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摘  要 

全球人口已經邁入高齡化社會，老年人口比例逐年攀升之已經是不可擋的趨

勢，不少退休的老人無子女奉養，身邊只有房子而無錢過生活。因此在英美等國

市場上近幾年發展出一種為老年人退休生活融資的工具─反向抵押貸款(Reverse 

Mortgage)。反向抵押貸款是指房屋所有權人達到一定年齡以後，將房屋抵押給銀

行或保險公司而仍保有房屋之所有權，再由銀行或保險公司支付一定金額的養老

金給申請人，直到申請人去世，其抵押的房屋就歸銀行或保險公司所有，而在貸

款期間，並不需償還任何金錢予貸款人，也就是一種「以房養老」的觀念。反向

抵押貸款的貸款價值取決於借款人的年齡，預期貸款利率，和房屋的價值。房屋

價值是影響借貸總金額的最大因素，我們所使用的美國房價資料顯示房價的報酬

率並非常態且有波動聚集的現象。在本文中，我們將利用 GARCH 模型和 Normal 

Inverse Gaussian 分配建構房價的隨機過程，並經由 Duan(1995)所提出的局部風險

中立評價法(LRNVR)和 Conditional Esscher Transform 轉換到風險中立測度的

NIG-GARCH 模型，最後再利用 Lee-Carter(1992)隨機死亡率模型計算反向抵押貸

款之公平保費和最大可貸乘數。 

關鍵字:反向抵押貸款、非常態、NIG-GARCH、LRNVR、 Esscher Transform 
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ABSTRACT 

 
Today Life expectancy is getting longer globally. How to fund the retirement asset 

has become an important issue for the individual. To solve the problem of cash poor and 

equity rich for older persons, reverse mortgage has been introduced in developing 

countries such the U.S., the U.K. and Australia. Reverse mortgage is a new financial 

product that allows retirees to convert a proportion of the equity in their home into cash 

until they die. The loan value is determined by the borrower's age, the interest rate, and 

the home's value. The earlier models also assume house price returns follow normal 

distribution. Unfortunately, house price returns in our study are potentially non-normal. 

In this paper, we want to construct the house price model via GARCH with Normal 

Inverse Gaussian distribution (NIG-GARCH) option pricing model via local risk-neutral 

valuation relationship (LRNVR), conditional Esscher transform and mortality rates 

follows Lee-Carter (1992) model.  

 

Keyword : reverse mortgage、NIG-GARCH、non-normal、LRNVR、Esscher transform 
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1 Introduction 

Today in many countries around the globe, life expectancy from birth is well over 80 

years. In 1989, after the Department of Housing and Urban Development (HUD) 

introduced the Home Equity Conversion Mortgage (HECM) program, reverse mortgages 

became widely available in the United States. A reverse mortgage is a new financial 

product that allows retirees to convert a proportion of the equity in their home into cash 

until they die. Homeowners 62 and older who have paid off their mortgages or have only 

small mortgage balances remaining are eligible to participate in HUD's reverse mortgage 

program.  

A reverse mortgage is a loan against the equity in your home that you don‟t need to 

pay back for as long as you live in the home. Thus, the reverse mortgage program enables 

seniors that may be "real estate rich and cash poor" to unlock the financial potential in 

their homes, and their homes work for them. In general, the reverse mortgage does not 

become payable until the senior homeowner no longer occupies the property as his or her 

primary residence. Homeowners can receive payments in a lump sum, annuity income, on 

a monthly basis (for a fixed term or for as long as they live in the home), or on an 

occasional basis as a line of credit. Homeowners whose circumstances change can 

restructure their payment options. The size of reverse mortgage loans is determined by 

the borrower's age, the interest rate, and the home's value. 

In order to protect lenders of reverse mortgages from possible losses, the Federal 

Housing Administration (FHA), which is one part of HUD‟s Office of Housing, which is 

charges insurances premiums from borrowers, and pays insurance claims to lenders if the 

loan balance exceeds the home equity value. That is, according to the actuarial 

equivalence principle, the present value of expected premiums should be equal to the 

present value of expected losses. 
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Over the past two decades, most of the existing literature on risk modeling in the 

HECM program for pricing insurance premium. Szymanoski (1994) provided the method 

of building actuarial model of HECM. Tse (1995b) incorporate the different risks when 

modeling interest rates via Cox-Ingersoll-Ross (1985) model. Rodda, Lam, and Youn 

(2004) analyzed the HECM program using stochastic models of interest rates and housing 

prices and a new model of termination rates. Chia and Tsui (2004) conducted research of 

reverse mortgages for Singaporeans. Ma, Kim and Lew (2006; 2007) using stochastic 

models to estimating reverse mortgage insurer‟s risk and confirmed that the present 

values of expected losses were very sensitive to the processes of housing prices and 

interest rates. 

However, the loan balance depends not only on the age and sex of the homeowners, 

but also on the appraised value of the property, the projected rate of house price 

appreciation and the levels of interest rates. The most important factor in the size of 

reverse mortgage loan is the value of home. As a result, it‟s important to understand how 

the fluctuation of home prices affect reverse mortgage financing, so that borrowers can 

make an optimal decision. Empirical work by Kutty (1998) indicates that the use of home 

equity conversion mortgage products could possibly raise about 29% of the poor elderly 

homeowners in the US above the poverty line. In order to model the house price risk, 

Szymanoski (1994), Ma, et al. (2007) and Valdez, et al. (2007) assume house prices are 

driven by a geometric Brownian motion. However, the dynamics of house prices, like 

those of any asset, are vital to understand for proper risk and portfolio management. 

Volatility is a key aspect of such dynamics. Crawford and Fratantoni (2003), Dolde and 

Tirtiroglu (1997), Miller and Peng (2006) have investigated whether house price 

volatility is time-varying; that is, house prices exhibit the volatility clustering or GARCH 

(generalized autoregressive conditional heteroskedasticity) effects, such as those for 

stocks and bonds. Chen, et al. (2010) propose a generalized Lee-Carter model with 

permanent jump effects to fit the actually mortality data, and model the house price index 
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via an ARMA-GARCH (Autoregressive moving average - generalized autoregressive 

conditional heteroskedasticity) process and employ the conditional Esscher transform to 

price the non-recourse provision of reverse mortgages. Therefore, we follow Chen, et al. 

(2010) works by using an ARMA-GARCH model to fit house price returns.  

A major difference between the cash flows of a traditional home purchase, or 

forward, mortgage and a reverse mortgage is in the pattern of equity and debt over time. 

Reverse mortgages loan balance grows due to principal advances, interest accruals, and 

other loan charges over the life of the loan. The key risk factors affecting the cash flows 

and pricing of HECM insurance, are (1) borrower mortality rates and voluntary loan 

terminations, which determine the timing of lump sum or other types repayments; If a 

borrower lives a longer time than the expected lifespan that may lead the loan balance 

above the sale proceed of the property. In other words, lenders of reverse mortgages are 

faced with longevity risk. (2) Interest rate changes, which affect the rate at which the debt 

rises; Reverse mortgages can generally be categorized as either fixed-rate or variable-rate. 

Fixed-rate reverse mortgages accrue interest at the same (fixed) rate for their entire 

duration, whereas the rate associated with variable rate mortgages rises and falls in 

accordance with a stated benchmark rate, such as the 1 year T-bill, 1-year LIBOR, and 

other obscure rate indexes. The rise of interest rates increases the possibility of 

non-repayment when the loan eventually terminates. In this study, we choose a fixed 

interest rate with a risk adjustment. (3) The future property values, which affects the net 

proceeds from a sale. If the house price grows at a lower rate than expected, the loan 

balance may exceed the home value. Lenders may suffer from the losses.  

The difference between interest rate risk and house price risk are that the interest rate 

risk could not be diversified, while the house price risk can be partially diversified by 

holding a large portfolio of loans across areas. Therefore, we will focus on house price 

risk. 
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In general, almost all of previous studies ignore longevity risk. We employ 

Lee-Carter (1992) model to model the mortality rates for pricing the present value of 

claim losses and calculating mortgage insurance premiums. Moreover, it is well known 

that house price returns (quarterly) empirical distributions are closer to the Gaussian case. 

Unfortunately, house price returns (monthly) in our study are potentially non-Gaussian.  

In this paper, we want to construct the house price model via ARMA-GARCH with 

Normal Inverse Gaussian distribution (ARMA-GARCH-NIG) option pricing model via 

local risk-neutral valuation relationship (LRNVR) and conditional Esscher transform. 

Therefore, the proposed method proves to play an important role in pricing reverse 

mortgage. 

The remainder of this paper is organized as follows. In Section 2, we introduce the 

reverse mortgage pricing framework. Section 0 model the longevity risk via Lee-Carter 

model in the reverse mortgage. Modeling the house price risk and introduce the normal 

inverse Gaussian distribution in section 3. In section 5, we introduce the LRNVR and the 

conditional Esscher transform to in order to valuation. Section 6 use empirical data to 

show the result of this analysis. The final section concludes this study. 
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2 Pricing Framework for Reverse Mortgage 

This section introduces the discussion of how to price a lump sum reverse mortgage. 

Chen, et al. (2010) provided a pricing framework and show the HECM loan is a 

non-recourse debt and Li, et al. (2009) also show the reverse mortgage is a 

no-negative-equity-guarantee.  

2.1 Non-Recourse Provision  

In Chen, et al. (2010), when the loan terminates, if the net proceed from the sale of 

the property is sufficient to pay the outstanding loan balance, the remaining cash usually 

belongs to the borrower or his/her beneficiaries. If the sale process is not enough to cover 

the loan balance, the non-recourse provision prevents the lender from pursuing other 

assets belonging to the borrower, apart from the house. 

Denote    is the outstanding balance of the loan and    is the house price at time t.  

If the loan is due at time t, the borrower pays    if      , and    if      , under 

the non-recourse provision. Therefore, we can define the insurance company claim loss 

function at the time t as follows: 

                     ( 2-1) 

where k is the transaction cost of percent of the property value. The claim loss function 

can be expressed as a European exchange options which can changes the loan outstanding 

balance    for the sale property value        . This non-recourse provision can be 

replicated through a series of European exchange options with different times to maturity. 

At maturity, the house value is 

      
   

   
    

( 2-2) 
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and the loan balance is 

            
   ( 2-3) 

where    is current house price,    is the monthly log return of house price index,     

is the upfront mortgage insurance premium,    is initial loan amount, and c is a fixed 

annual contract rate
1
 charged on the mortgage loan. Moreover, the symbol     is used 

to denote a life-age-x and the future lifetime of     is denoted by     . To make 

probability statements about     , we use the notations 

                                             ( 2-4) 

                            ( 2-5) 

The symbol     can be interpreted as the probability that an individual     will die 

within t years. On the other hand,     can be interpreted as the probability that     

will attain age    . If    , convention permits us to omit the prefix in the symbol 

defined in ( 2-4) and ( 2-5), and we have  

                                   

                                           

Note that if     will survive t years and die within the following year, the probability is 

                        ( 2-6) 

Following the Chen, et al. (2010), we also assume all home exits occur in the 

mid-year and the average delay in time from the point of home exit until the actual sale of 

the property which we set half-year. Let ω be the highest age, we could determine the 

present value of total expected claim losses on a cohort group aged x as follows:  

                                
     
     ( 2-7) 

where EQ denotes the expectation under the risk-adjusted measure Q,          is 

                                                        
1 Total Interest Rate charged to a reverse mortgage is the Margin + Index + Mortgage Insurance of .50%. 
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defined in ( 2-6),          is the discount factor with risk-free interest rate r and      

is defined in ( 2-1). 

2.2 Mortgage Insurance Premiums 

In order to protect lenders from possible losses if non-repayment occurs, as well as 

to guarantee borrowers receiving monthly payments if lenders default on the loans, 

HUD provides mortgage insurance for the HECM program. Two insurance options are 

available for lenders to choose from: the assignment option and the shared premium 

option. However, none of the lenders chooses the shared premium option because 

Fannie Mae does not purchase these loans. With the assignment option, FHA collects all 

the insurance premiums and the lender is allowed to assign the loan to FHA when the 

loan balance equals the adjusted property value. FHA takes over the HECM loan and 

pays an insurance claim to the lender covering her losses. By choosing this option, 

lenders are effectively shifting the collateral risk to HUD. 

The mortgage insurance premiums (MIP) are paid by borrowers and include an 

upfront mortgage insurance premium (   ) and a periodic mortgage insurance premium 

according to the annual rate of    of the outstanding loan balances. Mathematically, 

the present value of mortgage insurance premium of reverse mortgages can be calculated 

as 

                   
     
            ( 2-8) 

2.3 Loan to Value Ratio 

The loan-to-value ratio (LTV ratio) is a common number that is used in calculating 

mortgage loan eligibility. In fact, the loan to value ratio is one of the most important 

things that a lender is going to look at before approving borrower for a mortgage. The 
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loan-to-value ratio is a number that lenders use to compare how much the property is 

worth to the loan value against it. They are going to look at how much money is owed 

against a property and how much money that property is actually worth. By comparing 

these two numbers against each other, they can accurately gauge the amount of risk that 

will be involved with doing a loan. The lower the loan-to-value ratio, the more the lender 

is going to like the loan. This means that if borrowers need to borrow significantly less 

money than what a property is worth, they odds of getting approved increase 

dramatically.  

The LTV ratio is calculated by dividing the loan amount of a property by the market 

value and is expressed as a percentage. Mathematically, the initial loan amount can be 

expressed 

          ( 2-9) 

Substituting ( 2-9) into ( 2-7) and ( 2-8), we can obtain 

                                               
   

 0   +1     ) 0  =112 +1  ,0)] 
(2-10) 

                     
     
                    

     (2-11) 

Assume that the macro longevity risk is independent from the financial risks and the 

change of measure from real world measure to risk-neutral measure does not affect the 

marginal distribution of the remaining lifetime. Applying the actuarial equivalence 

principle (APV), we could determine the fair LTV ratio via (2-10) = (2-11).   
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3 Modeling Longevity Dynamics 

The earlier HECM models use static mortality tables and therefore fail to capture 

the dynamics of mortality over time. In addition, they do not model longevity risks. On 

the other hand, an unexpected mortality improvement will increase the life expectancy, 

and thereby increase both the term and the amount of the outstanding loan balance. 

Recently a number of approaches have been developed for forecasting mortality. These 

methods are taken into account to describe the betterments in the mortality trend and to 

project survival tables. A recent paper, Cairns, et al. (2007), examined the empirical fits 

of eight different stochastic mortality models. Note that models M1 to M3 can be 

described as belonging to the family of generalized Lee-Carter (1992) models and models 

M5 to M8 can be described as members of the family of generalized CBD (2006) models. 

Cairns, et al. (2008a), then examined the „goodness of fit‟ of the remaining six models by 

analyzing the statistical properties of their various residual series. Therefore, in this 

section we incorporate the classic Lee-Carter (1992) model in order to model the 

longevity and adverse mortality risks more accurately. 

Stochastic mortality models either model the central mortality rate or the initial 

mortality rate (Coughlan, Epstein, Sinha, & Honig, 2007). The central mortality rate      

is defined as: 

      
    

    
 ( 3-1) 

where      is the actual total number of deaths at time t , and      is the population in age 

group x at time t. The initial mortality rate    is the probability that a person aged x dies 

within the next year. The different mortality measures are linked by the following 

approximation: 

             ( 3-2) 
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3.1 The Lee-Carter Model 

Lee and Carter (1992) base their model on the insight that age-specific death rates in 

the United States quite accurately follow a common exponential trend over the last 

decades, and propose the following parsimonious parameterization:  

                    ( 3-3) 

where      is the central death rate at age x in year t,    coefficients describe the 

average shape of the age profile, and the    coefficients describe the pattern of 

deviations from this age profile when the parameter    varies. Note that all variables 

on the right side of the model are unobservable. Therefore, the Lee-Carter model cannot 

be fitted by the ordinary least square (OLS) approach. In addition, this model is 

obviously over-parameterized. Lee and Carter (1992) impose the following 

normalization conditions to obtain a unique solution:  

       and        ( 3-4) 

Then    becomes the average value of        over time, i.e.,  

    
 

 
    

         ( 3-5) 

where T is the length of the time series of mortality data. An important aspect of stochastic 

mortality models is the quality of the fit of the model to historical mortality data. We 

use the U.S. mortality rate data from the data of 1950 to 2006 and generate yearly 

mortality rate of age 60 and above to age 99, both male and female. The data can be 

obtained from human mortality database
2
. 

                                                        
2 Source: http://www.mortality.org/ 

http://www.mortality.org/
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3.2 Fitting the Lee-Carter model 

The estimation is completed in two steps according to Lee and Carter (1992). In the 

first step singular value decomposition (SVD) of the matrix is used to obtain estimates 

for   , (x = 1, 2,…, ω), and    (t = 1, 2,..., T). In the second step the time-series evolution 

of    is recalculated based on the actual number of deaths in year t. Brouhns et al. (2002) 

described a fitting methodology for the Lee-Carter model based on a Poisson model. 

The main advantage of this is that it accounts for heteroskedasticity of the mortality data 

for different ages. Therefore, the number of deaths is modeled using the Poisson model, 

implying: 

                       ( 3-6) 

The parameter set ∅ is fitted with maximum likelihood estimation, where the 

log-likelihood function of model ( 3-6) is given by:  

  ∅                        ∅   

   

          ∅            (3-7) 

We used the R-code of the software package ''Lifemetrics'' as a basis for fitting 

(3-7).
3
 Therefore, we call the corresponding R function passing in vectors and arrays. 

The fitting procedure will print in the R console the values of the log likelihood which is 

being maximized during the fitting process. The result of parameter estimates for the 

Lee-Carter model is plotted in Figure 3-1 and the fitted death rates for different sex and 

age group is plotted in Figure 3-2. The    coefficients, as noted, are just the average 

values of the logs of the death rates. Not surprisingly, the male coefficients lie above the 

female at all ages, reflecting the fact that mortality was higher, on average, from 1950 to 

                                                        
3
 Lifemetrics is an (open source) toolkit for measuring and managing longevity and mortality risk, 

designed by J.P. Morgan. www.lifemetrics.com 

http://www.lifemetrics.com/
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2006. The    coefficients describe the relative sensitivity of death rates to variation in 

the    parameter. The male coefficients above the female before age 75, reflecting the 

fact that the male mortality improvement will increase than female before age 75. On 

the other hand, the female coefficients above the male after age 75.  It can be seen that 

the younger the age, the greater its sensitivity to variation in the    parameters. The 

exponential rate of change of an age group‟s mortality is proportional to the    values: 

                    . If    declines linearly with time, then        will be 

constant and each      will decline at its own constant exponential rate. 

 

Figure 3-1 Parameters Estimated by Lee-Carter Model 

The next step is to model    as a stochastic time series process. This is done using 

standard Box-Jenkins procedures. In most applications so far,    is well-modeled as a 

random walk with drift: 

             ( 3-8) 

where d is a constant and    is a normally distributed error term with zero mean.  
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Figure 3-2 Fitted death rates for age group 60, 65, 70 and 75.  

 

Figure 3-3 Fitted death rates for age group 80, 85, 90 and 95.  
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4 Modeling Housing Price Dynamics 

The future property values which affects the net proceeds from a sale. If the house 

price grows at a lower rate than expected, the loan balance may exceed the home value. 

Lenders may suffer from the losses. 

4.1 Empirical Investigation for Housing Price Data 

The house price data is published by Fannie Mae (Federal National Mortgage 

Association) and Freddie Mac (Federal Home Loan Mortgage Corporation). The indexes 

are built repeat-sales weighted averages. This methodology collects data on single-family 

home re-sales by capturing repeat sale prices to calculate price changes. The repeat sales 

method was first proposed by Bailey, Muth, and Nourse (1963), and successful 

applications by Case and Shiller (1989; 1987). Case and Shiller (1987) extended the basic 

approach by proposing the use of generalized least squares to account for heteroscedastic 

sampling errors whose variances were assumed to be proportional to the length of time 

between repeat transactions. 

The key difference between FHFA Home Price Index and S&P Case-Shiller house 

price indices is the S&P Case-Shiller indices are not limited to conforming loans (they 

include higher-priced homes). Also, they use actual sale prices instead of appraisals when 

calculating price changes. For this reason, we compare data from the FHFA 

purchase-only home price index with data from the S&P Case-Shiller Indices. The FHFA 

monthly House Price Index is calculated using purchase-only houses backed by Fannie 

Mae or Freddie Mac guaranteed mortgages. We have included data from the FHFA 

Purchase-Only Home Price Index in Figure 4-1 for relative comparison.  In order to 

compare the Case-Shiller and FHFA data, we rescaled the FHFA purchase-only index to 

100 in January 2000, so that both the FHFA and S&P Case-Shiller would have the same 
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scale in this chart. In particular, the Case-Shiller data show a more decline in house prices 

from their peak that appears to better reflect current housing market conditions. 

 

Figure 4-1 S&P Case-Shiller And FHFA Home Price Indices 

In the analysis below, we choose the S&P Case-Shiller 10-City Composite Home 

Price Index
4
 (CSXR) rather than use the OFHEO data. In particular, the Case and Shiller 

data show a more decline in house prices from their peak that appears to better reflect 

current housing market conditions. As well, the Case and Shiller data are updated more 

frequently than the OFHEO data and thus give a better picture of the state of the housing 

market today. The data range from January 1987 through December 2009.  

Let    denote the monthly house price index. Assume that the one-period 

log-return    for house price index which is defined as                . From 

Figure 4-2 the log return of house price index is obviously not stationary5. Unit root tests 

can be used to determine if trending data should be first differenced on deterministic 

                                                        
4 The S&P/Case-Shiller Home Price Indices measures the residential housing market, tracking changes in 
the value of the residential real estate market in 10 metropolitan regions across the United States. 
Source: http://www.standardandpoors.com/home/en/us/ 
5 The time series      is said stationary if         and                  for all t and any j. A non 

stationary process has time dependent moments, such as deterministic trend terms. 

http://www.standardandpoors.com/home/en/us/


 

16 

 

functions of time to render the data stationary. Two standard procedures, the Augmented 

Dickey-Fuller (ADF) (1984)6 test and Phillips-Perron (PP) (1988) tests were employed in 

this study. The results are exhibited in Table 4-3. Both the ADF statistic and the PP statistic 

in CSXR are higher than the critical values at the significance level of 5%, which means 

that the log return series are not stationary. Therefore, similar tests were also performed to 

first difference of CSXR log return (           ). The result shows that the first 

difference of CSXR log return is stationary. 

The summary statistics for     are given in the Table 4-1. Over the whole sample 

we can easy see the kurtosis and skewness of the house price log returns are far from 

normal and it generally appears to follow a non-normal distribution as the Jarque-Bera
7
 

statistic indicates. 

                                                        
6 The testing procedure for the ADF test is                                     , 
where α is a constant, β the coefficient on a time trend and p is the lag order. The unit root test is then 
carried out under the null hypothesis γ = 0 against the alternative hypothesis of γ < 0. Once a value for 
the test statistic DF =           is computed it can be compared to the relevant critical value for the 
Dickey–Fuller Test. If the test statistic is less (this test is non symmetrical so we do not consider an 
absolute value) than (a larger negative) the critical value, then the null hypothesis of γ = 0 is rejected and 
no unit root is present. 
7 In statistics, the Jarque–Bera test is a goodness-of-fit measure of departure from normality, based on 
the sample kurtosis and skewness. The test statistic JB is defined as                  , where n is 
the number of observations, S is the sample skewness, and K is the sample kurtosis. The statistic JB has 
an asymptotic chi-square distribution with two degrees of freedom and can be used to test the null 
hypothesis that the data are from a normal distribution. 

 

Figure 4-2 Log return of S&P Case-Shiller 10-City Composite Home Price Index 
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Table 4-1 Descriptive statistics of     

Data Mean Sd Min Max Skew Kurtosis 

    -2.80e-05 0.00219 -0.01067 0.01087 -0.06499 5.64095 

Table 4-2 Jarque–Bera test for     

Data Statistic Degree of freedom p-value 

    371.6913 2 < 2.2e-16 

Table 4-3 ADF and PP test 

Data 
Augmented Dickey-Fuller test Phillips–Perron Unit Root Test 

stat. lag p-value stat. lag p-value 

   -2.1799 6 0.5002 -12.0582 5 0.4339 

    -6.1681 6 < 0.01 -252.0607 5 <0.01 

4.2 ARMA Models with GARCH Errors 

Autoregressive moving average (ARMA) models are widely used in all areas of 

economics and finance, and properties of these models are well understood. 

                  
 
           

 
        (4-1) 

where     is the first difference of CSXR log return at time t, const is the constant,    

is the i th previous log-return of     ,and    is j th previous innovation of   . Note 

 

Figure 4-3 First Difference of S&P Case-Shiller Home Price Index Log Return  
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that    
 
     . The innovations      are assumed to be normally distributed with 

zero mean and constant variance. We therefore plot the sample autocorrelation 

coefficients (ACF) and partial autocorrelation coefficients (PACF) of     in Figure 4-4. 

The sample ACFs are almost zero after two lag, and the sample PACFs die off after 

four lags. According to the Box and Jenkins (1976) approach, Akaike (AIC) and 

Bayesian (BIC) information criterion can be used as a guide for the appropriate lag 

order selection (See Table 4-4). After several trials, we found that an ARMA (3,2) with 

zero mean would be appropriate for the ( 4-4). In addition, the AIC reach the lowest 

values and the BIC value is the lowest except the ARMA(2,2) . 

Table 4-4 Candidate ARMA specification 

Model AIC BIC 

ARIMA(2,0,0) with zero mean -2583.34 -2572.5 

ARIMA(3,0,0) with zero mean -2585.25 -2570.8 

ARIMA(4,0,0) with zero mean -2592.22 -2574.15 

ARIMA(2,0,2) with zero mean -2593.61 -2575.54 

ARIMA(3,0,2) with zero mean -2596.7 -2575.02 

ARIMA(4,0,2) with zero mean -2595.28 -2569.99 

 

Figure 4-4 ACF and PACF for the First Difference of CSXR log return 
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After fitting a candidate ARMA specification, we should check that there are no 

autocorrelations. Figure 4-5 shows that all the ACFs are within the 95% confidence 

interval, but the ACFs of the squared innovations are not, which indicates that the 

existence of AutoRegressive Conditional Heteroskedastic (ARCH) effects. 

The linear ARIMA-type models assume homeskedasticity, however, it is not 

uncommon that many financial time series is still conditionally heteroscedastic after 

stationary transformation. The AutoRegressive Conditional Heteroskedastic (ARCH) 

model of Engle (1982) was the first formal model which successful addressed the 

problem of heteroskedastic. Let    denote the error terms and assume that        , 

where           

  
        

 
       

   ( 4-2) 

where                    

Although the ARCH model is simple, it often requires many parameters to 

adequately describe the volatility process of an asset return. A more parsimonious model 

proposed by Bollerslev (1986) called GARCH model. In that case, the GARCH(p, q) 

 

Figure 4-5 ACF for ARIMA(3,0,2) standardized residuals 
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model is 

  
        

 
       

          
  

     ( 4-3) 

where                      
 
       

 
       

The ARCH LM test
8
 proposed by Engle (1982) was undertaken to investigate 

whether there is volatility clustering in the housing price series. It is important to perform 

a formal LM test prior to employing a GARCH model. If there are no ARCH effects in 

the residuals, then the ARCH model is unnecessary. The result of LM tests is depicted in 

Table 4-5.  

Table 4-5 ARCH LM test 

Data stat. lag p-value 

    126.1215 12 < 2.2e-16 

Apparently, positive and statistic significant LM values are observed for both series. 

This clearly suggests rejecting the null hypothesis of homoskedascity, indicating that 

volatility clustering effects are evident in these series. The strong evidence of volatility 

clustering also denotes the appropriateness of employing a GARCH model in analyze the 

volatility spillover in housing market. Once the ARCH effects are determined, an analysis 

of the housing volatility determinants is conducted that exhibits volatility clustering. 

The differences between the types of models tested here relate to the specification of 

the mean and variance of the series. ARMA models have both a constant mean and a 

constant variance; GARCH models have a constant mean, but time-varying variance. 

Clearly, these models can be combined, for example, ARMA-GARCH models. 

                                                        
8 This procedure is as follows: Estimate the best fitting AR(q) model and obtain the squares of the error 

   
             

           
  . Under the null hypothesis that there are no ARCH effects: 

            , the test statistic is LM = T∙  ~      where T is the sample size and R
2
 is 

computed from the regression    
             

           
  using estimated residuals. 
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According to previous investigation, we propose the ARMA-GARCH model to price 

reverse mortgage. In most applications, GARCH(1,1) is enough to capture the ARCH 

effects. We keep ARMA without the constant term for the conditional mean, and use 

GARCH(1,1) to model the conditional variance. Under ARMA-GARCH model setting, 

the dynamics of house price return process is 

              
 
           

 
        ( 4-4)  

       ,              ( 4-5)  

  
        

 
       

          
  

     ( 4-6)  

where     is the first difference of    and    is an arbitrary distribution of 

parameters. While the generalized ARMA-GARCH framework can be used with a host 

of conditional distributions such as the generalized error distribution or Student‟s 

t-distribution. 

4.3 The Normal Inverse Gaussian distribution 

Traditional HECM model assumes that the house price returns empirical 

distributions are closer to the normal case (like stock market). Unfortunately, house price 

log return in our study is potentially non-normal. The recently introduced Generalized 

Hyperbolic distributions by Barndorff-Nielsen (1977) have been suggested as a model for 

financial price processes. Barndorff (1995), Eberlein and Prause (2000) shows that their 

exponentially decreasing tails seem to fit the statistical behavior of asset returns. The 

generalized hyperbolic distribution is a continuous probability distribution defined as the 

normal variance-mean mixture where the mixing distribution is the generalized inverse 

Gaussian distribution. Its probability density function is given in terms of modified 

Bessel function of the third kind. The generalized hyperbolic distribution is well-used in 

economics, with particular application in the fields of modeling financial markets and 
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risk management, due to its semi-heavy tails.  

The family of NIG distributions is a special case of the generalized hyperbolic 

distributions. Due to their specific characteristics, NIG distributions are very interesting 

for applications in finance - they are a generally flexible four parameter distribution 

family that can produce fat tails and skewness, the class is convolution stable under 

certain conditions and the cumulative distribution function, density and inverse 

distribution functions can still be computed sufficiently fast.  

The normal inverse Gaussian distribution is a mixture of normal and inverse 

Gaussian distributions.  

A non-negative random variable X has an Inverse Gaussian (IG) distribution with 

parameters     and     if its density function is of the form: 

           
 

   
          

       

   
  , if x>0 ( 4-7) 

We can write          . 

A random variable   follows a Normal Inverse Gaussian (NIG) distribution with 

parameters       and   if  

                                          ( 4-8) 

                               with          ( 4-9) 

with parameters satisfying the following conditions:         and    . We then 

write               , where   is tail heaviness parameter,   asymmetry parameter, 

 is a location parameter and   is a scale parameter.  

The density of a random variable                

       
 

 
         

                   

               
     (4-10) 



 

23 

 

where       
 

 
      

 

 
           

 

 
 is the modified Bessel function of the 

third kind. While the density function of NIG distribution is quite complicated, its 

moment generating function has a simple form. The NIG moment generating function 

             is given by  

                           (4-11) 

We use another parameterization for NIG distribution suggested by Lars Forsberg (2002), 

which is more intuitive in the context of conditional variance modeling and have scale 

invariant properties for parameters except the scaling and location parameters. Let 

     ,                     , then 

        
   

    
                        

                    

              
 (4-12) 

where     ,    ,        and      . Under this parameterization the moment 

generating function becomes 

                                        
 

   (4-13)  

The first four central moments can be obtained by the cumulant generating function 

        

             
     

         (4-14) 

       
  

       
     (4-15) 

         
   

          
      (4-16) 

          
        

         
  (4-17) 

Note that if     , the variance is represented by parameter,   , which might be more 
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intuitive in the context of volatility modeling.  

The main properties of the NIG distribution class are the scaling property 

                                               (4-18)  

and the closure under convolution for independent random variables    and     

                                      

                             (4-19) 

This means that if we use this parameterization in a conditional variance modeling 

framework, we can fit the model, standardize the observed returns using the conditional 

standard deviation, and the parameters of the distribution for the standardized returns will 

be constant. 

From Figure 4-6, we can see that NIG distribution provides a significant 

improvement with respect to the normal distribution. Note that the fitted NIG 

distributions provides skewness parameter near close to 0, thus in order to make the 

model fitting more tractable, an assigned symmetric NIG distribution (   ). 

 

Figure 4-6 Histogram of the first difference of CSXR log return 
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4.4 ARMA-GARCH Models with NIG Distribution 

In section (3.2), we fit     series with a conditional mean model ARMA (3, 2) 

and a conditional variance model GARCH (1,1); moreover, we suggest that to use NIG 

distribution rather than use Normal distribution which gives a better fit to our data set in 

section (3.3). Therefore, the ARMA (3, 2)-GARCH(1,1) model with symmetric NIG 

distribution is : 

            
 
           

 
        (4-20) 

       ,                       (4-21) 

  
           

        
  (4-22) 

4.5 Parameters Estimation 

In order to estimate the ARMA-GARCH model with NIG innovations, we estimate 

all parameters by two stages. Quasi Maximum Likelihood Estimation (QMLE) is first 

used to determine the parameters                           
of the GARCH model. 

At the second stage, since we exactly know the form of the density function of a NIG 

distribution, we perform use a maximum likelihood estimation to estimate the unknown 

parameter    using the residuals obtained at the previous stage. Note that the parameters 

must be satisfies following constraints: 

0 1 1 1 10,  1,  0,  0,  0,  and 1 ii
            

 

Parameter estimates and the corresponding statistics are reported in Table 4-6. All 

the coefficients in both series are highly significant; moreover, Thereafter, we use the 

likelihood-ratio test (LR test) to test Normal distribution against symmetric Normal 

Inverse Gaussian distribution, and the NIG distribution is provides a significant 
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improvement with respect to the Normal distribution. We also perform Q-Q Plot in 

Figure 4-7, and the NIG distribution also shows significant improvement with respect to 

the Normal distribution. In this empirical work, we suggest that we perform to use NIG 

distribution rather than use Normal distribution which gives a better fit to our data set. We 

may thus conclude that the ARMA-GARCH-NIG model provides an important extension 

to the ARMA-GARCH-Normal model when it comes to option pricing. 

Table 4-7 show the Ljung–Box test
9
 on the standardized residuals fails to reject the null 

hypothesis that there is no autocorrelation up to 20 lags. The Ljung–Box test on the 

squared standardized innovations concluded that conditional heteroskedasticity has 

disappeared.  

Table 4-6 Parameter estimates for the ARMA (3, 2)-GARCH (1, 1)-NIG model 

  Estimate Std. Error t value Pr(>|t|) 

   0.869986 0.120335 7.229687 4.84E-13 

   -0.36639 0.179585 -2.04019 0.041332 

   -0.25465 0.07354 -3.46277 0.000535 

   -0.87659 0.117124 -7.4843 7.19E-14 

   0.592712 0.172343 3.439147 0.000584 

   2.93E-08 1.46E-08 2.002815 0.045197 

   0.072242 0.024443 2.955457 0.003122 

   0.927758 0.016519 56.16197 0.000000 

   1.20118  0.245527  4.892252  9.968E-07 

Thereafter, we use the likelihood-ratio test (LR test) to test Normal distribution 

against symmetric Normal Inverse Gaussian distribution, and the NIG distribution is 

provides a significant improvement with respect to the Normal distribution. We also 

perform Q-Q Plot in Figure 4-7, and the NIG distribution also shows significant 

improvement with respect to the Normal distribution. In this empirical work, we suggest 

                                                        
9 The Ljung–Box test is a type of statistical test of whether any of a group of autocorrelations of a time 

series are different from zero. The test statistic is             
        

   , where n is the sample 

size,     is the sample autocorrelation at lag j, and h is the number of lags being tested. For significance 

level α, the critical region for rejection of the hypothesis of randomness is rejected if Q>      
 , where 

      
  is the α-quantile of the chi-square distribution with h degrees of freedom. 
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that we perform to use NIG distribution rather than use Normal distribution which gives a 

better fit to our data set. We may thus conclude that the ARMA-GARCH-NIG model 

provides an important extension to the ARMA-GARCH-Normal model when it comes to 

option pricing. 

Table 4-7 Ljung–Box test for the ARMA (3, 2)-GARCH (1, 1)-NIG model 

Standardized Residuals Standardized Squared Residuals 

Lag statistic p-value Lag statistic p-value 

10 0.3802 1.0000 10 7.102 0.7157 

15 5.2511 0.9898 15 12.324 0.6544 

20 15.7818 0.7301 20 19.340 0.4999 

Table 4-8 LR test for ARMA-GARCH-N model against ARMA-GARCH-NIG model 

 

  

Figure 4-7 Q-Q Plot for the standardized residuals of ARMA-GARCH-type model 

  

Statistic Degree of freedom p-value 

0.001456959 1 0.0003012175 
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5 Risk Neutral Valuation 

Recall the reverse mortgage can be writing a series of European exchange options 

with different times to maturity. For pricing reverse mortgage, we require a risk-neutrality 

measure Q which is equivalent to the real world measure P, such that the discounted asset 

price process is a martingale. 

5.1 Locally Risk Neutral Valuation Relationship 

Duan (1995) provided the first rigorous theoretical foundation for option pricing 

using this powerful econometric model. He introduced us to the Locally Risk Neutral 

Valuation Relationship (LRNVR). The generalized LRNVR incorporated the condition 

that the conditional variances of the log-returns remain unchanged under a change from 

the real world measure to the risk neutral measure. A pricing measure Q is said to satisfy 

the LRNVR if measures P and Q are mutually absolutely continuous and measure Q must 

also satisfy the following requirements: The following equation must hold for all 0 ≤ t ≤ 

T 

                      ( 5-1) 

                                                ( 5-2) 

where g is rental yield
10

. Equation ( 5-2) means conditional variances are unaffected by 

the change of measure. Under the LRNVR, the one-period ahead conditional variance, is 

invariant with respect to a change to the risk-neutral measure.  

                                                        
10 In the risk-neutral world, the expected total return from any asset is the risk-free rate, r. Since the total 

return on the house price index is the sum of the capital return and rental income (net of insurance and 

maintenance costs) from the portfolio of properties from which the index is constructed, the expected 

return on the house price index (i.e., the capital value return) in the risk-neutral world is r less the rental 

yield g. 



 

29 

 

5.2 Conditional Esscher Transform 

The Esscher transform was introduced by Esscher (1932) and has become a tool in 

actuarial science. More recently, it has been applied to pricing financial and insurance 

securities in an incomplete market. Gerber and Shiu (1994) creat an equivalent martingale 

measure by the Esscher transform is justified by maximizing the expected power utility of 

an economic agent. Buhlmann, et al. (1996) generalize the Esscher transform to 

stochastic processes and introduce the concept of the conditional Esscher transform. We 

start by giving the definition of the conditional Esscher transform with respect to the 

return process introduced in the last section. Assume             is a stochastic process 

with        , for all        , the conditional moment generating function of the 

return process    evaluated at time t given       under P  is defined as: 

        

                    ( 5-3) 

where z   R . Suppose         

     exist, we define a sequence         with      

and  

     
     

        
     

 
            ( 5-4) 

Buhlmann, et al. (1996) prove         is a martingale. Let     |    , ∀        , 

and     . We define a family of probability measure       
 
        by the following 

conditional Esscher transform:  

      
              

     

        
     

       ( 5-5) 

By the martingale property of        , one can prove that       
          

  

     ∀        . The associated parameter    is called the conditional Esscher 

parameter given
 
    . Let                   

           , we have 
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 ( 5-6) 

        

        
        

       

        

     
 

( 5-7) 

For pricing an option, we construct a martingale measure Q equivalent to P by adopting 

Esscher Transforms. First, choose a sequence of conditional Esscher parameters 

   
  

        by solving the following equation 

              

      
   ∀          ( 5-8) 

then we can define a family of probability measure       
 
       associated 

with    
  

       . According to above result, we have 

      
      

                   ( 5-9) 

Let        
  and    is the house value, we have 

                                                   
    

 
       

                               
  

   
 

  

        
    

 
 
               

        
      

 
 

        
    

 
 

 

                             

      
            

               

then        is a martingale under Q. Then by risk-neutral pricing formula, the price of 

the option V at time t   T is  

                    ( 5-10) 

We call Q a conditional risk neutralized Esscher pricing measure. Sheu and Chuang 

(2006) justify the pricing result justify by solving a dynamic utility maximization 

problem. Siu, Tong and Yang (2004) employ the conditional Esscher transform to price 
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derivatives, assuming the underlying asset returns follow GARCH processes. 

Recall that in Section 4, the discrete time economy we consider is characterized by 

the time series dynamic of the house price process    
  

    
    , and we fit 

            using an ARMA (3, 2)-GARCH(1,1) with innovation NIG distribution 

process, i.e.,  

            
 
           

 
         

where                        and   
           

        
 .  

Let            
 
           

 
   , then     is NIG distributed with mean    and 

variance   
  given the information set     , i.e. 

                       
    ( 5-11)  

Note that    and   
  are not random given the information     . Recall that 

           , we can obtain            . Consequently, 

                       
    ( 5-12) 

under the physical measure P, where             

Under the risk-adjusted measure Q, we can use the condition Esscher transform to obtain 

                  
      

 
       

    ( 5-13) 

where   
 

 is Esscher parameters. (See Appendix A) 

Notice that the Esscher transform moves the skewness parameter by the factor    
      

  

while keeping the other parameters constant. 

On the other hand, the logarithm of house price return under the ARMA (3, 

2)-GARCH(1,1) with innovation normal distribution under the real world measure P is 
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    ( 5-14) 

Therefore, under the risk-neutral measure Q, we can derive the risk-neutral house price 

return process as:  

                
 

 
  

    
    ( 5-15) 

This property states exactly that the dynamics of    under the risk-adjusted 

measure is the same as that under the physical measure, except that the mean is shifted 

by an amount of          
 

 
  

 . 
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6 Numerical Illustrations 

Recall that the present value of total expected claim losses can be expressed as  

                                
     
     ( 6-1) 

where 

                           ( 6-2) 

        
   

       
    

( 6-3) 

              
       ( 6-4) 

We use the following baseline assumptions to illustrate the present value of total 

expected claim losses: 

 The initial house value in here is $300,000, i.e.,            . 

 The risk-free interest rate is 3.78%. It is the 10 year U.S. Treasury rate
11

, which is 

3.85% per annum at 01/02/2010, i.e.,        , compounded continuously. 

 We choose one year constant maturity Treasury rate
12

 of 0.45% plus lender margin 

1.15%
13

 plus mortgage insurance premium 0.5%, which is equal to 2.45% per 

annum, i.e.,        , compounded continuously. 

 Upfront mortgage insurance premium is 2% of house price, i.e.,              

 The transaction cost of selling the house is 6 percent, i.e.      

 The rental yield is 2% per annum, compounded continuously, i.e.,     . 

 The borrower highest attained age      . 

Since the primary goal of this study is to examine the effect on house prices when the 

underlying distribution is skewed and leptokurtic, we will report the pricing results in our 

                                                        
11 Source: https://www.federalreserve.gov/releases/h15/update/ 
12 Source: https://www.federalreserve.gov/releases/h15/update/ 
13 Assume lender’s margin is 150bp. 

https://www.federalreserve.gov/releases/h15/update/
https://www.federalreserve.gov/releases/h15/update/
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model, ARMA-GARCH-NIG, compared to that of the ARMA-GARCH-Normal model 

and the Geometric Brownian Motion (GBM) models. Recall the reverse mortgage can be 

writing a series of European exchange options with different times to maturity. When 

pricing (European) options in a GARCH-style framework, it is common practice to rely 

upon simulation-based valuation approaches. This is due to the fact that, on the one 

hand, the final risk-neutral distribution is not known in closed form, but, on the other 

hand, the discrete nature of the GARCH framework makes simulation based approaches 

straightforward to implement.  

We first simulate the     series for 10,000 paths and transform     to    on 

each path
14

. By applying the pricing framework discussed above, we change the 

probability measure from P to Q on each path of   , and then calculate the value of the 

house value   . According to the housing price index, we can also simulate the    

series based on the GBM model with annual volatility         . The simulation 

results are shown in Table 6-1. The simulation result shows the GBM assumption yields 

lowest housing price. Moreover, the ARMA-GARCH-N model has lower housing price 

than ARMA-GARCH-NIG model. This enables us to calculate an estimate of the 

                .  

Table 6-1 Simulation of housing price by different model with 95% confidence interval 

Time GBM ARMA-GARCH-N ARMA-GARCH-NIG 

10 years 
$358,195 

($309,089, $412,943) 

$360,592 

($331,463, $394,077) 

$361,995 

($333,836, $398,414) 

20 years 
$428,169 

($345,564, $522,669) 

$435,415 

($386,535, 501,041) 

$438,856 

($390,797, $512,439) 

30 years 
$511662 

($390,628, $653,531) 

$526,734 

($454,700, $631,395) 

$533,095 

($459,856, $660,094) 

40 years 
$611,664 

($449,382, $ 804,782) 

$638,169 

($536,216, $808,342) 

$648,416 

($543,617, $852,714) 

 

                                                        

14 In ARMA-GARCH-NIG model, we need to compute   
 
 by solving (A-1). 
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Note that the                  values based on the GBM assumption with 

Black-Scholes formulas:  

   
                    

              ( 6-5) 

where  

                     
  

 
                

and               . 

 In order to obtain         , we fitted the Lee-Carter model in section 3.2, and  

now use the fitted time series model for    to forecast it over the desired time period. 

Figure 6-1 shows past values of    for the U.S. from 1950 to 2006 and their forecasts 

from 2007 to 2050. Note that the estimated values of    over the base period change in 

a linear fashion. The approximate linearity of    in the base period is a great advantage 

from the point of view of forecasting. Long-term extrapolation is always a hazardous 

undertaking, but it is less so when supported in this way by the regularity of change in a 

ninety-year empirical series. 

 

Figure 6-1 Mortality Forecast from 1950–2006 to 2050 with 95% Probability 

Interval 
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The next step is to convert the forecasts of    into forecasts of life table functions, 

given the previously estimated age specific coefficients    and   , using the earlier 

equation for        . Once the implied forecasts of      have been recovered in this 

way, any desired life table function can be calculated. We then construct the dynamic 

complete life table for every year. That is, we calculate      the probability that an 

individual aged     will die in one year at time t, and    , the probability that an 

individual aged   will attain another t years at time 0. 

Finally, the present value of total expected claim losses can be calculated as 

follows: 

       
 

 
                                  

   
     
   

     +1( ),0  

( 6-6) 

where M represents the total number of paths which we set 10,000.  

In addition, the present value of mortgage insurance premium can be calculated as 

follows 

            
 

 
        

 
   

     
               ( 6-7) 

where    is the annual periodic mortgage insurance premium of loan balance, which 

we set 0.5%. 

In theoretical, the present value of total mortgage insurance premiums should be 

equal to the present value of total loss so that we can obtain the fair loan-to-value (LTV) 

ratio by bisection method. Table 6-2 presents simulation results using different models. 

On the basis of the ARMA-GARCH-NIG assumption, the fair LTV ratio ranges 

from 75.36 percent to 80.13 percent of the cash advanced, depending on the gender and 

age of the borrower, and the fair LTV ratio was slightly higher than ARMA-GARCH-N 

model. For all genders and ages, the GBM assumption yields lower fair LTV ratio, 



 

37 

 

indicating that we may underestimate the fair LTV ratio if the classical GBM 

approached is used. 

Table 6-2 Fair Loan to Value Ratio 

Model sex 62 65 70 75 80 85 

GBM 
Male 60.02% 61.17% 63.14% 65.32% 68.34% 71.54% 

Female 59.81% 60.88% 62.69% 64.63% 67.53% 70.89% 

GARCH- 

Normal 

Male 71.91% 72.67% 73.97% 75.61% 77.12% 78.62% 

Female 72.03% 72.62% 73.68% 75.32% 76.93% 78.53% 

GARCH- 

NIG 

Male 75.36% 75.66% 76.24% 77.07% 78.36% 80.13% 

Female 75.87% 76.03% 76.37% 76.97% 78.12% 79.94% 

  

Figure 6-2 Fair Loan-to-Value Ratio 

Moreover, the fair LTV ratio increases as the age at loan origination goes up. This 

is reasonable because other conditions equal, the risk of reverse mortgages ultimately 

depends on when the termination event occurs and for how long the loan has been 

accruing. The elder borrower has a shorter life expectancy, so the lender faces less risk 

and can advance more cash amounts to the borrower. The next step is to calculate the 

mortgage insurance premiums according to Table 6-2, and the results are show in Table 

6-3. 
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Table 6-3 Fair Mortgage Insurance Premiums 

Model sex 62 65 70 75 80 85 

GBM 
Male $22,581  $21,071  $18,561  $16,177  $14,016  $12,072  

Female $24,129  $22,687  $20,182  $17,641  $15,204  $12,929  

GARCH- 

Normal 

Male $25,759 $23,815 $20,649 $17,732 $15,017 $12,657 

Female $27,714 $25,803 $22,589 $19,508 $16,447 $13,655 

GARCH- 

NIG 

Male $26,681 $24,528 $21,087 $17,953 $15,157 $12,781 

Female $28,838 $26,707 $23,180 $19,796 $16,606 $13,789 

At the same age group and the same gender, the fair mortgage insurance premiums 

increase when LTV ratio increase. Although the fair LTV ratio of male slightly higher 

than female, the mortgage insurance premiums female significantly higher than male in 

all assumption housing price models. The male borrower has a shorter life expectancy, 

so the lender faces less risk and can advance charge less premiums to the borrower. For 

the same reason, the elder can be charged less mortgage insurance premiums. Table 6-4 

shows the above comments given LTV ratio = 60% for all ages and genders. 

Table 6-4 Mortgage Insurance Premiums given LTV ratio = 60% 

sex 62 65 70 75 80 85 

Male $ 22,575  $ 20,793  $17,955  $15,372  $13,066  $11,119  

Female $ 24,184  $ 22,453  $19,591  $16,832  $14,207  $11,894  

The mortgage insurance premiums decrease with the age at loan origination. 

Therefore, when the initial age increases, the borrower gets more cash advances, pays 

less insurance premiums, and can spend more money to improve he/her living standard.  

In addition, we defined lender‟s net liability as difference between the present value 

of expected claims and that of expected insurance premiums. Therefore, when loan 

terminates at time t, it means lender‟s net profit if the value of net liability is negative (-) 

while it means insurer‟s net loss if the value of net liability is positive (+). 

In this analysis, we analyzed the case of reverse mortgage male borrower’s age was 

62, LTV ratio was 60% and other parameters are the same as those we use calculate fair 

LTV ratio. Table 6-5 shows these results. We could imagine that the reverse mortgage 
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lender would experience tremendous losses if she suffers the losses from operating 

reverse mortgages due to the features of probability distributions of net liability which 

have a long tales to the right side. In this analysis, we confirmed the mean and VaR 

(Value at Risk) at 95% of confidence levels. 

Table 6-5 Estimating mean and VaR of Net liability 

 GBM ARMA-GARCH-N ARMA-GARCH-NIG 

Mean -$25. -$14,739 -$19,292 

VaR 95% $125 -$14,688 -$19,174 
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7 Conclusion 

We analyze longevity risk, and house price risk in this study. In house price risk, we 

model the S&P Case-Shiller house price indices via ARMA-GARCH-NIG model. In 

longevity risk, we consider the famous class model, Lee-Carter. However, there are other 

risks we need to take into account, such as interest rate risk, and refinancing risk. We 

assume a fixed interest rate for the life of the HECM loans so that we can determine the 

conditional Esscher parameters and create the risk-adjusted probability measure for 

pricing purposes. However, we do not live in a simple world with a flat term structure 

subject only to additive shifts. Therefore, we do need to model the stochastic interest rates 

with a more realistic term structure, for example, the Vasicek (1977) model, CIR (1985) 

model. Moreover, the traditional HECM model assumes that the house price index and 

the interest rate are independent of each other. However, historical data shows significant 

correlations between the change in house price index and the change in interest rates 

(Rodda, et al., 2004). Furthermore, we assume the lender‟s margin is 150 bps; however, 

the lender‟s margin depends on the initial age of the borrowers. Finally, further research 

can model house price return with interest rate risk via copula approach and determine the 

maximum level of lender‟s margin. 
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Appendix A 

If                        
   under physical measure P, then                     

     

  
 
       

   under the risk neutral measure Q via the condition Esscher transform, 

where   
 

 is Esscher parameters. 

Proof: 

        

        
        

       

        

     
 

                      
   

  
 

                  
      

   
 

  

                   
      

 
 
 

  

                  
      

 
        

    

 

  

In order for Q to be an equivalent martingale measure, we need to have: 

             

        
        

       

        

     
 

Therefore,  

                    
   

  

 

             
      

   

 

 (A-1) 

This equation can be solve explicitly by a quadratic form, the solution must satisfies:  
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We can solve this equation by a quadratic form; therefore under Q 

                    
      

 
       

   


