
國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

碩 士 論 文

利用 Nearest Neighbor 演算法處理符號性質

資料的分類及其於生物資訊的應用

Nearest Neighbor Algorithm for Symbolic Data Set

Classification and Its Application in Bioinformatics

研 究 生 ： 陳 勇 成

指 導 教 授： 張 志 永

中 華 民 國 九十三 年 六 月

利用 Nearest Neighbor 演算法處理符號性質

資料的分類及其於生物資訊的應用

Nearest Neighbor Algorithm for Symbolic Data Set

Classification and Its Application in Bioinformatics

學 生 : 陳勇成 Student : Yeong-Cheng Chen

指導教授 : 張志永 Advisor : Jyh-Yeong Chang

國立交通大學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master in

Electrical and Control Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 三 年 六 月

利用 Nearest Neighbor演算法處理符號性質資料的分類及

其於生物資訊的應用

學生: 陳勇成 指導教授:張志永博士

國立交通大學電機與控制工程研究所

摘要

在過去，Nearest Neighbor演算法通常都是用來處理資料屬性全部都是數值

的例子。在這樣的屬性當中，這些事例都是被視為點，而且彼此之間的距離都適

用標準的定義(如歐幾里得距離為基準)。而在符號的領域當中，我們通常需要對

特徵向量空間做更複雜的處理;處理符號屬性空間的 Nearest Neighbor 演算法

則，是利用特定的距離表，產生事例之間彼此的實值距離，而且指派一些權重在

某些有效或可靠事例，以進一步修正特徵空間中的架構。

 此篇論文，我們在符號領域中，有效的提出一種典型符號的學習方式，這種

典型可以藉由最小距離分類器，學習處理關於符號屬性的問題、屬性的權重、以

及在每一種類別當中找到一個典型符號，如此我們都可以由符號性質最近均值分

類器(symbolic nearest mean classifier)進行分類。

 除了上述之每一種類中當學到典型符號的方法，另外，我們可以把在同一類

別當中所有典型的分量均予考慮，這樣我們就可以在同一個類別當中，設計出一

個模糊式的典型符號，我們再由模糊典型符號之最近均值分類器(symbolic

 i

nearest mean classifier with fuzzy prototype)進行分類。

我們使用上述演算法，處理機器學習領域中的三個(其中兩個為生物資訊)

問題：鏡片辨識、辨識 Promoter 的基因序列及計算 Splice 的接面，皆呈現極佳

的分類準確率。藉由不同的測試評估方法，和其他的學習演算法做比較，我們的

演算法在那三個所要測試的資料領域中，都是勝過其他演算法或是可與其匹敵

的；除此之外，我們的演算法具有訓練簡單及速度快的優點。最後，模擬實驗結

果可以證明 Nearest-Neighbor 演算法及相關的延續發展在處理符號屬性資料的

辨識是具優勢的。

 ii

Nearest Neighbor Algorithm for Symbolic Data Set

Classification and Its Application in Bioinformatics

STUDENT: UN-CHENG CHEN ADVISOR: DR.JYH-YEONG CHANG

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In the past, nearest neighbor algorithms for learning from examples have worked

very well in domains in which all features had numeric values. In such domains, the

examples can be treated as points and distance metrics can be exploited using

standard definitions, such as Euclidean distance. In symbolic domains, a more

sophisticated treatment of the feature space is required. The nearest neighbor

algorithm used for the symbolic feature space calculates distance tables that allow it

to produce real-valued distances between instances, and attaches weight to the

instances to further modify the structure of feature space.

 In this thesis, we present an empirical analysis of symbolic prototype learners for

discrete domains. Our symbolic prototype learner is derived from modifying the

minimum distance classifier to solve problems with symbolic attributes and attribute

weighting, and learns a prototype to each class. And then the classification is

implemented in symbolic nearest mean classifier.

 iii

 In addition to a prototype to each class, we can consider the contributions of the

component prototypes for all samples in each class. Then we can design a fuzzy

prototype approach and implement the symbolic nearest mean by fuzzy prototype

setting.

We validate our proposed algorithms and on three data sets, majority of them are

bioinformatics problems; that have been studied by machine learning researchers,

such as Lenses recognition, identifying DNA promoter sequences, and Splice-junction

determination. From experimental comparisons with the other learning algorithms,

our simulation result has shown that our proposed algorithms are superior or

comparable in the classification accuracy. In addition, our algorithms have advantages

in training speed, simplicity, and perspicuity. Experimental evidence has demonstrated

the promising sign to continue development of nearest neighbor algorithms for

symbolic data domains.

 iv

ACKNOWLEDGEMENT

 I would like to express my sincere appreciation to my advisor, Dr. Jyh-Yeong

Chang. Without his patient guidance and inspiration during the two years, it is

impossible for me to complete the thesis. In addition, I am thankful to all my lab

members for their discussion and suggestion.

 Finally, I would like to express my deepest gratitude to my family. Without their

strong support, I could not go through the two years.

 v

Content

ABSTRACT (CHINESE)…………………………………………………………….i

ABSTRACT (ENGLISH)............................………………………………………iii

ACKNOWLEDGEMENT.…………...…………………………………….............v

Chapter 1. Introduction………………………………………………...1

 1.1 Introduction to Nearest Neighbor…………………………………………1

1.2 Introduction to K-NN for Learning with Continuous Features……………...2

1.3 Introduction to Minimum Distance Classifier…...……..…………………5

Chapter 2. Nearest Neighbor Algorithm for Learning with Symbolic

Features……………………………………………………10

2.1 Overlap Metric……………………………………………………………10

2.2 Information Gain Feature Weighting………………………………………11

2.3 Modified Value Difference Metric………………………………………13

2.4 Tie Breaking…………………………..……………………………………17

2.5 K- Nearest Neighbor Algorithm..…..……..………………………………..18

 vi

Chapter 3. Learning Symbolic Prototypes…………………………...20

3.1 Distance Between Values Combing Information Gain………………….20

3.2 Mean of Symbolic Prototype.……………………………..…………….20

3.3 Nearest Mean Classifier Algorithm……....………………………………..21

3.4 Mean of Symbolic Fuzzy Prototype………………………………………23

3.5 Nearest Mean Classifier with Fuzzy Prototype Algorithm……….....……..24

Chapter 4. Simulation and Experiment……………………………...26

4.1 Introduction to Data Sets……………………..……………………………26

4.2 Simulation and Results…………………………………………………..33

 4.2.1 Information Gain of Data Sets…………………………………….33

 4.2.2 Performance Comparison ….....…………………………………38

 4.2.3 Comparison the Variance Difference Percentage…………………..39

 4.2.4 Comparison by Leave-One-Out Methodology……………………..44

 4.2.5 Comparison by Ten-Fold Methodology…………………………..45

 4.2.6 Comparison by Another Methodology…………………………..47

4.3 Summary………………………………………………………………….48

Chapter 5. Conclusion…………………………………………………49

References………………………………………………………………51

 vii

List of Figures

Fig. 1.1. Simple 2-D case, each instance is described only by two values………...3

Fig. 1.2. Minimum-distance classification－two single prototype case…………...8

Fig. 2.1. The distance between instance X and Y…………………………….......17

Fig. 2.2. The steps of k-NN algorithm (IBL)……………………………………..19

Fig. 3.1. The steps of SNM algorithm…………………………………………….23

Fig. 3.2. The steps of FSNM algorithm…………………………………………...25

Fig. 4.1. The organization of genes in higher organisms…………………………29

Fig. 4.2. “Cannonical” splice-junction……………………………………………31

 viii

List of Tables

Table I. Number of occurrence of each value to each class…………………..15

Table II. Value difference table…………………………………………….......16

Table III. Rules for promoter-recognition…….…………………………….......28

Table IV. Initial rules for splice-junction determination………….………….....31

Table V. Ambiguity code for DNA nucleotides.……………………………....32

Table VI. Ambiguity code for other characters…………………………………32

Table VII. Properties of the data sets………………...…………………………..32

Table VIII. Information gain and gain ratio of the Lenses data set…………….....33

Table IX. Information gain and gain ratio of the Promoter data set………….....34

Table X. Information gain and gain ratio of the Splice data set………………..36

Table XI. Accuracies for different algorithms…………………………………..38

Table XII. Normalized variance difference of the Lenses data set…………….....39

Table XIII. Normalized variance difference of the Promoter data set………….....40

Table XIV. Normalized variance difference of the Splice data set……………......42

Table XV. Accuracies .of. Promoter .data set .on .different algorithms by leave

-one-out.…………………………………………………………........44

Table XVI. Accuracies. of .Splice. data set. on different .algorithms. by ten-fold

cross-validation…….……………………………………….………....46

Table XVII. Accuracies .of .Lenses .data .set. on different algorithms by ten-fold

cross-validation…………………………………………………...........46

Table XVIII. Accuracies. of .promoter .data set .on .different algorithms by another

methodology………. ………………………………………………….47

 ix

Chapter 1. Introduction

1.1 Introduction to Nearest Neighbor

 Different approaches from pattern recognition, machine learning, and expert

systems have been used in intelligent diagnostic systems. One of the most significant

developments in this domain is the nearest neighbor algorithm. But the above-

mentioned approaches used for classification and approximation are not able to

handle symbolic attributes directly. In the past, the nearest neighbor is used to deal

with the continuous domain. But recent work suggests that the conventional Euclidean

measure does not adequately model the symbolic data set. So the nearest neighbor

requires us to define a distance function differ from the Euclidean distance to measure

differences among items in a data set, and then to compute the closest items to a query

point with respect to this measure. That is to say how to define an appropriate distance

function between instances is very important.

Instance-based learning (IBL) programs also called exemplar-based introduced

by Salzberg [1] or nearest neighbor introduced by Cover and Hart [2], which learn by

storing examples as points in a feature space, require some means of measuring

distance between examples and the more advanced concepts are introduced by Aha

[3], Aha and Kibler [4], Salzberg [5], Cost and Salzberg [6]. An example is usually a

vector of feature values plus a category label. When the features are numeric,

normalized Euclidean distance can be used to compare examples. However, when the

 1

feature values have symbolic, unordered values (e.g., the letters of the alphabet, which

have no natural inter-letter “distance”), nearest neighbor methods typically resort to

much simpler metrics, such as counting the features that match. Towell et al. [7]

recently used this metric for the nearest neighbor algorithm in their comparative study.

Simpler metrics may fail to capture the complexity of the problem domains, and as a

result may not perform well. Cost and Salzberg [8] proposed an algorithm PEBLS. It

constructs “modified value difference metric” introduced by Stanfill and Waltz [9] to

produce a non-Euclidean distance metric and the distance is modified by a weighting

scheme that weights instances in memory according to their performance history [5],

[10]. On the other hand, Datta and Kibler [11], [12] proposed a symbolic prototype

learning algorithm and the prototypes are learned by modifying the minimum-distance

classifier to solve problems with symbolic attributes. And the above-mentioned

algorithms can be applied in the pronouncing English text, and bioinformatics, such as

identifying promoter sequences and predicting protein secondary structure.

1.2 Introduction to K-Nearest Neighbor for Learning with Continuous Features

 Nearest neighbor classifiers are based on learning by analogy. The training

samples are described by n-dimensional numeric attributes. Each sample represents a

point in an n-dimensional space. In this way, all of the training samples are stored in

an n-dimensional pattern space. When given an unknown sample, a k-nearest

neighbor classifier searches the pattern space for k training samples that are closest to

the unknown sample. The k training samples are the k “nearest neighbors” of the

 2

unknown sample. “Closeness” is defined in terms of Euclidean distance, where the

Euclidean distance between two points, and Y is X = (x1, x2,...,xn) = (y1, y2,...,yn)

d(X, Y) =
P
i=1

n

(xi à yi)2

s
 (1.1)

 Consider the case of m classes and a set of N sample patterns
è
Ci

ém

i=1

è
yi

éN

i=1

whose classification is a priori known. Let denote an arbitrary incoming pattern. x

xThe nearest neighbor classification approach classifies in the pattern class of its

nearest neighbor in the set
è

, i.e., if yi

éN

i=1

wwx à yj

ww = min
1ôiôN

wwx à yi

ww then

x ∈ Cj . This scheme which is basically another type of minimum-distance

classification, can be modified by considering the k nearest neighbors to and using

a majority-rule type classifier. Its advantage is overcoming class noise in the training

set. And the example is shown in Fig. 1.1 :

x

y

x

 Fig. 1.1. Simple 2-D case, each instance is described only by two values

(x, y co–ordinates). The class is either or .

 3

Inside the circle of Fig. 1.1, we can easily see that the class of simple-NN (1-NN)

is , and the class of 5-NN is . (is the testing data)

Nearest neighbor classifiers are instance-based or lazy-learners in that they

store all of the training samples and do not build a classifier until a new (unlabeled)

sample needs to be classified. This contrasts with eager learning methods, such as

decision tree induction and back propagation, which construct a generalization model

before receiving new samples to classify. Lazy learners can incur expensive

computational costs when the number of potential neighbors (i.e., stored training

samples) with which to compare a given unlabeled sample is great. Therefore, they

require efficient indexing techniques. As expected, lazy learning methods are faster at

training than eager methods, but slower at classification since all computation is

delayed to that time. Unlike decision tree induction and back propagation, nearest

neighbor classifiers assign equal weight to each attribute. This may cause confusion

when there are many irrelevant attributes in the data.

Nearest neighbor classifiers can also be used for prediction, that is, to return a

real-valued prediction for a given unknown sample. In this case, the classifier returns

the average value of the real-valued labels associated with the k nearest neighbors of

the unknown sample.

 4

1.3 Introduction to Minimum Distance Classifier

Nearest neighbor learning method is a traditional statistical pattern recognition

method for classifying unseen examples. These methods store the training set of

examples. To classify an example from the test set, the closet example in the training

set is found and the class of that example is predicted. In order to reduce the number

of training examples stored, some researchers have stored only a subset of the

examples or a generalization of the examples. They finally discuss a variation of the

nearest neighbor classifier termed the minimum-distance classifier. This classifier

works similarly to the nearest neighbor classifier except that instead of storing each

training example, the mean of each class is stored as a prototype. During classification

time, the class of closest prototype is predicted. And the detail is shown in the

following:

Let ..C .denote. m .pattern .classes. in R , represented. by. the .single 1, ..., Cm
n

prototype vectors respectively. The distance between an incoming pattern

 and the prototype vectors are

y1, ..., ym

x

Di =k x à yi k=
à
(x à yi)T(x à yi)

á1/2
, 1 ô i ô m (1.2)

and a minimum-distance classifier will classify at C x j

à
or to yj

á
 for which D j

is minimum, i.e.,

Dj = min x yi , 1 i mk à k ô ô (1.3)

 5

If the minimum is achieve by several by several j’s, is classified at the first x Cj

(for example) for which a minimum is found, or not classified at all. Minimizing D2
i

is equivalent to minimizing but is more convenient . Indeed Di

D2 = (x à yi)T(x à yi) = xTx à 2xTyi + yTyii
 (1.4)

and since the constant x can be removed, we should only minimize Tx

à 2xTyi + yT
i yi or instead maximize

2xTyi à yT
i yi, 1 ô i ô m (1.5)

Thus, we can define

di(x) = xTyi à 2
1
yT

i yi, 1 ô i ô m (1.6)

as decision functions and apply the classifier

 x (1.7) ∈ Ci iff di(x) > dj(x), 6=ij

The decision functions are linear, i.e.,

di(x) = wT
i x, 1 ô i ô m (1.8)

where is the augmented vector and x (x1,x2,..., xn, 1)T

 6

wi = (wi1, wi2, ..., win, wi,n+1)
T, 1 ô i ô m are determined by

yi = (yi1, yi2, ..., yin)T, 1 ô i ô m as

 w ij = yij; 1 ô i ô m, 1 ô j ô n

 (1.9)

wi,n+1 = à 2
1
yT

i yi, 1 ô i ô m

For example, in the case of two pattern classes the decision boundary associated

with the minimum-distance classification is

d12(x) = d1(x) à d2(x) = xT(y1 à y2) à 2
1
yT

1y1 + 2
1
yT

2y2 = 0 (1.10)

This is a hyper plane in nominal direction to the vector y By substituting

 in Eq. (1.10) we get

1 à y2.

x = (y1 + y2)/2

d12(x) = 2
1(y1 + y2)T(y1 à y2) à 2

1
yT

1y1 + 2
1
yT

2y2 = 0 (1.11)

The decision boundary is therefore the hyper plane which is perpendicular to the vec-

tor connecting the two prototypes and bisects it (Fig. 1.2).

 7

y1ày2

y1

y2

+ à
d12(x) = 0

Fig. 1.2. Minimum-distance classification－two single prototype case.

Some researchers have stored only a subset of the examples or a generalization

of the examples, such as Duda and Hart [13], Aha et al [14], Zhang [15], Skalak [16],

and Datta and Kibler [17]. Duda and Hart discussd a variation of the nearest neighbor

classifier termed the minimum-distance classifier. This classifier works similarly to

the nearest neighbor classifier except that the mean to each class is stored as a

prototype. During classification time, the class of closest prototype is predicted.

But the minimum-distance has some drawbacks. It can not use symbolic

(nominal) attributes since the mean for symbolic attributes and the distance between

two attribute values is not pre-defined. Another drawback is its inability to weigh

attributes. Attributes no relevant for classification may distract the classifier.

 8

In this thesis, we propose three classification algorithms. First, we construct a

“value difference” tables in the style of Stanfill and Waltz [9] to produce a

non-Euclidean distance metric so that we can deal with the symbolic data and add the

information gain to improve classification effectiveness. Second, we use the MVDM

metric combing with information gain to select the prototype to each class for

different attributes by selecting the minimal variance one. Our method can resolve the

problem of the minimum-distance classifier not able to be exploited for symbolic data.

Third, we propose the fuzzy prototype to each class, in which each class prototype

admits partial belonging to each symbol in each attribute. Finally, we use the MVDM

metric and the information gain to predict the class of the data.

The rest of the thesis is structured as follows. We begin with constructing our

MVDM metric in Chapter II. We use the information gain to be our weighting for

attributes. In Chapter III, we develop two kinds of algorithms. One is the modified

Symbolic Nearest Mean and the other is Symbolic Nearest Mean with the fuzzy

prototype. In Chapter IV, the result of some experiments on some data sets is

presented. Chapter V presents our conclusions.

 9

Chapter 2. Nearest Neighbor Algorithm for learning with symbolic

Features

2.1 Overlap Metric

The most basic metric that works for patterns with symbolic features is the

overlap metric given in Eq. (2.1) and Eq. (2.2); where î(X, Y) is the distance

between instances X and Y, represented by n features, and î is the distance per

feature. The distance between two patterns is simply the sum of the differences

between the features. The k-NN algorithm with this metric is called IB1 introduced by

Aha et al. [14] Usually k is set to 1.

î(X, Y) =
P
i=1

n ⏐⏐Xi à Yi

⏐⏐k (2.1)

where

î(xi, yi) =

abs(maxiàmini

xiàyi), if

0, if
1, if

⎧⎪⎨
⎪⎩ xi = yi

xi 6= yi

 (2.2)
numeric, else

But the overlap metric has a disadvantage that it could not decide the real

intrinsic instances in symbolic domain. When the instances are not equal, it assigns a

1 of value to their distance. This assumes that each different symbolic value is

equi-distant from another which leads to problems when two different values should

be considered equal, and where symbolic values should have varying distances among

them. However the rule is ambiguous, since it could not find the degree of difference

 10

between the instances. So the overlap metric is not a proper distance metric for

calculating the distance among those instances. We propose a different distance metric

for symbolic attributes latter.

2.2 Information Gain Feature Weighting

The distance metric in Eq. (2.2) simply counts the number of (mis)matching

feature-values in both patterns. In the absence of information about feature relevance,

this is a reasonable choice. Otherwise, we can add domain knowledge bias to weight

or select different features (see e.g., .Cardie [18] for an application of linguistic bias in

a language processing task), or look at the behavior of features in the set of examples

used for training. We can compute statistics about the relevance of features by looking

at which features are good predictors of the class labels. Information theory [19], [20]

gives us a useful tool for measuring feature relevance in this way.

Information Gain (IG) weighting looks at each features in isolation, and

measures how much information it contributes to our knowledge of the correct class

label. The Information Gain of feature i is measured by computing the difference in

uncertainty (i.e., entropy) between the situations without and with knowledge of the

value of that feature (Eq. (2.3)).

wi = H(c) à
P
v∈Vi

P (v) â H(C
⏐⏐v) (2.3)

 11

where C is the set of class labels, is the set of values for feature i, and H(C)

= –
P

 is the entropy of the class labels. The probabilities are

estimated P from relative frequencies in the training set.

Vi

c C P (c)log2P (c)∈

It is important to realize that the IG weight is really a probability-weighted aver-

age of the informativity of the different values of the feature. On the one hand, this

pre-empts the consideration of values with low frequency but high informativity.

Such values “disappear” in the average. On the other hand, this also makes the IG

weight very robust to estimation problems. Each parameter (weight) is estimated on

the whole data set.

Information Gain, however, tends to overestimate the relevance of features with

large numbers of values. Imagine a data set of hospital patients, where one of the

available features is a unique “patient ID number”. This feature will have very high

Information Gain, but it does not give any generalization to new instances. To

normalize Information Gain for features with different numbers of values, Quinlan

[20] has introduced a normalized version, called Gain Ratio, which is

Information Gain divided by s (split info), the entropy of the feature-values i(i)

(Eq. 2.5) is given by

wn
i = si(i)

H(C) à P
v∈Vi

P (v)âH(C | v)

 (2.4)

si(i) = à
P
v∈Vi

P (v)log2P (v) (2.5)

 12

The resulting Gain Ratio values can then be used as weights i in the weighted

distance metric (Eq. 2.6). The k-NN algorithm with this metric is called IB1-IG [21].

w

4(X, Y) =
P
i=1

n

wn
i î(xi,yi) (2.6)

The possibility of automatically determining the relevance of features implies

that many different and possibly irrelevant features can be added to the feature set.

This is a very convenient methodology if domain knowledge does not constrain the

choice enough beforehand, or if we wish to measure the importance of various

information sources experimentally. However, because IG values are computed for

each feature independently, this is not necessarily the best strategy. Sometimes better

results can be obtained by leaving features out than by letting them in with a low

weight. Very redundant features can also be challenging for IB1-IG, because IG will

overestimate their joint relevance. Imagine an informative feature which is duplicated.

This results in an overestimation of IG weight by a factor two, and can lead to

accuracy loss, because the doubled feature will dominate the distance metric.

2.3 Modified Value Difference Metric

Overlap and IG Overlap, are limited to exact match between feature-values.

This means that all values of a feature are seen as equally dissimilar. However, if we

think of an imaginary task in e.g. the phonetic domain, we might want to use the

information that ‘b’ and ‘p’ are more similar than ‘b’ and ‘a’. For this purpose a

metric was defined by Stanfill and Waltz and further refined by Cost and Salzberg . It

 13

is called the (Modified) Value Difference Metric, and it is a method to determine the

similarity of the values of a feature by looking at co-occurrence of values with target

classes. For the distance between two values, and v of a feature, we compute

the difference of the conditional distribution of the classes C for these values is

defined in Eq. (2.7):

v1 2

i

î(v1, v2) =
P
i=1

n

| P (Ci | v1) à P (Ci | v2) | (2.7)

=
P
i=1

n ⏐⏐
C1

C1i à
C2

C2i
⏐⏐k

In the equation, v and v are two possible values for the feature and the

distance between the values is a sum over all classes. C is the number of times

 was classified into category is the total number of times value 1 occurred,

and k is constant, usually set to 1.

1 2

n 1i

v1 i, C1

Using Eq. (2.7), we compute a matrix of value differences for each feature in the

input data. It is interesting to note that the value difference matrices computed in the

experiments below are quite similar overall for different features, although they differ

significantly for some value pairs.

 The idea behind this metric is that we wish to establish that values are similar if

they occur with the same relative frequency for all classifications. The term C1 /C1i

v1

represents the likelihood that the central residue will be classified as i given that the

feature in question has value . Thus we say that two values are similar if they give

similar likelihood for all possible classifications. Eq. (2.7) computes overall

 14

similarity between two values by finding the sum of the differences of these

likelihood over all classifications.

Consider the following example. Say we have a pool of instances for which we

examine a single feature that takes one of three values, A, B, and C. Two

classifications, and ì , are possible. From the data we construct Table I, in which

the table entries represent the number of times an instance had a given feature value

and classification. From this information we construct a table of distances as follows.

The frequency of occurrence of A for class is 57.14%, since there were 4 instances

classified as ë out of 7 instances with value A. Similarly, the frequencies of

occurrence for B and C are 28.57% and 66.67%, respectively. The frequency of

occurrence of A for class ì is 42.86%, and so on. In order to find the distance

between A and B, we use Eq. (2.7), which yields

4. The complete table of distances is shown in

Table II. Note that we construct a different value difference table for each feature; if

there are 20 features, we will construct 20 tables.

ë

ë

| à | | 3/7 à 7 |= 0.5714/7 2/7 + 5/

TABLE I

NMBER OF OCCURENCES OF EACH VALUE TO EACH CLASS

 Class

Feature Values ë ì

A 4 3

B 2 5

C 4 2

 15

TABLE II

VALUE DIFFERENCE TABLE

 Feature values

 A B C

A 0.0000 0.5714 0.1905

B 0.5714 0.0000 0.7619

C 0.1905 0.7619 0.0000

We can find that the distance between A and C is very small. This is due to their

occurrence numbers in the ë and ì are very similar. Eq. (2.7) defines geometric

distance on a fixed, finite set of values. The distances are symmetric, and they obey

the triangle inequality. We summarize these properties as follows:

i. î(a, b) > 0, a6=b

ii. î(a, b) = î(b, a)

iii. î(a, a) = 0

iv. î(a, b) + î(b, c) õ î(a, c)

The total distance 4 between two instances is given by Eq. (2.6). X and Y

represent two instances with X being an exemplar in memory (training example) and

Y a new example (test example). The variables x and y are values of the ith

feature for X and Y, where each example has n features and is the information

i i

wi

gain constructed by the data set. That is to say that we can calculate the weights

so that we could find the importance for each feature in advance.

 16

 The distance between X and Y is shown in the following figure, Fig. 2.1 :

X à Y = (x1, x2, ...xn) à (y1, y2, ...yn)

(x1 à y1) + (x2 à y2) + ... + (xn à yn)

vdm table of feature 1 vdm table of feature 2 vdm table of feature n

Fig. 2.1. The distance between instances X and Y.

2.4 Tie Breaking

Thus far we have described the last step of k-NN classification as taking the

majority category among the set of nearest neighbors. Especially in case of

unweighted voting, ties can occur; e.g., of a set of ten nearest neighbors, five votes for

class A, and the other five for B. The procedure for breaking this tie in the k-NN

classifier in our algorithm is as follows. First, the value of the k parameter is

incremented by 1, and the additional nearest neighbors at this new kth distance are

added to the current nearest neighbor set (k is subsequently reset to its user-specified

value). If the tie in the class distribution persists, then the class label is selected with

the highest overall occurrence in the training set. If that is also equal, then the first

class is taken that was encountered when reading the training instance file. Optionally,

 17

our algorithm can be set to avoid ties by making a random choice of a classification

from a class distribution in a nearest-neighbor set, weighted by the distribution of the

classes in the set.

2.5 K- Nearest Neighbor Algorithm

 The k-NN algorithm is summarized in the following flow chart (Fig. 2.2):

Step 1)

Consider, the case of learning a discrete-valued target

function of the form :

f : Rn V,→ where V is the finite set {V .} 1 2 s, V , ...V

Step 2)

 For each training example < x, f(x) >, add the example to

the list of training examples

Step 3)

Construct value difference matrices by the training data

 18

Step 4)

Given a query instance to be classified xq

 1. Let x denote the k instances from training 1,..., k

xq

∈

ise

x

examples that are nearest to

 2. Return

fê(xq) ← arg max
v V

P
i=1

k

îs(V, f(xi))

 where î s(a, b) = 1 if a = b

= otherw

To avoid ties by making a random choice of a
classification from a class distribution in a nearest
neighbor set, weighted by the distribution of the classes in
the set.

0

Fig. 2.2. The steps of k-NN algorithm (IBL).

 19

Chapter 3. .Learning Symbolic Prototypes

3.1 Distance Between Values Combing Information Gain

The distance metric for nearest neighbor and minimum-distance classifier is

crucial to their predictive capabilities. Euclidean distance, a commonly used

metric, is defined as

 E(x, y) =
P
i=1

a

d(xi, yi)2

s
 (3.1)

where and y are two examples, a is the number of attributes and x refers x i

à |

to the ith attribute value for example x . For real-value attributes d is (xi, yi)

defined as their absolute difference (i.e., |). For symbolic attributes the

distance between two values is defined as Eq. (2.4) and Eq. (2.6).

xi yi

3.2 Mean of Symbolic Prototype

The simplest method for determining the mean of a symbolic attribute is to choose

the most common value; however, this does not yield the best classification accuracy.

In addition, the mean of a symbolic attribute must be one of its possible values. For

numeric data the mean is the value that minimizes the variance. We generalize this

notion to deal with symbolic attributes as well. We define the mean of a set of symbolic

 20

values by finding the value of minimizing the variance, that is u

u = arg min(
P

v∈J D(v, u)) (3.2)

. But u is not necessarily where J is the set of values and is a symbolic value in v J

a single value. It may be more than one value. So we can find the value in the which

occurs the most frequently in the J, that is

u

ui

ui = arg max
1ôiôn

P
v∈J îm(v, ui) (3.3)

where îs(a, b) =
1 if
0 oth

ú
= b

 will act as the best constan

the mean for the real values.

as and the symbolic value ui

J. We define the mean of a set

where denotes the mean o

.

Aiu

S

3.3 Nearest Mean Classifier

We have developed an al

uses the MVDM and the defini

to each class, classifies examp

a

 erwise

t approximation for the symbolic values in J similar to

 Computationally, each symbolic value will be tried

that minimizes the variance will become the mean for

 of examples, S, to be the vector

f the ith attribute. We call this vector the prototype for

<A1u, A2u, ..., Anu>

 Algorithm

gorithm called SNM (Symbolic Nearest Mean). SNM

tion of mean described above. SNM learns a prototype

les by finding the closest prototype using Euclidean

21

distance, and predicts the prototype’s class. And the flow chart is shown in the

followings:

Step 1)

 Consider, the case of learning a discrete-valued target

function of the form :

f : Rn → V, where V is the finite set {V 1, V2, ..., Vs)

Step 2)

For each training example <.x, f(x).>, add the example to

the list of training examples

Step 3)

Construct the value difference matrix by the training data

Step 4)

Construct the mean of each class for different attributes in

the training data

 22

Step 5)

Given a query instance to be classified xq

1. Given denote k means to each class in the

training data.

x , x , ..., x1 2 k

2.

 x i = arg min
1ôiôk

î(xq, xi)

 where î s(a, b) = 1 if a = b

.= otherwise

 Return
 f ê(xq)← f(xi)

Fig. 3.1. The steps of

3.4 Mean of Symbolic Fuzzy Prototype

In the preceding context, we calculate t

attributes. This is called Symbolic Nearest M

develop another algorithm different from SN

the contribution of all the possible symbols i

class for different features is composed of eac

of occurrence ratio. And the equation is thus

(3.4):

 23
0

SNM algorithm.

he prototype to each class for different

ean classifier. In this section, we will

M. For each attribute, we will consider

n the same class. So the mean of each

h symbolic value multiplied by its factor

 defined as the following equation, Eq.

ut =
P
i=1

n

uiVt

Vi

 (3.4)

where is the mean and are the symbol values in the set ,(k

is the kth feature in the data set), is the occurrence number of in the set, and

 is the total occurrence number in the set. So is called the Fuzzy Prototype.

ut <u1, u2, ..., un >k Jk

Vi ui

Vt ut

3.5 Nearest Mean Classifier with Fuzzy Prototype Algorithm

We also develop the algorithm Fuzzy Symbolic Nearest Mean classifier (FSNM).

It also uses the MVDM and the mean as defined in Eq. (3.4). FSNM learns a

prototype composed of each value to each class. Like SNM, it classifies examples by

finding the closest prototype using Euclidean distance, and predicts the prototype’s

class. And the flow chart of FSNM is shown in the following figure, Fig. 3.2 :

Step 1)

Consider, the case of learning a discrete-valued target

function of the form :

f : Rn → V, where V is the finite set {V 1, V2, ..., Vs)

Step 2)

For each training example <x, f(x)>, add the example to

the list of training examples

 24

Step 3)

Construct the value difference matrix by the training data

Step 4)

Fig. 3.2.

Given a query instance to be classified xq

1. Given are the symbol values in the

training set J .(k is the kth feature in the data set),
where are their occurrence number and

 is the total occurrence number.

<u1, u2, ..., un >k

k

v1, v2, ..., vn

vt

ut =
P
i=1

n

ui Vt

Vi

2. Given.x c

 denote c means composed of each t1, xt2, ..., xt

symbol value each class for different features in the
training data,

xti
= arg min

1ôiôc
î(xq, xti

)

 where î can be found in the (xq,xti
)

 vdm matrix

 Return
 f ê(xq)← f(xti

)

Fig. 3.2. The steps of FSNM algorithm.

 25

Chapter 4. Simulation and Experiment

4.1 Introduction to Data Sets

We will use three data sets to test the three our proposed algorithm composed of

k-NN with our MVDM, SNM, and FSNM. We will use other prediction methods and

compare the simulation results of ours with PEBLS [8] and SNM [11], [12] in the

next section. Before presenting the result, we provide brief descriptions of the data

sets.

Lenses [22], [23]: The Lenses data set with 24 points has four attributes and three

classes named the patient should be fitted with hard contact lenses, the patient should

be fitted with soft contact lenses, the patient should not be fitted with contact lenses.

The features are age of the patient (young, pre-presbyopic, presbyopic), spectacle

prescription (myope, hypermetrope), astigmatic (no, yes), tear production rate

(reduced, normal) and the number of missing attribute value is zero. This database is

complete (all possible combinations of attribute-value pairs are represented). Each

instance is complete and correct and there are 9 rules cover the training set.

Promoter [24]–[28]: The data sets are short DNA sequences that precede the

beginning of genes. They are can be detected in “wet” biological experiments as they

a re loca t ions a t which the p ro te in RNA polymerase b inds to the

 26

DNA sequence. The set examples contains 53 sample promoters and 53 nonpromoter

sequences. The 53 sample promoters were obtained from a compilation produced by

Hawley and McClure [29]. Negative training examples were derived by selecting

contiguous substrings from a 1.5 kilobase sequence provided by Prof. T. Record of the

University of Wisconsin’s Chemistry Department [30]. This sequence is fragment

from E. coli bacteriophage T7 isolated with the restriction enzyme HaeIII. By virtue

of the fact that the fragment does not bind RNA polymerase, it is believed to contain

no promoters.

 The input features for promoter recognition are sequence of 57 DNA nucleotides,

starting at position –50 (p–50) and ending at position +7 (p7). Each of these fields is

filled by one of {A, G, T, C}. Following biological convention, the reference point for

promoter recognition is the site at which gene transcription begins (if the example is a

promoter). The reference point is located seven nucleotides from the right. (Thus,

positive examples contain the first seven nucleotides of the transcribed gene.)

 Table III contains the initial rule set used in the promoter recognition task.

According to the rules in Table III, there are two sites at which the DNA sequence

must bind to RNA polymerase – the minus 10 and minus 35 regions. (These regions

are named for their distance from the reference point.) The conformation rules

attempt to capture the three-dimensional structure of DNA, thereby ensuring that the

minus 10 and minus 35 sites are spatially aligned. This set of rules was derived from

the biological literature by Noordewier [26].

 27

In the viewpoint of machine learning, the dataset has two classes with 57

dimensional data consisting of 106 points. All of 57 attributes consist of {A, T, C, G}.

Prior to training, the rules in Table III do not classify any of the 106 examples as

promoters. Thus, the rules are useless as a classifier. Nevertheless, they do capture a

significant amount of information about promoters.

TABLE III
RULES FOR PROMOTER-RECOGNITION

promoter : - contact, conformation.
contact : - minus-35, minus-10 .

minus-35 : - @-37 “CTTGAC-“ . minus-35 : - @-37 “-TTG-GA” .
minus-35 : - @-37 “-TTGACA” . minus-35 : - @-37 “-TTGAC- “.

minus-10 : - @-14 “TATAAT--” . minus-10 : - @-14 “-TA-A-T-” .
minus-10 : - @-14 “-TATAAT-” . minus-10 : - @-14 “-- TA- --T” .

conformation : - @-45 “AA--A” .
conformation : - @-45 “A ---A” , @-28 “T---T-AA--T-“ , @-04 “T” .
conformation : - @-49 “A----T” , @-27 “T----A--T-TG” , @-01 “A” .
conformation : - @-47 “CAA-TT-AC” , @-22 “G---T-C” , @-08 “GCGCC-CC” .

 28

Splice [31]–[35] : Splice junctions are points on a DNA sequence at which

‘superfluous’ DNA is removed during the process of protein creation in higher

organisms. The problem posed in this dataset is to recognize, given a sequence of

DNA, the boundaries between exons (the parts of the DNA sequence retained after

splicing) and introns (the parts of the DNA sequence that are spliced out). This

problem consists of two subtasks: recognizing exon/intron boundaries (referred to as

E/I sites), and recognizing intron/exon boundaries (I/E sites). Fig. 4.1 illustrates how

splicing occurs during the process of protein creation.

 As with the promoter recognition, biologists have attempted to use neural

networks from splice-junction determination. The work of Brunak et al. [31] is a very

complete treatment of the topic.

 DNA

precursor mRNA

 mRNA (after splicing)

Intron

Intron

Intron

ExonExon

ExonExon

Fig. 4.1. The organization of genes in higher organisms.

 29

 Fig. 4.2 illustrates a prototypical DNA sequence showing both the I/E and E/I

borders. This prototypical sequence is the basis of the rules for splice-junction

determination contained in Table IV.

The dataset used to approach this problem was extracted from the biological

literature by Noordewier [32]. The full set of examples contains 3190 examples, and

three classes, of which approximately 25% are I/E, 25% are E/I and the remaining

50% are neither. Each example consists of a 60 nucleotide-long DNA sequence

categorized according to the type of boundary at the center of the sequence; the center

of the sequence is the reference location used for numbering nucleotides. These DNA

sequences starts at position –30 and ending at position +30. Each of these fields is

almost always filled by one of {A, G, T, C}. Other characters indicate ambiguity

among the standard characters according to the following Table VI. The examples

were obtained by taking the documented “split” genes from all primate gene entries in

Genbank release 64.1 that are described as complete.

In addition to the examples, information about splice-junctions includes a set of

23 rules appearing in Table IV. This count does not include the rules defined by the

iterative construct “For i from…” which define the meaning of “Y.” This set of rules

was derived from the biological literature [36] by Noordewier.

In order to clearly summarize the three data sets, we list the properties of them in

Table VII .

 30

exon intron exon

… M A G G K …

G T R A G T … Y Y A G6 à

Y6 means that either a “Y” occurs in six consecutive locations

Fig. 4.2. “Cannonical” splice-junction.

TABLE IV

INITIAL RULES FOR SPLICE-JUNCTION DETERMINATION

E/I :- @-3 ‘MAGGTRAGT’ , not (E/I-stop) .

E/I-stop : :- @-3 ‘TAA’ . E/I-stop ::- @-4 ‘TAA’ . E/I-stop ::- @-5 ‘TAA’ .
E/I-stop : :- @-3 ‘TAG’ . E/I-stop ::- @-4 ‘TAG’ . E/I-stop ::- @-5 ‘TAG’ .
E/I-stop : :- @-3 ‘TGA’ . E/I-stop ::- @-4 ‘TGA’ . E/I-stop ::- @-5 ‘TGA’ .

I/E :- pyramidine-rich, @-3 ‘YAGG’ , not (I/E-stop) .
pyramidine-rich :- 6 of (@-15 ‘YYYYYYYYYY’) .
For i from ((-30 to -1) and (+1 to +30))
 {@< ‘Y’ ::- @< ‘C’. @< ‘Y’ ::- @< ‘T’ .} i > i > i > i >

I/E-stop : :- @1 ‘TAA’ . I/E-stop ::- @2 ‘TAA’ . I/E-stop ::- @3 ‘TAA’ .
I/E-stop : :- @1 ‘TAG’ . I/E-stop ::- @2 ‘TAG’ . I/E-stop ::- @3 ‘TAG’ .
I/E-stop : :- @1 ‘TGA’ . I/E-stop ::- @2 ‘TGA’ . I/E-stop ::- @3 ‘TGA’ .

see Table V for meanings of letters other than A, G, T, C. The notation ‘::- ‘indicates
a rule that is a definition. Hence, it is not to be altered during learning. The construct
“For i …” creates 120 rules that define a disjunction at each location in the input.
Consequents with an antecedent of the form ‘n of (…)’ are satisfied if at least n of the
parenthesized antecedents are true.

 31

TABLE V
AMBIGUITY CODE FOR DNA NUCLEOTIDES

Code

M
R
W
S
Y
K
V
H
D
B
X

Meaning
A or C
A or G
A or T
C or G
C or T
G or T

A or C or G
A or C or T
A or G or T
C or G or T

A or G or C or T

TABLE VI
AMBIGUITY CODE FOR OTHER CHARACTERS

character meaning

D A or G or T
 N A or G or C or T

 S C or G
R A or G

TABLE VII
PROPERTIES OF THE DATA SETS

Data Set Lenses Promoter Splice

Data Number 24 106 3190

Class Number 3 2 3

Feature Number 4 57 60

Feature Property Nominal Nominal Nominal

Missing Value None None None

 32

4.2 Simulation and Results

4.2.1 Information Gain of Data Set

We adopt the information gain to be our weight in our three algorithms. First we

list the information gain of data sets and the information gain and gain ratio of data

sets are showed in Tables VIII, IX, and X, respectively.

TABLE VIII

INFORMATION GAIN AND GAIN RATIO

OF THE LENSES DATA SET

Information Gain Gain Ratio
Features

(w) i i
(w) n

1 0.039397 0.024856

2 0.039511 0.039511

3 0.375830 0.375830

4 0.547550 0.547550

 33

TABLE IX

INFORMATION GAIN AND GAIN RATIO

OF THE PROMOTER DATA SET

Information Gain Gain Ratio
Features

(w i) (w) n
i

1 0.0037745 0.0019560

2 0.0505350 0.0255290

3 0.0024569 0.0012359

4 0.0019557 0.0009824

5 0.0318790 0.0162970

6 0.1479500 0.0770730

7 0.0572380 0.0296240

8 0.0769040 0.0393220

9 0.0667640 0.0340440

10 0.0837850 0.0427210

11 0.0445300 0.0232010

12 0.0216070 0.0108870

13 0.0231640 0.0119700

14 0.0613640 0.0313600

15 0.3472300 0.1976200

16 0.2824700 0.1620100

17 0.3202800 0.1809300

18 0.1788900 0.0931230

19 0.0766450 0.0411360

20 0.1141600 0.0573200

21 0.0284400 0.0143990

22 0.0092367 0.0046613

23 0.0240180 0.0120620

24 0.0210790 0.0106400

25 0.0065717 0.0033171

 34

26 0.0307930 0.0159170

27 0.0325380 0.0163050

28 0.0164910 0.0084008

29 0.0078622 0.0040520

30 0.0586060 0.0297950

31 0.0700260 0.0361900

32 0.0385390 0.0193820

33 0.0354010 0.0184000

34 0.0097125 0.0049977

35 0.0215350 0.0107710

36 0.0042229 0.0021333

37 0.0305820 0.0160730

38 0.0786980 0.0396620

39 0.2351100 0.1217300

40 0.0997090 0.0535690

41 0.1191100 0.0620070

42 0.0681800 0.0345430

43 0.0380690 0.0198790

44 0.0073343 0.0037683

45 0.0245650 0.0126340

46 0.0585780 0.0296540

47 0.0134770 0.0067665

48 0.0336760 0.0169520

49 0.1086300 0.0552150

50 0.0123430 0.0064302

51 0.0367800 0.0184870

52 0.0412570 0.0213320

53 0.0204960 0.0103850

54 0.0293260 0.0148210

55 0.0133500 0.0066934

56 0.0084004 0.0042138

57 0.0206390 0.0105330

 35

TABLE X
INFORMATION GAIN AND GAIN RATIO

OF THE SPLICE DATA SET

Information Gain Gain Ratio
Features

(w i) (w n)
i

1 0.0056511 0.0028317

2 0.0060552 0.0030299

3 0.0024874 0.0012469

4 0.0088296 0.0044223

5 0.0163470 0.0081853

6 0.0178410 0.0089460

7 0.0079690 0.0039872

8 0.0069887 0.0035000

9 0.0282700 0.0141690

10 0.0279820 0.0140000

11 0.0112620 0.0056412

12 0.0161990 0.0081392

13 0.0274150 0.0137320

14 0.0274080 0.0137380

15 0.0321370 0.0161700

16 0.0435680 0.0219330

17 0.0478100 0.0240790

18 0.0562910 0.0283270

19 0.0651770 0.0328440

20 0.0718200 0.0361920

21 0.0650180 0.0328290

22 0.0606410 0.0304680

23 0.0746060 0.0376200

24 0.0777150 0.0392370

25 0.1112800 0.0561200
26 0.0779480 0.0394010
27 0.0058059 0.0029136

 36

28 0.2106100 0.1103300

29 0.3409500 0.1912100

30 0.3883200 0.2333100

31 0.3294400 0.1837800

32 0.3304300 0.1770600

33 0.1512500 0.0769090

34 0.1371000 0.0699530

35 0.2304400 0.1186700

36 0.0326220 0.0163850

37 0.0119670 0.0060254

38 0.0075238 0.0037673

39 0.0085445 0.0042825

40 0.0093502 0.0046951

41 0.0150360 0.0075396

42 0.0060594 0.0030408

43 0.0105530 0.0052965

44 0.0038257 0.0019150

45 0.0075266 0.0037714

46 0.0101130 0.0050692

47 0.0111670 0.0055982

48 0.0096923 0.0048606

49 0.0098409 0.0049540

50 0.0068017 0.0034024

51 0.0045416 0.0022824

52 0.0046442 0.0023267

53 0.0038402 0.0019239

54 0.0116450 0.0058496

55 0.0107500 0.0053878

56 0.0062025 0.0031036

57 0.0039486 0.0019792

58 0.0073756 0.0036980

59 0.0035447 0.0017738

60 0.0118150 0.0059359

 37

4.2.2 Performance Comparison

 In this section, we compare the performance of the three our proposed

methods: k-NN (MVDM), SNM, and FSNM, and adopt the leave-one-out strategy

(i.e., each instance is tested after first training on all other instances in the dataset) to

test the Lenses and Promoter datasets. In the case of the Splice dataset, whose data

number is relatively large, we use ten-fold strategy on 1000 randomly selected from

the complete set of 3190. From Table XI, we can easily see that the k-NN (MVDM) is

better than the other two algorithms and we just list the best value of k in the table.

We can know that using the information gain weighting method boosts the accuracies

by 1–5%. And the result is shown in the followings:

TABLE XI

ACCURACIES FOR DIFFERENT ALGORITHMS

 Lenses Promoter Splice Ave Rank

5-NN (unweighted) 83.33 (2) 90.57 (4) 94.60(2) 2.67
5-NN (MVDM) 87.50 (1) 94.34 (1) 95.70(1) 1.00
SNM (unweighted) 83.33 (2) 88.68 (5) 79.70(6) 4.33
SNM (weighted) 87.50 (1) 93.34 (2) 84.90(4) 2.33
FSNM (unweighted) 87.50 (1) 88.68 (6) 81.90(5) 4.00
FSNM (weighted) 87.50 (1) 91.51 (3) 85.10(3) 2.33

 38

4.2.3 Comparison the Variance Difference Percentage

As mentioned in Sec. 4.2.2, we know the performance of SNM approximates to

the performance of FSNM. Besides, We compare the average variance between SNM

and FSNM and find that the variance of FSNM is larger than the variance of SNM

(except for the splice dataset), but the performance of FSNM is a little smaller (or

better) than SNM. We calculate the variance difference of SNM and FSNM that is

divided by the variance of SNM. From Tables XII, XIII, and XIV, we can know the

result easily. Because some symbols of several features in a few classes are the same,

it can generate the zero variance in the case of SNM and FSNM and the difference

ratio of NAN (the zero is divided by the zero) and INF (the floating point is divided

by the zero) will occur in the Lenses and Splice data set. Surprisingly, the variance of

SNM is larger than FSNM’s in the three class and leads to negative variance

difference percentage in the Splice data set.

TABLE XII

NORMALIZED VARIANCE DIFFERENCE OF LENSES DATA SET

Class

Feature
1 2 3

1 0.19659 0.26832 0.25566

2 NAN 0.20000 0.06667

3 NAN NAN 0.06667

4 NAN NAN 0.60000

 39

TABLE XIII

NORMALIZED VARIANCE DIFFERENCE OF PROMOTER DATA SET

Class

Feature
1 2

1 0.37947 0.39257

2 0.46304 0.42007

3 0.21462 0.15898

4 0.39028 0.39283

5 0.35279 0.31162

6 0.28416 0.41175

7 0.06832 0.48068

8 0.47345 0.17377

9 0.32232 0.32066

10 0.12252 0.33475

11 0.60287 0.26374

12 0.32686 0.23488

13 0.29601 0.43290

14 0.52022 0.25226

15 0.68027 0.34129

16 0.62763 0.54694

17 0.58716 0.50646

18 0.32399 0.33179

19 0.23065 0.31185

20 0.39476 0.33434

21 0.48173 0.34103

22 0.30901 0.27972

23 0.43347 0.47529

24 0.19526 0.20749

25 0.36619 0.39439

26 0.31489 0.27221

 40

27 0.36429 0.31223

28 0.53582 0.51188

29 0.59453 0.52644

30 0.52726 0.20987

31 0.10495 0.45418

32 0.40233 0.45102

33 0.10633 0.33318

34 0.39324 0.45794

35 0.33131 0.29710

36 0.13440 0.26500

37 0.38119 0.36492

38 0.44095 0.25993

39 0.70765 0.24773

40 0.32296 0.24584

41 0.26829 0.36285

42 0.32723 0.34308

43 0.42502 0.20583

44 0.39966 0.26464

45 0.17951 0.42657

46 0.19690 0.45739

47 0.24393 0.20536

48 0.30094 0.22838

49 0.33769 0.30411

50 0.23918 0.26970

51 0.29825 0.23346

52 0.52788 0.44816

53 0.30191 0.24272

54 0.37850 0.49361

55 0.45439 0.46230

56 0.40608 0.33459

57 0.25969 0.44075

 41

TABLE XIV

NORMALIZED VARIANCE DIFFERENCE OF SPLICE DATA SET

Class

Feature
1 2 3

1 0.44743 0.72794 -0.32741
2 0.38454 0.42209 -0.29129
3 0.42007 0.59478 -0.32114
4 0.18044 0.28901 -0.42623
5 0.35891 0.66520 -0.34974
6 0.12127 0.63104 -0.43996
7 0.63804 0.44848 -0.28017
8 -0.20629 -0.06151 -0.66321
9 0.06755 0.29048 -0.47173
10 0.44545 0.60284 -0.39052
11 0.56829 0.78305 -0.32645
12 0.05729 0.43439 -0.46078
13 0.24594 0.81238 -0.41819
14 0.12550 0.45994 -0.46723
15 -0.08267 0.14020 -0.54888
16 0.19282 0.77140 -0.46978
17 0.11679 0.40249 -0.50206
18 0.43634 0.36436 -0.35082
19 0.14978 0.51711 -0.44017
20 0.16972 0.40588 -0.47022
21 0.16078 0.37822 -0.47082
22 0.21989 0.41264 -0.42916
23 0.05456 0.48720 -0.51304
24 -0.05390 0.45879 -0.51009
25 0.01526 0.69872 -0.53889
26 0.08455 1.15870 -0.50932
27 0.05931 0.13232 -0.45634

 42

28 0.06583 0.48776 -0.40005
29 0.23689 NAN -0.02094
30 0.31988 INF -0.55758
31 NAN 0.21118 -1.00000
32 INF 0.41000 -0.96855
33 1.42190 0.12705 -0.88755
34 0.35092 0.76008 -0.38646
35 0.54921 1.04740 -0.66353
36 0.12911 0.16759 -0.30196
37 0.46383 0.63186 -0.28625
38 0.45396 0.69831 -0.30689
39 0.55782 0.29449 -0.43510
40 0.49898 0.63533 -0.31138
41 0.34152 0.51178 -0.37654
42 0.41203 0.34480 -0.40801
43 0.71485 0.39814 -0.27207
44 0.38959 0.40317 -0.36746
45 0.34573 0.39305 -0.35445
46 0.56460 0.48819 -0.29116
47 0.04521 0.25798 -0.47594
48 0.59244 0.78030 -0.25480
49 0.25737 0.31963 -0.52225
50 0.67662 0.63602 -0.22120
51 0.50000 0.67744 -0.26658
52 0.28681 0.35101 -0.41207
53 0.33144 0.42098 -0.33320
54 0.36146 0.60999 -0.39381
55 0.57789 0.55490 -0.33133
56 0.15163 0.50049 -0.42813
57 0.81511 0.79865 -0.14426
58 0.13497 0.19400 -0.47673
59 0.97629 1.18930 -0.13455
60 0.19918 0.20985 -0.32580

 43

 As mentioned in Chapter 2 and Chapter 3, we use different testing methods in

our experiments and compare with other algorithm, such as PEBLS, C4.5, SNM [11],

[12] and so on. Hereafter, the accuracy and rank of different prediction methodologies

will be displayed in the following tables, in which the accuracies and ranks of our

proposed algorithms will be shown in boldface. Moreover, we will try the value of k

in k-NN, such as k =1, 3, 5, 7, 9, etc and show the best k in our comparison.

4.2.4 Comparison by Leave-One-Out Methodology

We use the leave-one-out strategy to test the promoter data set by our three

algorithms (FSNM, SNM, k-NN (MVDM)) and provide comparisons to nearest

neighbor (NN) using the overlap metric (which counts the number of feature value

mismatches between two examples), PEBLS, and BAYES (Bayesian classifier) [37].

And the comparison is showed in the Table XV. From Table XV, All of our

algorithms are better than the other algorithms.

TABLE XV

ACCURACIES OF PROMOTER DATA SET ON DIFFERENT
ALGORITHMS BY LEAVE-ONE-OUT

 Promoter Rank

BAYES [37] 91.50 4

PEBLS [37] 90.60 5

NN [37] 80.50 6

SNM 93.34 2

FSNM 91.51 3

5-NN(MVDM) 94.43 1

 44

4.2.5 Comparison by Ten-Fold Cross-Validation Methodology

 Besides, we achieve the results of Splice data set by using ten-fold

cross-validation methodology on 1000 randomly selected from the complete set of

3190(we delete 15 missing values) and randomizing the permutation of data set to

each fold so that we could choose the best result and we provide comparisons with

other algorithms, such as KBANN [38]–[40], PEBLS, ID3 [41], and so on (all

experiments, except BRAIN, carried out at the University of Wisconsin [35], [42]).

From Table XVI, the performance of k-NN (MVDM) is better than other algorithms

but SNM and FSNM are only better than NN (overlap).

Moreover, we also test the Lenses data set by ten-fold cross-validation and

randomizing the permutation of data set to each fold so that we could choose the best

result to compare with well-known algorithms, such as C4.5 and C5.0 [43]. From

Table XVIII, our experimental results show that our performances are superior to

other algorithms.

 45

TABLE XVI

ACCURACIES OF SPLICE DATA SET ON DIFFERENT ALGORITHMS
BY TEN-FOLD CROSS-VALIDATION

 Splice Rank

KBANN 93.12 3

BACKPROP 92.74 4

PEBLS 92.47 5

5-NN (MVDM) 95.70 1

SNM 84.90 10

FSNM 85.10 9

COBWEB 87.90 7

PERCEPTRON 87.43 8

ID3 88.86 6

Nearest. Neighbor 82.72 11

Brain 95.67 2

TABLE XVII

ACCURACIES OF LENSES DATA SET ON DIFFERENT ALGORITHMS
BY TEN-FOLD CROSS-VALIDATION

 Lenses Rank

5-NN (MVDM) 90.00 1

SNM 90.00 1

FSNM 90.00 1

C4.5 71.10 3

C5.0 83.30 2

 46

4.2.6 Comparison by Another Methodology

 Finally, we specify all experiments by the average of 30 runs of randomly

choosing two-thirds of the data as a training set and the remainder as the test set to

test Promoter using our three algorithms and also randomizing permutation of data set

to each partition to choose the best accuracy. Here, we compare with PEBLS, C4.5,

and SNM [11], [12]. From Table XVIII, we can see that the performance of k-NN

(MVDM) is better than others.

TABLE XVIII

ACCURACIES OF PROMOTER DATA SETS ON DIFFERENT
ALGORITHMS BY ANOTHER METHODOLOGY

 Promoter Rank

C4.5 74.30 6

SNM
(Kibler)

91.40 3

PEBLS 89.40 4

SNM 93.34 2

FSNM 89.26 5

3-NN
(MVDM)

96.61 1

 47

4.3 Summary

In Sec. 4.2.1, we first list the information gain and gain ratio of the data set that

we want to test. We can boost our accuracies by adding the information gain

weighting method. In Sec. 4.2.2, we compare our three algorithms (k-NN (MVDM),

SNM, and FSNM) with and without information gain weighting by leave-one-out

strategy and find out that k-NN (MVDM) is better than the other two algorithms. In

Sec. 4.2.3, we provide comparisons with the variance of difference ratio between

SNM and FSNM find the variance of FSNM is larger than the variance of SNM

greatly but it is surprising that FSNM’s performance approximates to the performance

of SNM. In Sec. 4.2.4, we use leave-one-out methodology and provide comparisons

with Kasif, Salzberg, Waltz, Rachlin, and Aha [37]. Our performances are all better

than theirs. In Sec. 4.2.5, we compare with Rampone [44] by another prediction

methodology called ten-fold cross-validation and find out that only the k-NN is better

than others. Moreover, we compare with C4.5 and C5.0 and our performance are

superior to other algorithms. Finally, in Sec. 4.2.6, ours is compared with Domingos

and Pazzani [45] by the average of 30 runs of randomly choosing two-thirds of the

data as a training set and the remainder as the test set and find that k-NN (MVDM) is

still only the best in our experiments and SNM approximates to PEBLS and SNM

[11], [12].

 48

Chapter 5. Conclusion

In this thesis, we proposed a nearest neighbor algorithm (IBL) and used

sophisticated coding and weighting method in order to classify the data with symbolic

domains. In direct comparisons on some famous data sets by different testing

methodologies, our k-NN (MVDM) performed better than back propagation, ID3,

KBANN, and so on.

In view of prototypes, we proposed a symbolic nearest mean classifier whose

prototypes are learned by modifying the minimum distance classifier to solve the

symbolic domains, attribute weighting, and learn a prototype to each class.

Furthermore, we consider all the contributions of prototypes to each class and design

a fuzzy prototype to be the mean to each class. Both of algorithms can be improved

by the weighting method. We provide comparisons with other algorithms by distinct

prediction methodologies and show our implementations performed as well (or better

than) C4.5, C5.0, PEBLS, and BAYES, etc. In addition, nearest neighbor offers clear

advantages in that it is much faster to train and its representation relatively easy to

interpret. No one yet knows how to interpret the networks of weights learned by

neural nets. Decision trees are somewhat easier to interpret, but it is hard to predict

the impact of a new example on the structure of the tree. Sometimes one new example

makes no difference at all, and at other times it may radically change a large portion

of the tree. On the other hand, neural nets have a fixed size, and decision trees tend

to be quite small, and in this respect both methods compress the data in a way that

 49

nearest neighbor does not. In addition, classification time is fast (dependent only on

the depth of the net or tree, not on the size of the input). Based on classification

accuracy, though, it is not clear that other learning techniques have an advantage over

nearest-neighbor methods.

With respect to nearest neighbor learning, we have shown how weighting

exemplars can improve accuracy by information gain (IG) weight really a

probability-weighted average of the informativity of the different values of the feature

and can reduces the impact of unreliable examples. The nearest neighbor algorithm is

one of the simplest learning methods known, and yet no other algorithm has been

shown to outperform it consistently. Taken together, these results indicate that

continued research on extending and improving nearest neighbor learning algorithms

should prove fruitful.

 50

References

[1] S. Salzberg, Learning with Nested Generalized Exemplars. Norwell, MA: Kluwer

Academic Publishers, 1990.

[2] T.M. Cover and P.E. Hart “Nearest neighbor pattern classification,” IEEE Trans.

Inform. Theory, vol. 13, pp. 21–27, 1967.

[3] D. Aha, “Incremental, instance-based learning of independent and graded concept

descriptions,” in Proc. of the Sixth International Workshop on Machine Learning,

1989. pp. 387–391.

[4] D. Aha and D. Kibler, “Noise-tolerant instance-based learning algorithms,” in

Proc. 11th Int. Joint Conf. Artificial Intelligence, 1989. pp. 794–799.

[5] S. Salzberg, “Nested Hyper-rectangles for Exemplar-based Learning,” in K.P.

Jantke ed. Analogical and Inductive Inference: International Workshop AII, 1989,

pp. 184–201.

[6] S. Cost and S. Salzberg, “Exemplar-based Learning to Predict Protein Folding,” in

Proc. of the Symposium on Computer Applications to Medical Care, 1990.

[7] G. Towell, J. Shavlik, and M. Noordewier “Refinement of approximate domain

theories by knowledge-based neural networks,” Proc. 8th National Conf.

Artificial Intelligence, 1990, pp. 861–866.

[8] S. Cost and S. Salzberg, “A weighted nearest neighbor algorithm for learning with

symbolic features,” Machine Learning, vol. 10, pp. 57–78, 1993.

[9] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Communications of

the ACM, vol. 29, pp. 1213–1228, 1986.

 51

[10] S. Salzberg, Learning with Nested Generalized Exemplars. Norwell, MA:

Kluwer Academic Publishers, 1990.

[11] P. Datta, D. F. Kibler, “Symbolic Nearest Mean Classifiers,” in Proc. AAAI, IAAI,

1997, pp. 82–87.

[12] P. Datta, D. F. Kibler, “Learning Symbolic Prototypes,” in Proc. ICML, 1997, pp.

75–82.

[13] R. Duda and P.Hart, Pattern classification and scene analysis. New York: John

Wiley & Sons, 1973.

[14] D. Aha, D. Kibler, and M. Albert, “Instance-based learning algorithms,” Machine

learning, vol. 6, pp. 37–66, 1991.

[15] J. Zhang, “Selecting typical instances in instance-based learning,” in Proc. 9th.

Int. Machine Learning Conf. 1992, pp. 470–479.

[16] D. Skalak, “Prototype and feature selection by sampling and random mutation

hill climbing algorithms,” in Proc. 11th Int. Machine Learning Conf. 1994, pp.

293–301.

[17] P. Datta and D. Kibler (1995) “Learning Prototypical Concept Descriptions,” in

Proc. 12th Int. Machine Learning Conf. 1995, pp. 158–166.

[18] C. Cardie,“Automating Feature Set Selection for Case-Based Learning of

Linguistic Knowledge,＂ in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 1996, pp. 113–126.

[19] R. J. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1, pp.

81–106, 1986.

[20] J. R. Quinlan, C4.5:Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.

 52

[21] W. Daelemans and A. van den Bosch, “Generalization performance of

backpropagation learning on a syllabification task,” in M. Drossaers and A.

Nijholt (Eds.), Proc. of the 3rd Twente Workshop on Language Technology.

1992, pp. 27–37.

[22]..J. Cendrowska, “PRISM: An algorithm for inducing modular rules,”

International Journal of Man-Machine Studies, vol. 27, pp. 349–370, 1987.

[23] H. I. Witten and A. B.MacDonald, “Using concept learning for knowledge

acquisition,” International Journal of Man-Machine Studies, vol. 27, pp.

349–370, 1988.

[24] C. Harley and R. Reynolds, “Analysis of E. Coli Promoter Sequences,” Nucleic

Acids Research, vol. 15, pp. 2343–2361, 1987.

[25] G. Towell, J. Shavlik and M. Noordewier, “Refinement of Approximate Domain

Theories by Knowledge-Based Artificial Neural Networks,” in Proc. of the 8th

National Conf. on Artificial Intelligence, 1990, pp. 861–866.

[26] C. M. O’Neill, “Escherichia coli promoters: Consensus as it relates to spacing

class, specificity, repeat substructure, and three dimensional organization.,”

Journal of Biological Chemistry, no. 264, pp. 5522–5530, 1989.

[27] C. M. O’Neill and F. Chiafari, “Eserichia Coli promoters II. A spacing-class

dependent promoter search protocol,” Journal of Biological Chemistry, no. 264,

pp. 5531–5534, 1989.

[28] J. Ortega, “On the Informativeness of the DNA Promoter Sequences Domain

Theory” (Research Note), vol. 2, pp. 361–367, 1995.

[29] K. D. Hawley and R. W. McClure, “Compilation and analysis of Escherichia

Coli promoter DNA sequences,” Nucleic Acids Research, vol. 11, pp. 2237–2255,

1983.

 53

[30] T. Record. Personal communication. 1989.

[31] S. Brunak, J. Engelbrecht, and S. Knudsen “Prediction of the human mRNA

donor and acceptor sites from the DNA Sequence,” J.Mol.Biol., 220, pp. 49–65,

1991.

[32] M. O. Noordewier, G. G. Towell, and J. W. Shavlik, “Training Knowledge-Based

Neural Networks to Recognize Genes in DNA Sequences,” Advances in Neural

Information Processing Systems, vol. 3, 1991.

[33] G. G. Towell, J. W. Shavlik and M. W. Craven, “Constructive Induction in

Knowledge-Based Neural Networks,” in Proc. of the 8th International Machine

Learning Workshop, 1991, pp. 213–217.

[34] G. G. Towell, “Symbolic Knowledge and Neural Networks: Insertion, Refinement,

and Extraction,” PhD Thesis, University of Wisconsin – Madison, 1991.

[35] G. G. Towell and J. W. Shavlik, 1992; “Interpretation of Artificial Neural

Networks: Mapping Knowledge-based Neural Networks into Rules,” In

Advances in Neural Information Processing Systems, vol. 4, 1992.

[36] D. J. Watson, H. H. Hopkins, W. J. Roberts, A. J. Steitz, and M. A. Weiner, The

Molecular Biology of the Gene. Benjamin-Cummings, Menlo Park, CA, 1987.

[37] S. Kasif, S. Salzberg, D. L. Waltz, J. Rachlin, D. Aha, “A Probabilistic

Framework for Memory-Based Reasoning,” Artificial Intelligence, 104(1-2), pp.

287–311, 1998.

[38] G. G. Towell, M. W. Craven and J. W. Shavlik “Constructive Induction in

Knowledge-Based Neural Networks,” in Proc of the 8th International Machine

Learning Workshop, 1991, pp. 213-217.

 54

[39] “Training Knowledge-Based Neural Networks to Recognize Genes in DNA

Sequences,” in Proc. of the conf. on Advances in neural information processing

systems, 1990, pp. 530–536.

[40] O. M. Noordewier, G. G. Towell and W. J. Shavlik, “Training knowledge-based

neural networks to recognize genes in DNA sequences,” In Advances in Neural

Information Processing Systems, vol. 3, 1991.

[41] J. R. Quinlan,“Induction of Decision Trees,” Machine Learning, vol. 1, pp.

81–106, 1986.

[42] Shavlik, J. W., R. J. Mooney, and G. G. Towell, “Symbolic and Neural Learning

Algorithms,” An Experimental Comparison. Machine Learning, vol. 6, pp.

111–143, 1991.

[43] Aguilar-Ruiz, J.S., Riquelme, J.C., Toro, M.,. “Evolutionary .Learning .of

Hierarchical Decision Rules,” IEEE Systems, Man and Cibernetics, Part B, vol.

33, pp. 324 – 331, 2003.

[44] S. Rampone, “Recognition of Splice-Junctions on DNA Sequences by BRAIN

learning algorithm,” Bioinformatics, vol. 14, pp. 676–684, 1998.

[45] P. Domingos and M. Pazzani, “Beyond Independence: Conditions for the

Optimality of the Simple Bayesian Classifier,” Machine Learning, vol. 29, pp.

103–130, 1997.

 55

	論文本文7_9.pdf
	論文本文
	TABLE I
	Chapter 3. .Learning Symbolic Prototypes
	Chapter 4. Simulation and Experiment
	TABLE III
	RULES FOR PROMOTER-RECOGNITION
	TABLE VII
	TABLE XV

	ACCURACIES OF PROMOTER DATA SET ON DIFFERENT ALGORITHMS BY L
	TABLE XVIII
	ACCURACIES OF PROMOTER DATA SETS ON DIFFERENT ALGORITHMS BY

