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A new approach to sharpening blurred pictures using the moment-preserving principle is
proposed. The new gray value assigned to each pixel in the desired picture is computed
deterministically in such a way that the moments of the #» X n neighborhood of the pixel are
preserved. The selection of the neighborhood size # depends on the blurring degree of the
picture. The sharpening operation can also be applied iteratively to an input picture to get
better sharpening effect. Experimental results show that the approach is indeed effective for
picture deblurring. © 1988 Academic Press, Inc.

I. INTRODUCTION

Whenever a picture is converted from one form to another, it is degraded in most
cases. Deblurring is often necessary before using the picture because degradation
usually blurs the original picture which is assumed to have been sharp. One
approach to picture deblurring is to determine the blurring function introduced on
the blurred picture, and then to restore the picture using a suitable restoration
algorithm [1]. Another approach to picture sharpening makes no attempt to estimate
the degradation function but directly applies sharpening operations to the picture,
possibly based on certain subjective interpretation of the degradation process [1-3].

Many operators for picture sharpening have been discussed in the literature [1].
The Laplacian operator and the high-emphasis spatial frequency filtering are two
common ones for sharpening blurred and noiseless pictures [1]. Rowe [2] proposed
some nonlinear operators for picture sharpening which make picture details sharper
than the Laplacian can. Lee [3] developed another method to sharpen two-dimen-
sional image arrays, based on image local statistics.

In this paper, we propose a new sharpening method based on the moment-
preserving principle which has also been applied to subpixel edge detection [4] and
moment-preserving thresholding [5]. No attempt is made to estimate the picture
degradation process. The proposed moment-preserving sharpening is directly ap-
plied to an observed picture. And its effectiveness is verified by experimental results.

The method is applied to the picture pixel by pixel. The new gray value assigned
to each pixel in the desired picture is obtained by preserving the first three moments
of the n X n neighborhood of the pixel, under the assumption that there exist only
two or several gray values in the neighborhood. It is found that the sharpening effect
of the method is closely related to the neighborhood size n, as will be illustrated
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2 CHEN AND TSAI

later in the paper. The method can also be applied iteratively to obtain better
sharpening results.

In the remainder of this paper, we first describe the proposed moment-preserving
method for picture sharpening. Some examples are also given to illustrate the
sharpening effect. Iteration of the method is discussed next, with some further
illustrative examples included. Finally, experimental results are shown to support
the feasibility of the proposed method.
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(b) A waveform for the image. (b) A waveform for the blurred image.
F16. 1. An unblurred image. F16. 2. A blurred image of Fig. 1 with a 2-pixel
blurring width.
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(b) A waveform for the sharpened image. (b) A waveform for the sharpened image.

FiG. 3. Sharpening effect on the blurred image FiG. 4. Sharpening effect on the blurred image
of Fig. 2 for n = 3. of Fig. 2 for n = 5.
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II. MOMENT-PRESERVING SHARPENING

A. The Method

Given a blurred image G, let (x, y) be a pixel with gray value g(x, y)in G. Let N
be the n X n neighborhood of pixel (x, y). The ith moment m; of N in G is defined

as

n2
mi=(1/n2) Zgl('xj’ .Y])’ i=1’2)3""’
j=1

where (x;, y;) € N.
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(b) A waveform for the sharpened image.

F1G. 5. Sharpening effect on the blurred image
of Fig. 2 for n = 7.
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(b) A waveform for the sharpened image.

FiGc. 7. Sharpening effect on the blurred
image of Fig. 6 for n = 3.
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(b) A waveform for the blurred image.

F1G. 6. A blurred image of Fig. 1 with a 4-pixel
blurring width.
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(b) A waveform for the sharpened image.

FiG. 8. Sharpening effect on the blurred image
of Fig. 6 for n = §.
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Suppose that N in the original unblurred picture F has only two gray values.
And we regard G as a blurred version of F. The proposed method defines an
operator that, when applied to N in G, generates a bilevel block N’, such that the
first three moments of N in G is preserved in N'. Let h;, h, be the two gray values
in N’, P, be the fraction of pixels with gray value h, in N’, and P, be the fraction
of the other pixels with gray value &, in N’. Then, we can obtain three equalities as
follows:

Pihy + Pyhy = my,
Plh% + ch% =m,,
Plh:I; + PZh% = m39

where the terms on the left-hand sides are the moments of N’. Note that
P, +P,=1.

Now, we have four unknown parameters P,, P,, h,, and h,, and four equations.
So, we can solve the equations to obtain the values for the unknowns as follows [5]:

by = (172~ — (2~ 4¢)Y,
:

(
hy= (/)] -e + (2 - 4c0)],
1

)

1
my h,

Pl=(1/Pd)

P2=1_'P1,
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A waveform for the sharpened image.

F16. 9. Sharpening effect on the blurred image
of Fig. 6 for n = 7.
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(b) A waveform for the sharpened image.

F16. 10. Sharpening effect on the blurred image
of Fig. 6 for n = 9.
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where
1 1
P, =
4y by
-m, m,
c0=(1/cd) —m, m, s
1 m,
c 1/c
1= (el |
Cd = mz - mlz.
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(a) The original blurred picture. (b) The result of iteration 1.
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(c) The result of iteration 2. (d) The result of iteration 3.
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FiG. 11." The sharpening results of using the iterative process with neighborhood size fixed

as 5.
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Then, we choose h as the P,-tile of the histogram of N in G. In practice, there may
exist no discrete gray value which is exactly the P,-tile of the histogram. Then, h
should be chosen as the gray value closest to the P;-tile. What remains now is to use
the above result to assign a new gray value to pixel (x, y), such that the neighbor-
hood N in the blurred picture G can be sharpened. This can be done by assigning a
new gray value g'(x, y) to (x, y) according to the following rule:

g'(x,y)=hy, ifg(x,y)>h,
=h, ifg(x,y)<h.
The above process is applied to each pixel (x, y) in G.

In the above discussion, nothing is said about how to select the neighborhood size
n. In fact, n determines the sharpening effect. If the blurring on the boundary of a

20 20 20 29 37 46 54 63 71 80 80 80 2021 22 23 2527 73 76 77 719 79 80

(a) The original blurred picture. (b) The result of iteration 1.
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(c) The result of iteration 2.
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(d) A waveform for (d).

Fi1G. 12. The sharpening results of using the iterative process with neighborhood size fixed to
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black shape in a white background, for example, is “narrow” (i.e., it occurs in a
band with only a few pixels wide along the boundary), then n need not be too large.
In other words, the selection of n depends on the blurring effect on the picture
details. Later in this section, we will give some examples to show the relationship
between the value n and the deblurring effect of the proposed method.
Additionally, we assume in the above discussion that each neighborhood N
includes only two gray values in the unblurred picture F. This need not be true if
the picture has finer details. However, it is easy to extend the above consideration to
the case that N has k gray values with k£ > 2. The approach is similar except that
we now have to preserve the first 2k — 1 moments. A detailed description of the
general solution to the desired k gray values can be found in [5]. The value £ may
be chosen experimentally, but according to our experimental experience, k = 2 is
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(a) The original blurred picture. (b) The result of iteration 1.
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appropriate for most cases. If a more systematic method is desired, then the
following approach can be used. Define

E,=Yxlg(x,y) = gn(x. »),

where (x, ¥) € N and g(x, y) is the resulting gray value with k = m. Enumerate
m from 2 to a preselected level number M, each time applying the proposed
approach to N and calculating E,, until an m is found such that E,, satisfies the
condition E,, < e, where & is a preselected threshold value. If no such m, exists,
then we choose an m,, such that E, = min ,(E,). Finally, k is set to be m,.

B. Illustrative Examples

The effectiveness of moment-preserving sharpening is demonstrated with several
examples here. Figure 1 shows the original pixel gray values of a given unblurred
one-dimensional image, which includes two areas with constant gray values 20 and
80. Figure 2 shows the gray values of a blurred version of Fig. 1, which includes two

Fic. 14. Noniterative sharpening results of a character image: (a) the blurred image; (b) sharpening
result for n = 3; (c) sharpening result for n = 5; (d) sharpening result for n = 7.
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F16.15. Noniterative sharpening results of a toy image: (a) the blurred image; (b) sharpening result
forn=171.

F16. 16. Noniterative sharpening results of a girl image: (a) the blurred image; (b) sharpening result
for n =17,
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areas with constant gray values (the leftmost 5 pixels and the rightmost 5 pixels) and
a blurred boundary (the central 2 pixels). Figures 3, 4, and 5 show the sharpening
results of Fig. 2 for n = 3, 5, 7. Figure 6 shows a blurred image of Fig. 1, which
includes a blurred boundary 4 pixels wide. Figs. 7, 8, 9, and 10 show the sharpening
results for n = 3, 5, 7, 9. Figures 1(b)-10(b) are the waveform diagrams of Figs.
1(a)-10(a). From these examples, we see that for the sharpening effect to be
satisfactory, the size n should be selected to be about 3 pixels larger than the width
of the blurred boundary.

III. ITERATIVE MOMENT-PRESERVING SHARPENING

In the above, moment-preserving sharpening is applied to each pixel of the
blurred image for a single time. It is found in this study that if the sharpening
operation is applied to the picture repetitively, the sharpening effect can be
improved. This is reasonable, because each sharpened picture can be regarded as a
less but still blurred version of the original unblurred picture. At each iteration step,
we use the prior result as the input picture. As the number of iterations increases,
the blurring effect is removed gradually. Some illustrative examples are shown next
to illustrate the feasibility of this idea.

Figures 11(a), 12(a), and 13(a) are the blurred versions of Fig. 1 with 2, 6, and 6
blurred pixels, respectively. Figures 11(b), 12(b), and 13(b) are the results of
iteration 1 of the sharpening process applied to Figs. 11(a), 12(a), and 13(a) with
neighborhood sizes chosen to be 5, 9, and 3, respectively. Figures 11(c), 12(c), and
13(c) are the results of iteration 2 of the sharpening process applied to Figs. 11(b),
12(b), and 13(b). Figures 11(d), 12(d), and 13(d) are the results of iteration 3 of the
sharpening process applied to Figs. 11(c), 12(c), and 13(c). Figures 11(a’)-13(d’) are
the waveform diagrams of Figs. 11(a)-13(d).

F1G. 17. Iterative sharpening results of a character image with fixed size n = 7: (a) the blurred image;
(b) result of iteration 1; (c) result of iteration 2; (d) result of iteration 3.
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From Figs. 11-13, we can see the fact that the iterative process indeed can
improve the sharpening effect. On the other hand, from Fig. 13, we find that if # is
too small, the iterative process cannot give stable and smooth results. Finally, it is
seen that only a few iterations of moment-preserving sharpening are necessary
before the result becomes satisfactory.

V. EXPERIMENTAL RESULTS

The proposed approach has been tried on a lot of images, with some results
shown in Figs. 14-18. Each figure shown includes a tested image in (a), the
sharpening results in (b), (c), and (d) with k = 2. Figures 14-16 are the resulis of
noniterative sharpening. Figures 17-18 are the results of iterative sharpening. Figure
14(a) includes some blurred characters, and Figs. 14(b), (c), and (d) are the
sharpening results with n = 3, 5, and 7. Figure 15(a) includes a blurred toy, and Fig.
15(b) is the sharpening result with n = 7. Figure 16(a) includes a blurred girl, and
Fig. 16(b) is the sharpening result with n = 7. It is seen that better sharpening

F1G. 18. Ineffective iterative sharpening results of the same character image as in Fig. 17 with n = 5
(too small): (a) the blurred image; (b) result of iteration 1; (¢) result of iteration 2; (d) result of itera-
tion 3.
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FiG. 18— Continued

results are found in the first two cases (with n = 7). This is expected because in the
two cases, the shapes (character strokes and toy line drawings) presumably include
high-contrast boundaries in their unblurred versions. Figures 17(b)—(d) are the
results of iterations 1, 2, and 3 of the sharpening process applied to Fig. 17(a) with
fixed n = 7. Figures 18(b)—(d) are the results of iterations 1, 2, and 3 of the
sharpening process with » = 5 applied to Fig. 18(a). Figure 17 shows a good result,
but Fig. 18 shows an unsmooth result. The reason is that » is chosen too small.
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Boolean combinations of VLSI masks are important in VLSI design. We describe an optimal
algorithm for two layers and rectangles having the same orientation in the plane. The
algorithm runs in time O(n log n + p) using space O(n), where n is the number of rectangles
and p is the number of edges in the output. Note that this algorithm avoids spending
computation time on edges that do not contribute to the output, unlike its counterpart for
arbitrary polygons. Moreover, the contour of the Boolean combination is computed in the
form of contour cycles rather than single contour edges. Also, we extend the algorithm to more
than two layers and to orthogonal polygons having the same orientation. The time bound
remains the same for any fixed number of layers; it is O(k2* - nlog n + p), for k = 2 layers
when k is an input parameter. © 1988 Academic Press, Inc.

1. INTRODUCTION

Boolean combinations of VLSI layout masks for several layers are needed for a
number of purposes in the VLSI physical design process, such as design rule
checking, connectivity checking, device recognition, or feature extraction. For
instance, a transistor may be realized on a VLSI chip whenever polysilicon intersects
diffusion, as given by the two masks. Because of the high number of objects
involved, the efficiency of algorithms for Boolean mask combinations turns out to
be very important. Therefore, a number of practitioners and researchers have
devoted their attention to the development and implementation of fast algorithms
for the Boolean masking problem, see [1, 2, 3, 5, 6, 7, 9, 11, 12, 17].

While the solutions described for the general case of arbitrary polygons seem to
be reasonably efficient, the same cannot be said about the orthogonal or isothetic
case (the term “isothetic” is recommended by [13] to denote objects with sides
parallel to any of the coordinate axes). Specifically, assume that the mask of each
VLSI layer is given as a (multi-) set of isothetic rectangles. For most VLSI physical
layouts, this is still the situation today. In such a special case, it is certainly highly
undesirable to spend as much computation time for Boolean mask combinations as
is acceptable in the general case. The best known solution for the general case takes
time O((n + k)log n) for two masks and, for instance, the Boolean AND operation,

*The first author was supported under a grant from the Deuntsche Forschungsgemeinschaft Wi 810,/1-1
and the second author under Natural Sciences and Engineering Research Council of Canada Grant
A-5692.
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where 7 is the total number of polygon edges involved, and k is the total number of
edge intersections. Note that k may be proportional to n2, even though a description
of the algorithm’s output may be very small, for instance, proportional to n or
constant. In other words, the algorithm for the general case spends computation
time on intersection points that do not contribute to the final result. Moreover, it
would certainly be preferable to spend only constant time per output item rather
than log n, as in the general case.

We describe an algorithm without these two flaws in the next section, that is, an
algorithm with O(nlogn + p) running time for two masks with a total of n
isothetic rectangles, the Boolean operation AND, and p edges in the contour of the
resulting polygons. Our algorithm reports the resulting contour in the form of
contour cycles and not just contour edges, but uses no more than O(n) space. The
algorithm is optimal in both time and space. In addition, we describe how to
compute other Boolean combinations of two masks. Finally, in Section 3 we
generalize our algorithm to more than two masks and to isothetic polygons.

2. BOOLEAN COMBINATIONS OF TWO LAYERS

We are given two layers (multisets) of isothetic or orthogonal rectangles in the
plane, say a layer % of red ones and layer ¢ of green ones. Let #= {#,|1 <i < n,}
and ¥={9|1 <j<n,}, where &, (%) denotes a red (green) rectangle. Each
rectangle is given by the four coordinates of its four sides, that is, by a quadruple
(X efes X rights Ybottoms Yiop)- A Tectangle represents a set of points in the plane in the
usual way: rectangle (Xeg, X ighes Voottom Yiop) TEPTEsENts the set {(x, y)| Xy < x <
X right> Vbottom <V < Yiop }- For given £ and ¢ a point p = (x, y) in the plane is
called red (green) if there exists a rectangle £, € 2 (¥, € 9) with pe %,
(pEY).

The éontour of # is a description of U2, %,;, the set of all red points, in the form
of an isothetic or orthogonal polygon (possibly with holes) for each connected set of
red points. A polygon is described by an alternating sequence of vertical and
horizontal polygon edges in cyclic order around the polygon. The contour problem
for a set of isothetic rectangles has been studied by a number of authors [8, 4, 16]. A
recent solution [16] uses a simple data structure, the visibility tree, to solve the
problem in optimal time. In [16] the contour is reported as a set of edges of the
contour polygon, not in the form of contour cycles. However, we show, in [15], how
the solution of [16] can be modified so that it reports contour cycles in optimal time
and space. We base our solution of the Boolean masking problem on a modified
version of the visibility tree, and the observation of optimality in [15].

2.1. The Boolean AND

We illustrate the basic idea of our algorithm by computing the Boolean AND of
the two layers # and ¢. In other words, we show how to compute the contour of
the set of points that are both red and green, that is U7z, #, N U’ ,9,. All operators
we use are regularized in the sense of [14]. This means the results of an operation is
taken to be the closure of the interior of the nonregularized (“usual”) operation.
The effect of regularizing operations is to eliminate isolated or dangling lines or
points that may otherwise result from polygons touching each other (for details,

consult [14]).
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2.1.1. An Qutline of the Algorithm

We solve the problem by means of a plane-sweep algorithm. Imagine a vertical
line (the sweep line) moving from x = — o0 to x = + oo through the plane, that is,
from left to right. The line meets left vertical edges and right vertical edges of the
rectangles in order of ascending x-values. Between any two adjacent x-values, the
intersection of the sweep line with the rectangles is the same for any two positions
of the sweep line. Therefore it is sufficient to stop the sweep line at the vertical edges
of rectangles; we call these x-values the sweep points of the sweep line.

This well-known principle, for example, see [10], amounts to solving a two-
dimensional problem by solving a series of one-dimensional problems and combin-
ing the answers.

During the sweep, we keep track of the horizontal edges (top and bottom edges of
rectangles) that currently intersect the sweep line. It is obvious that not all edges
form part of the output of the algorithm, but instead only those that are on the
boundary of an area consisting of points that are red and green (a red—green area).
For simplicity of the discussion only, let us assume that no two horizontal edges
(vertical edges) share the same y-value (x-value). However, this assumption is not a
crucial one in solving the problem. A straightforward modification of the algorithm
given below will suffice when this assumption is dropped.

Upon meeting a vertical edge, we decide which parts of that edge belong to the
output of the algorithm. In addition to horizontal edges, we store contour cycles
that have started but not yet ended, that is, contour cycles that currently intersect
the sweep line. Storing each contour cycle, for instance, as a doubly linked list with
two pointers to its ends, we can easily update the contour cycles (start a new one,
concatenate two adjacent existing ones, terminate an existing one) in time bounded
by a constant for each update operation, that is, in total time O( p). When a contour
cycle is terminated, its description is output, and hence it no longer consumes
storage space. It has been shown in [15] that the total number of edges of all contour
cycles intersected by some vertical line is O(n). Consult [15] for a more detailed
explanation of how to maintain contour cycles and a proof of the cited fact. Given
the bound on the number of edges in all intersected contour cycles, we can afford to
maintain all of the started but not yet terminated contour cycles without asymp-
totically increasing the space. Therefore, in the following presentation, we shall only
describe how to find the horizontal edges of the contour; it is understood that the
contour cycles are always computed in the described way.

It is obvious that horizontal contour edges of the red-green area are exactly those
parts of edges that belong to the contour of the red area, but fall into a green area,
or that belong to the contour of the green area, but fall into a red area; see Fig. 1.

A contour edge of the former type is called a red—green-visible edge and a contour
edge of the latter type is called a green—red visible edge; rg- and gr-edge for short.
An edge belonging to the contour of the red (green) area, which is neither an rg- nor
a gr-edge, is called a red-visible ( green-visible) edge, - (g-) edge for short. Note that
contour edges differ from rectangle edges in that the former may be parts of the
latter. In the example depicted in Fig. 1, e; is an r-edge, e, is an rg-edge, e, is a
g-edge, e,, e, and e, are of none of the mentioned types, and e, is a gr-edge.

The four classes of r-, g-, rg-, and gr-edges provide enough information to
properly keep track of the rg- and rg-edges during the line sweep, in the following
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Fi16.1. A red-green contour.

way. Consider what happens to the horizontal edges currently cut by the sweep line,
that is, the active edges, when a vertical red edge is encountered (similarly for
green).

First, consider the case that the edge is the left edge of some rectangle R;; a left
edge for short. At the current x-value, this edge extends from p,ouom 10 Jyop in the
y-direction. All active horizontal edges with y-values not in the interval [ ypouoms Viop)
are clearly unaffected. So we restrict our attention to those horizontal edges that
have their y-values in this interval. Any edge belonging to the red contour before
can no longer belong to the red contour after this left red edge, hence, any r-edges
and any rg-edges terminate. Any edge belonging to the green contour will still
belong to the green contour after the sweep point, but it will also be in a red area.
Hence, the number of gr-edges is enlarged by these g-edges; the g-edges terminate.

Second, consider the case when the sweep line encounters a vertical right red
edge. A right red edge corresponds to a red rectangle that is being passed by the
sweep line. The y-interval covered by this red rectangle may (partly) still be covered
by some other red rectangle. We again restrict our attention to horizontal edges with
y-values in the y-interval of the right red edge. Some of the active horizontal edges
may still lie in a red area, and others may no longer lie in a red area. Consider red
horizontal edges first. Some of them may become visible, but not necessarily all of
them. In Fig. 2 at sweep point » of the sweep line, e; and e, become visible,

red
— — — green

—-— sweaep line
[ | |

s e i

F1G.2. Horizontal edges becoming visible.
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whereas e, and e, do not. Of those edges becoming visible, some may become
red-visible, other may become red-green visible. In our example in Fig. 2, e,
becomes red-green visible because it lies in a green area, whereas e, becomes
red-visible. Now consider green horizontal edges. The only possible change is that
some of the gr-edges may become g-edges because they exit from a red area,
whereas others may stay in a red area and therefore remain gr-edges. In our
example, e; becomes a g-edge, but e, remains a gr-edge at sweep point 4.

Besides changing the status of some horizontal edges, a left vertical edge initiates
two horizontal edges, namely the top and bottom edges of the corresponding
rectangle; that is, these two horizontal edges become active. Their status with
respect to the four classes (1-, g-, rg-, gr-edges) has to be determined. For a right
vertical edge, the corresponding top and bottom edges of the rectangle become
inactive. The edges have to be added to or removed from their classes.

The desired output can now easily be generated by keeping track of the changes
in the classes of rg-edges and gr-edges. Whenever an edge joins one of these two
classes, that is, becomes green—red-visible or becomes red—-green-visible, an edge of
the desired red—green contour is started; whenever an edge is removed from these
classes, the corresponding edge (which must have started previously) is terminated.

2.1.2. The Algorithm in Detail
The following algorithmic description summarizes the discussion so far.

ALGORITHM Red-and-Green Contour. {We are given two sets
R={(R|1<i<n,}
and
9={91<j<n,}

of isothetic rectangles. We output a set of horizontal edges (of maximal length) that
lie on the contour of Ujz;#; N U%s,¥. The contour cycles are obtained by the
minor modification described above.}
begin
1. Sort the vertical edges of rectangles in # U ¢ into ascending x-order. Each
x-value is called a sweep point. Initialize sets R, G, RG, and GR, denoting sets
of active r-edges, g-edges, rg-edges and gr-edges, to be empty.
2. For all sweep points in x-order corresponding to vertical edges e do: Let e be

a red vertical edge (without loss of generality; for e green, just exchange red

with green in the following description). Let R(e), G(¢), RG(e), and GR(e)

denote the subsets of those horizontal edges in R, G, RG, and GR that have
their y-values in the range between e’s bottommost and topmost points. Let

€ bottoms €10p DE the bottom and top horizontal edges of the rectangle of which e

is a vertical edge.

(a) If e is a left edge, then: output start of edges G(e); output end of edges
RG(e); GR= GR U G(e); G=G — G(e); R= R — R(e); RG = RG
= RG(e); add epyyom; €, 10 the corresponding class of active horizontal
edges, if any; and output start for whichever of the two edges fall into RG
or GR.
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(b) If e is a right edge, then: Let R’ and RG’ be the sets of edges that were
not visible and now become red-visible and red—green-visible, respectively.
Let G’ be the set of green-red-visible edges in GR(e) that become
green-visible. Then: output start of edges RG’; output end of edges G’;
R=RUR'", RG:=RGU RG’; GR = GR — G'; G:= G U G’; remove
€ bottoms €1op frOm the corresponding class of active horizontal edges, if any;
and output end for whichever of the two edges are in RG or GR.

end

Let us now specify in more detail how to perform the (crucial) update operations
for sets R, G, RG, and GR of active horizontal edges, that is, how to determine the
sets G(e), R(e), RG(e), GR(e) for a left vertical edge, and R’, G’, RG’,GR’ for a
right vertical edge. We also discuss in the next subsection how to implement the set
union and difference operations used in the algorithm.

It is easy to determine G(e), R(e), RG(e), GR(e) for a left vertical edge e by
simply testing whether the y-value of a horizontal edge lies within the y-interval
from Yyouom O Yiops the bottom and top ends of e.

It is not as easy to find red (green) edges that become red-visible or red-green-
visible (green-visible or green-red-visible). To determine whether an active horizon-
tal red edge is red-visible or red—green-visible it is sufficient to know whether or not
the intersection of the edge with the sweep line lies within the intersection of an
active red rectangle with the sweep line, that is, whether or not the red point p on
the sweep line is covered by a red interval. However, when a right vertical red edge e
covering red point p is encountered in the sweep, this binary information is not
sufficient to determine whether p will still be covered by some red interval after e
has been removed. We, therefore, use a counter to indicate how many red intervals
cover a point.

More precisely, we partition the sweep line into a set of contiguous intervals,
induced by the set of active red horizontal edges, or red points on the sweep line as
we shall say. With each of these intervals, we associate an integer value red-cover;
this value indicates by how many red rectangles, or intervals on the sweep line, the
corresponding interval is covered. A set of green-cover values is defined similarly.
The cover values are maintained during the sweep as follows.

ALGORITHM Maintain Cover Values.

begin
1. Initialize the set of intervals for the red-cover values to be (— oo, + c0).
Initialize the red-cover and the green-cover values for this interval to be 0.
2. Upon meeting a red vertical edge in the sweep, do the following (similarly for
green):
(a) If e is a left vertical edge, then: The bottommost and topmost endpoints of
e each split a red-cover interval into two intervals. That is, the number of
intervals is increased by two. Each of the split intervals inherits the cover
from the interval being split. For all intervals between yyo o, and y,,
increase the red-cover value by 1.
(b) If e is a right vertical edge, then: The two endpoints, Vyouom and yy,p,
occur as interval boundaries in the set of red-cover intervals. Decrease the
red-cover for all intervals between yy ., and y,, by 1. Now the two
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intervals sharing endpoint yy.,.., have the same red-cover value. Remove
Ybottom ad merge the two intervals into one, inheriting the red-cover from
the merged intervals. Do the same for y,,,. This decreases the number of
red-cover intervals by two.

end

The labels of the steps of this algorithm correspond to those of Red-and-Green
Contour; when interleaving both algorithms according to the labels, each step of
Maintain Cover Values should be taken first and the corresponding step of Red-
and-Green Contour second, for each label.

Note that each active red point on the sweep line forms a border between exactly
two red-cover intervals with cover values differing by exactly 1. We can now easily
express the classification of a red horizonta} edge in terms of these covers, for any
fixed sweep line position. An active horizontal red edge is an r-edge or an rg-edge if
and only if one of its bordering red-cover intervals has red-cover value 0, and the
other has red-cover value 1. It is an rg-edge if and only if it lies within a green-cover
interval with green-cover value greater than 0. The classification is similar for green
edges.

For any fixed sweep line position and an active red (green) horizontal edge e, let
gc(e) (re(e)) denote the green-cover (red-cover) value of the green-cover (red-cover)
interval into which e falls. Let RC(e) (GC(e)) be the set of the two red-cover
(green-cover) values of the two bordering red-cover (green-cover) intervals. In Fig. 2,
at sweep line position &, r(es) changes from 1 to 0, RC(e,) changes from {1,2} to
{0, 1}, for instance.

At a fixed sweep line position, we can now define classes R, G, RG, and GR in
terms of cover values:

(1) R = {e]e is red active, RC(e) = {0,1}, ge(e) = 0};
(2) RG = {e|e is red active, RC(e) = {0,1}, gc(e) > 0};
(3) G = {e|e is green active, GC(e) = {0,1}, rc(e) = 0};
(4) GR = {e|e is green active, GC(e) = {0,1}, rc(e) > 0}.
The changes in these sets, as needed in Step 2a of Red-and-Green Contour, can be
described in terms of a restriction by the range of the vertical right edge e:
(1) R’ == R, restricted to edges in the range of ¢;
(2) RG’ = RQG, restricted as in (1');
(3") G’ := G, restricted as in (1);
(4 GR’ := GR, restricted as in (1").

In total, the following information has to be maintained properly during the plane
sweep:

(a) The set of active red points on the sweep line, and the set of active green
points;

(b) The cover intervals for red-cover and green-cover values, and the red-cover
and green-cover values themselves for these intervals;

(c) The sets R, G, RG, and GR.
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In the next subsection, we demonstrate how this can be done efficiently, using a
data structure which is a modification of the visibility tree [16].

2.1.3. An Efficient Implementation

We use a single data structure, an augmented visibility tree, for storing all
information necessary during the sweep. The projections of the 2r horizontal edges
of the given n rectangles on the y-axis yield 2n distinct y-values, y;, v,,..., V5,
These divide the y-axis into 2rn + 1 disjoint contiguous intervals I, = (— 0, y;),
L =10y, y)e-s L, =1y Yis1)r---s I3, = [Vam ). Let T be an ordered binary
tree with 2» leaves and with minimal height; identify the leaves from left to right
with y,, ¥5,..., ¥5,- Leaf y, also represents interval I,. Each internal node u
represents an interval I(u«) which is the union of all intervals in the leaves of T'(u),
the subtree of T rooted at u. That is, I(u) = [,, y;), where y; is the leftmost leaf in
T(u), and y,;_, is the rightmost. Specifically, the root of T represents the interval
[y1, + o0). With each node u (internal or leaf node) of T we associate the following
information:

(1) I(u), the interval represented by u;

(ii) active(u), for leaf nodes u = y, only, indicating whether y, is currently
active;

(iii) RC(u), the number of red intervals I, (intersections of red rectangles
with the sweep line) that cover I(u), but do not cover I(parent(u)); that is,
RC(u) = |{I|I(u) C I, I(parent(u)) € 1,}1;

(iv) GC(u), similar to (iii) for green instead of red;

(v) R(u), the set of active red points in T(u) that correspond to r-edges with
respect to T(u), that is, if T(u) is considered independently of T;

(vi) G(u), the set of active green points in T(u) that correspond to g-edges
with respect to T(u);

(vii)) RG(u), the set of active red points in T(u) that correspond to rg-edges
with respect to T(u);

(viii) GR(u), the set of active green points in T(u) that correspond to gr-edges
with respect to T(u).

For each node u, I(u) is set to its proper value at the beginning of the operation
of the algorithm and it remains unchanged throughout; all other values may change.
Initially, for each node u in T, active(u) := false, RC(u):= GC(u) =0, and
R(u) = G(u) == RG(u) = GR(u) == &. Note that R, G, RG, and GR of the
preceding subsection are represented as R(root), G(root), RG(root), and GR(root).

Let I be a y-interval obtained by intersecting a rectangle with the sweep line.
While the sweep line intersects that rectangle, information on 7 is stored in T at all
nodes u for which I(u) € I and I(parent(u)) ¢ I. These nodes u are called the
nodes of the canonical covering of I. The crucial observation behind this way of
representing 7 is that only O(log n) nodes belong the canonical covering of 7, and
also only O(log n) nodes lie on the union of the paths from the root of T to the
nodes in the canonical covering. Hence, starting at the root, the nodes of the
canonical covering of I are found in O(log n) steps. We store an active rectangle in
the corresponding cover values of the canonical covering nodes. If I stems from a
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red rectangle, say I = I, then I, contributes an increment of one to RC(u) for all
canonical covering nodes u of I, (similarly for I, and GC(u)).

It is important to see how the sets R(u), G(u), RG(u), and GR(u) can be defined
in terms of these sets for u’s children, leftchild(#) and rightchild(u), provided the
children exist:

(A) If RC(u) =0and GC(u) =0
then R(u) = R(leftchild(«)) U R(rightchild(u));
G(u) = G(leftchild(#)) U G(rightchild(u));
RG(u) = RG(leftchild(u)) U RG(rightchild(u));
GR(u) = GR(leftchild(u)) U GR(rightchild(«));
(B) If RC(u) > 0 and GC(u) =0
then R(u) = RG(u) = G(u) = J;
GR(u) = G(leftchild(u)) U G(rightchild(u)) U GR(leftchild(u))
U GR(rightchild(u));
(C) Similarly for RC(u) = 0 and GC(u) > 0;
(D) If RC(u) > 0 and GC(u) > 0
then R(u) == G(u) = RG(u) = GR(u) = J;

These relationships are crucial in that they allow efficient transitions at all sweep
points, even though at first glance this might not appear to be the case. We describe
below how the set union operations used in the above invariant can be implemented
to take only constant time, instead of the linear time one might expect at first
glance.

Let us illustrate the maintenance of 7' when the sweep line meets a left red
vertical edge and when it meets a right red vertical edge; for green edges, the
procedure is similar. Upon encountering a left vertical red edge with y-interval I,
we change the information for all nodes u in the canonical covering in the following
way:

{left vertical red edge}
1. RC(u) == RC(u) + 1;
2. {Update output edges}
If RC(v) = 0 for all nodes v in T on the path from the root to u
(but not including ») and RC(u) =1
then for all e € RG(u) do:
terminate output of edge e;
if GC(v) = 0 for all nodes v in T on the path from the root to u
(including u)
then { I(u) is not covered by green}
for all e € G(u) do:
start output of edge e
else { I(u) is covered green: do nothing}
else { I(u) was already covered red: do nothing}
3. If RC(u) =1
then {locally in T(u), I(u) becomes red covered}
maintain R(u), G(u), RG(u), and GR(u) according to (B) or (D), which-
ever applies
else { I(u) was already covered red in T(u): do nothing}.
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{right vertical red edge}
1. RC(u) = RC(u) — 1;
2. If RC(u)=10

then {locally in T(u), I(u) is no longer covered red}
maintain R(u), G(u), RG(u), GR(u) according to (A4) or (C), whichever
applies;
else { I(u) remains covered red: do nothing};
3. {Update output}
If RC(v) = 0 for all nodes v in T on the path from the root to u,
including u
then { I(u) is no longer covered red}
for all e € RG(u) do
start output of edge e;
if GC(v) = 0 for all nodes v in T on the path from the root to u, including
u,
then {I(u) is not covered green}
for all e € G(u) do:
terminate output of edge ¢
else { I(u) is covered green: do nothing}
else { I(u) is covered red: do nothing}.

It should be clear that the manipulation of the augmented visibility tree T is just
an implementation of Red-and-Green Contour. Because there are at most O(log n)
nodes in the union of all nodes on the paths from the root of T to all nodes u in the
canonical covering of I,, we can find in O(log n) steps the cover-values of the nodes
on these paths, as required in the above description.

In addition to changing the status of active horizontal edges, we also have to
insert (delete) active horizontal edges when the sweep line meets a left (right)
vertical edge. The output of a new (old) edge can be properly started (terminated)
by taking into account the cover values of nodes on the path from the root of T to
the leaf, in the obvious way. Also, the classes to which a new (old) horizontal edge
belongs for the nodes on this path can be easily updated by a bottom-up maintenance
procedure, a straightforward generalization of the description in [16] for the contour
case. For further (conceptually minor) details of the inner workings of the visibility
tree consult [16].

Here, we simply want to mention that we use the techniques from [16] to form the
unions of sets R(u), G(u), RG(u), GR(u), for nodes u in T. Each of these sets is
represented by two pointers to the two ends of a doubly linked list of points,
representing intersections of horizontal edges on the sweeping line. With invariants
(A), (B), (C), and (D) fulfilled initially and maintained throughout the algorithm, the
union of two sets can be realized simply as the concatenation of two lists. Because
sets R(u), G(u), RG(u), and GR(u) are disjoint and can be defined as unions of
disjoint sets at u’s children, the arguments of [16] apply.

2.1.4. Time and Space Requirements

As has been shown in the previous subsection, the augmented visibility tree
supports the following operations within the stated time bounds:

* insertion/deletion of a horizontal edge: O(log n)
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* a single union operation for two disjoint sets as required by the algorithm:
0oQ)

and therefore

e maintenance of sets R(u), G(u), RG(u), GR(u), for all nodes u in the
canonical covering of a vertical edge, in total: O(log n)

= additional cost for starting /terminating output for an edge of the red-green-
contour (performed when a vertical edge is met): O(1).

For the plane-sweep algorithm, sorting the edges with respect to x, and for the
augmented visibility tree, sorting the edges with respect to y, can all be done in time
O(nlogn). As we have O(n) insertion/deletion/maintenance operations, apart
from the output, the algorithm runs in time O(n log n). For p output edges in total,
we get the following theorem.

THEOREM 2.1.  The contour, in the form of contour cycles, of the intersection of two
layers of rectangles (the Boolean AND operation) can be computed in time O(nlog n
+ p), where n is the number of rectangles, and p is the number of edges in the contour,
and with space O(n). This is asymptotically optimal with respect to time and space.

Proof. The time bound follows from the previous considerations. The space
bound follows from the constant space used for each of the O(n) nodes of the
augmented visibility tree and because there are at most O(n) edges in all intersected
contour cycles at each sweep point (see [15]). Optimality follows from the optimality
of the given time and space bounds for the contour problem (see [15]): Compute the
contour for a set of rectangles by considering all of them to belong to one layer, and
by computing the Boolean AND of that layer with one big rectangle enclosing all
others. O

2.2. The Other Boolean Operators

The computation of Boolean operations on two layers of isothetic rectangles other
than AND can be accomplished with essentially the algorithm described in Section
2.1, with only minor modifications on the output edges. Recall that for the Boolean
AND, the output consists of exactly the edges in RG U GR. Now consider other
Boolean operations and the output edges corresponding to them:

* red OR green has output edges R U G;
* red ANDNOT green has output edges R U GR;
e green ANDNOT red has output edges G U RG.

The important observation is that sets R, G, RG, and GR are just sufficient to
describe the result of any Boolean combination of two layers, where we just refer-to
the covering of areas with layers, disregarding how often some area is covered by
rectangles in a layer. Therefore we get the following.

THEOREM 2.2. The contour, in the form of contour cycles, of the result of any
Boolean operation, applied to two layers of rectangles, can be computed in time
O(nlogn + p), with space O(n), where n is the number of rectangles and p is the
number of contour edges. This is asymptotically optimal with respect to time and space.
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In fact, Boolean operations of the abovementioned types are the practically
relevant ones, but not the only ones that can be computed. We can in the same way
compute contours that can be specified by requirements on the number of times
areas must be covered for each of the layers together with Boolean operators.
Examples are the i-contour of a set of rectangles, or expressions like
(2% red ) ANDNOT(=> 3* green) with the obvious meaning. We do not, however,
claim that these types of Boolean combinations are of any practical interest.

3. GENERALIZATIONS

Of the many conceivable generalizations, we simply want to mention briefly two
fairly straightforward ones with perhaps some practical interest, namely, how to
treat more than two layers, and how to deal with isothetic polygons.

3.1. More than Two Layers

When we are dealing with more than two layers, say k layers for k > 2, and we
want to compute an arbitrary Boolean function of the rectangles in these layers, we
simply need to consider more combinations of layers explicitly; that is, we need to
maintain more disjoint subsets of active horizontal edges. To see this, consider a
third layer, blue, in addition to red and green. A red horizontal edge can now enter
a green area, as before, but it can also enter a blue area, or it can enter both. If it
enters both, it does not matter, of course, in which order it has entered them.

In general, we get the following subsets of relevant active horizontal edges for k
layers 1, 1,,..., l,. Similar to the red-and-green layer case, we denote the class of
active horizontal edges that forms part of the contour of layer /; by L,. Whenever an
Ledge lies in an area covered by /;, we let L; follow L, Because the order of
several layers in which an L-edge lies does not matter, we simply have a set of L’s,
j + i, following L, Let = {L,|]1 <i < k}. Then we get all relevant classes of
edges as follows:

forall L,1 <i<k, and
for all subsets S C ¥— L,
LS is a relevant class.

For example, returning to the two layer case with L, = R and L, = G, we get all
relevant classes in this way as:

L@ corresponding to R;
L{L,}, corresponding to RG;
L,? corresponding to G;
L{L.}, corresponding to GR.

The number of classes of edges we get in this way is 21, the number of subsets of
&~ L, for each of the L,, 1 < i < k, totalling k - 2¥71 classes.

We again use the augmented visibility tree to store classes of active horizontal
edges during the sweep. With each node u in the augmented visibility tree, we store
a counter for the cover of each layer, denoted by L,C for 1 < i < k. In addition, we
store two pointers to each of the k - 22~ ! classes of active horizontal edges, where
each class is represented by a doubly linked list. To see that the algorithm works in
essentially the same way as before, let us describe the invariant for the classes stored
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at each node, denoted by (A), (B), (C), (D) in the two layer case. For node u,
L,S(u) denotes class LS, as represented local to T(u), that is, if we disregard the
rest of T. Then the invariant is

() For all L; for which L,C(u) = 0: L,S(u) for § = §; U S,, with §, such
that, for all L; € S, L,C(u) =0, and §; = U/ ¢, oL, is defined as

L.S(u) = U Li(SOU U S’)(v).

v {leftchild(), rightchild(u)} s'es;
(II) For all L, for which L,C(u) > 0:

LS(u) = @, forall SC¥~L;
LS(u)= o, foral SC¥~L, L +L,.

Obviously, invariant (A), (B), (C), (D) is a special case of (I), (II). The reader is
invited to check how (A) is derivable from (I), (B) and (C) are derivable from (I) for
GR and from (II) for R, RG, and G, and (D) is derivable from (II).

The operations of starting and terminating output edges can be generalized
similarly. The time spent on processing a node in the visibility tree is, however, no
longer a constant, but is, instead, proportional to the number of classes, k - 2¥~1,
We conclude with the following.

THEOREM 3.1. The contour, in the form of contour cycles, of the resuit of Boolean
operations applied to k layers of rectangles, can be computed in time O(k - 2* - nlogn
+ p) with O(k - 2¥ - n) space, where n is the number of rectangles, and p is the
number of contour edges.

Note that optimality in time and space can be claimed here only for a constant
number of layers, but not in general, that is, not when k& is an input parameter.

3.2. Isothetic Polygons

We just want to mention briefly that isothetic polygons can be handled by the
visibility tree in basically the same way as rectangles. To see how this is done in the
contour computation, consult [16]. In the same way, we get the following.

THEOREM 3.2. The contour, in the form of contour cycles, of the result of Boolean
operations, applied to k layers of isothetic polygons, can be computed in time
O(k - 2k - nlogn + p) with O(k - 2% - n) space, where n is the number of contour
edges.
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