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ABSTRACT

Today Life expectancy is getting longer globally. How to fund the retirement asset
has become an important issue for the individuals To solve the problem of cash poor and
equity rich for older persons, reverse mortgage.has, been introduced in developing
countries such the U.S., the W.K. and Australia. Reverse mortgage is a new financial
product that allows retirees torconveri-a proportion of the equity in their home into cash
until they die. The loan value lisidetermined by -the borrower's age, the interest rate, and
the home's value. The earlier. models also“assume hause price returns follow normal
distribution. Unfortunately, house price returns in our study.are potentially non-normal.
In this paper, we want to construct the house price model via GARCH with Normal
Inverse Gaussian distribution (NIG=GARCH) option’pricing model via local risk-neutral
valuation relationship (LRNVR), ‘conditional- Esscher transform and mortality rates
follows Lee-Carter (1992) model.

Keyword : reverse mortgage * NIG-GARCH ~ non-normal ~ LRNVR ~ Esscher transform
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1 Introduction

Today in many countries around the globe, life expectancy from birth is well over 80
years. In 1989, after the Department of Housing and Urban Development (HUD)
introduced the Home Equity Conversion Mortgage (HECM) program, reverse mortgages
became widely available in the United States. A reverse mortgage is a new financial
product that allows retirees to convert a proportion of the equity in their home into cash
until they die. Homeowners 62 and older who have paid off their mortgages or have only
small mortgage balances remaining are eligible to participate in HUD's reverse mortgage

program.

A reverse mortgage is a loan,against the equity inyour home that you don’t need to
pay back for as long as you live in the-home. Thus, the reverse mortgage program enables
seniors that may be "real estaterich and cash poor" tosunlock the financial potential in
their homes, and their homes work for them. In general, the reverse mortgage does not
become payable until the senior homeowner-no-longer occupies the property as his or her
primary residence. Homeowners canreceive paymentsin a lump sum, annuity income, on
a monthly basis (for a fixed term or for as long as they live in the home), or on an
occasional basis as a line of credit. Homeowners whose circumstances change can
restructure their payment options. The size of reverse mortgage loans is determined by

the borrower's age, the interest rate, and the home's value.

In order to protect lenders of reverse mortgages from possible losses, the Federal
Housing Administration (FHA), which is one part of HUD’s Office of Housing, which is
charges insurances premiums from borrowers, and pays insurance claims to lenders if the
loan balance exceeds the home equity value. That is, according to the actuarial
equivalence principle, the present value of expected premiums should be equal to the

present value of expected losses.



Over the past two decades, most of the existing literature on risk modeling in the
HECM program for pricing insurance premium. Szymanoski (1994) provided the method
of building actuarial model of HECM. Tse (1995b) incorporate the different risks when
modeling interest rates via Cox-Ingersoll-Ross (1985) model. Rodda, Lam, and Youn
(2004) analyzed the HECM program using stochastic models of interest rates and housing
prices and a new model of termination rates. Chia and Tsui (2004) conducted research of
reverse mortgages for Singaporeans. Ma, Kim and Lew (2006; 2007) using stochastic
models to estimating reverse mortgage insurer’s risk and confirmed that the present
values of expected losses were very sensitive to the processes of housing prices and

interest rates.

However, the loan balance depends-not-only en:the age and sex of the homeowners,
but also on the appraised value of the property, the<projected rate of house price
appreciation and the levels_of! interest-rates.-The-most important factor in the size of
reverse mortgage loan is the.value of home:"As‘a result,.it’s important to understand how
the fluctuation of home prices affect reverse mortgage financing, so that borrowers can
make an optimal decision. Empiricalwork by Kutty.(1998) indicates that the use of home
equity conversion mortgage products could passibly raise about 29% of the poor elderly
homeowners in the US above the poverty line. In order to model the house price risk,
Szymanoski (1994), Ma, et al. (2007) and Valdez, et al. (2007) assume house prices are
driven by a geometric Brownian motion. However, the dynamics of house prices, like
those of any asset, are vital to understand for proper risk and portfolio management.
Volatility is a key aspect of such dynamics. Crawford and Fratantoni (2003), Dolde and
Tirtiroglu (1997), Miller and Peng (2006) have investigated whether house price
volatility is time-varying; that is, house prices exhibit the volatility clustering or GARCH
(generalized autoregressive conditional heteroskedasticity) effects, such as those for
stocks and bonds. Chen, et al. (2010) propose a generalized Lee-Carter model with
permanent jump effects to fit the actually mortality data, and model the house price index

2



via an ARMA-GARCH (Autoregressive moving average - generalized autoregressive
conditional heteroskedasticity) process and employ the conditional Esscher transform to
price the non-recourse provision of reverse mortgages. Therefore, we follow Chen, et al.

(2010) works by using an ARMA-GARCH model to fit house price returns.

A major difference between the cash flows of a traditional home purchase, or
forward, mortgage and a reverse mortgage is in the pattern of equity and debt over time.
Reverse mortgages loan balance grows due to principal advances, interest accruals, and
other loan charges over the life of the loan. The key risk factors affecting the cash flows
and pricing of HECM insurance, are (1) borrower mortality rates and voluntary loan
terminations, which determine the timing of lump sum or other types repayments; If a
borrower lives a longer time than_the expected-lifespan that may lead the loan balance
above the sale proceed of the property. In‘otherwords; lenders of reverse mortgages are
faced with longevity risk. (2) Interestrate changes, which affect the rate at which the debt
rises; Reverse mortgages can.generally be categorized as either fixed-rate or variable-rate.
Fixed-rate reverse mortgages accrue interest-at the same, (fixed) rate for their entire
duration, whereas the rate associated with variable rate mortgages rises and falls in
accordance with a stated benchmark rate,'such‘as the 1 year T-bill, 1-year LIBOR, and
other obscure rate indexes. The rise of interest rates increases the possibility of
non-repayment when the loan eventually terminates. In this study, we choose a fixed
interest rate with a risk adjustment. (3) The future property values, which affects the net
proceeds from a sale. If the house price grows at a lower rate than expected, the loan

balance may exceed the home value. Lenders may suffer from the losses.

The difference between interest rate risk and house price risk are that the interest rate
risk could not be diversified, while the house price risk can be partially diversified by
holding a large portfolio of loans across areas. Therefore, we will focus on house price

risk.



In general, almost all of previous studies ignore longevity risk. We employ
Lee-Carter (1992) model to model the mortality rates for pricing the present value of
claim losses and calculating mortgage insurance premiums. Moreover, it is well known
that house price returns (quarterly) empirical distributions are closer to the Gaussian case.

Unfortunately, house price returns (monthly) in our study are potentially non-Gaussian.

In this paper, we want to construct the house price model via ARMA-GARCH with
Normal Inverse Gaussian distribution (ARMA-GARCH-NIG) option pricing model via
local risk-neutral valuation relationship (LRNVR) and conditional Esscher transform.
Therefore, the proposed method proves to play an important role in pricing reverse

mortgage.

The remainder of this paperqiS.organized as{ellows. In Section 2, we introduce the
reverse mortgage pricing framework.-Section 0 modelthe longevity risk via Lee-Carter
model in the reverse mortgage. Wodeling the house price risk and introduce the normal
inverse Gaussian distribution‘in section 3. In‘section 5, we introduce the LRNVR and the
conditional Esscher transform to, in order to.valuation. Section 6 use empirical data to

show the result of this analysis. The final.section-concludes this study.



2 Pricing Framework for Reverse Mortgage

This section introduces the discussion of how to price a lump sum reverse mortgage.
Chen, et al. (2010) provided a pricing framework and show the HECM loan is a
non-recourse debt and Li, et al. (2009) also show the reverse mortgage is a

no-negative-equity-guarantee.
2.1 Non-Recourse Provision

In Chen, et al. (2010), when the loan terminates, if the net proceed from the sale of
the property is sufficient to pay the outstanding‘loan balance, the remaining cash usually
belongs to the borrower or his/her beneficiaries. If thesale process is not enough to cover
the loan balance, the non-recourse provision.prevents the.lender from pursuing other

assets belonging to the borrower, apart from the house.

Denote L, is the outstanding balance of the-loan and A, is the house price at time t.
If the loan is due at time t, the borrower pays L, if“H;=> L., and H, if H, < L;, under
the non-recourse provision. Therefore, we can 'define the insurance company claim loss

function at the time t as follows:

V. = max(L, — (1 — k)H,, 0) (2-1)
where K is the transaction cost of percent of the property value. The claim loss function
can be expressed as a European exchange options which can changes the loan outstanding
balance L, for the sale property value (1 — k)H,. This non-recourse provision can be

replicated through a series of European exchange options with different times to maturity.

At maturity, the house value is

2-2
H, = HyeZsiYs (2-2)



and the loan balance is

L, = (UPy + Ly)ect (2-3)
where H, is current house price, Y; isthe monthly log return of house price index, UP,
is the upfront mortgage insurance premium, L, is initial loan amount, and c is a fixed
annual contract rate’ charged on the mortgage loan. Moreover, the symbol (x) is used

to denote a life-age-x and the future lifetime of (x) is denoted by T(x). To make

probability statements about T(x), we use the notations
G =Pr[T(x) <t] t=0, (2-4)
Pr=1— g, =Pr[T(x)>t] t=0 (2-5)
The symbol .q, can be interpreted as the_probability that an individual (x) will die
within t years. On the other hand,. “p, Can be-interpreted as the probability that (x)

will attain age x + t. If t =1, convention permits.us to“omit the prefix in the symbol

defined in ( 2-4) and ( 2-5),.and we have
q, = Pri(x) will die'within 1 year]
p, = Pr[(x) will'attain age'x+1 year]
Note that if (x) will survive t years and.die within.the following year, the probability is
tPx * Guere = Prt <T(x) <t +1] (2-6)
Following the Chen, et al. (2010), we also assume all home exits occur in the
mid-year and the average delay in time from the point of home exit until the actual sale of

the property which we set half-year. Let w be the highest age, we could determine the

present value of total expected claim losses on a cohort group aged x as follows:
PVECL = R Eq| (Dx " Guese - €T DV (2-7)

where Eq denotes the expectation under the risk-adjusted measure Q, ,p, * Gyt 1S

! Total Interest Rate charged to a reverse mortgage is the Margin + Index + Mortgage Insurance of .50%.
6



defined in ( 2-6), e~"(t+D s the discount factor with risk-free interest rate r and V,,,

is defined in ( 2-1).

2.2 Mortgage Insurance Premiums

In order to protect lenders from possible losses if non-repayment occurs, as well as
to guarantee borrowers receiving monthly payments if lenders default on the loans,
HUD provides mortgage insurance for the HECM program. Two insurance options are
available for lenders to choose from: the assignment option and the shared premium
option. However, none of the lenders chooses the shared premium option because
Fannie Mae does not purchase these loans. With the assignment option, FHA collects all
the insurance premiums and the ender-is allowed:to assign the loan to FHA when the
loan balance equals the adjusted property value. FHA takes over the HECM loan and
pays an insurance claim to thevlender covering her losses. By choosing this option,

lenders are effectively shifting the collateralrisk to HUD.

The mortgage insurance premiums (MIP) are paid+by borrowers and include an
upfront mortgage insurance premium: (UPy)-and-a periodic mortgage insurance premium
according to the annual rate of m% of the outstanding loan balances. Mathematically,
the present value of mortgage insurance premium of reverse mortgages can be calculated

as

PVMIP = UPy + Y27 e ,p, (m% X L;) (2-8)
2.3 Loan to Value Ratio

The loan-to-value ratio (LTV ratio) is a common number that is used in calculating
mortgage loan eligibility. In fact, the loan to value ratio is one of the most important

things that a lender is going to look at before approving borrower for a mortgage. The



loan-to-value ratio is a number that lenders use to compare how much the property is
worth to the loan value against it. They are going to look at how much money is owed
against a property and how much money that property is actually worth. By comparing
these two numbers against each other, they can accurately gauge the amount of risk that
will be involved with doing a loan. The lower the loan-to-value ratio, the more the lender
is going to like the loan. This means that if borrowers need to borrow significantly less
money than what a property is worth, they odds of getting approved increase

dramatically.

The LTV ratio is calculated by dividing the loan amount of a property by the market
value and is expressed as a percentage. Mathematically, the initial loan amount can be

expressed
Ly = LTV-X H, (2-9)
Substituting ( 2-9) into ( 2-7) and (2-8), we can obtain

PVECL = 22  Eo el - duie~e " max ((UPy + LTV x

2-10
HOect+1—(1=R)H0es=112t+1V50)] (2-10)

PVMIP = UPy + Y27 e ™ ,p, (m% X (UPy + LTV x Hy)et) (2-11)
Assume that the macro longevity risk is independent from the financial risks and the
change of measure from real world measure to risk-neutral measure does not affect the

marginal distribution of the remaining lifetime. Applying the actuarial equivalence

principle (APV), we could determine the fair LTV ratio via (2-10) = (2-11).



3 Modeling Longevity Dynamics

The earlier HECM models use static mortality tables and therefore fail to capture
the dynamics of mortality over time. In addition, they do not model longevity risks. On
the other hand, an unexpected mortality improvement will increase the life expectancy,
and thereby increase both the term and the amount of the outstanding loan balance.
Recently a number of approaches have been developed for forecasting mortality. These
methods are taken into account to describe the betterments in the mortality trend and to
project survival tables. A recent paper, Cairns, et al. (2007), examined the empirical fits
of eight different stochastic mortality models. Note that models M1 to M3 can be
described as belonging to the family«of generalized Liee-Carter (1992) models and models
M5 to M8 can be described as,members of the'family of generalized CBD (2006) models.
Cairns, et al. (2008a), then examined-the ‘goodness of fit" of the remaining six models by
analyzing the statistical properties of their various residual series. Therefore, in this
section we incorporate the.classic Lee-Carter-(1992) model in order to model the

longevity and adverse mortality‘risks.more accurately:

Stochastic mortality models either model the central mortality rate or the initial
mortality rate (Coughlan, Epstein, Sinha, & Honig, 2007). The central mortality rate m,

is defined as:

Dy,
My = E_t (3-1)

x,t

where D, , is the actual total number of deaths at time t, and E, ; is the population in age
group x at time t. The initial mortality rate g, is the probability that a person aged x dies
within the next year. The different mortality measures are linked by the following

approximation:

gy =1 —e Mt (3-2)



3.1 The Lee-Carter Model

Lee and Carter (1992) base their model on the insight that age-specific death rates in
the United States quite accurately follow a common exponential trend over the last

decades, and propose the following parsimonious parameterization:
lTl mx‘t = ax + bxkt + Ex,t ( 3'3)

where m,, is the central death rate at age x in year t, a, coefficients describe the
average shape of the age profile, and the b, coefficients describe the pattern of
deviations from this age profile when the parameter k, varies. Note that all variables
on the right side of the model are unobservabler Therefore, the Lee-Carter model cannot
be fitted by the ordinary least square (OLS) approach. In addition, this model is
obviously over-parameterized: Lee—and | Carter (1992) impose the following

normalization conditions to.obtain‘a unique solution:

Then a, becomes the average value/.of lnan, . overtime, i.e.,

a, =230 In my, (3-5)

where T is the length of the time series of mortality data. An important aspect of stochastic
mortality models is the quality of the fit of the model to historical mortality data. We
use the U.S. mortality rate data from the data of 1950 to 2006 and generate yearly

mortality rate of age 60 and above to age 99, both male and female. The data can be

obtained from human mortality database?.

2 Source: http://www.mortality.org/
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3.2 Fitting the Lee-Carter model

The estimation is completed in two steps according to Lee and Carter (1992). In the
first step singular value decomposition (SVD) of the matrix is used to obtain estimates
for b,, (x=1,2,...,w),and k, (t=1, 2,..., T). In the second step the time-series evolution
of k, is recalculated based on the actual number of deaths in year t. Brouhns et al. (2002)
described a fitting methodology for the Lee-Carter model based on a Poisson model.
The main advantage of this is that it accounts for heteroskedasticity of the mortality data

for different ages. Therefore, the number of deaths is modeled using the Poisson model,
implying:
Dx,t~Poisson(Ex,tmx,t) (3-6)

The parameter set ¢ is fitted with- maximum . likelihood estimation, where the

log-likelihood function of model (*3-6) Is given by:

L(®;D,E) = Z{Dx,tln[Ex,tmx,t(m]} = By iy (@) — In(D, ') (3-7)

We used the R-code of the software package "Lifemetrics" as a basis for fitting
(3-7).2 Therefore, we call the corresponding R function passing in vectors and arrays.
The fitting procedure will print in the R console the values of the log likelihood which is
being maximized during the fitting process. The result of parameter estimates for the
Lee-Carter model is plotted in Figure 3-1 and the fitted death rates for different sex and
age group is plotted in Figure 3-2. The a, coefficients, as noted, are just the average
values of the logs of the death rates. Not surprisingly, the male coefficients lie above the

female at all ages, reflecting the fact that mortality was higher, on average, from 1950 to

3 Lifemetrics is an (open source) toolkit for measuring and managing longevity and mortality risk,

designed by J.P. Morgan. www.lifemetrics.com
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2006. The b, coefficients describe the relative sensitivity of death rates to variation in
the k, parameter. The male coefficients above the female before age 75, reflecting the
fact that the male mortality improvement will increase than female before age 75. On
the other hand, the female coefficients above the male after age 75. It can be seen that
the younger the age, the greater its sensitivity to variation in the k, parameters. The
exponential rate of change of an age group’s mortality is proportional to the b, values:
din(my,) = by(dk./dt). If k, declines linearly with time, then dk./dt will be

constant and each m, . will decline at its own constant exponential rate.
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Figure 3-1 Parameters Estimated by Lee-Carter Model

The next step is to model k, as a stochastic time series process. This is done using
standard Box-Jenkins procedures. In most applications so far, k, is well-modeled as a

random walk with drift:

kt = kt—l + d + et ( 3'8)

where d is a constant and e, is a normally distributed error term with zero mean.
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Figure 3-3 Fitted death rates for age group 80, 85, 90 and 95.
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4 Modeling Housing Price Dynamics

The future property values which affects the net proceeds from a sale. If the house
price grows at a lower rate than expected, the loan balance may exceed the home value.

Lenders may suffer from the losses.

4.1 Empirical Investigation for Housing Price Data

The house price data is published by Fannie Mae (Federal National Mortgage
Association) and Freddie Mac (Federal Home Loan Mortgage Corporation). The indexes
are built repeat-sales weighted averages: This methodology collects data on single-family
home re-sales by capturing repeat sale prices to calculate price changes. The repeat sales
method was first proposed by Bailey, Muth, ‘and Nourse (1963), and successful
applications by Case and Shiller (1989; 1987)..Case and Shiller (1987) extended the basic
approach by proposing the use of generalized least squares'to account for heteroscedastic
sampling errors whose variances were assumed to be‘proportional to the length of time

between repeat transactions.

The key difference between FHFA Home Price Index and S&P Case-Shiller house
price indices is the S&P Case-Shiller indices are not limited to conforming loans (they
include higher-priced homes). Also, they use actual sale prices instead of appraisals when
calculating price changes. For this reason, we compare data from the FHFA
purchase-only home price index with data from the S&P Case-Shiller Indices. The FHFA
monthly House Price Index is calculated using purchase-only houses backed by Fannie
Mae or Freddie Mac guaranteed mortgages. We have included data from the FHFA
Purchase-Only Home Price Index in Figure 4-1 for relative comparison. In order to
compare the Case-Shiller and FHFA data, we rescaled the FHFA purchase-only index to
100 in January 2000, so that both the FHFA and S&P Case-Shiller would have the same
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scale in this chart. In particular, the Case-Shiller data show a more decline in house prices

from their peak that appears to better reflect current housing market conditions.

S&P Case-Shiller And FHFA Home Price Indices

250
|

—_— 10-City Composite
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Figure 4-1 S&P Case-Shiller And FHFA Home Price Indices

In the analysis below, we choose the S&P-Case-Shiller 10-City Composite Home
Price Index* (CSXR) rather than usé the OFHEO data. In particular, the Case and Shiller
data show a more decline in house prices from their.peak that appears to better reflect
current housing market conditions. ‘As well; the Case and Shiller data are updated more
frequently than the OFHEQ data and thus give a better picture of the state of the housing

market today. The data range from January 1987 through December 2009.

Let H, denote the monthly house price index. Assume that the one-period
log-return Y; for house price index which is defined as Y, = log(H,/H;_,). From
Figure 4-2 the log return of house price index is obviously not stationary®. Unit root tests

can be used to determine if trending data should be first differenced on deterministic

* The S&P/Case-Shiller Home Price Indices measures the residential housing market, tracking changes in
the value of the residential real estate market in 10 metropolitan regions across the United States.
Source: http://www.standardandpoors.com/home/en/us/

> The time series {Y,} is said stationary if E[Y,] = c and Cov(Yt, Yt_]-) = y; forall t and any j. A non

stationary process has time dependent moments, such as deterministic trend terms.
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functions of time to render the data stationary. Two standard procedures, the Augmented
Dickey-Fuller (ADF) (1984)° test and Phillips-Perron (PP) (1988) tests were employed in
this study. The results are exhibited in Table 4-3. Both the ADF statistic and the PP statistic
in CSXR are higher than the critical values at the significance level of 5%, which means
that the log return series are not stationary. Therefore, similar tests were also performed to
first difference of CSXR log return (DY; = Y; — Y,_;). The result shows that the first

difference of CSXR log return is stationary.
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Figure 4-2 Log return of S&P Case-Shiller 10-City/.Composite Home Price Index

The summary statistics for DY, ‘are giveniin the Table 4-1. Over the whole sample
we can easy see the kurtosis and skewness of the house price log returns are far from
normal and it generally appears to follow a non-normal distribution as the Jarque-Bera’

statistic indicates.

® The testing procedure for the ADF test is Ay, = a + Bt +yy,_q + 8,0y, + -+ 0,0y p + &,
where a is a constant, B the coefficient on a time trend and p is the lag order. The unit root test is then
carried out under the null hypothesis y = 0 against the alternative hypothesis of y < 0. Once a value for
the test statistic DF = 7/SE(7) is computed it can be compared to the relevant critical value for the
Dickey—Fuller Test. If the test statistic is less (this test is non symmetrical so we do not consider an
absolute value) than (a larger negative) the critical value, then the null hypothesis of y = 0 is rejected and
no unit root is present.

’In statistics, the Jarque—Bera test is a goodness-of-fit measure of departure from normality, based on
the sample kurtosis and skewness. The test statistic JB is defined as /B = n(S? + K?/4)/6, whereniis
the number of observations, S is the sample skewness, and K is the sample kurtosis. The statistic JB has
an asymptotic chi-square distribution with two degrees of freedom and can be used to test the null
hypothesis that the data are from a normal distribution.
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Table 4-1 Descriptive statistics of DY;

Data Mean Sd Min Max Skew Kurtosis

DY, -2.80e-05 0.00219  -0.01067  0.01087  -0.06499  5.64095

Table 4-2 Jarque—Bera test for DY;

Data Statistic Degree of freedom p-value

DY, 371.6913 2 <2.2e-16

Table 4-3 ADF and PP test

e Augmented Dickey-Fuller test Phillips—Perron Unit Root Test
stat. lag p-value stat. lag p-value
Y; -2.1799 6 0.5002 -12.0582 5 0.4339
DY, -6.1681 6 <0.01 -252.0607 5 <0.01
0.015
0.01
0.005
0 ool il o AN A D,
Y — — e A I | — ¥ - —
-0.005 SIS0 RN od 09
S ddmInoerNosas 428 I @
e N - O O O A O O (o)X ] (o]
-0.01 ¢ RIS 22323]33 8
— — (] (gl
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Figure 4-3 First Difference of S&P Case-Shiller Home Price Index Log Return

4.2 ARMA Models with GARCH Errors

Autoregressive moving average (ARMA) models are widely used in all areas of

economics and finance, and properties of these models are well understood.
DY, = const + X%, ¢;DY,_; + Z’}zl 0;z,_j + z, (4-1)

where DY, is the first difference of CSXR log return at time t, const is the constant, ¢;

is the i th previous log-return of DY; ,and 6; is j th previous innovation of z,. Note

17



that 7%, ¢; < 1. The innovations z,_; are assumed to be normally distributed with
zero mean and constant variance. We therefore plot the sample autocorrelation

coefficients (ACF) and partial autocorrelation coefficients (PACF) of DY; in Figure 4-4.
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Figure 4-4 ACF and PACF for the First Difference.of CSXR log return

The sample ACFs are almost zero'after two-lag, andthe sample PACFs die off after
four lags. According to the Box-and Jenkins (1976) approach, Akaike (AIC) and
Bayesian (BIC) information criterion can be used as a guide for the appropriate lag
order selection (See Table 4-4). After several trials, we found that an ARMA (3,2) with
zero mean would be appropriate for the ( 4-4). In addition, the AIC reach the lowest

values and the BIC value is the lowest except the ARMA(2,2) .

Table 4-4 Candidate ARMA specification

Model AIC BIC
ARIMA(2,0,0) with zero mean -2583.34 -2572.5
ARIMA(3,0,0) with zero mean -2585.25 -2570.8
ARIMA(4,0,0) with zero mean -2592.22 -2574.15
ARIMA(2,0,2) with zero mean -2593.61 -2575.54
ARIMA(3,0,2) with zero mean -2596.7 -2575.02
ARIMA(4,0,2) with zero mean -2595.28 -2569.99
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After fitting a candidate ARMA specification, we should check that there are no
autocorrelations. Figure 4-5 shows that all the ACFs are within the 95% confidence
interval, but the ACFs of the squared innovations are not, which indicates that the

existence of AutoRegressive Conditional Heteroskedastic (ARCH) effects.

ACF for Standardized Residuals ACF for Squared Standardized Residuals
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Figure 4-5 ACF for ARIMA(3,0,2) standardized residuals

The linear ARIMA-type. models “assume homeskedasticity, however, it is not
uncommon that many financial time-series-is=still .conditionally heteroscedastic after
stationary transformation. The AutoRegressive Conditional Heteroskedastic (ARCH)
model of Engle (1982) was the first formal model which successful addressed the
problem of heteroskedastic. Let z, denote the error terms and assume that z, = &0,

where £,~N(0,1)
of = ao + X7, @ 72 (4-2)
where ¢, > 0anda; = 0,i > 0

Although the ARCH model is simple, it often requires many parameters to
adequately describe the volatility process of an asset return. A more parsimonious model

proposed by Bollerslev (1986) called GARCH model. In that case, the GARCH(p, q)
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model is
of =ag+ X @zt + Z?=1 Bj oi-; (4-3)
where @y >0 a;,f; = 0and ¥!_, a; + Z?zlﬁ]’ <1

The ARCH LM test® proposed by Engle (1982) was undertaken to investigate
whether there is volatility clustering in the housing price series. It is important to perform
a formal LM test prior to employing a GARCH model. If there are no ARCH effects in
the residuals, then the ARCH model is unnecessary. The result of LM tests is depicted in

Table 4-5.

Table 4-5 ARCH LM test

Data stat. lag p-value

DY, 126:1215 12 <2.2e-16

Apparently, positive and statistic significant XM values-are observed for both series.
This clearly suggests rejecting the.null”hypothesis of homoskedascity, indicating that
volatility clustering effects are-evident" in these series./The strong evidence of volatility
clustering also denotes the appropriateness-ofemploying a GARCH model in analyze the
volatility spillover in housing market. Once the ARCH effects are determined, an analysis

of the housing volatility determinants is conducted that exhibits volatility clustering.

The differences between the types of models tested here relate to the specification of
the mean and variance of the series. ARMA models have both a constant mean and a
constant variance; GARCH models have a constant mean, but time-varying variance.

Clearly, these models can be combined, for example, ARMA-GARCH models.

8 This procedure is as follows: Estimate the best fitting AR(q) model and obtain the squares of the error
2= ag+ a2t + -+ a,22, . Under the null hypothesis that there are no ARCH effects:
a; = a, =--=a, =0, the test statistic is LM = T-R>~x2(p) where T is the sample size and R” is

computed from the regression 22 = a, + ay 27, + -+ @, 2¢_,, using estimated residuals.
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According to previous investigation, we propose the ARMA-GARCH model to price
reverse mortgage. In most applications, GARCH(1,1) is enough to capture the ARCH
effects. We keep ARMA without the constant term for the conditional mean, and use
GARCH(1,1) to model the conditional variance. Under ARMA-GARCH model setting,

the dynamics of house price return process is

Zt = O—tgt’ Et"’D(O,l; QD) (4'5)
of =ag+X_ izt +XI_ B ot (4-6)

where DY, is the first difference of Y, and 6, is an arbitrary distribution of
parameters. While the generalized ARMA-GARCH. ftamework can be used with a host
of conditional distributions, ‘such las—the generalized " efror distribution or Student’s

t-distribution.

4.3 The Normal Inverse Gaussian distribution

Traditional HECM model assumes ' that™ the house price returns empirical
distributions are closer to the normal case (like stock market). Unfortunately, house price
log return in our study is potentially non-normal. The recently introduced Generalized
Hyperbolic distributions by Barndorff-Nielsen (1977) have been suggested as a model for
financial price processes. Barndorff (1995), Eberlein and Prause (2000) shows that their
exponentially decreasing tails seem to fit the statistical behavior of asset returns. The
generalized hyperbolic distribution is a continuous probability distribution defined as the
normal variance-mean mixture where the mixing distribution is the generalized inverse
Gaussian distribution. Its probability density function is given in terms of modified
Bessel function of the third kind. The generalized hyperbolic distribution is well-used in
economics, with particular application in the fields of modeling financial markets and
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risk management, due to its semi-heavy tails.

The family of NIG distributions is a special case of the generalized hyperbolic
distributions. Due to their specific characteristics, NIG distributions are very interesting
for applications in finance - they are a generally flexible four parameter distribution
family that can produce fat tails and skewness, the class is convolution stable under
certain conditions and the cumulative distribution function, density and inverse

distribution functions can still be computed sufficiently fast.

The normal inverse Gaussian distribution is a mixture of normal and inverse

Gaussian distributions.

A non-negative random variable Xthas an Inverse Gaussian (IG) distribution with

parameters a > 0 and S > 0uifits density function'is'of the form:

_gvizy o
fic(x;a,B) = \[%X‘s/zexp (—%) Lif x>0 (4-7)

We can write X~IG(a, ).

A random variable Y follows a.Normal Inverse<Gaussian (NIG) distribution with

parameters a,f,u and § if

Y| X=x~Nu+Byy) (4-8)

X ~1G(8y,y?) with y = /a2 — B2 (4-9)

with parameters satisfying the following conditions: 0 < |B| < @ and § > 0. We then
write Y~NIG(a, B, u, 8), where « is tail heaviness parameter, § asymmetry parameter,

uis a location parameter and 6 is a scale parameter.

The density of a random variable Y~NIG(a, S, 1, 8)

1) —-w) /812
K1 (8ayT+[(y=1)/ l )eﬁy (4-10)
(VI+I=w)/81%)

() = %e(c?y—ﬁu) :
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where K;(w) = %fooo exp (—%w(t + t‘1)> dt is the modified Bessel function of the

third kind. While the density function of NIG distribution is quite complicated, its
moment generating function has a simple form. The NIG moment generating function

My(z) = E[e¥?] is given by
My (z) = ohz+8(y == (B+y)?) (4-11)

We use another parameterization for NIG distribution suggested by Lars Forsberg (2002),
which is more intuitive in the context of conditional variance modeling and have scale
invariant properties for parameters except the scaling and location parameters. Let

@a=ab, f=B5u=puandc? = 6/a, then

AN 2 Sz G D) 412
o) = e Vil )

where 0 < @, u € R, |B| £1 and=0-< ¢* Under this parameterization the moment

generating function becomes

My (z) = exp {,uz + &\/1 =32 — \/&2 — (CYE + \/ﬁz)z } (4-13)

The first four central moments can be obtained by the cumulant generating function

InM, (z)
VaoZ ~
E(W) =p+i5F (4-14)
2

Var(Y) = O—BUW (4'15)

skewness = 3 4-16

ﬁ(l_ﬁz)l/‘l‘ ( - )

kurtosis = 3(p+1) (4-17)

Va1-p2
Note that if 8 = 0, the variance is represented by parameter, o2, which might be more
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intuitive in the context of volatility modeling.
The main properties of the NIG distribution class are the scaling property
Y~NIG(a,B,u,8) = cY +d~NIG(a B, cu+d,c?a?) (4-18)
and the closure under convolution for independent random variables Y; and Y,
Yi~NIG(a, B, u1,61) , Ya~NIG(a, B, 3, 55)
=> Y, + Y,~NIG(a, B, uy + py, 6; + 85) (4-19)

This means that if we use this parameterization in a conditional variance modeling
framework, we can fit the model, standardize the observed returns using the conditional
standard deviation, and the parameters efthe distribution for the standardized returns will

be constant.

From Figure 4-6, wg can see—that ‘NIG. distribution provides a significant
improvement with respect.to the normal distribution..Note that the fitted NIG
distributions provides skewness parameter near-close 100, thus in order to make the

model fitting more tractable, an‘assigned symmetric-NIG distribution (8 = 0).

Normal Inverse Gaussian VS Normal

Symm NIG
”””” Gaussian

Density
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Figure 4-6 Histogram of the first difference of CSXR log return
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4.4 ARMA-GARCH Models with NIG Distribution

In section (3.2), we fit DY, series with a conditional mean model ARMA (3, 2)
and a conditional variance model GARCH (1,1); moreover, we suggest that to use NIG
distribution rather than use Normal distribution which gives a better fit to our data set in
section (3.3). Therefore, the ARMA (3, 2)-GARCH(1,1) model with symmetric NIG

distribution is :

DY, =Y} 1 DY, + i1 6z + 2 (4-20)
Zt = O—tEt, Etth_l"’NIG(&, 0,0,1) (4_21)
01:2 =gt alztz—l + :810'1:2—1 (4-22)

4.5 Parameters Estimation

In order to estimate the ARMA-GARCH model with-NIG innovations, we estimate
all parameters by two stages. Quasi.Maximum Likelihood Estimation (QMLE) is first
used to determine the parameters (¢, d,, ¢3,0,, 05, ay, ay, B1) of the GARCH model.
At the second stage, since we exactly know the form of the density function of a NIG
distribution, we perform use a maximum likelihood estimation to estimate the unknown
parameter @ using the residuals obtained at the previous stage. Note that the parameters

must be satisfies following constraints:
a>0, Y 4<1 o,>0, &, >0, 4,>0, and oy + 3, <1

Parameter estimates and the corresponding statistics are reported in Table 4-6. All
the coefficients in both series are highly significant; moreover, Thereafter, we use the
likelihood-ratio test (LR test) to test Normal distribution against symmetric Normal
Inverse Gaussian distribution, and the NIG distribution is provides a significant
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improvement with respect to the Normal distribution. We also perform Q-Q Plot in
Figure 4-7, and the NIG distribution also shows significant improvement with respect to
the Normal distribution. In this empirical work, we suggest that we perform to use NIG
distribution rather than use Normal distribution which gives a better fit to our data set. We
may thus conclude that the ARMA-GARCH-NIG model provides an important extension

to the ARMA-GARCH-Normal model when it comes to option pricing.

Table 4-7 show the Ljung—Box test® on the standardized residuals fails to reject the null
hypothesis that there is no autocorrelation up to 20 lags. The Ljung—Box test on the
squared standardized innovations concluded that conditional heteroskedasticity has

disappeared.

Table 4-6 Parameter estimates for thee!ARMA (3;°2)-GARCH (1, 1)-NIG model

Estimate Std. Error t value Pr(>It|)
03 0.869986 0.120335 7.229687 4.84E-13
¢, -0.36639 0.179585 -2.04019 0.041332
O3 -0.25465 0.07354 -3.46277 0.000535
0, -0.87659 0.117124 -7.4843 7.19E-14
0, 0.592712 0.172343 3.439147 0.000584
a, 2.93E-08 1.46E-08 2.002815 0.045197
a, 0.072242 0.024443 2.955457 0.003122
b1 0.927758 0.016519 56.16197 0.000000
a 1.20118 0.245527 4.892252 9.968E-07

Thereafter, we use the likelihood-ratio test (LR test) to test Normal distribution
against symmetric Normal Inverse Gaussian distribution, and the NIG distribution is
provides a significant improvement with respect to the Normal distribution. We also
perform Q-Q Plot in Figure 4-7, and the NIG distribution also shows significant

improvement with respect to the Normal distribution. In this empirical work, we suggest

® The Ljung-Box test is a type of statistical test of whether any of a group of autocorrelations of a time
series are different from zero. The test statisticis Q = n(n + 2) Zi-l:l ﬁf/(n — j), where n is the sample
size, f)j is the sample autocorrelation at lag j, and h is the number of lags being tested. For significance
level a, the critical region for rejection of the hypothesis of randomness is rejected if Q>)(12_a,h, where
)(f_a,h is the a-quantile of the chi-square distribution with h degrees of freedom.
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that we perform to use NIG distribution rather than use Normal distribution which gives a
better fit to our data set. We may thus conclude that the ARMA-GARCH-NIG model

provides an important extension to the ARMA-GARCH-Normal model when it comes to

option pricing.

Table 4-7 Ljung—Box test for the ARMA (3, 2)-GARCH (1, 1)-NIG model

Standardized Residuals Standardized Squared Residuals
Lag statistic p-value Lag statistic p-value
10 0.3802 1.0000 10 7.102 0.7157
15 5.2511 0.9898 15 12.324 0.6544
20 15.7818 0.7301 20 19.340 0.4999

Table 4-8 LR test for ARMA-GARCH-N model against ARMA-GARCH-NIG model

Statistic Degree of freedom p-value
0.001456959 1 0.0003012175

Symmetric NIG Q-Q Plot

Normal Q-Q Plot

Sample Quantiles
Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

Figure 4-7 Q-Q Plot for the standardized residuals of ARMA-GARCH-type model
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5 Risk Neutral Valuation

Recall the reverse mortgage can be writing a series of European exchange options
with different times to maturity. For pricing reverse mortgage, we require a risk-neutrality
measure Q which is equivalent to the real world measure P, such that the discounted asset

price process is a martingale.

5.1 Locally Risk Neutral VValuation Relationship

Duan (1995) provided the first rigorous theoretical foundation for option pricing
using this powerful econometric model.? He /introduced us to the Locally Risk Neutral
Valuation Relationship (LRNVR).The generalized"tRNVR incorporated the condition
that the conditional variances of the-log-returns remain unchanged under a change from
the real world measure to the risk neutral measure. A pricing.measure Q is said to satisfy
the LRNVR if measures P and Q are mutually absolutely continuous and measure Q must
also satisfy the following requirements: The following equation must hold forall 0 <t <

-
Eo[H/Hy—1 |Feoq] = €779 (5-1)
Varyllog(He/Hy_1) |Fi—1] £ Varp[log(H,/Hy—1) |Fr_1] (5-2)

where g is rental yield'®. Equation ( 5-2) means conditional variances are unaffected by
the change of measure. Under the LRNVR, the one-period ahead conditional variance, is

invariant with respect to a change to the risk-neutral measure.

1% I the risk-neutral world, the expected total return from any asset is the risk-free rate, r. Since the total

return on the house price index is the sum of the capital return and rental income (net of insurance and
maintenance costs) from the portfolio of properties from which the index is constructed, the expected
return on the house price index (i.e., the capital value return) in the risk-neutral world is r less the rental
yield g.
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5.2 Conditional Esscher Transform

The Esscher transform was introduced by Esscher (1932) and has become a tool in
actuarial science. More recently, it has been applied to pricing financial and insurance
securities in an incomplete market. Gerber and Shiu (1994) creat an equivalent martingale
measure by the Esscher transform is justified by maximizing the expected power utility of
an economic agent. Buhlmann, et al. (1996) generalize the Esscher transform to
stochastic processes and introduce the concept of the conditional Esscher transform. We
start by giving the definition of the conditional Esscher transform with respect to the
return process introduced in the last section. Assume {6;}ex (0} is a stochastic process
with 6, € F,_,, for all t € 7\{0}, the conditional moment generating function of the

return process Y; evaluated at‘time t given Fzzyunder P"_ is defined as:
th | (2) 1= Ep[e”|F, 4] (5-3)

where z € R . Suppose My j7..,(8) eXist, we define a sequence {A,};e, With 4 =1
and

efkYk

/1 _—
t k 1 2] )
Myk|Fk 1( k)

t € 7\{0} (5-4)

Buhlmann, et al. (1996) prove {A,};c, is a martingale. Let P, = P|F,_;, V t € 7\{0},

and P, = P. We define a family of probability measure {Pt,/lt} by the following

tet\{0}

conditional Esscher transform:

ety

Pesy (AIFe1) = Ep |l 7 ——=|Fos (5-5)
MYtITt 1000

By the martingale property of {A;};c,, one can prove that P.s, = Peyq4,,,l
Fe_,Vt €T\{0}. The associated parameter 6, is called the conditional Esscher

parameter given F,_;. Let F(y; 0:|F_1) = Pp4,(Yr < y|F¢_1), we have
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12, exp(8:y)dF (v)
M{;ﬂ?t—l(gt)

F(y; 6¢|F,-1) = (5-6)

M}I:tlj:t—l (Z + Ht) ( 5'7)

M}I’)t|7:t—1(9t)

Q . —
MYtlth—1 (z,6,) =

For pricing an option, we construct a martingale measure Q equivalent to P by adopting

Esscher Transforms. First, choose a sequence of conditional Esscher parameters

{6/ }tef\{o} by solving the following equation

e™9 = MJ ;. (1;6]),Vter\(0} (5-8)

then we can define a family of probability measure {Pt,At}tET\{O} associated

with {Hf}m\{o}- According to.above result,we have
Pt,/lt=PS,AS|Tt'S'tETWithtSS (5'9)
Let @ =P, 9 and H, isthehouse value; we-have

Eqle ™ H|F_1] = e " EqH | Fp=al = e Ep [Ht—leYtAglgzt—l]

q P q
eft¥t My, 7,_,(1+6)

— Tt Y; — p—Tt
=e ""Ep |Hi_1e"t —5 |Fe1| =€ " Hey uP e
YilFe—-1\"t

MYt|Tt_1 (91?)

— e_rth—lM}%Tt_l(l;et?) — e—rth_ler — e—(r—l)tI_It_1

then e~ "tH, is a martingale under Q. Then by risk-neutral pricing formula, the price of

the option V attimet €T is
Vi = Egle™T-9v;] ( 5-10)

We call Q a conditional risk neutralized Esscher pricing measure. Sheu and Chuang
(2006) justify the pricing result justify by solving a dynamic utility maximization
problem. Siu, Tong and Yang (2004) employ the conditional Esscher transform to price
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derivatives, assuming the underlying asset returns follow GARCH processes.

Recall that in Section 4, the discrete time economy we consider is characterized by

Hg
Ht—q

the time series dynamic of the house price process ln( )=Yt, and we fit

DY, =Y, —Y,_; using an ARMA (3, 2)-GARCH(1,1) with innovation NIG distribution

process, i.e.,
DY, = ?:1 ¢ DY, + Z?=1 0z + 2,
where z.|F,_,~NIG(&,0,0,0,) and o = ag + a;z%, + P10 1.
Let ue = Xi_; ¢:DYe; + X7, 6;2,_;, then DY, is NIG distributed with mean y, and
variance o7 given the informationsét’ F;—,.1.-
DY, | Fiuy~NIG@, 0, iy, 02) (5-11)

Note that u, and o2 arg not random given the information F,_,. Recall that

DY, =Y, —Y,_,, we can obtain Y, = DY, +Y,_,. Consequently,
Yt |Tt—1~NIG(C_Z1 01 .atl O-tz) ( 5-12)
under the physical measure P, where i, = u; + Y;_;

Under the risk-adjusted measure Q, we can use the condition Esscher transform to obtain

Y,|F,_,~NIG (a, JoZ @bl i, atz) (5-13)
where 8, is Esscher parameters. (See Appendix A)
Notice that the Esscher transform moves the skewness parameter by the factor /o2 /@6,
while keeping the other parameters constant.

On the other hand, the logarithm of house price return under the ARMA (3,

2)-GARCH(1,1) with innovation normal distribution under the real world measure P is
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Yo | Feoi~N(fy, Utz) (5-14)

Therefore, under the risk-neutral measure Q, we can derive the risk-neutral house price

return process as:
1
Y; |Tt—1~N(r_g_50t2:0t2 (5-15)

This property states exactly that the dynamics of Y, under the risk-adjusted

measure is the same as that under the physical measure, except that the mean is shifted

by an amount of —f, +r— g — %a,_?.
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6 Numerical IHlustrations

Recall that the present value of total expected claim losses can be expressed as

PVECL = T80 1Dx " Qe - Eq [e_r(t+1)Vt+1] (6-1)

where
Visr = max(Leyq — (1 — k)Heyq,0) (6-2)
Hewr = HoeZ %, (6-3)

Ly = (UPy + Lo)ecttV (6-4)

We use the following baseline assumptions.to illustrate the present value of total

expected claim losses:

® The initial house value.in here'is-$300,000;, i.e.,”H, =.$300,000.

® The risk-free interest rate is 3.78%. lt-is-the 10 year U.S. Treasury rate**, which is
3.85% per annum at 01/02/2010, ie., r = 3:78%, compounded continuously.

® \We choose one year constant maturity Treasury'rate™> of 0.45% plus lender margin
1.15%"* plus mortgage insurance ‘premium 0.5%, which is equal to 2.45% per
annum, i.e., ¢ = 2.42%, compounded continuously.

® Upfront mortgage insurance premium is 2% of house price, i.e., UP, = 0.02H,

® The transaction cost of selling the house is 6 percent, i.e. k = 5%

® The rental yield is 2% per annum, compounded continuously, i.e., g = 2%.

® The borrower highest attained age w = 100.

Since the primary goal of this study is to examine the effect on house prices when the

underlying distribution is skewed and leptokurtic, we will report the pricing results in our

1 Source: https://www.federalreserve.gov/releases/h15/update/
12 source: https://www.federalreserve.gov/releases/h15/update/
13 Assume lender’s margin is 150bp.
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model, ARMA-GARCH-NIG, compared to that of the ARMA-GARCH-Normal model
and the Geometric Brownian Motion (GBM) models. Recall the reverse mortgage can be
writing a series of European exchange options with different times to maturity. When
pricing (European) options in a GARCH-style framework, it is common practice to rely
upon simulation-based valuation approaches. This is due to the fact that, on the one
hand, the final risk-neutral distribution is not known in closed form, but, on the other
hand, the discrete nature of the GARCH framework makes simulation based approaches

straightforward to implement.

We first simulate the DY, series for 10,000 paths and transform DY, to Y; on
each path'®. By applying the pricing framework discussed above, we change the
probability measure from P to Q oniéach path-of ¥4 and then calculate the value of the
house value H,. According toythe housing price \index;"we can also simulate the H,
series based on the GBM model with annual volatility 'c. = 0.0282. The simulation
results are shown in Table 6-1. The simulationresult shows.the GBM assumption yields
lowest housing price. Moreover, the ARMA-GARCH-N model has lower housing price
than ARMA-GARCH-NIG modelThis enables_ us'to calculate an estimate of the

EQ [e—r(t+1)Vt+1]'

Table 6-1 Simulation of housing price by different model with 95% confidence interval

Time GBM ARMA-GARCH-N  ARMA-GARCH-NIG

10 years $358,195 $360,592 $361,995
($309,089, $412,943)  ($331,463, $394,077)  ($333,836, $398,414)

20 years $428,169 $435,415 $438,856
($345,564, $522,669)  ($386,535, 501,041)  ($390,797, $512,439)

30 years $511662 $526,734 $533,095
($390,628, $653,531)  ($454,700, $631,395)  ($459,856, $660,094)

40 years $611,664 $638,169 $648,416
(449,382, $804,782)  ($536,216, $808,342)  ($543,617, $852,714)

** In ARMA-GARCH-NIG model, we need to compute 8, by solving (A-1).
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Note that the E,[e "¢*DV,, ;] values based on the GBM assumption with

Black-Scholes formulas:
Loe(c—r)(t+1)N(_d2) — Hoe—g(t+1)N(_d1) (6-5)

where
d, = [ln(HO/LO) + (r —g—c+ "72) (t + 1)]/a(t +1)

and d, = d; —ay/(t + 1)

In order to obtain ,p, - q,..,» We fitted the Lee-Carter model in section 3.2, and
now use the fitted time series model for k, to forecast it over the desired time period.
Figure 6-1 shows past values of (k3 forthe U.S:from,1950 to 2006 and their forecasts
from 2007 to 2050. Note that'the estimated values of k& (Over the base period change in
a linear fashion. The approximate linearity of %; in the-base period is a great advantage
from the point of view of forecasting. Long-term. extrapolation is always a hazardous
undertaking, but it is less so when supported inthisway by the regularity of change in a

ninety-year empirical series.

Male Female

Mortality Index, kt)
Mortality Index, kt)

T T T T 1 T T T 1
1950 1970 1990 2010 2030 2050 1950 1970 1990 2010 2030 2050

Figure 6-1 Mortality Forecast from 1950-2006 to 2050 with 95% Probability

Interval
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The next step is to convert the forecasts of k, into forecasts of life table functions,
given the previously estimated age specific coefficients a, and b,, using the earlier
equation for Inm, .. Once the implied forecasts of m, . have been recovered in this
way, any desired life table function can be calculated. We then construct the dynamic
complete life table for every year. That is, we calculate g, the probability that an
individual aged x + ¢t will die in one year at time t, and ,p,, the probability that an

individual aged x will attain another t years at time 0.

Finally, the present value of total expected claim losses can be calculated as

follows:

a1 . . —
PVECL = 32557 LBy (s @are 0 - €77 Imax(Lyys — ( 6-6)
1HHF1(/),0

where M represents the total number-of-paths which.we set"10,000.

In addition, the present value of mortgage insurance’/premium can be calculated as

follows
PVMIP = UP,y + LEF e 0, (/) (m% X L) (6-7)

where m% is the annual periodic mortgage insurance premium of loan balance, which

we set 0.5%.

In theoretical, the present value of total mortgage insurance premiums should be
equal to the present value of total loss so that we can obtain the fair loan-to-value (LTV)

ratio by bisection method. Table 6-2 presents simulation results using different models.

On the basis of the ARMA-GARCH-NIG assumption, the fair LTV ratio ranges
from 75.36 percent to 80.13 percent of the cash advanced, depending on the gender and
age of the borrower, and the fair LTV ratio was slightly higher than ARMA-GARCH-N

model. For all genders and ages, the GBM assumption yields lower fair LTV ratio,
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indicating that we may underestimate the fair LTV ratio if the classical GBM

approached is used.

Table 6-2 Fair Loan to Value Ratio

Model sex 62 65 70 75 80 85
GBM Male 60.02% 61.17% 63.14% 65.32% 68.34% 71.54%
Female 59.81% 60.88% 62.69% 64.63% 67.53% 70.89%
GARCH- Male 71.91% 72.67% 73.97% 75.61% 77.12% 78.62%
Normal Female 72.03% 72.62% 73.68% 75.32% 76.93% 78.53%
GARCH- Male 75.36% 75.66% 76.24% 77.07% 78.36% 80.13%
NIG Female 75.87% 76.03% 76.37% 76.97% 78.12% 79.94%
Male Female
*] /: " /:
n/:/ a/:/
___.——n——""—'__—a/o/ a c,_.__-———ﬂ"""_'_" /
w4 a/ 12 /€I
n/ a/n
e | R o
© ] n/ © 7 /a
o/ —=— CBM /cl e GBM
g1 o = e | | g " T ARMA CARCHNG

T T
75 80

T
85

Figure 6-2 Fair Loan-to-Value Ratio

age

80

85

Moreover, the fair LTV ratio increases as the age at loan origination goes up. This

is reasonable because other conditions equal, the risk of reverse mortgages ultimately

depends on when the termination event occurs and for how long the loan has been

accruing. The elder borrower has a shorter life expectancy, so the lender faces less risk

and can advance more cash amounts to the borrower. The next step is to calculate the

mortgage insurance premiums according to Table 6-2, and the results are show in Table

6-3.
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Table 6-3 Fair Mortgage Insurance Premiums
Model sex 62 65 70 75 80 85

Male  $22,581 $21,071 $18,561 $16,177 $14,016 $12,072
Female $24,129 $22,687 $20,182 $17,641 $15,204 $12,929
GARCH- Male  $25,759 $23,815 $20,649 $17,732 $15,017 $12,657
Normal Female $27,714 $25,803 $22,589 $19,508 $16,447 $13,655
GARCH- Male  $26,681 $24,528 $21,087 $17,953 $15,157 $12,781
NIG Female $28,838 $26,707 $23,180 $19,796 $16,606 $13,789

GBM

At the same age group and the same gender, the fair mortgage insurance premiums
increase when LTV ratio increase. Although the fair LTV ratio of male slightly higher
than female, the mortgage insurance premiums female significantly higher than male in
all assumption housing price models. The male borrower has a shorter life expectancy,
so the lender faces less risk and can advance charge less premiums to the borrower. For
the same reason, the elder can be charged less martgage insurance premiums. Table 6-4

shows the above comments given L'F\-ratio =:60% for all‘ages and genders.

Table 6-4 Mortgage Insuranee Premiums given LTV ratio =60%
sex 62 65 70 75 80 85
Male $22575 $20,793 . $17,955- - $15372  $13,066  $11,119
Female  $24,184  $22{453.. $19,591 _$16;832  $14,207  $11,894

The mortgage insurance premiums-~decrease with the age at loan origination.
Therefore, when the initial age increases, the borrower gets more cash advances, pays

less insurance premiums, and can spend more money to improve he/her living standard.

In addition, we defined lender’s net liability as difference between the present value
of expected claims and that of expected insurance premiums. Therefore, when loan
terminates at time t, it means lender’s net profit if the value of net liability is negative (-)

while it means insurer’s net loss if the value of net liability is positive (+).

In this analysis, we analyzed the case of reverse mortgage male borrower’s age was
62, LTV ratio was 60% and other parameters are the same as those we use calculate fair

LTV ratio. Table 6-5 shows these results. We could imagine that the reverse mortgage
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lender would experience tremendous losses if she suffers the losses from operating
reverse mortgages due to the features of probability distributions of net liability which
have a long tales to the right side. In this analysis, we confirmed the mean and VaR

(Value at Risk) at 95% of confidence levels.

Table 6-5 Estimating mean and VaR of Net liability

GBM ARMA-GARCH-N ARMA-GARCH-NIG
Mean -$25. -$14,739 -$19,292
VaR 95% $125 -$14,688 -$19,174
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7 Conclusion

We analyze longevity risk, and house price risk in this study. In house price risk, we
model the S&P Case-Shiller house price indices via ARMA-GARCH-NIG model. In
longevity risk, we consider the famous class model, Lee-Carter. However, there are other
risks we need to take into account, such as interest rate risk, and refinancing risk. We
assume a fixed interest rate for the life of the HECM loans so that we can determine the
conditional Esscher parameters and create the risk-adjusted probability measure for
pricing purposes. However, we do not live in a simple world with a flat term structure
subject only to additive shifts. Therefore, we do need to model the stochastic interest rates
with a more realistic term structure;«for example, the Vasicek (1977) model, CIR (1985)
model. Moreover, the traditional HECM model:assumes that the house price index and
the interest rate are independent of each-other.-However, historical data shows significant
correlations between the change in house-price index.and.the change in interest rates
(Rodda, et al., 2004). Furthermore, we<assume the Jender’ssmargin is 150 bps; however,
the lender’s margin depends on‘the initial age of the-borrowers. Finally, further research
can model house price return with interest rate'risk via copula approach and determine the

maximum level of lender’s margin.
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Appendix A

If Y;|F._,~NIG(&,0, A, of) under physical measure P, then Y,|F,_, ~ NIG(&,+/0?/a

61, fi;,07) under the risk neutral measure Q via the condition Esscher transform,

where 6, is Esscher parameters.

Proof:

5t|7:t—1(z + 0’:)

0 M
Mraire, (280) = My 5, (6,)
tiVt—-1

exp (m + @ [\/&7?95’]2) Kiexp <\[ @ - |Jac?(z+0; )]2>

= exp (ﬁt ¥ c?\/l — [w/atz/cief]z)

con| [lelfrrmorlfooes)|

In order for Q to be an equivalent martingale measure, we need to have:

M}I’Jtlftq 1+ Ht)
M}I’Jtlftq (60)

—g _ @ ) _
e 9 = Mytm_l(l,et) =
Therefore,

r—gzﬁt+\/§2—l/&atz@fl —\/c‘rz—[/&atz(l+9tq)l (A-1)

This equation can be solve explicitly by a quadratic form, the solution must satisfies:

/atz/aef
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We can solve this equation by a quadratic form; therefore under Q

YtITt—l ~ NIG (5—,: ’O-tz/aeglﬁtlo-tz)
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