國立交通大學

應用化學研究所

碩士論文

新穎硒化物Mn₂Sn₇Bi₄Se₁₅與In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇的合成 與特性分析

Synthesis and Characterizations of New Selenides Mn₂Sn₇Bi₄Se₁₅ and In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇

指導教授:李積琛 博士

研究生:李俊明

中華民國九十九年七月

新穎硒化物Mn₂Sn₇Bi₄Se₁₅與In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇的合成 與物性分析

研究生:李俊明

指導教授:李積琛 博士

Student : Chun-Ming Lee

Advisor : Chi-Shen Lee

Applied Chemistry

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

新穎硒化物Mn2Sn7Bi4Se15與In3.87Pb4.44Sb4.52Se17的合成

與物性分析

學生:李俊明

指導教授:李積琛 博士

國立交通大學應用化學研究所 碩士班

摘要

本論文成功以固態燒結法分別在 1023 和 1173K 的溫度下,合成 一具有新穎結構和礦物 vikingite 結構之新穎硒化合物,晶系屬於單斜 體,空間群分別為 $P2_{1}/m$ (No. 11)和 C2/m (No. 12)。Mn₂Sn₇Bi₄Se₁₅ 晶 體結構由兩層不同厚度的 NaCl (311)結構單元平行 c 軸無限延伸, 晶格常數為 a=13.708(3), b=4.1571(8)、 c=26.500(5)、 b=96.20(3), V=1501.2(5) Å³、 Z=2、 R1=3.97%、 wR2=9.58% 和 GOF=1.042。 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 晶體結構分別由 NaCl-[100]和 CdI₂-type 兩種不同 的結構單元組成,晶格常數為 a=17.813(4), b=4.0847(8)、 c=23.914(5)、 b=111.56(3), V=1618.2(6) Å³、 Z=2、 R₁=4.90%、 wR₂=12.24% 和 GOF=1.035,此結果經過比對 ICSD 資料庫及 SciFinder 資料庫確認為 一新穎結構硒化物。

從導電度的測量得知, In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇的電阻率隨溫度上升而 下降,屬於半導體行為,從UV-VIS 漫反射式吸收光譜得知,半導體 能隙約為 0.73 eV。Mn₂Sn₇Bi₄Se₁₅ 化合物室溫的 Seebeck 量測值約 100μV/K 到 200μV/K 之間,屬於 P 型半導體,在磁性性質方面,為 順磁性且過渡金屬為高自旋狀態。

Synthesis and Characterization of New Selenides

Mn₂Sn₇Bi₄Se₁₅ and In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇

Student : Chun-Ming Lee

Adviser : Dr. Chi-Shen Lee

Department of Applied Chemistry, National Chiao-Tung University

Hsinchu(300), Taiwan

Abstract

New selenides Mn₂Sn₇Bi₄Se₁₅ and In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ were prepared by directly reacting the elements in stoichiometric ratios at 1023K and 1173K, respectively. These compounds crystallized in the monoclinic system with space group C2/m (No.12) and $P2_1/m$ (No. 11), respectively. $Mn_2Sn_7Bi_4Se_{15}$ is isostructural to the vikingite type that features three-dimensional framework with building units of NaCl (311) types units running parallel to the *c*-axis. $Mn_2Sn_7Bi_4Se_{15}$ crystallizes in a monoclinic space group C2/m with a=13.708(3), b=4.1571(8) > c=26.500(5) · b=96.20(3), V=1501.2(5) Å³ · Z=2 · R1=3.97% · wR2=9.58% and GOF=1.042. The structure of In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ has a three-dimension framework assembled from two NaCl-[100] and CdI₂-type modular units running along the b-axis. In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ crystallize in the monoclinic space group $P2_1/m$ with a=17.813(4), b=4.0847(8) $\sim c=23.914(5)$ $\sim b=111.56(3)$, V=1618.2(6) Å³ $\sim Z=2$ \sim R_1 =4.90% $\sim wR_2$ =12.24% and GOF=1.035. The resistivity decrease with increasing temperature for In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇, indicative of semiconducting behaviors. Diffuse-reflectance spectra show that the band gaps of In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ are about 0.73 eV. According to the Seebeck coefficient measurements, Mn₂Sn₇Bi₄Se₁₅ is p-type semiconductor. Temperature dependence susceptibilities measurements indicate paramagnetic property for Mn₂Sn₇Bi₄Se₁₅ and high-spin for Mn.

誌謝

首先誠摯的感謝指導教授李積琛 博士,老師悉心的教導使我得 以一窺固態化學領域的深奧,不時的討論並指點我正確的方向,使我 在這些年中獲益匪淺。老師對學問的嚴謹更是我們學習的典範。

本論文的完成另外亦得感謝口試委員陳登銘老師、裘性天老師及 所有固態組學長大力協助。因為有你們的指導,使得本論文能夠更完 整而嚴謹。

雨年裡的日子,實驗室裡共同的生活點滴,學術上的討論、言不 及義的鬼扯、讓人又愛又怕的黃色笑話、因為睡太晚而遮遮掩掩閃進 實驗室.....,感謝眾位學長、同學、學弟妹的共同砥礪,你們的 陪伴讓兩年的研究生活變得絢麗多彩。

特別感謝師兄、阿北和阿明學長們不厭其煩的指出我研究中的缺 失,且總能在我迷惘時為我解惑,最後也感謝我的眾多酒友們,總是 在我心情不好的時候挺肝而出,有你們在總是能有笑容。

最後,謹以此文獻給我挚愛的雙親。

目錄

中文摘	要	Ι
英文摘	要	П
誌謝	·····	Ш
目錄		IV
表目錄.		VII
圖目錄.		XI
第一章	緒論	1
1-1. 熱	、電材料	2
1-2. 碐	玄性概論	11
1-3. L	-series 簡介	13
第二章	實驗儀器與方法	19
2-1	反應試劑	19
2-2	合成1896.	19
2-2-1	初始反應	19
2-2-2	純化反應	20
2-3	產物鑑定	20
2-3-1	粉末 X-ray 繞射分析	21
2-3-2	單晶 X-ray 繞射分析	21
2-3-3	元素分析	22
2-3-4	漫反射吸收光譜	22
2-4	磁化率測量	23
2-5	物理性質量測	23
2-5-1	導電度	23
2-5-2	Seebeck 係數	24

2-6	電子結構理論計算	24
第三章	新穎硒化物 Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 的合成與特性分析	25
3-1	合成	25
3-2	晶體結構解析與純相合成	28
3-3	Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 結構描述	36
3-4	相寬的範圍判定	39
3-5	Seebeck 係數	41
3-6	導電度量測	42
3-7	磁性測量	43
3-8	漫反射吸收光譜	46
3-9	結論	47
第四章,	所穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析	48
第四章 第 4-1	所穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成	48 48
第四章 第 4-1 4-2	新穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成 晶體結構解析	48 48 49
第四章 第 4-1 4-2 4-3	新穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成 晶體結構解析	48 48 49 55
第四章 4-1 4-2 4-3 4-4	新穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成 晶體結構解析	48 48 49 55 59
第四章 第 4-1 4-2 4-3 4-4 4-5	斯穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成	 48 48 49 55 59 61
第四章 4-1 4-2 4-3 4-4 4-5 4-6	新穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成 晶體結構解析	 48 48 49 55 59 61 62
第四章 4-1 4-2 4-3 4-4 4-5 4-6 4-6	新穎結構硒化物 In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的合成與特性分析 合成	 48 48 49 55 59 61 62 63
第四章 4-1 4-2 4-3 4-4 4-5 4-6 4-6 4-7	 新穎結構硒化物 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 的合成與特性分析 合成	 48 49 55 59 61 62 63 67
第四章 4-1 4-2 4-3 4-4 4-5 4-6 4-6 4-7 4-8	 新穎結構硒化物 In3.87Pb4.44Sb4.52Se17 的合成與特性分析 合成	 48 48 49 55 59 61 62 63 67 69

表目錄

表 1-1	L-series 化學式規則對應表	17
表 3-1	L-series 各層數之化合物	26
表 3-2	(Mn/Sn) ₉ Bi ₄ Se ₁₅ 可能之原子填佔模型	29
表 3-3	Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 的晶體結構資料表	33
表 3-4	$Mn_2Sn_7Bi_4Se_{15}$ 化合物的原子位置與熱參數值($Å^2x10^{-3}$)	34
表 3-5	Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 化合物中各原子的非均向熱參數值	
	$(\text{\AA}^{2} \text{x} 10^{-3})$	34
表 3-6	Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 化合物中各陰陽離子間距(Å)	35
表 3-7	Mn ₂ Sn ₇ Bi ₄ Se ₁₅ 由Origin 8.0 逼近出之結果	44
表 4-1	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 的晶體結構資料表	51
表 4-2	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 化合物的原子位置與熱參數值	
	(Å ² x10 ⁻³)	52
表 4-3	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 化合物中各原子的非均向熱參數值	
	$(\text{\AA}^2 \text{x} 10^{-3})$	53
表 4-4	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 化合物中各陰陽離子間距(Å)	54
表 4-5	各個模型之填佔原子	64

圖目錄

圖 1-1	據不同的重組所展示過去 2000 年的平均地表溫度。每十	
	年找一個平均值。	1
圖 1-2	(a) NASA 太空動力計畫 SP-100, 熱源為放射性鈽元素;	
	(b)雷射冷卻模組;(c)SEIKO 在 1998 年所發行的熱電手	
	錶,以超過1000對Bi ₂ Te ₃ 熱電電池做為電力,在溫差	
	約1℃時可產生約0.2V的電動勢。	3
圖 1-3	Seebeck 效應示意圖。	4
圖 1-4	(a) Peltier 效應; (b) Thomson 效應示意圖。	5
圖 1-5	左圖為熱電發電機裝置示意圖,右圖為熱電製冷裝置示	
	意圖。	6
圖 1-6	(a)power factor 與載子濃度關係知示意圖;(b)不同介質	
	與晶格熱傳導與和電子熱傳導的關係。	7
圖 1-7	(a) AgPb _m MTe _{2+m} 之晶體結構示意圖, (b) AgPb ₁₈ MTe ₂₀	
	的 TEM 圖, 白色線條為繞區域為 Ag-Sb-rich 的奈米微	
	結構。	8
圖 1-8	(a) 方砷鈷礦之晶體結構示意圖,(b) 晶格熱傳導率對溫	
	度之作圖,圖形曲線由上而下分別代表 IrSb ₃ 、	
	$Ir_4LaGe_3Sb_9 \cdot Ir_4SmGe_3Sb_9 \neq Ir_4NdGe_3Sb_9 \circ \dots$	9
圖 1-9	(a) 熱電優質與卡諾熱機效率,(b)主要的熱電材料與溫	
	度的分布。	11
圖 1-10	各種磁性物質內部磁矩之示意圖(a)順磁性無外加磁場	
	(b)順磁性外加磁場下之磁化(c)鐵磁性(d)亞鐵磁性。	12
圖 1-11	沿著 NaCl(311)平面的方向做鏡面對稱操作會得到 twin	
	的情形,黑色直線為 Tropochemical cell twinning-plane。	13

- 圖 3-3 由下而上分別為實驗比例 Mn_{1.5+0.25x}Sn_{7.5-0.25x}Bi₄Se₁₅; X=5~9,陰影部分為主產物與 MnSe 雜相繞射峰重疊處。 32
- 圖 3-4 由下而上分別為實驗比例 Mn_{1.5+0.25x}Sn_{7.5-0.25x}Bi₄Se₁₅; 1896 X=0~4,陰影部分為主產物與 MnSe 雜相繞射峰重疊處。 32
- 圖 3-6 (a) M2 的配位環境; (b) M6 的配位環境。...... 37
- 圖 3-7 M7 的配位環境,虛線代表未鍵結。...... 38

- 圖 3-10 Seebeck 係數對溫度之分布圖...... 41
- 圖 3-11 Mn₂Sn₇Bi₄Se₁₅ 電阻率對溫度作圖...... 42

- 圖 3-13 Mn₂Sn₇Bi₄Se₁₅ 漫反射吸收光譜測量結果。...... 46

- 圖 4-3 實驗比例 In₄Pb_{4.125}Sb_{4.875}Se₁₇ 副產物之元素分析圖表。 57

圖 4-7	(a) M7 的配位環境;(b) M12 的配位環境;(c) Sb6 的配	
	位環境,M4、M5、M8、M10、M11 和 M13 為相似的	
	配位環境;(d) In1 的配位環境, M2、M3 和 M9 為相似	
	的配位環境。	60
圖 4-8	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 之電阻率對絕對溫度之變化,右上方	
	插入圖為電阻率之自然對數對絕對溫度的倒數的變化,	
	範圍為 30 到 330 K。	61
圖 4-9	In _{3.87} Pb _{4.44} Sb _{4.52} Se ₁₇ 之漫反射吸收光譜。	62
圖 4-10	以先前單晶解出之模型做為 LMTO 理論計算之參考模	
	型。	63
圖 4-11	左圖為模型 16 In ₄ Pb ₅ Sb ₄ Se ₁₇ 之 DOS/PDOS, 右圖為分別	
	為 Sb-Se、Pb-Se和 In-Se之 COHP 圖。	65
圖 4-12	(a)為 Pb _{12.92} Sb _{2.08} Bi ₂ Se ₁₉ 沿著b 軸投影到 ac 平面之結構	
	示意圖(b)採用不同顏色之八面體鍊狀形式表示出 Slab I	
	和Slab II 相異之厚度。	67