第一章 緒論

自 18 世紀中葉工業革命開始之後,人類對於石化燃料(石油、 煤、天然氣等)的使用量以及依賴度越來越高,使得二氧化碳、甲烷、 氧化亞氮、氟氯碳化物(CFC)等溫室氣體皆因人口的增加、經濟活動 日趨活絡而迅速增加,研究顯示自從 1950 年來,太陽輻射的變化與 火山活動所產生的暖化效果比人類所排放的溫室氣體的還要低,過去 50 年可觀察的氣候改變速度更是過去 100 年的兩倍^{1,2},調查更顯示 在 2000 年後,各地的高溫記錄經常被打破。譬如:2003 年 8 月 11 日,瑞士格羅諾鎮錄得攝氏 41.5 度,破 139 年來的記錄。同年,8 月

圖 1-1 根據不同的重組所展示過去 2000 年的平均地表溫度。每 十年找一個平均值³⁻¹³。特別顯示 2004 年的溫度來作參考。

10日,英國倫敦的溫度達到攝氏 38.1,破了 1990年的記錄。在 2003年夏天,台北、上海、杭州、武漢、福州都破了當地高溫記錄,而中國浙江省更快速地屢破高溫記錄,67個氣象站中 40 個都刷新記錄。

2005 年 7 月,美國有兩百個城市都創下歷史性高溫記錄。台灣宜蘭 在 2006 年 7 月 8 日溫度高達 38.8 度,破了 1997 年的記錄。2007 年 8 月 16 日,日本埼玉縣熊谷市溫度高達 40.9 度,破了 1933 年日本山 形市的記錄,表示人類的活動是造成氣候變遷的主要來源。1997 年 在日本所簽訂的《京都議定書》,目標就是為了「將大氣中的溫室氣 體含量穩定在一個適當的水平,進而防止劇烈的氣候改變對人類造成 傷害」。

因此尋找「替代能源」演變成國際間競相研究的方向,所謂的替 代能源。「替代」一詞是相對於化石燃料,因此可替代能源並非來自 於石化燃料,可將其簡單定義為不會對環境造成影響之能源,目前主 要替代能源的來源為生物質能、地熱、太陽能、風力、潮汐、人力和 海水溫差發電,其中的地熱、太陽能與海水溫差發電透露出熱電材料 使用的契機,再者,無論是以何種方式進行能源的產生又或者輸入能 量使機具運作,都會有廢熱形式的能量損失,因此做到熱回收、增加 能源使用效率為必然的趨勢。

1-1 熱電材料

熱電材料(thermoelectric materials),顧名思義是具有熱電效應的 材料,而何謂熱電效應?所謂的熱電效應是介於熱能與電能間之一種 固態(solid-state)且可逆(reversible)的能量轉換方式,熱電材料比較其 他能源材料之優勢在於無傳動零件磨耗與液氣體洩漏污染之問題、維 修成本低、低噪音與可微小化等優點,這對未來商品的封裝以及台灣 各種微電子產業有莫大的幫助,惟在能量轉換效率與製造成本上仍有 進步的空間,希望透過研發新穎材料及大量製造以壓低成本來克服問 題,以期能將熱電材料泛用化。

目前熱電材料已有不少應用的例子,因為其具有溫差產生電能及 電能導致溫差的可逆特性,在產生電能方面的應用包括:微型電池溫 度、紅外線感測元件、油管和油槽金屬結構陰極防護、長期觀測裝置 之動力、太空探測裝置之動力及廢熱能源回收等;而在致冷元件方面 的應用包括:高密度微電子元件之冷卻裝置、光通訊雷射模組與感測 元件之溫度穩定裝置、醫學檢測與試片儲藏儀器之溫度調節器、實驗 室量測儀器(IR deteactor),消費性產品和冷氣機等,這些應用也透露 出熱電材料對未來的重要性。

圖 1-2 (a) NASA 太空動力計畫 SP-100,熱源為放射性鈽元素;(b)雷射冷 卻模組;(c)SEIKO 在 1998 年所發行的熱電手錶,以超過 1000 對 Bi₂Te₃ 熱 電電池做為電力,在溫差約 1℃時可產生約 0.2V 的電動勢。

熱電現象第一次被觀察到是由德國物理學家Thomas Seebeck在

雨金屬交接之一端加熱發現磁針會產生偏轉,進一步更發現磁針偏轉 的程度與金屬材料之種類及兩金屬交接點之溫度差有關;而與金屬內 部溫度之分佈無關,即溫度差誘導出電流,電流使得磁針偏轉,此一 現象於西元1821年被發表,以Thomas Seebeck命名為Seebeck效應¹⁴。

西元1834年法國物理學家 Jean Peltier 則是發現與 Seebeck 效 應互補的現象,當電流流經兩個不同導體的接面時,由於載子在不同 的介質中傳遞所需能量不同,會在接面產生放熱或致冷的效應,稱為 Peltier 效應¹⁵(圖1-4(a))。西元1851年,W. Thomson 建立了熱電現象 的第三個理論基礎,發現在一個具有溫度梯度的介質中通入一電流, 介質會視電流方向不同而產生吸熱或放熱之效應,並且推導出 Seebeck 效應 (S_{ab}) 及 Peltier 效應 (Π_{ab}) 之間的關係 (Π_{ab} = TS_{ab}), 即 Thomson 效應¹⁶:對於一個有溫度梯度的均勻導體給予電流通過, 會在導體內部產生熱含量的可逆改變量。以上的現象為熱電理論的三 大基礎。雖然熱電轉換的現象早在十九世紀就已經被發現,但由於轉 換效率不佳的因素,一直沒有受到太大的重視,直至1950年代,Abram Ioffe 發現當半導體掺入雜質後,會有較高的熱電轉換效率,有可能 代替壓縮機或做為發電機使用,才引起蓬勃的發展¹⁷。

以上為熱電三大基本理論,但並不是所有具有熱電現象的材料都 適合商業化的應用,一般用來評斷熱電材料優劣的依據稱為熱電優值 (Figure of Merit),數值越高,代表熱電轉換的效能越好。以數學 式表示熱電優質的關係式如下:

$$ZT = \frac{\sigma S^2}{\kappa} T$$

S: Seebeck coefficient (V/K)(又稱為termopower coefficient)、T: 絕對溫度(K)、 σ :導電率(S·m⁻¹)、 κ :熱傳導率(W·m⁻¹·K⁻¹)。根據研 究發現半導體比起導體及絕緣體在上述的綜合表現下為較佳的熱電 材料¹⁸。材料的組成則以原子量較重之元素,能隙較窄的半導體為主。 目前商業化的熱電材料以Bi-Sb-Te-Se系列為主,在室溫下的ZT值在 0.8~1之間,換算成熱電轉化效率約10%¹⁹,藉由所摻雜元素的不同, 可表現出不同type的半導體行為。圖1-5為現今熱電裝置所採用的組裝 方式,組合P型和N型兩種半導體於一熱電設備內,T_H代表溫度較高 的一端,在P/N型中分別代表的載子為電洞與電子,當其在T_H端得到 能量就會往溫度低的T_C端擴散而達到發電或冷卻的效果。

從熱電優質(ZT)的公式我們可以看出其中影響熱電材料好壞的 參數包括導電率、Seebeck係數和熱傳導率,然而,低電阻材料通常 具有高熱導特性,這是相依於載子濃度的,也正是熱電元件效能偏低 之主因,在1853年更由Gustav Wiedemann 和Rudolph Franz共同發表 了Wiedemann-Franz law²⁰:

$$\frac{\lambda_{el}}{\sigma} = \frac{\pi^2}{3} (\frac{k_B}{e})^2 T$$

內容敘述在同一個溫度下電子的熱傳導率(λ_{el})與導電率(σ)的比值趨向一定值,也就是說電導率越好,電子熱傳導率也會跟著增加,因此

目前增進熱電優質的方法有兩種,一是增加材料的功率因子 (power factor, σS^2 ,即熱電優值的分子項),另一則是降低材料的晶格熱傳導 率,在增加功率因子方面有導電度和Seebeck係數可以進行優化,先 前提過的導電度跟電子熱傳導率有相依的關係,除此之外導電度與 Seebeck係數也同時含有與載子濃度相關的參數,由圖1-6(a)的描述可 以看出當載子濃度越高時Seebeck係數是減小的,相反的導電度會隨 著載子濃度的提高而增加,因此必須在兩者之間取得一最佳化的載子 濃度,大約為~10¹⁹ cm⁻³,而在熱傳導方面,由圖1-6(b)可以看出隨著

圖 1-6 (a) power factor 與載子濃度關係知示意圖; (b)不同介質與晶格熱傳導 與和電子熱傳導的關係¹⁶。

載子的濃度上升電子熱傳導率也會隨之上升,但晶格熱傳導率並不會 與載子濃度有相依的關係,因此目前的研究方向大多以降低材料的晶 格傳導熱,但盡量維持住材料原先的導電性來增進ZT值(即降低熱電 優值分母項數值的幅度大於分子項),而目前所知最佳之熱電材料為 半導體,例如:Bi₂Te₃。

綜觀上述之結論,我們可以知道熱電材料的好壞取決於材料的電

導率與熱傳導率, G. A. Slack提出了聲子玻璃-電子晶體(Phonon-glass, electron-crystal; PGEC)的概念¹⁶,此概念旨在明確定義良好熱電材料 所應具備的性質,良好的熱電材料導電性能方面應像典型的晶體,有 較高的電導率,熱傳導方面如同玻璃,有很小的熱傳導率。目前的研 究大致可分類成以下幾種:

1. Chalcogenides

- 2. Skutterudite(方鈷石)
- 3. 氧化物
- 4. 低維度系統

將在此論文中一一做簡單的介紹。

Chalcogenides, 是泛指含有至少硫(S)、硒(Se)和碲(Te)中其中之 一元素之化合物,這類的物質包括Bi₂Te₃和Bi₂Se₃以及一些ZT值介於 0.8到1.0之間相當不錯的熱電材料,最近最好的例子莫過於2004年 Kanatzidis 研究團隊發表了具有奈米微結構的塊材材料 AgPb_mSbTe_{2+m}²¹,為簡單的NaCl結構,其特徵為在塊材材料中具有 Ag/Sb叢聚一起的奈米微結構, 奈米微結構可以散射長波長的

圖 1-7 (a) AgPb_mMTe_{2+m}之晶體結構示意圖, (b) AgPb₁₈MTe₂₀的 TEM 圖, 白^聲 色線條為繞區域為 Ag-Sb-rich 的奈米微結構。

的熱傳導係數KL,在工作溫度800K下,ZT值可達到2.2,雖然此工作 溫度太高,無法應用在一般家庭電器上,但對高溫系統的熱燃料發電 機及汽車工業上仍有極大的經濟價值。

Skutterudite(方砷鈷礦),方砷鈷礦材料近年來成為聲子玻璃-電子 晶體熱門的候選人,這類結構構成的元素通常為(Co/Ni/Fe)(P/Sb/As)₃, 對稱空間群為Im3,方砷鈷礦結構上最大的特色在於其單位晶格中共 有32個原子和8個子晶胞(sub-cell),而在這8個子晶胞中的兩個是沒有 任何原子填佔的籠狀(cage)空間²²,一般來說這樣的結構雖然有不錯 Seebeck係數,但是礙於熱傳導率太大而無法使用,直至近年來文獻 紛紛指出可以藉由填入低配位數的重原子來改質,該原子在空隙內震 動,可以形成較大的聲子散射截面,有效的降低晶格熱傳導率,進而 提升ZT值。

圖 1-8 (a) 方砷鈷礦之晶體結構示意圖, (b) 晶格熱傳導率對溫度之作圖,圖形 曲線由上而下分別代表 IrSb₃、Ir₄LaGe₃Sb₉、Ir₄SmGe₃Sb₉和 Ir₄NdGe₃Sb₉²³。

氧化物,這類材料因為具有 homologous 類層狀的結構,因此被認為在高溫熱電材料上具有潛力²⁴,這類的物質在垂直層的方向具有較低熱傳導率,然而困難的是還需在此方向維持一定的電性,目前可以 在絕對溫度 1000K 時得到較好的熱電優值約 0.34²⁵,與高 ZT 值的 Bi 系列化合物比還有進步空間,惟在氧化物上我們依然可以看出他在熱 穩定性上的優勢,期望有在高溫區段的應用。

低維度熱電材料主要是由於量子侷限效應(Quantum confinement effect)造成 ZT 值的提高,以超晶格(superlattice)所造成的量子井 (Quantum wells)效應為例,此組成是由兩種不同材料且極薄的半導 體單晶薄膜,週期性交替生長而成的多層化結構,每層薄膜約含十幾 個至幾十個原子層,每層薄膜的厚度約為5 nm 左右,在垂直薄膜的 方向,當聲子穿過超晶格中的層層薄膜時,會受到薄膜間介面的散射, 阻擾聲子的傳遞,因而降低晶格熱傳導率²⁶,如 Bi₂Te₃/Bi₂Se₃ 超晶格 之 ZT 值在 300K 的溫度下約為 2.4。2002 年 T. C. Harman 團隊發表 了在 PbSe/PbTe 合金薄層上做出奈米等級的量子點超晶格(quantum dot superlattice)²⁷,此材料於室溫下的 ZT 值可達到 2,600K 的溫度 下則可增加至 3,但要將超晶格中只有幾個奈米厚度交互相間的兩種 薄膜,疊加至 1mm 可供實際應用的厚度,則需要上百萬層,成本昂 責不符經濟效益。

圖1-9(a)為熱電優質與卡諾熱機效率的對照圖,而現今市面上的 熱電轉換器ZT值大約都落在1左右的範圍,對照圖理論轉換效率約為 9%。目前ZT值較好的熱電材料如圖1-8(b)所示,有一大部分為 intermetallic化合物,包括碲化鉍(Bi₂Te₃)、 銻化鋅(Zn₄Sb₃)和矽化鍺 (Si_{0.2}Ge_{0.8}),而碲化鉍系列的化合物通常在室溫下都具有不錯的ZT值, 圖中顯示Bi₂Te₃和Zn₄Sb₃適用範圍大概在中低溫範圍300-700K,ZT 值大約落在1.0到1.25之間,而AgSbTe₂/GeTe在700K時也有不錯的熱 電性質,ZT值大約為1.2,高溫區段在1100K有Si_{0.2}Ge_{0.8}ZT值可達0.7, 綜觀來說,在500K以下的區域,BiTe為主的化合物展現出較好的ZT 值,範圍700-900K則有AgSbTe₂/GeTe和GeFe₄CoSb₁₂,而高於900K 以氧化物為主,另有Si_{0.2}Ge_{0.8}。

圖 1-9(a) 熱電優質與卡諾熱機效率²⁸,(b)主要的熱電材料與溫度的分布。

1-2 磁性概論

由於本論文其中一章節有探討Mn²⁺的化合物,此化合物可能會有 磁性的表現,因此我們必須對各種磁性反應出的現象以及概略建構模 型有所認知。目前所知道普遍討論的磁性有分為反磁性 (diamagnetism)、順磁性(paramagnetim)、鐵磁性(ferromagnetism)、亞 鐵磁性(ferrimagnetism)和反鐵磁(antiferromagnetism),將在以下的篇 幅稍做介紹。

在此之前必須先對一些基本的物理量有初步的認識,在固定溫度 下測量磁性物質,施以一外加磁場H,透過公式"M=χH"可以得到 磁化率χ,公式中M代表物質的磁化強度,而磁場可以表達為

"B=µ₀(H+M)",當磁化率為正值時,物質可能的磁性為順磁性、 鐵磁性、亞鐵磁及反鐵磁,此時因為物質的置入會對磁場有正面的影響;反之為反磁性,會使磁場減弱。

順磁性物質,可以看成在物質內部有無限個微小磁棒組成,這些 微小的磁棒並不會互相影響,無外加的磁場下磁棒的方向隨機分配, 因此磁場為零,若外加一強力的靜磁場,則這些微觀的磁矩就會因為 受到磁場的影響而被磁化,朝向外加磁場方向。與順磁性不同,鐵磁

圖 1-10 各種磁性物質內部之排列示意圖。(a)一般順磁性無外加磁場。(b)一般順磁性外加磁場下之磁化。(c)鐵磁性。(d)亞鐵磁性。

性、亞鐵磁性與反鐵磁性磁矩與磁矩間會交互影響,所以當外加磁場 移除,仍可以觀察到有磁性的現象,鐵磁性由於內部磁矩,可以整齊 平行地指向同一方向,反鐵磁性則是內部磁矩反平行地規則排列,亞 鐵磁性則因內部有兩種以上不同大小的磁矩,大小相互抵消地反平行 排列,但是磁場總量不會像反鐵磁完全抵銷為零,也不會如鐵磁表現 出內部磁矩所有的貢獻,而會介於兩者之間。

1-3 Lillianite homologous series 簡介

所謂的 L-series 結構,許多都是從礦物中發現的,例如 Pb₃Bi₂S₆, 其結構由兩個相同且對稱的 NaCl-type 塊狀單元所組成,由圖 1-11 的示意圖可知,此類結構沿著 NaCl(311)平面的方向做鏡面對稱操作

圖 1-11 沿著 NaCl(311)平面的方向做鏡面對稱操作會得到 twin 的情形,黑色直線為 Tropochemical cell twinning-plane^{29,30}。

會產生類似 twin 的結構,此平面稱做 Tropochemical cell-twinning plane(以下簡稱 twinning plane),在此平面兩側沿著 NaCl[311]方向,可在同一條線上通過所有晶體學上獨立的陽離子位置,惟 twinning plane 兩側的層數不需相同,類似 Lillianite 結構的化合物稱為 "L-series",圖中陰影部分為結構正常的延伸,部份說法認為此結構的形成與晶體缺陷的比例有關,導致結構不沿著原本的方向做延伸 而形成類似左右對稱的結構。

圖 1-12 為 G. Kanatzidis 教授所發表化合物 K_{0.54}Sn_{4.92}Bi_{2.54}Se₉³⁰ 的 結構示意圖,此化合物與礦物 heyrovskyite 同為 L-series 結構 L(7,7), 圖中為沿著 b 軸投影在 ac 平面上的平面示意圖,圖中的黑色的粗實

圖 1-12 為 G.Kanatzidis 教授所發表之 L(7,7)化合物的結構示意圖, 白色數字 標示結構所含層數。

線為 twinning plane,我們可以由兩個 twinning plane 間所夾的 NaCl-type 塊狀單元來決定 L(n,n')中n或n'的數值,圖中顯示黑色與 白色的平行四邊形同為以 K、Sn 或 Bi 為中心所構成的八面體,為 NaCl(311)-type 的結構單元,僅為了方便於觀察而將其以顏色區分, 而層數的決定主要在於兩個 twinning-plane 間最大的平行四邊形串聯 個數,如圖所示此結構兩個 twinning-plane 間最大串聯數目為7,而 與下一個 twinning-plane 間剛好也是7,因此我們可以將此結構以 L(7,7)表示。

因為L-series系列又屬於Homologous series中的一個子系統,因此 在以下的篇幅將對Homologous series稍做介紹³¹。Homologous series

圖 1-13 為 CuPb₁₃Sb₇S₂₄ 沿著 c 軸投影到 ab 平面的晶體結構示意圖 ³²。 按照定義的不同又可分為accretional series和variable-fit series,不同的

Homologous series有其規律性的化學式、單位晶格參數和對稱,我們 可以以此設計出可能存在的化合物並且這樣的規律在不同的系統中 都適用, accretional series是泛指具有相同結構單元所組成的不同結 構,例如本篇論文所發表的L(4,7)和以SnS-type為結構單元的 CuPb₁₃Sb₁₇S₂₄, 而variable-fit series與accretional series的不同在於, variable-fit series是以兩種不同長度週期的結構單元所構成,因為跟本 篇論文所要探討的結構屬不同系統,所以在此並不多做著墨,僅以圖 1-14示意。

L-series 因為有其結構特性,以致於不同層數的化合物在化學式 上有一定的規則,整理如下表:

化學式

n+n'	L(n,n')	$M_{p}X_{p+2}$ 18	Compound
3	P(2, 1)	M ₅ X ₇	$PbBi_4S_7^{33}$
4	P(3, 1)	M_6M_8	$CuBi_5S_8^{34}$
5	P(4, 1)	M_7X_9	$Cu_{2.93}Bi_{4.79}S_9^{-35}$
6	P(5, 1)	$M_8 X_{10}$	$AgBi_3S_5^{36}$
8	L(4, 4)	$M_{10}X_{12}$	Pb ₃ Bi ₂ S ₆ ³⁷
9	L(5, 4)	$M_{11}X_{13}$	$Sn_2Pb_5Bi_4Se_{13}{}^{38}$
11	L(7, 4)	M ₁₃ X ₁₅	$Ag_{3.56}Pb_{10.88}Bi_{11.56}S_{30}^{ 39}$
14	L(7, 7)	$M_{16}X_{18}$	$Ag_7Pb_{10}Bi_{15}S_{36}^{40}$
15	L(7, 8)	$M_{17}X_{19}$	$Pb_{13}Sb_{2.08}Bi_{1.92}Se_{19}$
22	L(11, 11)	$M_{24}X_{26}$	$Ag_{25}Pb_{30}Bi_{41}S_{104}{}^{41}$

首先此種結構在化學式的表達上可以以通式M_pX_{p+2}(M:陽離子;X:陰 離子)來表示,除此之外化合物的總層數(n+n')每多一層也就是圖1-11 中沿著直線排列的八面體(1~7)每多一個,反映在化學式上的p值就會 增加1,這類的化合物主要的元素組成為A_xB_yS_n(A=Pb、Cu、Ag、Hg、 Tl、Fe、Mn或其他金屬, B=三價陽離子As、Sb、Bi和S=S、Se或Te), 但A也有用鹼金族或鹼土族合成的例子,如圖1-11之例子,有趣的是 根據文獻的整理B原子的種類與多寡會影響到結構的呈現,當B原子 (尤其是結構中含有Bi原子)的孤對電子效應沒那麼強時,在結構的展 現上會傾向於有限或1到3維無限延續的NaCl-type結構單元(Pb₃Bi₂S₆); 反之若結構中含有As、Sb或些微的Bi元素存在且孤對電子效應明顯的 話則會呈現類似於SnS的結構單元(CuPb₁₃Sb₇S₂₄),也就是說,Bi的含 量對於L-series結構的產生有正面的影響³¹。)

圖 1-14 Cannizzarite 之晶體結構,為 variable-fit homologous series 其中之一的例子⁴²。

在表1-1中我們除了可以看到以L(n, n')為主的L-series,我們也發

現了與L-series在化學式和結構規律上十分相似的Pavonite series(以下 簡稱P-series),簡記作P(n,1),除了上述L-series的特性之外,P-series 不同的是在晶體結構上薄層都是"1",意即只有厚層串連八面體的數 目會改變,又因為在設計反應各元素相對的劑量上,我們僅參考表1-1 中n+n'的總和與其反應在化學式上的規律,因此我們無法預測n與n' 個別的數字,故特別將P-series化合物也整理在其中。

根據表1-1的調查,可得知此類化合物在自然界主要是以含硫礦物的形式存在,硒化物並不常見,並且參考本實驗室先前合成的例子, 發現在L-series的硒化物中幾乎沒有含過渡金屬Cr、Mn、Fe、Co的化 合物,且L(n,n')中n+n'的和有尚未發現的層數(例如:n+n'=10),遂以 TM/Pb/Sb/Se和TM/Sn/Bi/Se(TM: 過渡金屬)整數計量比嘗試反應,除 了期望能在已有的層數之外發現新穎結構的化合物,也希望透過加入 過渡金屬可以產生不同於以往L-series化合物更有趣的物理性質,同 時也希望藉由此印證文獻中Sb與Bi對結構產生之差異。

第二章 實驗方法

2-1 反應試劑

本實驗使用的藥品皆為單一元素的粉末:

編號	藥品	簡稱	純度(%)	廠商
1	Chromium	Cr	99.00	Alfa Aesar
2	Magnesium	Mn	99.60	Alfa Aesar
3	Iron	Fe	99.9+	Alfa Aesar
4	Cobalt	Co	99.80	Alfa Aesar
5	Nickel	Ni	99.90	Alfa Aesar
6	Copper	Cu	99.90	Alfa Aesar
7	Silver	Ag	95	Alfa Aesar
8	Indium	In	99.99	Alfa Aesar
9	Lead	Pb	99.90	Alfa Aesar
10	Antimony	Sb 1	8999.90	Alfa Aesar
11	Bismuth	Bi	99.50	Alfa Aesar
12	Tin	Sn	99.80	Alfa Aesar
13	sulfur	S	99.5	Alfa Aesar
14	Selenium	Se	100.00	Alfa Aesar

實驗中所有相關的藥品皆保存在充滿氮氣環境的手套箱中,以避 免氧化或潮解問題發生而破壞藥品影響實驗。

2-2 合成

2-2-1 初始反應

初始條件依 Mn: Sn: Bi: Se=3:8:4:17 的莫耳比,分別秤

取所需元素的重量,混合至 0.5 克,再將配置好的初始反應物,裝入 石英管套件中(長 12 公分、內徑 9 公釐),鎖緊後從手套箱傳遞出來, 利用真空系統將管內氣體抽走,使其內部壓力小於 2 Pa 左右,隨後 用氫氧焰快速地將石英管密封,避免反應時有空氣混入產生其它的反 應,接著將密封好的石英管放入高溫爐中 (Thermolyne furnace 1300,Iowa, USA)加熱進行反應。初始反應條件為:24 小時由室溫加 熱到 900℃,接著保持 900℃恆溫 36 小時讓反應完全,再由 900℃歷 經緩慢降溫 24 小時至 450℃,最後從 450℃自然降回室溫即完成整個 高溫燒結步驟。當完成反應過程後,分別將石英管從高溫爐中取出, 發現大部分反應物為一整塊熔融態銀灰色的產物。將各產物經過研缽 研磨成粉末後,分別經由粉末 X-ray 繞射鑑定,經由實驗圖譜和資料 庫的比對得知,發現有許多未知的繞射峰存在,判定可能有新的化合 物產生。其餘反應的產物為已知二元與三元化合物。

2-2-2 純化反應

本實驗藥品配製方式與上述方法一致,根據後來分析所得到的反應比例式為 Mn_xSn_{9-x}Bi₄Se₁₅,分別取比例為 x = 0,0.25,0.5,0.75,1,1.25,1.5,1.75,2 依此類推到 x=3.75 的粉末來進行反應,希望可以得到相寬的範圍所在,將各比例過渡金屬粉末各別與粉末態的元素 Sn、Bi、Se 依不同莫耳比例混合後,放入石英管中,置入高溫爐燒結進行反應。反應條件與初始反應相仿。

2-3 產物鑑定

2-3-1 粉末 X-ray 繞射分析

將反應結束的石英管破壞真空狀態,取出管內之生成物於研鉢研 磨成細小均匀粉末,使用粉末 X-ray 繞射儀(BRUKER AXS D8 Advance Leipzig, Germany, Cu Kα radiation)在能量為 20mA、40kV 的 條件下進行產物鑑定分析,設定繞射角度(20)從 5°到 60°,繞射時間 為 30 分鐘。將所得實驗圖譜利用 EVA 軟體處理數據,並比對 Joint Committee on Powder Diffraction Standards(JCPDS)資料庫,由此來判 斷產物為何種已知化合物或是新穎化合物。

2-3-2 單晶 X-ray 繞射分析

將反應結束後的產物置入研鉢內將其打碎,在顯微鏡底下挑選具 有光滑晶面的晶體,使用細針挑入矽油中清洗,將周圍細小碎粒洗去, 再使用 AB 膠黏於玻璃纖維的頂端,放入單晶 X-ray 繞射儀 (CAD4 Enraf Nonius FR590)內,在 0、 ¥和 @ 不同的方向隨機收集 25 個繞 射點,決定初始晶胞,將所得數據比對高速電腦中心之 ICSD (Inorganic Crystal Structure Database)資料庫,若為未知的晶胞常數, 則可將晶體送到國立清華大學貴儀中心的單晶 X-ray 繞射儀 (BRUKER SMART 1000 CCD Diffractometer System),做進一步的晶 體繞射點數據收集。

此實驗所用的單晶 X-ray 繞射儀,可收集較完整的繞射點數據, 每個晶體各自有4組(0°<ω<90°、600 frame;90°<ω<180°、435 frame;180°<ω<270°、600 frame;270°<ω<0°、435 frame)共2070 張繞射點照片,每一張照片對晶體的拍照時間為40秒/frame。晶體 到偵測器的距離皆為 5.038cm。得到完整數據後,用 SMART 程式篩 選強度較強的繞射點(I/σ=10)決定準確的晶胞常數。再用 SAINT 軟體對繞射點數據積分並以 SADABS 程式進行吸收校正⁴³,最後利 用 SHELX-97⁴⁴ 軟 體 以 直 接 法 (direct methods) 和 最 小 平 方 法 (full-matrix least-squares refinements)進行結構解析。過程中可使用 ATOMS⁴⁵ 軟體畫出由 SHELX-97 所分析出來的模型結構,判斷各個 原子間的鍵結、鍵長、空間中的排列及陰陽離子相對位置是否合理, 完成所有陽離子非均向 (anisotropic refinements) 熱震動參數與原子 位置混合填佔的電子密度精算。

2-3-3 元素分析

此實驗所使用的儀器為掃描式電子顯微鏡(Hitachi SEM-S4700, Tokyo. Japan)所配備的元素分析儀進行化學組成的鑑定,採用樣品 為 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇之初始反應經管狀爐分離之主產物與副產物, 分別做三點一面的電子束激發照射,將內層電子激發,可以得到個別 原子的 K-edge 能量資訊,和週期表原子已知的相關數據對照可以得 知每個化合物內都有原始反應元素的存在。

2-3-4 漫反射吸收光譜

實驗使用儀器為 UV-VIS 漫反射吸收光譜儀 (JASCO V-570)。將 樣品磨成粉末,並使用 MgSO_{4(s)}當作參考物量測,再將待測樣品放 置在載台上,進行 UV-VIS 漫反射光譜的測量。波長範圍從 500nm -1800nm。得知不同波長的吸收度,利用 Kubelka—Munk function (1) 去做反射值及吸收值的轉換,判斷半導體的能距。

$$\frac{\alpha}{S} = \frac{(1-R)^2}{2R} \qquad (1)$$

 $R:反射率, \alpha:吸收係數, S:散射係數$

2-4 磁化率测量

磁化率測量使用超導量子干涉儀(MPMS-XL7 SQUID)。將樣品填 入藥丸狀的膠體態容器內,固定外加磁場 1000Gauss 的環境下。測量 2K~300K 溫度範圍內,不同溫度磁化率的變化;固定溫度 100K 與 300K,量測 Mn₂Sn₇Bi₉Se₁₅在不同磁場(-50~50 KOe)下的磁滯曲線圖。 2-5 物理性質量測

在進行此實驗之前,將各純化後的樣品粉末秤取適量,使用壓片 器與油壓機將各樣品的粉末在40Gkg/m²的壓力下,加壓半小時塑成 約 5×1×1mm³ 大小的條狀塊材。選取已純化的 Mn_{1.5}Sn_{7.5}Bi₄Se₈ 進行 測量。在進行 Seebeck 係數及導電度這些有關電荷傳輸的測量之前, 通常會將每個塊材放入石英管真空密封並置於高溫爐中,加熱至接近 熔點處恆溫一段時間,目的是利用高溫退火燒結 (annealing)的步驟 使原子重組,期待增加材料緊密度,以及減少晶界(grain boundary)。 初始條件使用 550℃恆溫一個星期後再進行實驗,測量 Seebeck 係數, 範圍選定由室溫 300K 測量至 700K。

2-5-1 導電度

本實驗所使用的儀器為自組裝的電阻測量儀 (電壓計:

KEITHLEY 181 Nanovoltmeter; 電流供應器: KEITHLEY 224 Programmable Current Source),量測方法採用四點探針法:將儀器上 的四條導線使用銀膠黏於待測塊材上,接電流計的兩條導線黏於塊材 兩端,另兩條接電壓計的導線則黏於塊材中間,在真空狀態下輸入一 固定電流,量測塊材中間兩端的電壓差,量測溫度為 30K~320K, 再利用公式(2)換算成電阻係數。

 $\sigma = \mathbf{R} \times \frac{\mathbf{A}}{\mathbf{L}} \qquad (2)$

 σ :電阻係數,R:電阻,A:截面積,L:長度

2-5-2 Seebeck 係數

本實驗所使用的儀器為 Seebeck 測量儀(SB-100 MMR Technologies, inc),將待測塊材兩端用銀膠黏於陶瓷樣品台,置於烘 箱內用 50℃烘烤 24 小時,確保銀膠完全凝固,再將待測樣品置於儀 器樣品槽內抽真空,量測溫度為 300K~700K,測量不同溫度下的 Seebeck 係數。

2-6 電子結構理論計算

本實驗所使用的軟體為 LMTO (tight-binding linear muffin tin orbitals)^{46,47},由軟體輸入單晶結構解析所得之晶胞常數及原子位置 來計算電子結構,所計算出來的結果可表示為:能階電子密度圖 (densities of states),能帶結構圖(band structure) 與 COHP 圖(crystal orbital Hamilton population curves)⁴⁸。由於本實驗內的化合物含有過 渡金屬,可預期這些化合物可能具有磁性的表現,根據磁性測量及單

晶解析的結果,分別給予合理的模型及假設,進行 spin polarization 的計算,希望經由計算後可使擠在同一能階上具有不同自旋方向的電 子能階可因此分裂開來,比較 non-magnetic 與 magnetic 計算的差異, 探討化合物的電子結構是否因過渡金屬元素的參與及含量的不同而 有所變化。

第三章

新穎硒化物 Mn₂Sn₇Bi₄Se₁₅ 的合成與特性分析

3-1 合成

起始反應是參考實驗室所合成出的 Sn₃Bi₂Se₆ L(n,n')系列之結構, 此系列的結構早期主要發現於自然界中的礦物,以硫化物為主,此種 結構在層數上的變動非常的多元,將有關的文獻整理成表如下:

n+n'	L(n,n')	compound
3	L(2,1)	PbBi ₄ S ₇
4	L(3,1)	CuBi ₅ S ₈
		$TM_xSn_{2-x}Bi_4Se_8$ (TM = Mn, x = 1~2; Fe, x = 0.5~0.75) ⁴⁹
5	L(4,1)	$Cu_{0.8}Sn_{1.4}Bi_{4.8}Se_9^{50}$
6	L(5,1)	AgBi ₃ S ₅
8	L(4,4)	Pb ₃ Bi ₂ S ₆
		Sn ₃ Bi ₂ Se ₆ ⁵³
8	L(7,1)	FeAgSb ₃ Se ₆ ⁵¹
9	L(5,4)	$Sn_2Pb_5Bi_4Se_{13}{}^{38}$
11	L(7,4)	$Sn_{8.65}Pb_{0.35}Bi_4Se_{15}{}^{38}$
		Mn ₂ Sn ₇ Bi ₄ Se ₁₅ (本篇)
		$Ag_5Pb_8Bi_{13}S_{30}$
11	L(10,1)	$Ag_{2.61}Ge_{2.63}Sb_{7.26}Se_{15}{}^{52}$
14	L(7,7)	$Ag_7Pb_{10}Bi_{15}S_{36}$
14	L(7,7)	$In_{0.2}Sn_6Bi_{1.8}Se_9^{52}$
15	L(7,8)	$Pb_{13}Sb_{2.08}Bi_{1.92}Se_{19}^{53}$
22	L(11,11)	$Ag_{25}Pb_{30}Bi_{41}S_{104}$

表 3-1 L-series 各層數之化合物

表中以 n+n'值的大小由上而下排列,可以發現當中有許多層數是尚未 被發現的,例如: n+n'=7,10,13...,又由於表中的 L(7,8)是先前學長 所合成出的新穎結構硒化物,我們遂嘗試著以硒元素合成新的層數的 化合物,採用的元素以 Pb、Sb、Se 或 Sn、Bi、Se 的組合搭配過渡元 素 Cr、Mn、Fe、Co、Cu、Ag,選用 Cu 和 Ag 的原因是因為在已知 的 L-Series 系列礦物中有超過半數都含有銀元素,此外含有 Cu 元素 的例子也在 L(4,1)和 L(3,1)文獻中有看到,存在價數為正一價,換句 話說上述所列六個過渡元素其餘的四個是在文獻中未曾出現的,經過 調查 ICSD 資料庫發現,CrSe、MnSe、FeSe 和 CoSe 均與 Se 原子呈 現六配位的鍵結環境,這對形成 L(n, n)系列化合物是必要的,於是 以此為出發點,參考 L(n,n')系列的特徵化學式,嘗試 n+n'=7,10,13, 並且在 Mn:Sn:Bi:Se=3:8:4:17 獲得疑似未知物的 PXRD 圖譜。

用 Mn:Sn:Bi:Se=3:8:4:17 比例在 900 °C 下反應 36 小時,產物外 觀呈現灰黑色熔融狀大塊固體與許多細小顆粒,產物之 PXRD 圖經 比對 EVA 資料庫後認為可能有未知物的存在,將產物放入研缽敲碎 並從中挑選具有特殊形狀之晶體,用 AB 膠將晶體黏於玻璃纖維上, 以單晶繞射儀做晶胞常數測定,得到結果如下:

a=13.708(3) Å b=4.1571(8) Å c=26.500(5) Å

 $\alpha = \gamma = 90^{\circ} \beta = 96.20(3)^{\circ}$ V=1501.2(5) Å

比對國家高速網路與計算中心之資料庫(ICSD)後仍未找到同元素組成之已知物,但由晶胞常數來看有可能與礦物 Ag_{3.56}Bi_{11.56}Pb_{10.88}S₃₀為同結構化合物。

3-2 Mn₂Sn₇Bi₄Se₁₅ 晶體結構解析與純相合成

經過送測X-ray單晶繞射儀發現此晶體與先前實驗室學長所發表 的 Sn_{8.65}Pb_{0.35}Bi₄Se₁₅ 為同結構的化合物(L(4,7)),也證實此晶體與礦 物 Ag_{3.56}Bi_{11.56}Pb_{10.88}S₃₀ 同為 Vikingite 結構化合物,單晶數據顯示其陽 離子與陰離子在化學式中所佔的比例為 M₁₃Se₁₅,以此為線索我們可 以以一個二元一次聯立方程式獲得陽離子中 Bi 元素所佔之比例,參 考文獻之後我們發現在以 Se 為陰離子的系統中 Mn 和 Sn 正二價,Bi 正三價,Se 負二價為其常見的價態,因此接下來對陽離子比例的估 算都以此假設為前提,方法如下:

我們將二價陽離子與三價陽離子在化學式中所佔的比率分別表示為 x 和 y,再加入價電平衡的關係式可以得到(Mn/Sn)₉Bi₄Se₁₅,如此一來 我們便決定了 Bi 在此晶體中所佔的比例。

單純由電子數密度來看,總共七個陽離子位置,分別為 M1(65.8 e⁻/site)、M2(45.1 e⁻/site)、M3(54.3 e⁻/site)、M4(58.7 e⁻/site)、M5(63.7 e⁻/site)、M6(45.1 e⁻/site)和 M7(54.3 e⁻/site),都有可能以 Mn 混和填佔, 但是唯獨 M2 和 M6 的位置的電子數是少於 Sn(原子序 50),也就是說 這兩個位置必須優先考慮 Bi (原子序 83)/Mn(原子序 25)或 Sn/Mn 混 和填佔,而 Mn 二價電子組態為 d5 參考文獻得知其比較適合填佔於 正六配位或接近正六配位的位置 ^{34, 54, 55},比對此規則, M2 和 M6 的 位置在他們所屬的層數中相較之下是比較接近六配位,剩下的陽離子 位置因為電子數都在 Sn(原子序 50)以上,可以考慮的填法為 Bi/Sn 或 Bi/Mn 混和填佔同時參考先前解出 Bi 在晶體中的比例,可以推敲出 兩個符合的模型,如表 3-2 所列:

	# electron	M-Se(Å)	Model 1	Model 2
M1	65.8	2.75~3.16	Bi/Sn	Bi/Sn
M2	45.1 < 50(Sn)	2.94~2.96	Bi/Mn	Bi/Mn
M3	54.3	2.92~2.99	Bi/Sn	Bi/Mn
M4	58.7	2.8~3.05	Bi/Sn	Bi/Mn
M5	63.7	2.69~3.45	Bi/Sn	Bi/Sn
M6	45.1<50(Sn)	2.7~2.98	Bi/Mn	Bi/Mn
M7	54.3	2.84~3.46	Bi/Sn	Bi/Sn

表 3-2 (Mn/Sn)9Bi4Se15 可能之原子填佔模型。

圖 3-1 Mn₂Sn₇Bi₄Se₁₅ 沿 b 軸 投影晶體結構,黑色粗實線所 圍範圍為單位晶胞。 經過精算之後 Model1 和 Model2 分別可以得到 *R1/wR2*=0.0397/0.0958 和 *R1/wR2*=0.0401/0.0969,兩個模型的 R 值相去不遠,model 1 解出 來的化學式為 Mn_{1.96}Sn_{7.165}Bi_{3.87}Se₁₅;model 2 為 Mn_{2.42}Sn_{6.38}Bi_{4.195}Se₁₅, 此兩個模型參照起始物 Mn 與 Sn 的比例來看,model 1 是比較接近的, 推測 model 1 應該是比較接近理想的比例,進一步以獲得純相的實驗 做驗證。

純相的獲得主要是以反應的起始比例做為參考,主要的原因是因為起始反應物 PXRD 圖和理論 PXRD 圖繞射峰的位置與強度大致符

圖 3-2 黑色實線為以 GSAS 軟體做理論計算獲得的 PXRD 圖,紅色部分為 以實驗比例 Mn:Sn:Bi:Se=3:8:4:17 所得到的結果,*:雜相繞射峰

合(圖 3-2),相信起始比例已存在一定的參考價值,反應起始比例為 Mn:Sn:Bi:Se=3:8:4:17,意即 Mn:Sn 大約等於 3:8,以此為參考設計了 $Mn_xSn_{9-x}Bi_4Se_{15} (X=0~3.75) 共十個反應,並預期在 X=4 上下的比例中$ 可得純相,由圖 3-3,3-4 可以看出此十個反應的 PXRD 圖譜都十分相似,表示主產物是一致的,但細看可以發現到從 X=2 到 X=3 陰影部分的繞射峰強度有一驟強的情形,經過 EVA database 比對後發現此繞射峰為主產物繞射峰和 MnSe 二元相繞射峰的重疊部分,因此判斷在 $實驗比例 X=2 後 MnSe 雜相開始產生,並且將 X<math>\geq$ 2 的 PXRD 圖譜進 行疊圖並沒有發現繞射峰偏移的情況,說明在此範圍沒有相寬存在, 意即 $Mn_2Sn_7Bi_4Se_{15}$ 為目前可得 Mn 佔此晶體比重之最大值,此結果 也與 model 1 相互印證,說明 model 1 的填佔模型比 model 2 更接近 理想的比例。

除此之外 X=0~2 的 PXRD 圖經比對理論圖譜後,可以發現並沒 有明顯的雜相訊號存在,有可能是雜相的訊號態微弱以致於不容易觀 察到,也有可能此化合物在 X=0 以下 Mn 比重更少的情況下有相寬 存在。

31

圖 3-3 由下而上分別為實驗比例 Mn_{1.5+0.25x}Sn_{7.5-0.25x}Bi₄Se₁₅; X=5~9, 陰影 部分為主產物與 MnSe 雜相繞射峰重疊處。

圖 3-4 由下而上分別為實驗比例 Mn_{1.5+0.25x}Sn_{7.5-0.25x}Bi₄Se₁₅; X=0~4, 陰影 部分為主產物與 MnSe 雜相繞射峰重疊處。

Empirical formula	$Mn_2Sn_7Bi_4Se_{15}$
Formula weight	2961.03
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/m No. 12
Unit cell dimensions	a = 13.708(3) Å
	b = 4.1571(8) Å
	c = 26.500(5) Å
	$\beta = 96.20(3)^{\circ}.$
Volume	1501.2(5) Å ³
Z	2
Density (calculated)	6.551 Mg/m ³
Absorption coefficient	48.049 mm ⁻¹
F(000)	2484
Crystal size	0.05 x 0.05 x 0.08 mm ³
Theta range for data	^a 0.77 to 28.28°
collection	0.7710 28.28
Index ranges	$-18 \le h \le 18$
	$-5 \le k \le 5$
	$-26 \le 1 \le 35$
Reflections collected	8966
Independent reflections	2128 [R(int) = 0.0413]
Data / restraints / parameters	2128 / 0 / 94
Goodness-of-fit on F2	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.0958
R indices (all data)	R1 = 0.0508, $wR2 = 0.1039$
Largest diff. peak and hole	5.442 and -4.577 e.Å ⁻³
$\mathbf{R}_1 = \boldsymbol{\Sigma} F_0 - F_c / \boldsymbol{\Sigma} F_0 \mathbf{w} \mathbf{R}_2 = \{ \boldsymbol{\Sigma} \}$	$\mathbb{E} \left[\ w({F_0}^2 {\text{-}}{F_c}^2)^2 \ \right] \ / \Sigma \ \left[\ w({F_0}^2)^2 \ \right] \}^{-1/2}$

表 3-3 $Mn_2Sn_7Bi_4Se_{15}$ 的晶體結構資料表

Sites	Х	У	Z	U(eq)	Occ.
M(1)	0.5769(1)	0	0.1435(1)	20(1)	Bi/Sn=0.479(7)/0.521
M(2)	0.5000	-0.5	0	19(1)	Bi/Mn=0.346(4)/0.654
M(3)	0.2842(1)	0	0.0697(1)	20(1)	Bi/Sn=0.128(6)/0.872
M(4)	0.3714(1)	-0.5	0.2096(1)	21(1)	Bi/Sn=0.263 (6)/ 0.737
M(5)	0.6309(1)	0	0.4609(1)	28(1)	Bi/Sn=0.414(7)/0.586
M(6)	0.3973(1)	-0.5	0.3961(1)	26(1)	Bi/Mn=0.345(3)/0.655
M(7)	0.1580(1)	0	0.3149(1)	37(1)	Bi/Sn=0.129(7)/0.871
Se(8)	0.2945(1)	-0.5	0.3033(1)	22(1)	1
Se(9)	0.4299(1)	-0.5	0.1019(1)	21(1)	1
Se(10)	0.6445(1)	0	0.0328(1)	21(1)	1
Se(11)	0.7168(1)	-0.5	0.1726(1)	25(1)	1
Se(12)	0.5062(1)	0	0.2369(1)	21(1)	1
Se(13)	0.5189(1)	0	0.3712(1)	22(1)	1
Se(14)	0.7512(1)	-0.5	0.4175(1)	-29(1)	1
Se(15)	0.5000	-0.5	0.5000	\$ 66(1)	1

表 3-4 $Mn_2Sn_7Bi_4Se_{15}$ 化合物的原子位置與熱參數值($Å^2x10^{-3}$)

表 3-5 $Mn_2Sn_7Bi_4Se_{15}$ 化合物中各原子的非均向熱參數值($Å^2x10^{-3}$)

Site	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
M (1)	20(1)	17(1)	22(1)	0	2(1)	0
M(2)	20(1)	18(1)	19(1)	0	1(1)	0
M(3)	21(1)	18(1)	22(1)	0	1(1)	0
M(4)	23(1)	18(1)	23(1)	0	1(1)	0
M(5)	38(1)	20(1)	25(1)	0	5(1)	0
M(6)	26(1)	22(1)	30(1)	0	6(1)	0
M(7)	37(1)	29(1)	43(1)	0	-4(1)	0
Se(8)	24(1)	19(1)	25(1)	0	6(1)	0
Se(9)	22(1)	18(1)	22(1)	0	0(1)	0
Se(10)	20(1)	18(1)	24(1)	0	2(1)	0
Se(11)	20(1)	17(1)	36(1)	0	-1(1)	0
Se(12)	24(1)	19(1)	20(1)	0	2(1)	0
Se(13)	26(1)	21(1)	21(1)	0	5(1)	0
Se(14)	27(1)	23(1)	37(1)	0	-1(1)	0
Se(15)	122(3)	13(1)	77(2)	0	82(2)	0

Contacts	Distance / Å	Contacts	Distance / Å
M(1)-Se(12)	2.7537(15)	M(5)-Se(13)	2.6861(17)
M(1)-Se(11)×2	2.8762(10)	M(5)-Se(14)×2	2.9614(12)
M(1)-Se(9) ×2	3.0195(11)	M(5)-Se(15) ×2	3.0027(7)
M(1)-Se(10)	3.1687(15)	M(6)-Se(8)	2.6978(18)
M(2)-Se(10)×4	2.9370(10)	M(6)-Se(13)×2	2.7884(11)
M(2)-Se(9)×2	2.9618(14)	M(6)-Se(15)	2.9544(13)
M(3)-Se(10)×2	2.9216(11)	M(6)-Se(14)×2	2.9830(13)
M(3)-Se(9)×2	2.9447(11)	M(7)-Se(8) ×2	2.8353(11)
M(3)-Se(11)	2.9737(17)	M(7)-Se(14)	2.8760(19)
M(3)-Se(10)	2.9853(16)		
M(4)-Se(8)	2.8012(15)		
M(4)-Se(12) ×2	2.8236(10)		
M(4)-Se(9)	3.0474(15)		
M(4)-Se(11)×2	3.0531(11)	SAE	
		1896	

表 3-6 Mn₂Sn₇Bi₄Se₁₅ 化合物中各陰陽離子間距(Å)

3-3 Mn₂Sn₇Bi₄Se₁₅結構描述

晶體 $Mn_2Sn_7Bi_4Se_{15}$ 所屬結構為 L-series,可以用 L(7,4)來表示, 同結構的晶體有 $Sn_{8.65}Pb_{0.35}Bi_4Se_{15}^{38}$ 和 $Ag_5Pb_8Bi_{13}S_{30}^{39}$,空間群為 C2/m(NO. 12),結構中總共含有 15 個結晶學上相異的位置,7 個分 $別為陽離子(<math>Bi^{3+}/Sn^{2+}$ or Bi^{3+}/Mn^{2+})的混和填佔,其餘 8 個為 Se^{2-} 陰離

圖 3-5 Mn₂Sn₇Bi₄Se₁₅ 沿 b 軸投影之晶體結構,黑色粗實線為 Tropochemical cell-twinning plane

子的全填佔,不同的陽離子位置與其周圍陰離子的平均鍵長大約分布於 2.8658 Å~3.0245 Å。圖 3-5 沿著 b 軸投影,依照 L-series 的分類
在 tropochemical cell twinning plane 兩側分別由 7 個和 4 個 NaCl(311)-type 的八面體結構單元所組成,因此記作 L(7,4),結構往 c 軸以厚層、薄層、厚層......交錯無限延伸,圖中並分別以顏色的深 淺來表示電子密度的多寡,深色用來表示八面體中心電子密度較高 的情況;反之,顏色較淺的八面體則用來代表電子密度較少的情況, 可以看出厚層的電子密度有由內而外增加的趨勢,薄層則是由內而 外的減少,而厚層與薄層在 Tropochemical cell twinning plane 之間的 厚度分別約為 16.7848 Å 和 10.0776 Å,層與層間由 Se 以連接。

厚層中總共有四個陽離子位置,分別為 M1、M2、M3 和 M4 位 置,每個陽離子周圍都有六個陰離子,形成六配位的八面體,比較 其最長與最短鍵長差異,M1-Se 鍵長最大差距約 0.4152 Å;M2-Se 約 0.0246 Å;M3-Se 約 0.0635 Å;M4-Se 約 0.252 Å,相對上來說 M2 位置的鍵長差距是較小的,再比較這四個位置的鍵結環境,發現 相對來說 M2 的位置是處於一個接近完美八面體的中心(圖 3-6(a)), 因此推論 M2 位置較適合 Mn 的填佔。

圖 3-6 (a) M2 的配位環境; (b) M6 的配位環境

薄層中一共有兩個陽離子位置,分別為 M5 和 M6,周圍也同樣 的都圍繞著六個 Se 陰離子,形成 L-series 結構所需的八面體結構單 元,比較兩者的鍵長, M5 位置與鄰近的 Se 原子距離分布較廣,最 短與最長的鍵長差值約為 0.7607 Å,而 M6 大約 0.2852 Å,再由配位 環境做探討,可以看出以 M5 為中心的八面體是較扭曲的,故此認 為 M6 位置由 Bi/Mn 混合填佔是相對合理的模型。

最後一個陽離子位置是 M7, 位於厚層與薄層間的 Tropochemical cell twinning plane 上,為結構內唯一非六配位八面體的配位環境, 鍵長分布也較廣,由 2.8353 Å 到 3.4634 Å,形成五配位的四角

圖 3-7 M7 的配位環境,虛線代表未鍵結。

錐,稍遠處還有兩個未鍵結的 Se 離子,距離約為 3.4634 Å,如此變 形的環境常見於主族重元素內層 ns² 孤對電子的 inert pair effect⁵⁴。

3-4 相寬的範圍判定

在先前的章節有提到過此化合物有存在相寬的可能性 (Mn₂Sn₇Bi₄Se₁₅ 晶體結構解析與純相合成),圖 3-8 與先前章節圖 3-4 合併討論,先前的 PXRD 圖可以看出在 Mn: Sn=2.25: 6.75(y=9)時因 為 Mn 元素的比例過多而生成 MnSe 副產物,有鑑於此我們逐步下修 Mn 的比例,期望能在 PXRD 圖譜上看到訊號會有偏移的現象。

將數個比例的繞射圖譜分別疊在一起做比較,發覺主產物繞射 峰的位置在 Mn 的比例減少(y 值變小)情形下,似有向低角度偏移的 趨勢,表示有可能隨著 Mn 含量的減少而影響結構上單位晶胞的大

圖 3-8 由下到上為化合物 Mn_{0.25y}Sn_{9-0.25y}Bi₄Se₁₅; y=0~9,最 頂端為理論計算 PXRD 圖譜。

小,由於 Mn 原子的原子半徑為 140 pm 比 Sn 原子的 145 pm 還小,

根據布拉格繞射定律初步推測,隨著 Mn 的減少; Sn 的增加 PXRD 圖譜應該往低角度的位置偏移,與觀察所得到的結果一致,但因為 偏移程度不甚明顯無法將 PXRD 本身的誤差排除在外,將 y=5~9 以 cell refinement 軟體做分析,結果晶胞體積雖未與比例有明顯的線性 關係,但有隨著 Mn 在反應中比例的增加晶胞體積下降的趨勢,更 進一步的印證有待 X-ray 單晶繞射儀的分析。

圖 3-9 Mn_{0.25y}Sn_{9-0.25y}Bi₄Se₁₅ (y=5~9)反應產物 y 與單位晶胞體積 圖

3-5 Seebeck 係數

圖 3-9 展示化合物 $Mn_2Sn_7Bi_4Se_{15}$ 在溫度 312K 到 688K 的範圍內 量測結果,顯示材料為 P 型半導體, Thermopower 係數分布約從室溫 的 110 μ V/K 隨著溫度上升而一路增加到 200 μ V/K 左右。與目前 較佳之 P 型半導體熱電材料比較, BiSbTe 奈米結構合金在室溫以上 最大約 250 μ V/K 左右 ⁵⁶。商品化熱電致冷片, Bi_{0.55}Sb_{1.5}Te₃ 組成,室 溫約 250 μ V/K 到高溫 500K 達最大約 300 μ V/K⁵⁷。

由四點探針法測量 Mn₂Sn₇Bi₄Se₁₅之結果如圖 3-10,從曲線趨勢 來看,電阻率(ρ)隨著絕對溫度的減少而增加,是典型的半導體性質, 在測量溫度區間 200 到 300 K,電阻率的分佈由大約 0.01 ohm*cm~0.008 ohm*cm,換算成電導率約為 10000 ohm⁻¹*m⁻¹~12500 ohm⁻¹*m⁻¹與目前商品化的 Bi₂Te₃ 在室溫下的表現一致。溫度小於 200 K以前的數據初步測量與 200 到 300 K 的電阻值維持在同樣的數量級 下,惟在靠近 200 K 時會有一急遽下滑的趨勢,形成原因還有待進一 步的探討。

3-7 磁性测量

由圖 3-12 可觀察在溫度(T)範圍 2K 到 300K 的區間內,隨著 溫度下降,莫耳磁化率(χ)有隨之上升的趨勢,此類型的 χ-T 分佈 趨勢為標準的順磁性現象,可受到外加磁場的吸引。圖中同時展示了 各化合物莫耳磁化率的倒數對溫度的變化曲線圖。

為了更進一步去討論順磁性的關係,我們使用修正過的 Curie-Weiss law 對 χ-T 分佈圖做 curve fitting,可求得 Curie constant (C)、Weiss temperature (θ) 和 Temperature-independent term(χ₀)

$$\chi = \frac{C}{(T-\theta)} + \chi_0$$

χ₀ 為與溫度無關的順磁修正項,包含了庖立(Pauli)與范列克(Van Vleck)

的順磁性貢獻。當求得上述的未知參數後,以 χ₀ 修正實驗之莫耳磁 化率(χ),可更精確的描述一般順磁性之磁化率貢獻,再使用以下公式 計算 Mn 元素化合物所表現的有效磁矩 (effective moment) ρ_{eff},來跟 理論值做比較,看實驗結果是否與理論數據貼近。

$\rho_{\textit{eff}} = 2.828 \sqrt{m \times T}$

 ρ_{eff} 為 effective moment (μ_B), m= χ - χ_0 (emu/mole), T 為所對應的溫度(K)。首先使用 Origin 8.0 軟體編寫出公式(4),將 C、 θ 以及 χ_0 當作未知參數,將實驗所得的莫耳磁化率(χ)以及所對應的溫度(T)輸入做數值逼近,在每個化合物各自適合的溫度區間內找出每個未知參數的最佳值,使實驗的結果可以較為貼近理論的數值。

由 Origin 8.0 逼近出的結果以表 3-7 表示,可看出 θ 為負值,代 表的物理意義為反鐵磁性物質,在沒有外加磁場的情形下,考慮每個 未成對電子自旋所造成的磁矩皆固定在各自的位置上,只能隨機改變 方向而不能隨意移動,當內部磁矩皆為反平行排列時即為反鐵磁性 質。

χ=C/(T -θ)+χ ₀					
R ²	0.9936				
Temperature range (K)	2~300				
C (emu*K/mole)	2.83(7)				
θ (K)	-3.0(2)				
χ_0 (emu/mole)	0.024(1)				
$ ho_{_{e\!f\!f}}$ (μ B)	5.79				

表 3-7 Mn₂Sn₇Bi₄Se₁₅ 由 Origin 8.0 逼近出之結果

Mn²⁺的理論磁矩為 5.92μB,比較實驗上所得 5.79μB 有所差距, 通常具有反鐵磁性質的化合物,實際有效磁矩會比理論磁矩來的較小, 這是由於磁矩反平行排列會抵消掉有效磁矩的數值,但仍可判斷 Mn²⁺的電子結構在此系統內屬於高自旋 (high spin)的狀態。

圖 3-12 測量 UV-VIS 漫反射光譜之結果顯示,在測量波段 800nm~1200nm(約 1.55eV~1.03eV)之間,所使用的光能量不符合化合 物能隙的大小,所得到的圖形趨近於一條平直線,而在大約 900nm(1.4eV)左右的能量區間有雜訊產生,是由於儀器轉換光源量測 時所產生的訊號。

3-9 結論

本章節成功在 900 °C 以固態燒結法合成出 Mn₂Sn₇Bi₄Se₁₅,此晶 體經比對資料庫後確定為一新穎四元硒化物,所屬結構為 L-series, 可以用 L(7,4)來表示,除了 M7 位置,位於厚層與薄層間的 Tropochemical cell twinning plane 上,其他的陽離子都處於八面體或 接近八面體中心的位置,由粉末 X-ray 繞射的結果推斷,含 Mn 化合 物在 y = 5~9 的區間,內有目標產物的生成,由 Cell Refinement 的分 析並不能得到一明顯趨勢,故實際的相寬範圍仍需要更多的單晶數據 才能判定。

UV-VIS 漫反射吸收光譜在測量波長 800nm~1200nm 之間完全沒 有吸收,推斷能隙在 1eV 以下。Seebeck 係數量測顯示此材料為顯示 材料為P型半導體,量測值大約坐落於 110 µV/K到 200 µV/K之間, 而室溫的電導率可達 12500 S/m,接近商品化的 Bi₂Te₃。

第四章

新穎結構硒化物 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 的合成與特性分析 4-1 合成

In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇初始反應是在充满氮氣的手套箱裡配置,以固 態燒結法合成,所採用的元素為 In, Pb, Sb, 與 Se. 各元素以比例 In:Pb:Sb:Se=2:4:4:13 混合載入外徑約1.1 cm,內徑0.9 cm的石英管內, 抽真空後迅速以氫氧焰將其封口,放入高溫爐以約100 ℃/h 的速率升 溫至 800 ℃,持溫12 小時後,以20 小時的時間緩慢降溫至 500 ℃, 再由 500 ℃ 自然降至室溫。

以此比例得到的產物以顯微鏡觀察,可以看到熔融塊狀和針狀晶 體兩部分,經由powder X-ray diffraction分析判定其中存在著未知相, 經由元素分析分析此晶體(energy-dispersive spectra, SEM/EDX, Hitachi H-7500 Scanning Electron Microscope)結果顯示化合物中元素 比例為 In_{2.92}Pb_{4.44}Sb_{5.53}Se₁₇。

此結構乃實驗室學長所發現,由於晶體純化不易,在先前的研究 中僅有做結構的探討,因此本章節主要貢獻於晶體的純化與物性的測 量,使其趨於完整。

4-2 晶體結構解析

單晶的挑選主要在顯微鏡下進行,晶體形狀為黑色針狀晶體,大小約0.04×0.04×0.2 mm³,使用單晶X-ray繞射收集完整的繞射點數據,經由解晶軟體分析後得到之初步結果,空間群為 P2₁/m (No. 11),17 個結晶學上獨立的陰離子(Se)位置填佔率皆在 99%上下,因此假設陰 離子都是百分之百填佔,本節只針對陽離子的填佔進行探討,此結構 的陽離子在結晶學上一共有 13 個獨立位置,在分析此晶體時以表 4-1 中的晶格常數對 ICSD 與 SciFinder 資料庫進行搜尋,搜尋結果確定 為一新結構化合物。

以此為出發點找到 $In_{18.88}Pb_{7.12}Se_{34}^{58}$ 、 $Pb_4Sb_6Se_{13}^{59}$ 和 $Pb_{3.58}Sb_{4.42}Se_{10}^{60}$ 具有相似結構單元的三個化合物做為原子填佔的參 考模型,首先針對 MI、M2、M3 與 M9 位置做探討,以電子密度來 看,因為這四個位置的電子密度都接近 In 與 Sb 的全填佔,所以只能 從鍵結環境上來著手,此四個位置分別皆處於扭曲六配位 NaCl-[100] 結構單元的八面體中心, M1-Se 間距分布在 2.7072 Å ~2.88338 Å; M2-Se: 2.65373 Å ~2.84622 Å; M3-Se: 2.70761 Å ~2.93199 Å; M9-Se: 2.77089 Å ~2.91359 Å, 鍵長都在 3 Å 以下,並且最短與最長的鍵長 差距相較本化合物其餘 9 個陽離子位置是較小的, 參考 $In_{18.88}Pb_{7.12}Se_{34}$ 化合物的填佔,可以發現舉凡有 In 填佔的位置平均鍵 長及最短與最長鍵長差距都較小,並且在 $In_{18.88}Pb_{7.12}Se_{34}$ 的例子中可 以看出 In 相較於 Pb 原子填佔的位置是較接近正八面體的,另一個例 子我們所參考的是 $Pb_{3.58}Sb_{4.42}Se_{10}$ 化合物,將 $Pb_{3.58}Sb_{4.42}Se_{10} 與$

In_{18.88}Pb_{7.12}Se₃₄做比較,明顯的差別在於有 Sb 填佔的位置平均鍵長及 最短與最長鍵長差距都較大,以 Sb 為中心形成的多面體比較傾向於 金字塔型或者扭曲度較大的八面體,因此綜合以上的結論我們將這四 個位置以 In 原子填佔,同理 M4 和 M6 位置因為其鍵結環境呈現[5+1] 的配位形式,電子密度也接近 Sb 原子全填佔,屬於典型 Sb 原子的配 位環境。

M5、M7、M12 與 M13 位置因為電子密度接近 Pb 全填滿的狀態, 所以一律用 Pb 原子全填佔來描述。M8、M10 與 M11 電子密度都小 於 Pb(83)分別約為 59、55 和 54,有可能為 Pb/Sb 或 Pb/In 混和填佔, 相較於 Pb 原子這樣的數字還是較接近 Sb 或 In 的電子密度,因此我 們傾向以 M1 的判斷方式來決定與 Pb 混和填佔的另一個原子,M8-Se 鍵長分布為 2.69205~3.05198 Å,稍遠處還有一個未鍵結的 Se 離子, 間距為 3.45612 Å ; M10-Se: 2.69395~3.19164 Å,與稍遠處 Se 離子 間距為 3.47426 Å ; M10-Se: 2.69395~3.19164 Å,與稍遠處 Se 離子 間距為 3.47426 Å ; M11-Se: 2.64857~3.19076 Å, 沿用前段判斷 In 環 境的規則,因為這三個位置最短與最長鍵長差距與 In_{18.88}Pb_{7.12}Se₃₄ 的 例子都有明顯差距,加上如此變形得鍵結環境常見於主族重元素內層 ns²孤立電子對造成的 Inert pair effect 之結果,因此這三個位置皆選擇 由 Pb/Sb 進行混和填佔。

Empirical formula	In ₄ Pb _{4.48} Sb _{4.52} Se ₁₇
Formula weight	3280.12
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2 ₁ /m No. 11
Unit cell dimensions	a = 17.813(4) Å
	b = 4.0847(8) Å
	c = 23.914(5) Å
	b= 111.56(3)°.
Volume	1618.2(6) Å ³
Z	2
Density (calculated)	6.732 Mg/m ³
Absorption coefficient	48.823 mm ⁻¹
F(000)	2744
Crystal size	$0.05 \ge 0.05 \ge 0.08 \text{ mm}^3$
Theta range for data collection	0.92 to 28.35°.
Index ranges	$-23 \leq -h \leq 23$
	$-5 \leq k \leq 4$
	$-31 \leq 1 \leq 31$
Reflections collected	12225
Independent reflections	4588 [R(int) = 0.0490]
Data / restraints / parameters	4588 / 0 / 185
Goodness-of-fit on F2	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0490, wR2 = 0.1224
R indices (all data)	R1 = 0.0596, wR2 = 0.1309
Largest diff. peak and hole	3.225 and -8.279 e.Å ⁻³

表 4-1 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇的晶體結構資料表

 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}| \quad wR_{2} = \left\{ \Sigma \left[w(F_{0}^{2} - F_{c}^{2})^{2} \right] / \Sigma \left[w(F_{0}^{2})^{2} \right] \right\}^{1/2}$

Atom	Site	x	Y z	Site occ.	U_{eq}
M1	2e	0.8990(1)	-0.7500	0.2750(1)	15(1)
M2	2e	0.9485(1)	-0.2500	0.4237(1)	18(1)
M3	2e	1.0921(1)	-0.2500	0.0459(1)	19(1)
M4	2e	1.2750(1)	-0.7500	0.1596(1)	16(1)
M5	2e	1.1127(1)	-0.2500	0.2399(1)	31(1)
M6	2e	0.3296(1)	-0.7500	0.3506(1)	20(1)
M7	2e	1.1863(1)	-0.2500	0.4407(1)	33(1)
M8	2e	1.4316(1)	-0.7500	0.5442(1) 0.250(9) Pb	29(1)
		1.4316(1)	-0.7500	0.5442(1) 0.750 Sb	29(1)
M9	2e	0.6852(1)	-0.7500	0.3642(1)	20(1)
M10	2e	0.4876(1)	-0.2500	0.2567(1) 0.127(8) Pb	23(1)
		0.4876(1)	-0.2500	0.2567(1) 0.873 Sb	18(1)
M11	2e	0.8380(1)	-0.2500	0.1225(1) 0.100(8) Pb	23(1)
		0.8380(1)	-0.2500	0.1225(1) 0.900 Sb	21(1)
M12	2e	0.6337(1)	0.2500	0.1588(1)	33(1)
M13	2e	0.3953(1)	-0.7500	0.0177(1)	47(1)
Se14	2e	0.8429(1)	-0.7500	0.3687(1)	16(1)
Se15	2e	1.1197(1)	-0.7500	0.1393(1)	14(1)
Se16	2e	1.0013(1)	-0.2500	0.3280(1)	13(1)
Se17	2e	0.7848(1)	-0.2500	0.2123(1)	14(1)
Se18	2e	1.2798(1)	-0.7500	0.5428(1)	19(1)
Se19	2e	1.0664(1)	-0.7500	0.4699(1)	13(1)
Se20	2e	0.6434(1)	-0.2500	0.2765(1)	19(1)
Se21	2e	0.5217(1)	-0.7500	0.3659(1)	21(1)
Se22	2e	0.9486(1)	-0.7500	0.1798(1)	15(1)
Se23	2e	1.2583(1)	-0.2500	0.0781(1)	20(1)
Se24	2e	1.1778(1)	-0.7500	0.3403(1)	15(1)
Se25	2e	0.9344(1)	-0.2500	0.0334(1)	17(1)
Se26	2e	0.5329(1)	-0.2500	0.0721(1)	19(1)
Se27	2e	1.2937(1)	-0.2500	0.2590(1)	20(1)
Se28	2e	0.7111(1)	0.2500	0.0663(1)	19(1)
Se29	2e	0.4613(1)	0.2500	0.1758(1)	22(1)
Se30	2e	1.3686(1)	-0.2500	0.4427(1)	22(1)

表 4-2 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 化合物的原子位置與熱參數值(Å²x10⁻³)

	U11	U22	U33	U23	U13	U12	-
M1	19(1)	11(1)	13(1)	0	3(1)	0	
M2	24(1)	17(1)	13(1)	0	7(1)	0	
M3	19(1)	14(1)	20(1)	0	2(1)	0	
M4	14(1)	14(1)	18(1)	0	3(1)	0	
M5	36(1)	22(1)	32(1)	0	9(1)	0	
M6	17(1)	17(1)	24(1)	0	8(1)	0	
M7	44(1)	21(1)	39(1)	0	22(1)	0	
M8	36(1)	20(1)	28(1)	0	11(1)	0	
M9	15(1)	21(1)	23(1)	0	4(1)	0	
M10	22(1)	19(1)	25(1)	0	5(1)	0	
M11	28(1)	22(1)	20(1)	0	9(1)	0	
M12	30(1)	22(1)	43(1)	0	8(1)	0	
M13	43(1)	31(1)	61(1)	-0.	11(1)	0	
Se14	15(1)	14(1)	17(1)	0	4(1)	0	
Se15	13(1)	16(1)	14(1)	- 0	5(1)	0	
Se16	12(1)	11(1)	12(1)	0	1(1)	0	
Se17	13(1)	15(1)	14(1)	0	6(1)	0	
Se18	14(1)	19(1)	20(1)	0 8	2(1)	0	
Se19	13(1)	13(1)	13(1)	0	5(1)	0	
Se20	14(1)	20(1)	22(1)	0	7(1)	0	
Se21	19(1)	18(1)	25(1)	0	6(1)	0	
Se22	13(1)	15(1)	16(1)	0	5(1)	0	
Se23	23(1)	23(1)	15(1)	0	8(1)	0	
Se24	17(1)	12(1)	16(1)	0	6(1)	0	
Se25	22(1)	15(1)	15(1)	0	9(1)	0	
Se26	19(1)	13(1)	20(1)	0	0(1)	0	
Se27	22(1)	19(1)	18(1)	0	7(1)	0	
Se28	21(1)	16(1)	17(1)	0	4(1)	0	
Se29	21(1)	26(1)	17(1)	0	3(1)	0	
Se30	26(1)	18(1)	23(1)	0	11(1)	0	

表 4-3 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 化合物中各原子的非均向熱參數值(Å²x10⁻³)

acts	Distance / A	Contacts		Distance / A
-Se14	2.770(2)	M8	-Se18	2.692(2)
-Se16×2	2.7207(13)		-Se21×2	2.8594(15)
-Se17×2	2.8834(15)		-Se30×2	3.0519(17)
-Se22	2.727(2)	In9	-Se14	2.771(2)
-Se14×2	2.7602(14)		-Se18×2	2.9136(15)
-Se16	2.774(2)		-Se20×2	2.8234(15)
-Se19	2.653(2)		-Se21	2.928(2)
-Se19×2	2.8462(14)	M10	-Se20	2.639(2)
-Se15×2	2.9319(14)		-Se21×2	3.1915(18)
-Se23	2.772(2)		-Se29×2	2.7343(14)
-Se25	2.714(2)	M11	-Se17	2.649(2)
-Se25×2	2.7075(14)		-Se22×2	2.8195(14)
-Se15	2.627(2)		-Se25	3.191(2)
-Se23×2	2.7634(14)		-Se28×2	2.9750(16)
-Se27×2	3.0580(16)	Sb12	-Se17×2	3.2432(15)
-Se15×2	3.1915(14)		-Se26×2	2.9921(15)
-Se24×2	3.0392(14)		-Se28	3.004(2)
-Se27	3.085(2)		-Se29	3.242(2)
-Se24	2.623(2)	In13	-Se26	2.877(2)
-Se27×2	2.8880(15)		-Se26×2	3.0871(16)
-Se30×2	2.8959(16)		-Se28×2	3.0004(16)
-Se18×2	3.1492(16)			
-Se19×2	3.2104(14)	896		
-Se24×2	3.1145(14)			
-Se30	3.231(2)			
	$\begin{array}{c} -\text{Se18} \\ -\text{Se14} \\ -\text{Se16} \times 2 \\ -\text{Se17} \times 2 \\ -\text{Se22} \\ -\text{Se14} \times 2 \\ -\text{Se14} \times 2 \\ -\text{Se16} \\ -\text{Se19} \\ -\text{Se19} \times 2 \\ -\text{Se15} \times 2 \\ -\text{Se23} \\ -\text{Se25} \times 2 \\ -\text{Se25} \times 2 \\ -\text{Se25} \times 2 \\ -\text{Se25} \times 2 \\ -\text{Se27} \times 2 \\ -\text{Se24} \times 2 \\ -\text{Se27} \times 2 \\ -\text{Se24} \times 2 \\ -\text{Se27} \times 2 \\ -\text{Se30} \times 2 \\ -\text{Se18} \times 2 \\ -\text{Se19} \times 2 \\ -\text{Se24} \times 2 \\ -\text{Se30} \\ \end{array}$	Instance / A-Se14 $2.770(2)$ -Se16×2 $2.7207(13)$ -Se17×2 $2.8834(15)$ -Se22 $2.727(2)$ -Se14×2 $2.7602(14)$ -Se16 $2.774(2)$ -Se19 $2.653(2)$ -Se19×2 $2.8462(14)$ -Se15×2 $2.9319(14)$ -Se25 $2.772(2)$ -Se25 $2.714(2)$ -Se25 $2.7075(14)$ -Se25×2 $2.7075(14)$ -Se27×2 $3.0580(16)$ -Se15×2 $3.1915(14)$ -Se27×2 $3.085(2)$ -Se27×2 $2.8880(15)$ -Se27×2 $2.8959(16)$ -Se19×2 $3.2104(14)$ -Se24×2 $3.1145(14)$ -Se24×2 $3.1145(14)$ -Se30 $3.231(2)$	Instance / AConta-Se14 $2.770(2)$ M8-Se16×2 $2.7207(13)$ -Se17×2 $2.8834(15)$ -Se22 $2.727(2)$ In9-Se14×2 $2.7602(14)$ -Se16 $2.774(2)$ -Se19 $2.653(2)$ -Se19×2 $2.8462(14)$ M10-Se15×2 $2.9319(14)$ -Se25 $2.772(2)$ -Se25 $2.772(2)$ -Se25 $2.772(2)$ -Se25 $2.7075(14)$ -Se15 $2.627(2)$ -Se27×2 $3.0580(16)$ -Se27×2 $3.085(2)$ -Se27×2 $2.8880(15)$ -Se27×2 $2.8880(15)$ -Se19×2 $3.1492(16)$ -Se19×2 $3.2104(14)$ -Se24×2 $3.1145(14)$ -Se24×2 $3.1145(14)$ -Se30 $3.231(2)$	Initial ContractsDistance / AContracts-Se14 $2.770(2)$ M8-Se18-Se16×2 $2.7207(13)$ -Se21×2-Se17×2 $2.8834(15)$ -Se30×2-Se22 $2.727(2)$ In9-Se14-Se14×2 $2.7602(14)$ -Se18×2-Se16 $2.774(2)$ -Se20×2-Se19 $2.653(2)$ -Se21-Se19×2 $2.8462(14)$ M10-Se20×2-Se15×2 $2.9319(14)$ -Se21×2-Se23 $2.772(2)$ -Se29×2-Se25 $2.714(2)$ M11-Se17-Se25×2 $2.7075(14)$ -Se22×2-Se15 $2.627(2)$ -Se28×2-Se25×2 $2.7634(14)$ -Se28×2-Se27×2 $3.0580(16)$ Sb12-Se24×2 $3.0392(14)$ -Se26×2-Se27×2 $2.8880(15)$ -Se26×2-Se27×2 $2.8880(15)$ -Se26×2-Se18×2 $3.1492(16)$ -Se28×2-Se19×2 $3.1145(14)$ 1896-Se24×2 $3.1145(14)$ -Se30-Se30 $3.231(2)$ -Se30

表 4-4 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 化合物中各陰陽離子間距(Å)

4-3 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 純相的合成

經由X-ray單晶繞射儀分析實驗比例 In₄Pb_{4.125}Sb_{4.875}Se₁₇之晶體, 以GSAS 軟體計算出其理論 PXRD 圖譜,與實際測得的 PXRD 做比 較,可以發現兩者之繞射峰大部分都相吻合,明顯的副產物訊號為靠 近角度 10°的繞射峰,並且藉由比對兩者的差異也確認 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇為實驗比例 In₄Pb_{4.125}Sb_{4.875}Se₁₇之主要產物。

圖 4-1 紅色繞射峰為實驗比例 In₄Pb₅Sb₄Se₁₇之 PXRD 圖譜,黑色繞射峰為 In_{4.86}Pb_{4.19}Sb_{3.96}Se₁₇之理論計算 PXRD 圖譜,*:副產物繞射峰。

為求得純相,首先嘗試管狀爐分離,持溫在大約500℃以兩天的時間進行分離副產物後,收集分離在石英管壁冷卻端之副產物並且再 各別對分離後的主產物與副產物進行 PXRD 分析,由圖 4-2 中可以 發現管狀爐分離的實驗有助於分離副產物,使得經由管狀爐分離兩次 後的繞射峰跟 In_{4.86}Pb_{4.19}Sb_{3.96}Se₁₇ 的理論 PXRD 圖譜更相符合,而分 離出的副產物經由資料庫的比對為 In-Se 和 Sb-Se 二元相的混合物, 其繞射峰比對主產物可以發現除了靠近角度 10[°]以外的繞射峰,其餘 的繞射峰都跟主產物的繞射峰有一定程度的重疊,因此在接下來的實 驗中,我們多以靠近角度 10[°]繞射峰的消長做為純相獲得的參考指標, 但是此種作法仍無法得知主產物之真實比例。

圖 4-2 由上而下依序分別為 $In_{4.86}Pb_{4.19}Sb_{3.96}Se_{17}$ 理論 PXRD 圖譜、管狀爐分 離之副產物、經過兩次管狀爐分離之主產物、經過一次管狀爐分離之主產 物、實驗比例 $In_4Pb_{4.125}Sb_{4.875}Se_{17}之主產物的 PXRD 圖譜,副產物之繞射峰$ $*:β'-<math>In_2Se_3$, △: Sb₂Se₃。

由於管狀爐分離實驗並不能得知主產物的真實比例,故我們將分離出的副產物進行元素分析(圖 4-3),結果顯示副產物裡的元素如其

PXRD 顯示的為 In、Sb、Se 所組成,莫耳比約 2:3:5,意即對實驗 比例 In₄Pb_{4.125}Sb_{4.875}Se₁₇ 而言,其中的 Pb 元素是不足的,因此參考上 述資訊後,結合價電平衡原則,我們嘗試了六種不同比例的反應,

4	Spectrum 1	element	Weight %	Atomic %
		Se	39.99	50.25
		In	21.27	18.38
		Sb	38.16	31.10
¢	e e ² .e	Pb	0.59	0.28
) 1 Full Scale 2549	2 3 4 5 6 7 8 9 cts Cursor: 0.000 keV	totals	100.00	

圖 4-3 實驗比例 In4Pb4.125Sb4.875Se17 副產物之元素分析圖表

圖 4-4 由下而上依序分別為實驗比例 In_{3.94}Pb_{4.28}Sb_{4.56}Se₁₇、 In_{3.91}Pb_{4.36}Sb_{4.54}Se₁₇、In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇和 In_{4.86}Pb_{4.19}Sb_{3.96}Se₁₇ 之理論 PXRD 圖譜。

藉由逐漸增加 Pb 在實驗比例中的比重,在同樣的燒結條件下,可以

發現靠近角度 10°的副產物繞射峰在 Pb 佔莫耳比約 35% ~ 36% 間是 不存在的,意即在實驗比例 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇、In_{3.83}Pb_{4.52}Sb_{4.5}Se₁₇、

圖 4-5 H F M 工 K 7 为 / 為 頁 級 化 / M III3.831 04.52504.55C17 In3.8Pb4.61Sb4.47Se17、In3.76Pb4.71Sb4.45Se17和 In4.86Pb4.19Sb3.96Se17之理論 PXRD 圖譜,陰影部分為角度 27.4°~28°。

In_{3.8}Pb_{4.61}Sb_{4.47}Se₁₇、In_{3.76}Pb_{4.71}Sb_{4.45}Se₁₇中很有可能得到純相,再將此 四組 PXRD 圖譜與理論圖譜比對,發現在角度 27.4°~28°之間理論圖 譜 上 是 沒 有 訊 號 的 , 而 在 實 驗 比 例 In_{3.8}Pb_{4.61}Sb_{4.47}Se₁₇、 In_{3.76}Pb_{4.71}Sb_{4.45}Se₁₇上是有些不明顯的繞射峰,推斷可能是此晶體可以 忍受的實驗比例極小,以致於對其實驗比例做小幅變動就有可能導致 副 產 物 的 消 長 , 因 此 我 們 認 為 此 晶 體 可 得 的 最 純 相 為 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇。 4-4 結構描述

四元硒化物 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 為一新結構化合物,圖 4-6 為晶 體結構沿著b軸投影,晶體 3-D 結構可以由兩種主要結構單元來描述, 分別為 NaCl-[100]([M₈Se₁₀]單元; M=In, Sb, Pb, 或者 Sb/Pb 混和填佔) 和 CdI2-type([In2₂Se₄]單元)結構單元朝著 b 軸無限延伸,其中藍色陰 影部分的 NaCl-[100]雙層之間存在著凡得瓦力。

In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇在結晶學上總共有13個陽離子位置和17個陰 離子位置,陰離子為Se的全填佔,周圍環繞的陽離子形成不同的多 面體,在13個陽離子位置中M4~M6、M8、M10、M11和M13與周

圖 4-6 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 沿著 b 軸投影之晶體結構示意圖,藍色和黑色陰影部分為不同方向之[M₈Se₁₀]結構單元;紅色陰影部分為 CdI₂-type,紅色圓球代表 In 原子;藍色圓球代表 Pb 原子;綠色圓球代表 Sb 原子;粉紅色圓球代表 Pb/Sb 混和填佔。

圍的 Se 陰離子呈現扭曲四角錐, M1~M3 和 M9 為接近正八面體的六

配位環境, M7 和 M12 分別為七配位和扭曲度甚大的六配位環境, M1~M3 和 M9 皆為 In 原子全填佔接近正八面體的配位, 鍵長分布為 2.654 Å~2.932 Å, M4~M6、M8、M10、M11 和 M13 由 Sb 原子或 Pb/Sb 混和填佔, 鍵長分布為 2.623 Å~3.192 Å。

圖 4-7 (a)M7 的配位環境; (b)M12 的配位環境; (c)Sb6 的配位環境, M4、M5、 M8、M10、M11 和 M13 為相似的配位環境; (d) In1 的配位環境, M2、M3 和 M9 為相似的配位環境。

4-5 導電度

圖 4-8 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇之電阻率對絕對溫度之變化,右上方插入圖 為電阻率之自然對數對絕對溫度的倒數的變化,範圍為 30 到 330 K

由四點探針法測量 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 之結果如圖 4-8,從曲線 趨勢來看,大致可以分成兩個部分,分別是絕對溫度 30 到 85 K和 85 到 330 K,在絕對溫度 85 到 330 K 的範圍中,電阻率(p)隨著絕對 溫度的減少而增加,是典型的半導體性質,而在溫度區間 190 到 330 K 以電阻率的自然對數取負值對絕對溫度作圖可得一接近直線的圖 形(R²~0.995),以阿瑞尼斯推估其活化能值約 0.37 eV。第二個部分 為絕對溫度 30 到 85 K,其電阻率(p)隨著絕對溫度的增加而增加,透 露出金屬的特性,絕對溫度 85 K 被認為為可能之金屬與半導體性質 的轉換點,但確切的原理有待更進一步的確認。

4-6 漫反射吸收光譜

測量 UV-VIS 漫反射吸收光譜的原因在於,希望藉由化合物的光 學特性來量測能距的大小,當所使用的光能量剛好符合半導體能距大 小時,會開始有吸收的訊號產生,但波長在1800nm以上(小於0.69eV) 的吸收易受到水氣的干擾影響,所得到的曲線不如其餘區段來的平順。 實驗所使用的波段在於約 600nm~2000nm 之間 (2.1eV~0.6eV),由 圖 4-9 可以觀察到大約在 1.4eV 左右的能量區間有雜訊的產生,這是 由於轉換光源量測時所產生的訊號。

In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇在大約 1.0e.V 以下曲線開始有明顯的轉折, 以紅色線做外插,得到數值約為 1.0eV,由於在整個測量範圍並沒有 得到一個完整的數據,只能藉由圖 4-9 推斷為此化合物之能隙應該小 於 1.0eV。

圖 4-9 In3.87Pb4.44Sb4.52Se17 之漫反射吸收光譜

本篇內容以LMTO 理論計算方法對此 In-Pb-Sb-Se 化合物做電子 結構的計算,計算可得 DOS(Density Of State)、COHP(Crystal Orbital Hamilton Population),藉此可推論出其電子結構、原子間作用力與物 理性質。

LMTO 理論計算需要由輸入原子位置來進行,因此對於有混和填 佔之系統操作上會比沒有混和填佔的模型來的複雜,舉例來說如果單 位晶胞內有一個位置由 A 和 B 混和填佔,填佔比例為 1:1,則我們可 以將單位晶胞放大為兩倍,其中一個放 A 原子,另一個就以 B 原子 來描述,但如果遇上更複雜的例子,則有可能讓整個系統變得過大而 無法計算,此時我們只能選擇填佔比例高的原子優先個別進行計算。

圖 4-10 以先前單晶解出之模型做為 LMTO 理論計算之參考模型。

對於 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇來說,參考先前的單晶數據得知其中三

個混和填佔位置分別為 M8(Pb/Sb: 75%/25%)、M10(Pb/In: 10%/90%) 和 M11(Pb/Sb: 13%/87%)的混和填佔如圖 4-10,因此我們以此為出發 點設計了 16 個理論計算的模型,其中包含不考慮價電平衡原則的模 型(model 1~6)和以價電平衡為原則而設計的模型(model 7~16),皆整 理在表 4-5 中,參考先前電導測量的結果,我們預期要得到一半導體 的模型。

	M8	M10	M 11	化學式	能除	
Model 1	SB	SB	IN	In10Sb8Pb8Se34	Pseudo-gap	
Model 2	SB	SB	SB	In ₈ Sb ₁₀ Pb ₈ Se ₃₄	Pseudo-gap	
Model 3	PB	PB	PB	In ₈ Sb ₄ Pb ₁₄ Se ₃₄	Pseudo-gap	
Model 4	PB	SB	PB	In ₈ Sb ₆ Pb ₁₂ Se ₃₄	Pseudo-gap	
Model 5	PB	PB	IN	In10Sb4Pb12Se34	Pseudo-gap	
Model 6	SB	PB	PB	In ₈ Sb ₆ Pb ₁₂ Se ₃₄	Pseudo-gap	
Model 7	SB	SB	PB	In ₈ Sb ₈ Pb ₁₀ Se ₃₄	導體模型	
Model 8	PB	SB	IN	In10Sb6Pb10Se34	半導體模型	
Model 9	SB	PB	IN	In10Sb6Pb10Se34	半導體模型	
Model 10	IN	SB	PB	In10Sb6Pb10Se34	發散	
Model 11	IN	PB	SB	In10Sb6Pb10Se34	半導體模型	
Model 12	PB	IN	SB	In10Sb6Pb10Se34	半導體模型	
Model 13	SB	IN	PB	In10Sb6Pb10Se34	導體模型	
Model 14	PB	SB	SB	In ₈ Sb ₈ Pb ₁₀ Se ₃₄	半導體模型	
Model 15	SB	SB	PB	In ₈ Sb ₈ Pb ₁₀ Se ₃₄	半導體模型	
Model 16	SB	PB	SB	In ₈ Sb ₈ Pb ₁₀ Se ₃₄	半導體模型	

表 4-5 各個模型之填佔原子

在所計算的模型中,大部分都可以得到在費米能階附近有能隙的 情況,意即在費米能階附近都有電子密度為零的區段出現,此一結果

與先前做的電阻率測試都顯示出此晶體為半導體性質,而其中又以化 學式 In₄Pb₅Sb₄Se₁₇ 與實驗所得比例 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 最為接近,因 此接下來的討論多以模型 16 為主。

模型 16 可以得到一價電平衡的化學式 In₄Pb₅Sb₄Se₁₇,13 個結晶 學上獨立的陽離子位置分別由 Pb (M5、M7、 M10、M12和 M13), In(M1、M2、M3和 M9)和 Sb(M4、M6、M8和 M11)混和填佔進行電 子結構的計算,計算出之 DOS/PDOS 的價帶是填滿的狀態,並且在 靠近費米能階的地方有些許 Pb(6p)、Sb(6p)和 In(6s)的能態分布,而 在大約-5 eV 和費米能階之間有一明顯的分布,主要由 Se(3p)和 Bi/Pb(6p)所貢獻,又集中於-10 eV~-5 eV 較突出的訊號是 In、Pb 和 Sb 的 ns 能態分布,至於 COHP 的部分,是以 M-Se(M=In, Pb 和 Sb) 進行計算,結果顯示 In-Se 在填满的價帶附近擁有最佳化的鍵結,而 Pb-Se 和 Sb-Se 因為有孤對電子效應,COHP 圖上呈現出有反鍵結在 費米能階附近的情形,更進一步我們將計算完的 COHP 圖做積分處 理,分別得到 In-Se、Pb-Se 和 Sb-Se 的 ICOHP 平均值為 8.3、6.1 和 4.3 eV/bond,表示相較於 Pb-Se 和 Sb-Se, In-Se 的鍵結性質是較強的。

4-7 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇與 Pb_{12.92}Sb_{2.08}Bi₂Se₁₉結構比較

本章節以實驗室合成出的兩個新穎結構化合物進行探討,此兩個 化合物組合元素的差別在於 In 和 Bi 的採用,影響並造成不同形貌的 結構。

圖 4-12(a)為 Pb_{12.92}Sb_{2.08}Bi₂Se₁₉ 沿著 b 軸投影到 ac 平面之晶體結構示意圖,綠色的原子為 Pb 全填佔,粉紅色原子為 Pb/Sb 的混和填 佔,藍色的則是 Pb/Sb/Bi 的混和填佔,換句話說,結構中只有 M3、 M4、M7 和 M8 是有採用 Bi 混和填佔,從先前所做的研究⁵³可以發 現在這四個位置上鍵結環境都趨向於 5 長 1 短的配位環境,這個現象 可以歸因於 Bi 在 S²上未鍵結的孤對電子,這在許多含有 Bi 元素的 化合物是常見的³¹,反觀本論文所提及的 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇,參考本 章 4-3 結構描述可以知道 M1~M3 和 M9 為 In 原子全填佔的位置,其 顯露出的鍵結環境有別於 Bi 是趨近一正八面體的形式。而存在於

In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇中的另一個結構單元則是主要由 Pb/Sb 形成的 SnS-like 結構,主要因為 Sb 的孤對電子效應較 Bi 更強,更容易形成 四角錐的配位形式,而對於化合物 Pb_{12.92}Sb_{2.08}Bi₂Se₁₉而言,有可能因 為 Bi 的參與反應而形成 L-series 的結構 ³¹。

圖 4-13 (a) Pb_{12.92}Sb_{2.08}Bi₂Se₁₉ 之 Pb-Se Sb-Se 和 Bi-Se 的 COHP 圖(b) In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇ 之 Pb-Se Sb-Se 和 In-Se 的 COHP 圖。

從較巨觀的結構上來看, In 比較喜歡 NaCl(100)的排列方式, 而 Bi 喜歡 NaCl(311)的結構,造成了結構上的差異, 在由兩個結構的 COHP 出發,可以看到 In-Se 可以得到一最佳化的鍵結, 相比之下 Pb-Se、 Sb-Se 和 Bi-Se 在費米能階附近都會有相似的反鍵結, 代表著其與 In-Se 的差異, 而這些差異也反映在結構上的差異。

4-8 結論

本章節成功以固態燒結法合成出 In_{3.87}Pb_{4.44}Sb_{4.52}Se₁₇,此晶體經 比對資料庫後確定為一新穎結構之未知物,結構由兩種結構單元所組 成,分別為[M₈Se₁₀]和 CdI₂-type[M₂Se₄]單元,經過嘗試不同的比例發 現為單一不具有相寬之化合物。純相的獲得是經由 EDX 分析經管狀 爐以 550 ℃ 分離之副產物,經試誤法調整比例而得。

UV-VIS 漫反射吸收光譜得知此化合物能距大約為 0.73eV。電導 係數量測結果顯示為電阻較大的半導體,電阻率在測量範圍 30~330K 內分佈由 3000~5 Ohm*m。Seebeck 係數之量測疑似電阻過大而無法 測量,須再做進一步得確認。

電子結構理論計算以 model16 為主做計算可得到與電導係數量 測同樣為半導體的結果, COHP 圖顯示 In-Se 相較於結構內其他的鍵 結是較強的,並且可以得到一鍵結最佳化的結果。

參考文獻:

- 1. Hegerl, G. C. Understanding and Attributing Climate Change.(from IPCC)
- 2. Ammann, C. PNAS 2007, 104(10), 3713
- 3. Jones, P. D.; Briffa, K. R.; Barnett, T. P.; Tett, S. F. B. The Holocene 1998, 8, 455.
- 4. Mann, M. E.; Bradley, R. S.; Hughes, M. K., *Geophysical Research Letters* **1999**, 26(6), 759.
- 5. Crowley; Lowery *Ambio* **2000**, *29*, 51. Modified as published in *Crowley Science* **2000**, *289*, *270*.
- Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res. 2000, 295(5563), 2250.
- 7. Esper, J.; Cook, E. R.; Schweingruber, F. H. Science 2000, 295(5563), 2250.
- 8. Mann, M. E.; Jones, P. D., Geophysical Research Letters 2003, 30(15), 1820.
- 9. Jones, P. D.; Mann, M. E., Reviews of Geophysics 2004, 42, RG2002.
- 10. Huang, S., Geophys. Res Lett 2004, 31, L13205.
- 11. Moberg, A.; Sonechkin, D. M.; Holmgren, K.; Datsenko, N. M.; Karlén, W., *Nature* **2005**, *443*, 613.
- 12. Oerlemans, J. H. Science 2005, 308, 675.
- Instrumental data was jointly compiled by the Climatic Research Unit and the UK Meteorological Office Hadley Centre. Global Annual Average data set TaveGL2v was used.
- Seebeck, T. J. Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin 1823, 265.
- 15. Pollock, D. D. Ameriacan Socity for Testing and materials 1985, 852.
- Rowe, D. M. CRC Handbook of Thermoelectrics: Boca Raton, FL :CRC press, 1995
- 17. Gerald Mahan, B. S.; J., S. Physics Today 1997, 42.
- 18. Thermoelectricity: Science and Engineering, I., New York, 1961.
- 19. Kawamoto, H. Science & Technology Trends 2009, 54.
- 20. Franz, R. W., G. "Ueber die Wärme-Leitungsfähigkeit der Metalle" (in German). *Annalen der Physik* **1853**, *165*(8), 497.
- 21. Hsu, K. F.; Loo, S.; Kanatzidis, M. G. Science 2004, 303, 818.
- 22. Sales, B. C.; Madrus, D.; Williams, R. K. Science 1996, 272, 1325.
- Nolas, G. S.; Slack, G. A.; Morelli, D. T.; Tritt, T. M.; Ehrlich, A. C. J. Appl. Phys. 1996, 79(8), 15.
- 24. Terasaki, K.; Kajitani, T.; Ohtaki, M.; Funahashi, R. Oxide Thermoelectric Section 35, 1.
- 25. Wunderlich, W.; Ohta, S.; Koumoto, K. 24th International Conference on Thermoelectrics 2005, 252.

- 26. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Qinn, B. *Nature* **2001**, *413*, 597.
- Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Science 2002, 297, 2229.
- 28. Kawamoto, H. Sci. & Technol. 2009, 30, 54.
- 29. Takuchi, Y. Z. Kristallogr. 1979, 150, 75.
- 30. Mrotzek, A.; Kanatzidis, M. G. Inorg. Chem. 2003, 42, 7200.
- 31. Emil Makovicky N. Jb. Miner. Abh. 1989, 160(3), 269.
- 32. Euler, R.; Hellner, E. Z. Krist. 1960, 113, 345.
- Takeuchi, Y. T., J.; Yamanaka, T. Proceedings of the Japan Academy 1974, 50, 317.
- 34. Ohmasa, M.; Nowacki, W. Z. Krist. 1973, 137, 422.
- 35. Tomeoka, K.; Ohmasa, M.; Sadanaga, R. Mineralogical Journal 1980, 10, 57.
- 36. Makovicky, E.; Mumme, W. G.; Watts, J. A. *Canadian Mineralogist* **1977**, *15*, 339.
- 37. Berlepsch, P.; Armbruster, T.; Makovicky, E.; Hejny, C.; Topa, D.; Graeser, S. *Canadian Mineralogist* **2001**, *39*, 1653.
- 38. Chen, K.-B. L., C.-S. Solid State Sciences 2009, 11, 1666.
- 39. Makovicky, E.; Mumme, W. G.; Madsen, I. C. N. Jb. Miner. Abh. 1992, 1992, 454.
- 40. Takeuchi, Y.; Takagi, J. Proceedings of the Japan Academy 1974, 50, 76.
- 41. Makovicky, E.; Karup-Møller, S. N. Jb. Miner. Abh. 1977, 130, 264.
- 42. Matzat, E. Acta Crystallographica B 1979, 35, 133.
- 43. SAINT Version 4; Siemens Analytical X-ray Instruments Inc.: Madison, W. 1995.
- 44. Sheldrick, G. M. M. WI 2000.
- 45. Dowty, E. ATOMS Version 6.2.
- 46. Andersen, O. K., Phys. Rev. B 1975, 12, 3060.
- 47. Andersen, O. K., Phys. Rev. B 1986, 34, 2439.
- 48. Dronskowski, R. B. c., P. E. J. Phys. Chem. 1993, 97, 8617.
- 49. 徐鴻銘 新穎硒化物 TMxSn2-xBi4Se8 (TM = Mn, x = 1~2; Fe, x = 0.5~0.75)的 合成與物性分析, 交通大學應用化學研究所論文 2009.
- 50. 楊朝翔 新穎四元硒化合物的合成,結構與物性分析 (Cr_xIn_{1-x})_{1.67+2/3s}Pb_{4-s}In₇Se₁₇、Cu_{0.8}Sn_{1.4}Bi_{4.8}Se₉、Ag_{0.375}Sn_{0.4375}Bi_{2.25}Se₄ 2006,大 學應用化學研究所論文.
- 51. 鄭乃倫 新穎硒化物 MnAgBi₃Se₆、MnAgSb₃Se₆與 Fe₂Ag₅Sb₁₃Se₂₄ 的合成、結構 與物性分析 2008, 交通大學應用化學研究所論文.
- 52. 王明芳 新穎四元硒化物的合成與分析 2009, 交通大學應用化學研究所論文.
- 53. 陳奎伯 新穎四元硫鉍鉛礦型結構硒化物的合成與特性鍵定 2010, 交通大學

應用化學研究所論文.

- 54. West, A. R. *Basic Solid State Chemistry Second Edition*.; John Wiley & Sons, LTD: Chichester. New York. Weinheim. Barisbane. Singapore. Toronto.
- 55. Loose, A. S., W. S. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1998, 53, 349.
- 56. Poudel, B. H., Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B. Y., X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. *Science* 2008, *320*, 634.
- 57. 王明芳 含鉍之新潁熱電材料的合成與分析 2004, 交通大學應用化學研究所 論文.
- 58.Eddike, D.; Ramdani, A.; Brun, G.; Liautard, B.; Tedenac, J. C.; Tillard, M.; Belin, C. European Journal of Solid State Inorganic Chemistry 1997, 34, 309.
- 59. Derakhshan, S.; Assoud, A.; Taylor, N. J.; Kleinke, H. *Intermetallics* **2006**, *14*, 198.
- 60. Skowron, A.; Brown, I. D. Acta Crystallographica C 1990, 46, 2287.

