 

 

 

Promoter [24]–[28]: The data sets are short DNA sequences that precede the 

beginning of genes. They are can be detected in “wet” biological experiments as they 

a re  loca t ions  a t  which  the  p ro te in  RNA  polymerase  b inds  to  the  
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DNA sequence. The set examples contains 53 sample promoters and 53 nonpromoter 

sequences. The 53 sample promoters were obtained from a compilation produced by 

Hawley and McClure [29]. Negative training examples were derived by selecting 

contiguous substrings from a 1.5 kilobase sequence provided by Prof. T. Record of the 

University of Wisconsin’s Chemistry Department [30]. This sequence is fragment 

from E. coli bacteriophage T7 isolated with the restriction enzyme HaeIII. By virtue 

of the fact that the fragment does not bind RNA polymerase, it is believed to contain 

no promoters. 

 

    The input features for promoter recognition are sequence of 57 DNA nucleotides, 

starting at position –50 (p–50) and ending at position +7 (p7). Each of these fields is 

filled by one of {A, G, T, C}. Following biological convention, the reference point for 

promoter recognition is the site at which gene transcription begins (if the example is a 

promoter). The reference point is located seven nucleotides from the right. (Thus, 

positive examples contain the first seven nucleotides of the transcribed gene.)  

 

    Table III contains the initial rule set used in the promoter recognition task. 

According to the rules in Table III, there are two sites at which the DNA sequence 

must bind to RNA polymerase – the minus 10 and minus 35 regions. (These regions 

are named for their distance from the reference point.) The conformation rules  

attempt to capture the three-dimensional structure of DNA, thereby ensuring that the  

minus 10 and minus 35 sites are spatially aligned. This set of rules was derived from 

the biological literature by Noordewier [26]. 
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In the viewpoint of machine learning, the dataset has two classes with 57 

dimensional data consisting of 106 points. All of 57 attributes consist of {A, T, C, G}. 

 

 

Prior to training, the rules in Table III do not classify any of the 106 examples as 

promoters. Thus, the rules are useless as a classifier. Nevertheless, they do capture a 

significant amount of information about promoters. 

 

 

TABLE III  
RULES FOR PROMOTER-RECOGNITION 

 
promoter   : - contact, conformation. 
contact     : - minus-35, minus-10 . 

 
minus-35  : -  @-37  “CTTGAC-“ .      minus-35  : -  @-37  “-TTG-GA” . 
minus-35  : -  @-37  “-TTGACA” .      minus-35  : -  @-37  “-TTGAC- “. 
 
minus-10  : -  @-14  “TATAAT--” .     minus-10  : -  @-14  “-TA-A-T-” . 
minus-10  : -  @-14  “-TATAAT-” .     minus-10  : -  @-14  “-- TA- --T” . 
 
conformation  : -  @-45 “AA--A” . 
conformation  : -  @-45 “A ---A” , @-28 “T---T-AA--T-“ , @-04 “T” . 
conformation  : -  @-49 “A----T” , @-27 “T----A--T-TG” , @-01 “A” . 
conformation  : -  @-47 “CAA-TT-AC” , @-22  “G---T-C” , @-08 “GCGCC-CC” . 
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Splice [31]–[35] : Splice junctions are points on a DNA sequence at which 

‘superfluous’ DNA is removed during the process of protein creation in higher 

organisms. The problem posed in this dataset is to recognize, given a sequence of  

DNA, the boundaries between exons (the parts of the DNA sequence retained after 

splicing) and introns (the parts of the DNA sequence that are spliced out). This 

problem consists of two subtasks: recognizing exon/intron boundaries (referred to as 

E/I sites), and recognizing intron/exon boundaries (I/E sites). Fig. 4.1 illustrates how 

splicing occurs during the process of protein creation. 

 

    As with the promoter recognition, biologists have attempted to use neural 

networks from splice-junction determination. The work of Brunak et al. [31] is a very 

complete treatment of the topic. 

 

 

       DNA 
                          
 

 
precursor mRNA 

 
 
 
 
                                                  mRNA (after splicing) 

 

Intron 
 

Intron
 

Intron 

ExonExon 

ExonExon

Fig. 4.1. The organization of genes in higher organisms. 
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    Fig. 4.2 illustrates a prototypical DNA sequence showing both the I/E and E/I 

borders. This prototypical sequence is the basis of the rules for splice-junction 

determination contained in Table IV. 

 

The dataset used to approach this problem was extracted from the biological  

literature by Noordewier [32]. The full set of examples contains 3190 examples, and 

three classes, of which approximately 25% are I/E, 25% are E/I and the remaining 

50% are neither. Each example consists of a 60 nucleotide-long DNA sequence 

categorized according to the type of boundary at the center of the sequence; the center 

of the sequence is the reference location used for numbering nucleotides. These DNA  

sequences starts at position –30 and ending at position +30. Each of these fields is  

almost always filled by one of {A, G, T, C}. Other characters indicate ambiguity 

among the standard characters according to the following Table VI. The examples 

were obtained by taking the documented “split” genes from all primate gene entries in  

Genbank release 64.1 that are described as complete.  

 

In addition to the examples, information about splice-junctions includes a set of 

23 rules appearing in Table IV. This count does not include the rules defined by the 

iterative construct “For i from…” which define the meaning of “Y.” This set of rules 

was derived from the biological literature [36] by Noordewier. 

 

In order to clearly summarize the three data sets, we list the properties of them in 

Table VII . 
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exon             intron               exon 
 

…   M A G                                   G K … 
 

G T R A G T   … Y  Y A G6 à

Y6  means that either a “Y” occurs in six consecutive locations 

Fig. 4.2. “Cannonical” splice-junction. 

 

 

TABLE IV 

INITIAL RULES FOR SPLICE-JUNCTION DETERMINATION 
 
E/I :- @-3  ‘MAGGTRAGT’ , not (E/I-stop) . 
 
E/I-stop : :- @-3  ‘TAA’ .  E/I-stop ::- @-4  ‘TAA’ .  E/I-stop ::- @-5  ‘TAA’ . 
E/I-stop : :- @-3  ‘TAG’ .  E/I-stop ::- @-4  ‘TAG’ .  E/I-stop ::- @-5  ‘TAG’ . 
E/I-stop : :- @-3  ‘TGA’ .  E/I-stop ::- @-4  ‘TGA’ .  E/I-stop ::- @-5  ‘TGA’ . 
 
I/E :- pyramidine-rich, @-3 ‘YAGG’ , not (I/E-stop) . 
pyramidine-rich :- 6 of  (@-15 ‘YYYYYYYYYY’) . 
For i from ((-30 to -1) and (+1 to +30)) 
        {@< ‘Y’ ::- @< ‘C’.  @< ‘Y’ ::- @< ‘T’ .} i > i > i > i >

 
I/E-stop : :- @1  ‘TAA’ .  I/E-stop ::- @2  ‘TAA’ .  I/E-stop ::- @3  ‘TAA’ . 
I/E-stop : :- @1  ‘TAG’ .  I/E-stop ::- @2  ‘TAG’ .  I/E-stop ::- @3  ‘TAG’ . 
I/E-stop : :- @1  ‘TGA’ .  I/E-stop ::- @2  ‘TGA’ .  I/E-stop ::- @3  ‘TGA’ . 

 

see Table V for meanings of letters other than A, G, T, C. The notation ‘::- ‘indicates 
a rule that is a definition. Hence, it is not to be altered during learning. The construct 
“For i …” creates 120 rules that define a disjunction at each location in the input. 
Consequents with an antecedent of the form ‘n of (…)’ are satisfied if at least n of the 
parenthesized antecedents are true. 
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TABLE V 
AMBIGUITY CODE FOR DNA NUCLEOTIDES 

 
Code 

M 
R 
W 
S 
Y 
K 
V 
H 
D 
B 
X 

Meaning 
A or C 
A or G 
A or T 
C or G 
C or T 
G or T 

A or C or G 
A or C or T 
A or G or T 
C or G or T 

A or G or C or T 

 

TABLE VI 
AMBIGUITY CODE FOR OTHER CHARACTERS 

character                 meaning 
          

D                 A or G or T 
       N              A or G or C or T 

    S                C or G 
R                 A or G 

 
 

TABLE VII 
PROPERTIES OF THE DATA SETS 

 

Data Set Lenses Promoter Splice 

Data Number 24 106 3190 

Class Number 3 2 3 

Feature Number 4 57 60 

Feature Property Nominal Nominal Nominal 

Missing Value None None None 
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4.2  Simulation and Results 

 

4.2.1 Information Gain of Data Set 

 

We adopt the information gain to be our weight in our three algorithms. First we 

list the information gain of data sets and the information gain and gain ratio of data 

sets are showed in Tables VIII, IX, and X, respectively. 

 

TABLE VIII 

INFORMATION GAIN AND GAIN RATIO  

OF THE LENSES DATA SET 

Information Gain Gain Ratio 
Features 

(w ) i i
(w ) n

1 0.039397 0.024856 

2 0.039511 0.039511 

3 0.375830 0.375830 

4 0.547550 0.547550 
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TABLE IX 

INFORMATION GAIN AND GAIN RATIO  

OF THE PROMOTER DATA SET 

Information Gain Gain Ratio 
Features 

(w  i) (w ) n
i

1 0.0037745 0.0019560 

2 0.0505350 0.0255290 

3 0.0024569 0.0012359 

4 0.0019557 0.0009824 

5 0.0318790 0.0162970 

6 0.1479500 0.0770730 

7 0.0572380 0.0296240 

8 0.0769040 0.0393220 

9 0.0667640 0.0340440 

10 0.0837850 0.0427210 

11 0.0445300 0.0232010 

12 0.0216070 0.0108870 

13 0.0231640 0.0119700 

14 0.0613640 0.0313600 

15 0.3472300 0.1976200 

16 0.2824700 0.1620100 

17 0.3202800 0.1809300 

18 0.1788900 0.0931230 

19 0.0766450 0.0411360 

20 0.1141600 0.0573200 

21 0.0284400 0.0143990 

22 0.0092367 0.0046613 

23 0.0240180 0.0120620 

24 0.0210790 0.0106400 

25 0.0065717 0.0033171 
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26 0.0307930 0.0159170 

27 0.0325380 0.0163050 

28 0.0164910 0.0084008 

29 0.0078622 0.0040520 

30 0.0586060 0.0297950 

31 0.0700260 0.0361900 

32 0.0385390 0.0193820 

33 0.0354010 0.0184000 

34 0.0097125 0.0049977 

35 0.0215350 0.0107710 

36 0.0042229 0.0021333 

37 0.0305820 0.0160730 

38 0.0786980 0.0396620 

39 0.2351100 0.1217300 

40 0.0997090 0.0535690 

41 0.1191100 0.0620070 

42 0.0681800 0.0345430 

43 0.0380690 0.0198790 

44 0.0073343 0.0037683 

45 0.0245650 0.0126340 

46 0.0585780 0.0296540 

47 0.0134770 0.0067665 

48 0.0336760 0.0169520 

49 0.1086300 0.0552150 

50 0.0123430 0.0064302 

51 0.0367800 0.0184870 

52 0.0412570 0.0213320 

53 0.0204960 0.0103850 

54 0.0293260 0.0148210 

55 0.0133500 0.0066934 

56 0.0084004 0.0042138 

57 0.0206390 0.0105330 
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TABLE X 
INFORMATION GAIN AND GAIN RATIO  

OF THE SPLICE DATA SET 

Information Gain Gain Ratio 
Features 

(w  i) (w  n)
i

1 0.0056511 0.0028317 

2 0.0060552 0.0030299 

3 0.0024874 0.0012469 

4 0.0088296 0.0044223 

5 0.0163470 0.0081853 

6 0.0178410 0.0089460 

7 0.0079690 0.0039872 

8 0.0069887 0.0035000 

9 0.0282700 0.0141690 

10 0.0279820 0.0140000 

11 0.0112620 0.0056412 

12 0.0161990 0.0081392 

13 0.0274150 0.0137320 

14 0.0274080 0.0137380 

15 0.0321370 0.0161700 

16 0.0435680 0.0219330 

17 0.0478100 0.0240790 

18 0.0562910 0.0283270 

19 0.0651770 0.0328440 

20 0.0718200 0.0361920 

21 0.0650180 0.0328290 

22 0.0606410 0.0304680 

23 0.0746060 0.0376200 

24 0.0777150 0.0392370 

25 0.1112800 0.0561200 
26 0.0779480 0.0394010 
27 0.0058059 0.0029136 
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28 0.2106100 0.1103300 

29 0.3409500 0.1912100 

30 0.3883200 0.2333100 

31 0.3294400 0.1837800 

32 0.3304300 0.1770600 

33 0.1512500 0.0769090 

34 0.1371000 0.0699530 

35 0.2304400 0.1186700 

36 0.0326220 0.0163850 

37 0.0119670 0.0060254 

38 0.0075238 0.0037673 

39 0.0085445 0.0042825 

40 0.0093502 0.0046951 

41 0.0150360 0.0075396 

42 0.0060594 0.0030408 

43 0.0105530 0.0052965 

44 0.0038257 0.0019150 

45 0.0075266 0.0037714 

46 0.0101130 0.0050692 

47 0.0111670 0.0055982 

48 0.0096923 0.0048606 

49 0.0098409 0.0049540 

50 0.0068017 0.0034024 

51 0.0045416 0.0022824 

52 0.0046442 0.0023267 

53 0.0038402 0.0019239 

54 0.0116450 0.0058496 

55 0.0107500 0.0053878 

56 0.0062025 0.0031036 

57 0.0039486 0.0019792 

58 0.0073756 0.0036980 

59 0.0035447 0.0017738 

60 0.0118150 0.0059359 
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4.2.2  Performance Comparison  

 

      In this section, we compare the performance of the three our proposed 

methods: k-NN (MVDM), SNM, and FSNM, and adopt the leave-one-out strategy 

(i.e., each instance is tested after first training on all other instances in the dataset) to 

test the Lenses and Promoter datasets. In the case of the Splice dataset, whose data 

number is relatively large, we use ten-fold strategy on 1000 randomly selected from 

the complete set of 3190. From Table XI, we can easily see that the k-NN (MVDM) is 

better than the other two algorithms and we just list the best value of k in the table. 

We can know that using the information gain weighting method boosts the accuracies 

by 1–5%. And the result is shown in the followings: 

 

 

TABLE XI 

ACCURACIES FOR DIFFERENT ALGORITHMS 
 

 Lenses Promoter Splice Ave Rank 

5-NN (unweighted) 83.33 (2) 90.57 (4) 94.60(2) 2.67 
5-NN (MVDM) 87.50 (1) 94.34 (1) 95.70(1) 1.00 
SNM (unweighted) 83.33 (2) 88.68 (5) 79.70(6) 4.33 
SNM (weighted) 87.50 (1) 93.34 (2) 84.90(4) 2.33 
FSNM (unweighted) 87.50 (1) 88.68 (6) 81.90(5) 4.00 
FSNM (weighted) 87.50 (1) 91.51 (3) 85.10(3) 2.33 
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4.2.3  Comparison the Variance Difference Percentage  

 

As mentioned in Sec. 4.2.2, we know the performance of SNM approximates to 

the performance of FSNM. Besides, We compare the average variance between SNM 

and FSNM and find that the variance of FSNM is larger than the variance of SNM 

(except for the splice dataset), but the performance of FSNM is a little smaller (or 

better) than SNM. We calculate the variance difference of SNM and FSNM that is 

divided by the variance of SNM. From Tables XII, XIII, and XIV, we can know the 

result easily. Because some symbols of several features in a few classes are the same, 

it can generate the zero variance in the case of SNM and FSNM and the difference 

ratio of NAN (the zero is divided by the zero) and INF (the floating point is divided 

by the zero) will occur in the Lenses and Splice data set. Surprisingly, the variance of 

SNM is larger than FSNM’s in the three class and leads to negative variance 

difference percentage in the Splice data set.  

 

TABLE XII 

NORMALIZED VARIANCE DIFFERENCE OF LENSES DATA SET 
 

Class

Feature 
1 2 3 

1 0.19659 0.26832 0.25566

2 NAN 0.20000 0.06667

3 NAN NAN 0.06667

4 NAN NAN 0.60000
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TABLE XIII 

NORMALIZED VARIANCE DIFFERENCE OF PROMOTER DATA SET 
 

Class

Feature 
1 2 

1 0.37947 0.39257 

2 0.46304 0.42007 

3 0.21462 0.15898 

4 0.39028 0.39283 

5 0.35279 0.31162 

6 0.28416 0.41175 

7 0.06832 0.48068 

8 0.47345 0.17377 

9 0.32232 0.32066 

10 0.12252 0.33475 

11 0.60287 0.26374 

12 0.32686 0.23488 

13 0.29601 0.43290 

14 0.52022 0.25226 

15 0.68027 0.34129 

16 0.62763 0.54694 

17 0.58716 0.50646 

18 0.32399 0.33179 

19 0.23065 0.31185 

20 0.39476 0.33434 

21 0.48173 0.34103 

22 0.30901 0.27972 

23 0.43347 0.47529 

24 0.19526 0.20749 

25 0.36619 0.39439 

26 0.31489 0.27221 
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27 0.36429 0.31223 

28 0.53582 0.51188 

29 0.59453 0.52644 

30 0.52726 0.20987 

31 0.10495 0.45418 

32 0.40233 0.45102 

33 0.10633 0.33318 

34 0.39324 0.45794 

35 0.33131 0.29710 

36 0.13440 0.26500 

37 0.38119 0.36492 

38 0.44095 0.25993 

39 0.70765 0.24773 

40 0.32296 0.24584 

41 0.26829 0.36285 

42 0.32723 0.34308 

43 0.42502 0.20583 

44 0.39966 0.26464 

45 0.17951 0.42657 

46 0.19690 0.45739 

47 0.24393 0.20536 

48 0.30094 0.22838 

49 0.33769 0.30411 

50 0.23918 0.26970 

51 0.29825 0.23346 

52 0.52788 0.44816 

53 0.30191 0.24272 

54 0.37850 0.49361 

55 0.45439 0.46230 

56 0.40608 0.33459 

57 0.25969 0.44075 
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TABLE XIV 

NORMALIZED VARIANCE DIFFERENCE OF SPLICE DATA SET 
 

Class 

Feature 
1 2 3 

1 0.44743 0.72794 -0.32741 
2 0.38454 0.42209 -0.29129 
3 0.42007 0.59478 -0.32114 
4 0.18044 0.28901 -0.42623 
5 0.35891 0.66520 -0.34974 
6 0.12127 0.63104 -0.43996 
7 0.63804 0.44848 -0.28017 
8 -0.20629 -0.06151 -0.66321 
9 0.06755 0.29048 -0.47173 
10 0.44545 0.60284 -0.39052 
11 0.56829 0.78305 -0.32645 
12 0.05729 0.43439 -0.46078 
13 0.24594 0.81238 -0.41819 
14 0.12550 0.45994 -0.46723 
15 -0.08267 0.14020 -0.54888 
16 0.19282 0.77140 -0.46978 
17 0.11679 0.40249 -0.50206 
18 0.43634 0.36436 -0.35082 
19 0.14978 0.51711 -0.44017 
20 0.16972 0.40588 -0.47022 
21 0.16078 0.37822 -0.47082 
22 0.21989 0.41264 -0.42916 
23 0.05456 0.48720 -0.51304 
24 -0.05390 0.45879 -0.51009 
25 0.01526 0.69872 -0.53889 
26 0.08455 1.15870 -0.50932 
27 0.05931 0.13232 -0.45634 
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28 0.06583 0.48776 -0.40005 
29 0.23689 NAN -0.02094 
30 0.31988 INF -0.55758 
31 NAN 0.21118 -1.00000 
32 INF 0.41000 -0.96855 
33 1.42190 0.12705 -0.88755 
34 0.35092 0.76008 -0.38646 
35 0.54921 1.04740 -0.66353 
36 0.12911 0.16759 -0.30196 
37 0.46383 0.63186 -0.28625 
38 0.45396 0.69831 -0.30689 
39 0.55782 0.29449 -0.43510 
40 0.49898 0.63533 -0.31138 
41 0.34152 0.51178 -0.37654 
42 0.41203 0.34480 -0.40801 
43 0.71485 0.39814 -0.27207 
44 0.38959 0.40317 -0.36746 
45 0.34573 0.39305 -0.35445 
46 0.56460 0.48819 -0.29116 
47 0.04521 0.25798 -0.47594 
48 0.59244 0.78030 -0.25480 
49 0.25737 0.31963 -0.52225 
50 0.67662 0.63602 -0.22120 
51 0.50000 0.67744 -0.26658 
52 0.28681 0.35101 -0.41207 
53 0.33144 0.42098 -0.33320 
54 0.36146 0.60999 -0.39381 
55 0.57789 0.55490 -0.33133 
56 0.15163 0.50049 -0.42813 
57 0.81511 0.79865 -0.14426 
58 0.13497 0.19400 -0.47673 
59 0.97629 1.18930 -0.13455 
60 0.19918 0.20985 -0.32580 
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 As mentioned in Chapter 2 and Chapter 3, we use different testing methods in  

our experiments and compare with other algorithm, such as PEBLS, C4.5, SNM [11], 

[12] and so on. Hereafter, the accuracy and rank of different prediction methodologies 

will be displayed in the following tables, in which the accuracies and ranks of our 

proposed algorithms will be shown in boldface. Moreover, we will try the value of k 

in k-NN, such as k =1, 3, 5, 7, 9, etc and show the best k in our comparison. 

 

4.2.4  Comparison by Leave-One-Out Methodology 

 

We use the leave-one-out strategy to test the promoter data set by our three 

algorithms (FSNM, SNM, k-NN (MVDM)) and provide comparisons to nearest 

neighbor (NN) using the overlap metric (which counts the number of feature value 

mismatches between two examples), PEBLS, and BAYES (Bayesian classifier) [37]. 

And the comparison is showed in the Table XV. From Table XV, All of our 

algorithms are better than the other algorithms. 

TABLE XV 

ACCURACIES OF PROMOTER DATA SET ON DIFFERENT 
ALGORITHMS BY LEAVE-ONE-OUT  

 

 Promoter Rank 

BAYES [37] 91.50 4 

PEBLS [37] 90.60 5 

NN [37] 80.50 6 

SNM 93.34 2 

FSNM 91.51 3 

5-NN(MVDM) 94.43 1 
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4.2.5  Comparison by Ten-Fold Cross-Validation Methodology 

 

    Besides, we achieve the results of Splice data set by using ten-fold  

cross-validation methodology on 1000 randomly selected from the complete set of 

3190(we delete 15 missing values) and randomizing the permutation of data set to 

each fold so that we could choose the best result and we provide comparisons with 

other algorithms, such as KBANN [38]–[40], PEBLS, ID3 [41], and so on (all 

experiments, except BRAIN, carried out at the University of Wisconsin [35], [42]). 

From Table XVI, the performance of k-NN (MVDM) is better than other algorithms 

but SNM and FSNM are only better than NN (overlap). 

 

 

Moreover, we also test the Lenses data set by ten-fold cross-validation and 

randomizing the permutation of data set to each fold so that we could choose the best 

result to compare with well-known algorithms, such as C4.5 and C5.0 [43]. From 

Table XVIII, our experimental results show that our performances are superior to 

other algorithms. 
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TABLE XVI 

ACCURACIES OF SPLICE DATA SET ON DIFFERENT ALGORITHMS 
BY TEN-FOLD CROSS-VALIDATION 

 

 Splice Rank 

KBANN 93.12 3 

BACKPROP 92.74 4 

PEBLS 92.47 5 

5-NN (MVDM) 95.70 1 

SNM 84.90 10 

FSNM 85.10 9 

COBWEB 87.90 7 

PERCEPTRON 87.43 8 

ID3 88.86 6 

Nearest. Neighbor 82.72 11 

Brain 95.67 2 

 
 
 

TABLE XVII 

ACCURACIES OF LENSES DATA SET ON DIFFERENT ALGORITHMS 
BY TEN-FOLD CROSS-VALIDATION 

 

 Lenses Rank 

5-NN (MVDM) 90.00 1 

SNM 90.00 1 

FSNM 90.00 1 

C4.5 71.10 3 

C5.0 83.30 2 
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4.2.6  Comparison by Another Methodology 

 

    Finally, we specify all experiments by the average of 30 runs of randomly 

choosing two-thirds of the data as a training set and the remainder as the test set to 

test Promoter using our three algorithms and also randomizing permutation of data set 

to each partition to choose the best accuracy. Here, we compare with PEBLS, C4.5, 

and SNM [11], [12]. From Table XVIII, we can see that the performance of k-NN 

(MVDM) is better than others. 

 

 

TABLE XVIII 

ACCURACIES OF PROMOTER DATA SETS ON DIFFERENT 
ALGORITHMS BY ANOTHER METHODOLOGY 

 

 Promoter Rank 

C4.5 74.30 6 

SNM 
(Kibler) 

91.40 3 

PEBLS 89.40 4 

SNM 93.34 2 

FSNM 89.26 5 

3-NN 
(MVDM) 

96.61 1 
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4.3  Summary 

 

In Sec. 4.2.1, we first list the information gain and gain ratio of the data set that 

we want to test. We can boost our accuracies by adding the information gain 

weighting method. In Sec. 4.2.2, we compare our three algorithms (k-NN (MVDM), 

SNM, and FSNM) with and without information gain weighting by leave-one-out 

strategy and find out that k-NN (MVDM) is better than the other two algorithms. In 

Sec. 4.2.3, we provide comparisons with the variance of difference ratio between 

SNM and FSNM find the variance of FSNM is larger than the variance of SNM 

greatly but it is surprising that FSNM’s performance approximates to the performance 

of SNM. In Sec. 4.2.4, we use leave-one-out methodology and provide comparisons 

with Kasif, Salzberg, Waltz, Rachlin, and Aha [37]. Our performances are all better 

than theirs. In Sec. 4.2.5, we compare with Rampone [44] by another prediction 

methodology called ten-fold cross-validation and find out that only the k-NN is better 

than others. Moreover, we compare with C4.5 and C5.0 and our performance are 

superior to other algorithms. Finally, in Sec. 4.2.6, ours is compared with Domingos 

and Pazzani [45] by the average of 30 runs of randomly choosing two-thirds of the 

data as a training set and the remainder as the test set and find that k-NN (MVDM) is 

still only the best in our experiments and SNM approximates to PEBLS and SNM 

[11], [12]. 
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Chapter 5. Conclusion  

 

In this thesis, we proposed a nearest neighbor algorithm (IBL) and used 

sophisticated coding and weighting method in order to classify the data with symbolic 

domains. In direct comparisons on some famous data sets by different testing 

methodologies, our k-NN (MVDM) performed better than back propagation, ID3, 

KBANN, and so on. 

 

In view of prototypes, we proposed a symbolic nearest mean classifier whose 

prototypes are learned by modifying the minimum distance classifier to solve the 

symbolic domains, attribute weighting, and learn a prototype to each class. 

Furthermore, we consider all the contributions of prototypes to each class and design 

a fuzzy prototype to be the mean to each class. Both of algorithms can be improved 

by the weighting method. We provide comparisons with other algorithms by distinct 

prediction methodologies and show our implementations performed as well (or better 

than) C4.5, C5.0, PEBLS, and BAYES, etc. In addition, nearest neighbor offers clear 

advantages in that it is much faster to train and its representation relatively easy to 

interpret. No one yet knows how to interpret the networks of weights learned by 

neural nets. Decision trees are somewhat easier to interpret, but it is hard to predict 

the impact of a new example on the structure of the tree. Sometimes one new example  

makes no difference at all, and at other times it may radically change a large portion  

of the tree. On the other hand, neural nets have a fixed size, and decision trees tend 

to be quite small, and in this respect both methods compress the data in a way that  
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nearest neighbor does not. In addition, classification time is fast (dependent only on  

the depth of the net or tree, not on the size of the input). Based on classification 

accuracy, though, it is not clear that other learning techniques have an advantage over 

nearest-neighbor methods.  

 

With respect to nearest neighbor learning, we have shown how weighting 

exemplars can improve accuracy by information gain (IG) weight really a 

probability-weighted average of the informativity of the different values of the feature 

and can reduces the impact of unreliable examples. The nearest neighbor algorithm is 

one of the simplest learning methods known, and yet no other algorithm has been 

shown to outperform it consistently. Taken together, these results indicate that 

continued research on extending and improving nearest neighbor learning algorithms 

should prove fruitful. 
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