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摘要  

 因應高齡化社會的來臨，遠距醫療及健康照護已成為先進國家的新興服務產業。心

電圖紀錄心臟搏動相關的電位變化資訊，常用於心血管疾病的診斷及治療。本論文開發

一基於分散式訊源編碼架構的無線心電圖儀。分散式訊源編碼器的壓縮率及重建品質取

決於訊源相關模型及校驗子生成機制，我們首先針對 MIT-BIH 心電圖資料褲，使用向

量量化來建立與其匹配的訊源相關模型，並提出一基於索引層級的軟性輸出解碼演算法。

系統模擬結果證實新的演算法大幅降低了資料量，並保留了心電圖於臨床上的重要資訊。

在即時實作方面，我們結合心電圖感測器及執行訊號壓縮的嵌入式系統開發板，並藉由

現有的行動手機網路將壓縮資料傳至遠端的伺服器以供訊號重建及監測。實作結果亦證

實新的方法適用於無線健康照護系統的未來應用。 

關鍵字：心電圖、心電圖壓縮、分散式訊源編碼、手機。 
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Abstract 

 In recent years, mobile telemedicine has been one of the emerging research topics. This 

thesis proposes using a mobile telephone to realize an electrocardiogram (ECG) signal 

monitoring system. In this system, we use a sensor to measure ECG signals and use an 

embedded system development board as the front-end device to compress the ECG signals. 

The proposed ECG signal compression technique is based on distributed source coding (DSC). 

The compressed ECG data are transmitted from the board to the back-end server via mobile 

cellular networks. At the server, we use the modified BCJR algorithm which integrates the 

symbol-level a priori information into the soft-output decoding algorithm. Through off-line 

simulation and real-time implementation, we test and verify the functions of each module of 

the ECG system. The results show that our proposed system is very feasible for future 

wireless health-care applications. 

Keywords: Electrocardiogram (ECG), ECG compression, distributed source coding (DSC), 

mobile telephone. 
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Chapter 1 Introduction 

 

Wireless patient monitoring has been of recent interest to researchers aiming to develop 

ubiquitous health-care systems able to provide personalized medical treatment continuously 

and remotely []. To realize such systems, physiological signals such as ECG are measured and 

transmitted wirelessly to the remote server for monitoring or analysis. One of the emerging 

issues is how to exploit the mobile communication technologies. Due to the bandwidth 

limitations of mobile cellular networks, a compression method is used to reduce the large 

amount of data. Moreover, the method must be simple since the sensor is constrained by its 

low battery power. This thesis presents a mobile ECG system based on distributed source 

coding (DSC). In the system, measured ECG is transmitted from the sensor to a front-end 

device for data compression and then transmitted to a back-end server via mobile cellular 

network. Finally, the ECG signals are reconstructed and monitored on the screen. 

 

1.1 Motivation 

Like most countries in the world, Taiwan is aging with an increase of senior populations. 

With the increase of the elderly (65 years and over), the health-care issues are becoming more 

and more significant. Although traditional medical treatments such as face-to-face consultant 

cannot be replaced, some treatments can be done more efficiently with the biotelemetry. 

According to Table 1.1 [2], heart diseases account for 10.8% of all deaths in 2010. The ECG 

is a graphical representation of the electrical activity in the heart and is useful for cardiac 

disease diagnosis. Goal of the ECG system is designed for monitoring ECG signals and 

detecting abnormalities of the heart. Whenever a patient is under risk, the system could detect 

the abnormalities and notify the hospital or clinical center. Electrocardiogram (ECG) is 

measured by an appropriate sensor and fed into a front-end device. The most important task of 

the device is to compress and transmit ECG to a remote back-end server for further analysis. 

Wireless technologies can be drawn in to increase the mobility of the system. Among them, 

ZigBee and Bluetooth are insufficient since they only provide short-distance transmission. 

Although WLAN (IEEE 802.11) provides RF coverage up to several hundred meters, they are 

not well suited for developing biotelemetry applications [3]. Once the front-end device is out 

of the service range, it must be re-connected manually by users. In contrast, the mobile 

cellular network is a better choice [4, 5]. Thanks to the wide coverage provided by the mobile 

cellular network, a ubiquitous health-care system can be realized. In this work, ECG is 

delivered to a location (base station) through the mobile cellular network and then to the 
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hospital through the Internet. 

 

Table 1.1 Taiwan’s ten leading causes of death in 2010 [2] 

Rank Causes of Death 
Deaths 
(person) 

Crude mortality 
rate 0/0000 

Percentage of 
total deaths(%)

1 Malignant neoplasms 41,046 177.4 28.4
2 Heart disease 15,675 67.7 10.8
3 Cerebrovascular disease 10,134 43.8 7.0
4 Pneumonia 8,909 38.5 6.2
5 Diabetes mellitus 8,211 35.5 5.7
6 Accidents and adverse effects 6,669 28.8 4.6
7 Chronic lower respiratory diseases 5,197 22.5 3.6
8 Chronic liver disease and cirrhosis 4,912 21.2 3.4
9 Hpertensive disease 4,174 18 2.9
10 Nephritis, nephrotic syndrome, and nephrosis 4,105 17.7 2.8

 

With the advanced development of mobile cellular network ranging from the global 

system for mobile communications (GSM) to general packet radio service (GPRS), to 3G, and 

then to 4G, more services can be designed for home health-care applications. Most GPRS 

devices cannot transmit voice and data simultaneously and hence they are not used here. Both 

3G and 4G support simultaneous voice and data transmission. Since 4G is not available to all 

users, 3G is adequate and is chosen in this work. 

Due to the limited transmission bandwidth, a coding technique that provides channel 

efficiency is needed. Constrained by the battery power of the front-end device, the technique 

must also be simple. This thesis introduces the distributed source coding (DSC) scheme, in 

which two or more correlated sources are encoded separately and decoded jointly. DSC 

exploits the inter-user correlation without the high cost of inter-user communication. By 

viewing the heartbeat segments as correlated sources, it is feasible to use DSC to compress 

the ECG signals. 

 

1.2 Related Works on ECG Compression 

 Most of the ECG compression methods adopt one-dimensional (1-D) representations for 

ECG signals [6], including direct waveform coding, transform coding, and parameter 

extraction methods. However, since the ECG signals have both sample-to-sample (intra-beat) 

and beat-to-beat (inter-beat) correlation, some 2-D compression techniques have been 

proposed for higher compression ratios [7, 8]. These methods start with a preprocess 

procedure that converts 1-D to 2-D representations through the combined use of QRS 



 

 3

detection and period normalization. Afterwards, the conventional image codec such as the 

JPEG standard [9] can be used to compress these resulting 2-D arrays. However, JPEG codec 

suffers from a complex encoder and hence may not be suited for wireless sensor network. 

Previous work in [10] proposed a beat-based ECG compression method based on gain-shape 

vector quantization (GSVQ). It achieved high compression ratio at the expense of relatively 

large codebook size, which induced high encoding complexity. In [1], a joint source-channel 

coding scheme was presented to exploit the inter-beat correlations. However, the bit-level 

iterative decoder leads to sup-optimal performance with high decoding complexity. 

The performance of DSC highly depends on the source correlation model. In this work, a 

simple compression method based on GSVQ is used to construct the ECG correlation model 

and the resulting quantizer indexes are fed to DSC. In addition, recursive systematic 

convolutional code (RSC) is used in the implementation of DSC. For the convolutional code, 

there are two different decoding algorithm, including Viterbi algorithm [11] and BCJR 

algorithm [12]. While Viterbi algorithm is a maximum likelihood (ML) decoding that 

minimizes the probability of codeword error, BCJR algorithm is a maximum a posteriori 

probability (MAP) decoding that minimizes the probability of information bit error. The DSC 

decoder used in this work is a modified BCJR algorithm that performs better than Viterbi 

algorithm and classical BCJR algorithm by integrating the symbol-level a priori information 

into the MAP process. 

 

1.3 Objective 

Goal of this work is to design and implement a mobile ECG system using a coding 

technique able to provide errors robustness, channel efficiency and low encoding complexity. 

Also proposed is the compression method based on DSC to reduce the large amount of ECG 

data. Besides, an ECG correlation model based on GSVQ is presented to match the DSC 

application. To better exploit the ECG correlations, a combined use of QRS detection and 

period normalization is applied to obtain 2-D ECG arrays prior to GSVQ. 

To develop a ubiquitous health-care system, the 3G mobile cellular network is involved. 

ECG signals are measured by a wireless sensor and transmitted to an embedded system 

development board. The board serves as the front-end device which receives, compresses 

incoming ECG signals and then transmits them to a back-end server. Compressed ECG data 

are transmitted to the telephone via Bluetooth and to the server via mobile cellular network 

and Internet. A commercially available Bluetooth-enabled 3G mobile telephone is used in this 

work. Finally, the ECG signals can be reconstructed and displayed on the monitor. 
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1.4 Thesis Organization 

The rest of this thesis is organized as follows. In Chapter 2, the DSC framework will be 

reviewed, including the DSC theory and its practical implementation. Chapter 3 introduces 

the ECG measurement and correlation modeling. Details of the hardware architecture and the 

software implementation of the system implementation are given in Chapter 4. Chapter 5 

presents the results of offline simulation and real-time implementation. Finally, Chapter 6 

gives our conclusions. 
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Chapter 2 Distributed Source Coding Framework 

 

This chapter presents a comprehensive introduction to distributed source coding (DSC), 

including the DSC theorem and its practical implementation. Distributed source coding, also 

known as Slepian-Wolf source coding (SWC), was originated from Slepian-Wolf theorem [13] 

in 1970s. In 2003, S.S. Pradhan et al. first proposed a practical way to design SWC codes 

using syndromes [14]. As we will see later, channel coding plays an important role in DSC. In 

this thesis, recursive systematic convolutional code (RSC) is applied in conjunction with a 

modified BCJR algorithm for symbol decoding of binary convolutional code. Unlike 

conventional BCJR algorithm that decodes one bit at a time, our previous work [15] proposed 

an index-based BCJR algorithm which outperforms bit-based BCJR algorithm. To be 

consistent, the syndrome former (SF) should also be modified to operate at the index level. 

 

2.1 Distributed Source Coding Theorem 

The Slepian-Wolf theorem states that, given two or more correlated information sources, 

the lossless compression of these sources which do not communicate with one another can 

reach the same theoretical entropy as they communicates. The above statement is true only if 

the correlated-sources are well-modeled and the compressed data are jointly decoded. Fig. 2.1 

[16] shows the compression system with two correlated sources which do not communicate 

with each other. The most distinctive feature of DSC is that the complexity can be shifted 

from the encoder to the decoder. With this property, DSC is suitable to the application of 

wireless sensor networks (WSN), in which sensors require low computational complexity. 

X

Y

ˆ ˆ,X Y

 

Fig. 2.1 The flow of lossless compression of two correlation source [16]. 

Assume that X  and Y are two independent and identically distributed (i.i.d.) binary 

random variables. Let ( )H X  and ( )H Y  be the entropies of sources X  and Y  

respectively, and let ( , )H X Y  be their joint entropy. The Shannon’s coding theorem declares 

that (( ), () )H H X YX HY   , which implies that a rate given by ( , )H X Y  is sufficient if 

X  and Y  are jointly encoded. The DSC theorem further proves that, given that the 
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correlation between X  and Y  is known and Y  is available at the decoder side, the 

lossless coding rate ( , )H X Y  can still be achieved if X  and Y  are separately encoded 

and jointly decoded. To be more precisely, Y  is encoded into ( )H Y  bits per sample (bps), 

and the rate of X  can be reduced to ( , ) (| ) )( H XH Y YX HY   . The corner point of A , 

in Fig. 2.2, shows the case where SWC codes are designed to approach the rate 

( ) ( |, ) )( H YH X H X YY   . Fig. 2.2 also shows the achievable rate region of DSC which is 

given by ( | )xR H X Y , ( | )yR H Y X , and ( , )x YR R H X Y  . 

xR

yR

 H Y

 |H Y X

 |H X Y  H X

A

B

C

 

Fig. 2.2 Rate region for two sources. 

 Constructive methods to designing SWC codes can be classified into two categories: 

asymmetric and symmetric. Designing code to approach the corner of points A  or B  refers 

to as asymmetric, while to approach the mid-point C  is regarded as symmetric. Our work 

falls into the asymmetric DSC methods. 

 

2.2 DSC System Implementation 

The basic concept in DSC theorem is binning, which refers to partitioning all possible 

source outputs into cosets (or bins). Consider an i.i.d. n-bit binary source and a rate /k n  

linear channel code. Then we have 2n  virtual codewords, whereas there are only 2k  valid 

codewords. The concept of binning is to partition 2n  virtual codewords into 2n k  disjoint 

cosets. For each coset, there are 2k  codewords and an ( )n k -bit coset index (syndrome) is 

assigned. Proceeding with the binning, it should be ensured that minimum Hamming 

distances between any two codewords within the same coset are equal. 

In DSC theorem a compression ratio :n n k  is achieved by transmitting the ( )n k

-bit syndrome rather than the n-bit input itself. Fig. 2.3 illustrates the structure of DSC using 

syndromes [17]. The source encoder at the transmitter can be viewed as a syndrome former 
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(SF), which maps an n -bit input sequence nX  to an ( )n k -bit syndrome n kS  . The 

source decoder at the receiver is composed of an inverse syndrome former (ISF) and a virtual 

channel decoder. The output from the ISF is added (in modulo 2 addition) to the side 

information nY , and the result is fed to the virtual channel decoder to perform channel 

decoding. If the channel code is well-designed, the reconstructed sequence ˆ nX , retrieved by 

adding (in modulo 2 addition) the output from the virtual channel decoder to the output from 

the ISF, can be very close to the original sequence nX . The correlation between nY  and nX  

is usually modeled by a virtual binary symmetric channel (BSC) as n n nY X Z  , where 

nZ  can be taken as virtual bit error sequences. In other words, nY  is a noisy version of nX . 

x

x̂y

s  2c s

 

Fig. 2.3 The structure of the DSC encoder and decoder [17]. 

A more detailed process of DSC is described as below. An n-bit input source x  is 

passed through the SF and a syndrome s  is generated in a way that x  belongs to the coset 

indexed by syndrome s , or 1 ( )x c s . Assume that the syndrome s  is transmitted to the 

receiver through a noiseless channel. The ISF uses the received syndromes to choose any 

codeword 2 ( )c s  from the coset indexed by the syndrome s . Let z  be the virtual binary bit 

error sequence which relates input x  and side information y  through y x z  . The 

input of the virtual channel decoder is given by 

 2 2 1 2( ) ( ) ( ) ( ) .y c s x z c s c s c s z        (1)

According to channel coding theorem, applying modulo 2 addition to any two codewords in 

the same coset leads to a valid codeword in the coset indexed by the syndrome 0, that is, 

1 2 3( ) ( ) (0)c s c s c  . Therefore, we have 

 2 3( ) (0) .y c s c z    (2)

It should be noticed that 3 (0)c z  represents a noisy codeword (a valid codeword plus some 

bit errors), implying that a powerful channel code can recover 3 (0)c . Afterwards, the original 

input source x  can be recovered by adding 2 ( )c s  to 3 (0)c  as follows: 
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 2 3 2 2( ) (0) ( ) ( ) .c s c c s y c s z y z x         (3)

From (3), we know that it is critically essential to build a good correlation model and use it to 

choose a powerful channel code. 

The kernel of SF is to design a channel code according to the source correlation model. 

Consider a ( , )n k  convolutional code with k n  generator matrix G  and ( )n k n   

parity check matrix H . According to channel coding theorem, we have 0TGH    (null 

vector), where TH  denotes the transpose of H . With regard to SF construction, the 

syndrome s  can be computed by using TH  in the form of 

 .Ts xH (4)

The operation of the ISF can be described by a matrix 1( )TH   which satisfies 

 1( ) ,T TH H I   (5)

where I  is an identity matrix. The output from ISF can be any codeword 2 ( )c s  in the coset 

indexed by the syndrome s  and is given by 

 1 1
2 ( ) ( ) ( ) .T T Tc s s H xH H    (6)

 

2.3 Convolutional-Based Syndrome Former 

When applying the DSC, both the compression ratio and the quality of reconstructed 

signal depend on the choice of channel code used for SF. In practical DSC systems, the 

binning is often constructed using a ( , , )n k m  convolutional code, where n  is the number of 

output bits, k  is the number of input bits and m  is the memory order (e.g., the number of 

shift registers). Basically, the convolutional encoder can be modeled as a finite-state machine 

(FSM) with its states defined by the contents of the shift registers. The dynamic behavior of 

the encoder in time can be represented by a trellis diagram. Fig. 2.4 shows the state diagram 

and trellis diagram of a (2,1,2)  encoder with generator matrix 2 2( ) 1 1G D D D D      . 

Through the trellis diagram, we observe that the encoding process of convolutional code 

utilizes the information of the past codewords. This makes the convolution code more 

efficient from the viewpoint of error correction. In addition, the construction of trellis diagram 

allows the decoder to decode the sequences in linear time. 
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Fig. 2.4 (a) State diagram and (b) trellis diagram. 

 

2.4 Virtual Channel Decoder 

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a maximum a posteriori probability 

(MAP) decoder that can be applied to any linear block code or convolutional code [12]. In the 

MAP decoder the probability of information bit error is minimized. However, the usefulness 

of conventional BCJR algorithm may be restricted since it is derived based on a bit-level 

trellis and only exploits the bit-level source a priori probability (APP). A better solution is to 

develop a decoding algorithm operating in the index-level. 

Consider a (2,1,2)  convolutional code with generator polynomial 

2 2( ) 1 1G D D D D      . The bit-level trellis used in classical BCJR algorithm is shown 

in Fig. 2.5. We observe that the channel codeword and the next state are determined by the 

input bit and the current state. For applying an index-based BCJR algorithm, we should 

sectionalize the bit-level trellis according to the index length. To achieve this goal, the 

bit-level trellis is merged by viewing M  consecutive bits as a unit. Fig. 2.6 shows the 

sectionalized trellis diagram where two stages ( 2M  ) of the bit-level trellis are merged. 
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1ls  lslu 1lu  1ls   

Fig. 2.5 Bit-level trellis diagram. 

1s  su  

Fig. 2.6 Sectionalized trellis diagram. 

Through the sectionalized trellis diagram, the a priori information on index-level can be 

fully exploited in the decoding process. At time instant  , the input symbol is u , the state 

of the encoder is  , and the channel codeword is r . Taking the sectionalized trellis state 

  into consideration, we rewrite the a posteriori probability of a symbol u i   given the 

received sequence 1 1 2( , ,..., )T
TR r r r     as follows: 

 

1
1

1

1

( , , )
( | )

( )

                    ( , , ),

T
T

T

T

P u i R
P u i R

P R

C P u i R





 




 







 

 









 (7)

where C  is a normalizing factor. The joint probability term can be further decomposed using 

the Bayes theorem as 
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1 1 1 1( , , ) ( , , ) ( | , , )

                        ( ) ( ),

T T T

i i

P u i R P u i R P R u i R
      

   

  

   
    



   


 (8)

where forward metric ( )i
    and backward metric ( )i

    can be computed in a recursive 

form as follows: 

 

 
 

   
1

1

1

1

1
1 1 1

1 1
1 1 1 1 1 1

1 1 , 1

( ) , ,

, , , , ,

, , , , | , ,

( ) ( , , ),

i

j

j

j
i j

j

P u i R

P u i u j R r

P u j R P u i r u j R

r








   


    



 
      



    


  

 

  

    








 

 
   

  

 

  

     

 









 

 



 (9)

 
   

   

1
1 1 1 1, 1

, 1

| ,

, , .

i T

j
j i

j

P R u i R

r



    

    


  

    


   



  

 

 

 (10)

An encoder starts at 0 0   and terminates at 0T  , the recursion will start with the 

following initial conditions: 

 
0

0 0
0

1, 0
( )

0, 0


 


  

  
 (11)

and 

 
1, 0

( ) .
0, 0

T
T T

T


 


  

   
 (12)

Using the Markov property of the symbols and the memoryless assumption of the virtual 

binary symmetric channel, we have 

 

   
 
 
 

1
, 1 1 1 1

1
1 1 1

1
1 1 1

1

, , , , | , ,

, | , ,

| , , , ,

, |

i j r P u i r u j R

P u i u j R

P r u i u j R

P u i


       


   


    

  

    

 

 

 


  


 


 



   

   

   

  

 





 | , .P r u i    

 (13)

In (13), the term  1, |P u i       can be viewed as a priori information and the term 

 | ,P r u i     accounts for the channel-related information. 

As described in (2), the virtual channel decoder of the DSC system is designed to decode 

a noisy codeword 3 (0)c z . To apply the BCJR algorithm, we may view the received 

codeword at time instant   as r r z    , where 3, (0)r c  . By observing the 
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sectionalized trellis diagram, we find that the channel codeword r  can be uniquely 

determined by u  and  , that is, ( , )r f u   . Let the input of SF be x  and the 

output of SF be ( )S   at time instant  . We have ( ) ( )
1, 2, 3,( ) ( ) (0)c S c S c 
    . The term 

 1, |P u i       can be further rewritten as (14). 

 

   
 
 

1 1

3, 1

( ) ( )
1, 2, 1

, | ( , ) |

(0) ( , ) |

( ) ( , ) ( ) |

( ,

P u i P r f u i

P c f u i

P c S f u i c S

P x f u i

      

   

 
    

  

   

 

 



 





     

   

    

   ( )
2, 1) ( ) | .c S 
   

(14)

From (14), it is observed that the a priori information can be exploited by taking into 

consideration the current state  , the input index x , and the output of ISF ( )
2, ( )c S 
 . The 

channel-related term  | ,P r u i     can be reduced to 

  1 1| , ( | ( , )) (1 ) ,n d dP r u i P r r f u i         
            (15)

where   is the bit error rate in the virtual channel and  , ( , )Hd d r r f x i        is the 

Hamming distance between the received index r  and corresponding codeword r . In 

summary, ( )i
   and ( )i

    can be rewritten as 

    
1

1 1 1( ) | , ( ) , | ,i j

j

P r u i P u i


         


      


         (16)

        1 1 1, | | , .i j

j

P u j P r u j


         


               
(17)

To avoid the numerical representation problem, both ( )i
   and ( )i

    are normalized as 

follows: 

 

 

 
1

1

, 1 1 1

, 1 1 1

, , ( )

( ) ,
, , ( )

j
i j

i
j

i j

r

r


 

    


 
    

 

    
 

    




  

  

 









  (18)

 

 

 
1

, 1

1 1
, 1

, , ( )

( ) .
, , ( )

j
j i

i
j

j i

r

r


 

    


 
    

 

    
 

    




 


 









 (19)

The procedure of BCJR algorithm can be summarized as follow: 
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1. Initialize forward metric ( )i
    and backward metric ( )i

    by (11) and (12). 

2. Once the received codeword r  is available, we calculate branch metric by (13), 

(14), and (15), and update the forward metric by (18). 

3. After the entire sequence 1
TR  is received, update the backward metric ( )i

    by 

(19), and the a posteriori probability of each symbol 1( | )TP u i R    is obtained. 

4. A symbol estimate û  that has the maximum a posteriori probability  is obtained 

and is used to determine the codeword 3, (0)r c   . Finally, the signal estimate 

x̂  is computed by (3). 

2.5 Construction of Index-Based Syndrome Former 

To be consistent with the index-based BCJR algorithm, the SF should also be designed to 

operate at the index level. J. Li et al. proposed a scheme exploiting rate-compatible punctured 

convolutional (RCPC) code [18] and is described as follows. Consider a non-recursive 

polynomial: 

 2 3
0 1 2 3( ) ... ,n

nA D a a D a D a D a D       (20)

where 0 1 2 3( , , , , ..., )na a a a a  is a binary sequence and D is the delay element. The binary 

sequence can be divided into t  sub-sequences by polyphase decomposition. In other words, 

each , 0ia i n  , is divided by t  and we get the remainder. Therefore, we have the 

following subsequences: 

 

0 2 ,...

1 1 2 1,...

1 2 1 3 1,...

( , , )

( , , )

...

( , , )

t t

t t

t t t

a a a

a a a

a a a

 

  

 

and then we have 

 
( )

0

( ) , 0,1,..., 1.
n

t i
j it j

i

A D a D j t


    (21)

By (21), (20) can be rewritten as: 

 
1

0

( ) ( ).
t

j t t
j

j

A D D A D




   (22)

The t-cyclic elementary matrix of ( )A D  can be defined as: 
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 

0 1 2 1

( ) 1 0 3 2

1 2 1 0

( ) ( ) ... ( ) ( )

( ) ( ) ... ( ) ( )
( )

... ... ... ... ...

( ) ( ) ( ) ( )

t t

t t t t

t

A D A D A D A D

DA D A D A D A D
A D

DA D DA D DA D A D

 

  



   
    
    


  








 (23)

The t-cyclic elementary matrix is an important tool for deriving the generator matrix for 

sectionalized trellis diagram. Assume the generator matrix G  of a rate 2 / 3  RSC is 

 
2

2

2

1
1  0    

1
.

1
0  1  

1

D

D
G

D D

D

         
       

 (24)

Since two bits are merged to construct a rate 4 / 6  RSC, we now define 2-cyclic elementary 

matrix for each polynomial in G . First, define G  as 

 

3
1 2

4
2 1

( )
( )  ( )  

( )
,

( )
( )  ( )  

( )

U D
U D U D

V D
G

U D
U D U D

V D

       
 
   
 

 (25)

where 

 

1

2

3

2
4

2

( ) 1

( ) 0

( ) 1

( ) 1

( ) 1 .

U D

U D

U D D

U D D D

V D D



 

 







 
(26)

For polynomials in (26), the corresponding 2-cyclic elementary matrices are 
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(2)
1

(2)
2

(2)
3

(2)
4

(2)

1 0
( )

0 1

0
( )

0

1   1
( )

D  1

1+D    1
( )

 D   1+D

1+D     0
( ) .

 0    1+D

U D

U D

U D

U D

V D

   
     

  
    

  
   

 
    

   
     











 

(27)

From (27), the 2-cyclic elementary matrix for 3 ( )

( )

U D

V D
 and 4 ( )

( )

U D

V D
 in G  can be defined as 

 

(2) (2) -1
3

(2) (2) -1
4

1 1 1
    0   1   1 1+D 1+D 1+D( ) ( ) = =

D  1 1 D 1
  0      

1+D 1+D 1+D

1
    01+D   1  1+D( ) ( ) =

  D   1+D 1
  0    

1+D

U D V D

U D V D

         
                    

     
           

  

  

1
   1    

1+D= .
D

    1
1+D

   
  
   

(28)

Finally we derive a rate 4 / 6  generator matrix tG  from the rate 2 / 3  generator matrix as 

follows: 

 

(2) (2) (2) (2) -1
1 2 3

(2) (2) (2) (2) -1
2 1 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 0 0 0

1 1
1

0 1 0 0
1 1

1
0 0 1 0 1

1

t

U D U D U D V D
G

U D U D U D V D

D D
D

D D

D

    
  

      

     
 

     
 

     


   

   

.

0 0 0 1 1
1

D

D

 
 
 
 
 
 
 
 
 
      
    

(29)
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Any SF-ISF pair is valid if 0TGH   and 1( )T TH H I  . So the SF and ISF can also be 

designed as 

 

1 1

1 1
1

1 1
1

1 ,
1

1
1

T
t

D D
D

D D

SF H
D

D

D

      
    
 
  

 
 
  
 

 
 
 


 

(30)

 
1 0 0 0 0 1 0

( ) .
0 0 0 0 0 1

T
tISF H       

      
 (31)

By (30) and (31), SF and ISF are modified to operate at index level, making the DSC better 

match the index-based BCJR algorithm. 
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Chapter 3 ECG Measurement and Correlation Modeling 

 

Electrocardiography (ECG) is commonly used to measure the regularity of one’s 

heartbeat. ECG, which refers to the record from electrocardiography, can be measured by 

attaching electrodes to the surface of skin and by recording the electrical activity in the heart. 

The ECG sources used in this research are acquired by using an ECG sensor or using an open 

ECG database. As described in the previous chapter, ECG correlation modeling is essential 

for DSC applications. In this chapter, basic characteristics of ECG, the ECG sources used in 

our work, and ECG correlation modeling are discussed. 

 

3.1 Basic Characteristics of ECG 

Goal of an ECG device is to detect, amplify, and record the electrical changes caused by 

depolarization and repolarization of heart muscle. Each heart muscle cell, at rest condition, 

has a negative charge across its cell membrane and is called polarized. The negative charge 

can be increased to zero, and the phenomenon of depolarization causes the heart to contract. 

Afterwards, the heart muscle cell will be recharged, called repolarization, which makes the 

heart to expand. A cardiac cycle begins when the sinoatrial node (SA) generates the impulse, 

which will run through the heart. The conducting system of the heart can be summarized as 

follows: 

1. The impulse generated from SA node will signal the muscle in the atria to beat, 

resulting in contraction, during which the blood is pushed from atria into ventricles. 

2. The impulse propagates to atrioventricular (AV) node and then delays for about 1 

millisecond to allow the blood to fill the ventricles. 

3. The impulse propagates to the ventricles through the right bundle branch (RBB), the 

left bundle branch (LBB), and other nerves. This results in the ventricular 

contraction, during which the blood is pushed to the body. 

4. The muscle cells are recharged (repolarization) and it expands the atrial so that the 

blood is allowed to return to the heart. Then, the next heartbeat repeats. 

A typical cardiac cycle (ECG cycle) is composed of a P wave, a QRS complex, and a T 

wave. In addition, there are U wave and J wave within an ECG cycle, but their amplitude is so 

low that they are often ignored. Different types of wave reflect the different stages of the 

heartbeats. A detailed description of each wave and its duration are shown in Fig. 3.1 and 

Table 3.1. ECG is the most important tool to diagnose any damage to the heart. Symptoms 



 

 18

like arrhythmia and myocardial infarction can be easily detected through ECG. For example, 

hyperacute T waves indicate that acute myocardial infarction may occur. 

 

Fig. 3.1 Typical cardiac cycle. 

  

Table 3.1 Descriptions of waves and durations. 

Name Descriptions Duration 
P wave Represents the atrial depolarization. Shorter than 0.12 seconds 

PR interval 
The interval between the points of the P 
wave to Q wave. 

Longer than 0.12 seconds and 
shorter than 0.2 seconds. 

QRS complex 
Represents the ventricular depolarization 
and atrial repolarization. 

Longer than 0.08 seconds and 
shorter than 0.12 seconds. 

ST segment 
The period during which the ventricles are 
depolarized. 

Longer than 0.08 seconds and 
shorter than 0.12 seconds 

T wave 
The last wave of a normal cardiac cycle, 
representing the ventricular repolarization. 

Shorter than 0.16 seconds 

RR interval The interval between two R waves. 
Longer than 0.6 seconds and 
shorter than 1.2 seconds 

 

3.2 ECG Measurements 

While the heartbeats are caused by a series of electrical activities in the heart, we can 

collect and record these signals by attaching electrodes on the surface of the skin. When 

measuring ECG, usually more than two electrodes are used and they can be combined into a 

pair whose output is called a lead. The most common clinically-used one is 12-lead ECG 

where ten electrodes are used. Each electrode has a specific label (name), including RA, LA, 

RL, LL, V1, V2, V3, V4, V5, and V6. The placements and labels of electrodes are illustrated 

in Fig. 3.2 [19] and Table 3.2, respectively. 
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Fig. 3.2 Placements of electrodes [19]. 

 

Table 3.2 Placements of electrodes 

Electrodes’ label Placement 
RA On the right arm. 
LA On the left arm. 
RL On the right leg. 
LL On the left leg. 
V1 In the space, between rib 4 and rib 5, to the right side of the breastbone. 
V2 In the space, between rib 4 and rib 5, to the left side of the breastbone. 
V3 In the place between lead V2 and lead V4. 

V4 
In the space between rib 5 and rib 6, and on an imaginary line extended 
from the collarbone’s midpoint. 

V5 In the place between lead V4 and lead V6. 

V6 
In the space horizontally even with lead V4 and V5, and on an imaginary 
line extended from the middle of the armpit. 

 

The twelve leads contain six precordial leads (V1~V6) in the horizontal plane, three 

standard limb leads (I, II, III), and three augmented limb leads (aVR, aVL, aVF) in the frontal 

plane. The twelve leads can also be divided into two types: bipolar and unipolar. While the 

former has one positive and one negative pole, the latter has two poles with the negative one 

made of signals from many other electrodes. For example, leads I, II, and III are bipolar leads, 

while others are unipolar leads. The definitions of twelve leads are given as below. 

1. Lead aVR: the positive electrode is on the right arm and the negative one is a 

combination of two electrodes on the left arm and left leg. 

  ( ) / 2RA LA LLLead aVR V V V    
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2. Lead aVL: the positive electrode is on the left arm and the negative one is a 

combination of two electrodes on the right arm and left leg. 

  ( ) / 2LA RA LLLead aVL V V V    

3. Lead aVF: the positive electrode is on the left leg and the negative one is a 

combination of two electrodes on the left arm and right arm. 

  ( ) / 2LL LA RALead aVF V V V    

4. Lead I: the positive electrode is on the left arm and the negative one is on the right 

arm. 

  ( )LA RALead I V V    

5. Lead II: the positive electrode is on the left leg and the negative one is on the right 

arm. 

  ( )LL RALead II V V   

6. Lead III: the positive electrode is on the left leg and the negative one is on the left 

arm. 

  ( )LL LALead III V V   

 

3.3 ECG Sources 

Our work proceeds in a two-step procedure. First, offline simulations are used to test and 

verify the proposed compression algorithm using MIT-BIH Arrhythmia Database [20] as the 

ECG sources. In the second step, the algorithm is implemented, as described in Chapter 4, on 

an embedded system using a 1-lead sensor to measure real-time humans’ ECG. 

The MIT-BIH Arrhythmia Database has been widely used for evaluating automated 

arrhythmia analysis in research community. The ECG recordings came from the Beth Israel 

Deaconess Medical Center and were further digitized and annotated by a group at 

Massachusetts Institute of Technology. The database contains a total of 48 half-hour data, and 

each of which was recorded from a two-channel electrodes. One channel is a modified limb II 

(MLII), and the other is usually V1 but can be V2, V4, or V5. The sample rate is 360Hz and 

each sample point is scalar quantized into 11 bits. Annotations were made by cardiologists to 

indicate specific phenomenon. For example, “A”, “” and “V” stand for a heartbeat.  These 

three annotations represent atrial premature beat, normal beat and ventricular premature beat, 

respectively. 

In this thesis, two ECG recordings with number 110 and 122, are used in offline 
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simulations. Typical segments of their waveforms are given in Fig. 3.3 and Fig. 3.4. 

 

Fig. 3.3 A segment of waves in MIT-BIH 100. 

 

Fig. 3.4 A segment of waves in MIT-BIH 122. 

 

3.4 ECG Preprocess and Correlation Modeling 

Constructing an ECG correlation model is essential to match the DSC application. The 

proposed modeling methods are based on vector quantization (VQ). Fig. 3.5 shows the flow 

chart for constructing the ECG correlation model. 
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Fig. 3.5 The flow chart of ECG correlation modeling. 

A ( , )k M  vector quantizer [21] can be viewed as a function that maps a vector in k  

dimensional space kR  to a set S  containing 2M  representative codewords. The set S  is 

often referred to a codebook, of which size is 2M  with k -dimensional codewords. A 

VQ-based compressing system is composed of the encoder and the decoder. The encoder 

calculates the distance between the input vector 1 2( , ,..., )k
kV v v v  and each codeword ic  

in the codebook C , and determines an index {1, 2,..., 2 }Mi I   associated with the 

codeword closet to the input vector. The index is then transmitted to the decoder. The decoder 

uses the received index to look up the same codebook and finds the corresponding codeword 

approximated to the input vector. 

Although conventional VQ works well for its high compression ratio and high quality 

reconstruction, there exist many variants for different applications. The conventional VQ 

encoder requires computational complexity proportional to 2Mk , implying that the 

complexity grows exponentially. A large VQ codebook is needed to achieve reasonable 

performance if the range of the input vector is large, since there should be more codewords to 

represent original input vectors. Therefore a good performance of VQ is reached at the cost of 

high encoding complexity due to the use of large codebook. To solve the problem, 

gain-adaptive VQ rather than conventional VQ is used in this thesis. Unlike conventional VQ, 

gain-adaptive VQ computes the gain of the input vector and sends the gain-normalized input 

vector to VQ. By normalizing the input vector, the range of input vector can be reduced, 

leading to better performance. 

We first consider the use of two preprocesses, including QRS complex detection and 

period normalization, to maximize the inter-beat correlation prior to gain-adaptive VQ. Also 
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proposed is a multiple-choice index assignment scheme to better match DSC application. 

Unlike conventional VQ that chooses the codeword closest to the input vector, the 

multiple-choice index assignment scheme chooses the top-five closest codewords as 

candidates, and then decides the best codeword by some heuristic rules. 

 

3.4.1 QRS Complex Detection 

The QRS complex is the most distinct part in the ECG waveform and there exists many 

QRS complex detection algorithm [22]. For our real-time application, off-line QRS complex 

detection methods are impracticable. R.G. Lee et al. proposed a modified So and Chan (MSC) 

algorithm [23], which is utilized in this work to implement a simple QRS complex detection 

algorithm. Let ( )x n  be the amplitude of filtered ECG points at time instant n . As shown in 

Fig. 3.6, the steps of the detection algorithm are described in detail as follows: 

1.  Low-pass filter: The transfer function and the difference equation are given by 
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1 2
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2.  High-pass filter: The transfer function and the difference equation are described by 
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3.  Slope calculation: The slope of filtered ECG signals can be calculated by 

 ( ) 2 ( 2) ( 1) ( 1) 2 ( 2).slope n x n x n x n x n          (34)

4.  QRS wave onset detection: The QRS wave onset can be detected if the condition    

| ( ) | | |thslope n slope  is satisfied for two consecutive points, where a predefined 

value thslope  is defined as the ratio to the maximal slope of first 500 ECG points. 
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Fig. 3.6 Flow chart of QRS complex detection. 

 

3.4.2 Period Normalization 

ECG itself is one-dimensional in time-domain, but can be viewed as a two-dimensional 

signal in terms of its periodicity. Since the lengths of heart segment are different, each ECG 

cycle has to be normalized to a fixed length for further processing. A predefined length is 

obtained by calculating the average length of a large training set of ECG cycles. Higher order 

interpolations make little difference but require more computation complexity. Therefore, 

linear interpolation is a better choice for its simplicity. 

 

3.4.3 Gain-Adaptive Vector Quantization 

In gain-adaptive vector quantization, the dynamic range of input can be reduced if an 

encoder quantizes the gain-normalized vector rather than the original one. Two gain-adaptive 

approaches are implemented in our application, including backward gain-adaptive VQ [24] 

and gain-shape VQ [10]. Two main differences exist between backward gain-adaptive VQ and 

gain-shape VQ: 1) In gain-shape VQ, there is no VQ decoder at the transmitter; and 2) In 

backward gain-adaptive VQ, there is no side information to be sent. Gain predictors at both 

the transmitter and the receiver use the same past quantized vectors to estimate a gain. But in 
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gain-shape VQ, the VQ index of gain codebook must be transmitted to the receiver. 

[A] Backward Gain-Adaptive VQ: 

Fig. 3.7 shows the structure of backward gain-adaptive VQ [24]. The gain predictor 

estimates the gain by using previous quantized vectors, which are the only information 

available at the receiver. At the transmitter, there are both VQ encoder and decoder. At sample 

time n , the k -dimensional input vector 1 2( , , ..., )n n n nkX x x x  is divided by a gain ng  

coming from the gain predictor. The normalized vector is quantized by the VQ encoder and 

the specific index nI  corresponding to its closest codeword n̂Y  will be transmitted. In 

addition, n̂Y  is multiplied by a gain ng  to obtain the reconstructed vector 

1 2
ˆ ˆ ˆ ˆ( , ,..., )n n n nkX x x x , which will be used by gain predictor to estimate the gain 1ng   at 

sample time 1n . At the receiver, a similar operation is performed to generate the 

reconstructed signal ˆ
nX  and the next gain 1ng  . 

nX

n

n

X

g

ng
ng

n̂Y ˆ
nX

ˆ
nX

ng

nI n̂Y

 

Fig. 3.7 Structure of backward gain-adaptive VQ [24]. 

Four backward adaptive algorithms have been proposed in previous work [24]. Among 

them, the exponential-average gain predictor is used here due to its low-delay estimation. 

More specifically, the gain ng  is predicted by 
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where 0 1  . ˆ
nX  denotes the norm of ˆ

nX  and is given by 
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where k  is the dimension of the vector ˆ
nX . For a recursive implementation, we have 

 1 1
ˆ(1 ) .n n ng g X      (37)

 

[B] Gain-Shape VQ: 
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In gain-shape VQ, the “gain” ng  is the norm of an input vector nX , while “shape” nS  

refers to the normalized input vector, that is, n n nS X g  [10]. Forward adaptation of the 

gain is given by 
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n n ni
i

g X x


 
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The basic structure of gain-shape VQ is shown in Fig. 3.8. Each input vector is normalized 

prior to the shape VQ and both the shape and gain VQ encoder are applied to choose the best 

index. It is impractical to transmit uncompressed gains to the receiver, since the overhead is 

huge. In our work, both the shape and gain are vector quantized, and their codebooks 

minimizing the distortion are generated using the LBG algorithm [25]. The receiver performs 

codebook look-up to determine the closest codeword n̂Y , which is then multiplied by a gain 

ng  to obtain the reconstructed signal ˆ
nX . 

ng

n

n

X

g

ˆng

nX ˆ
nX

n̂Y

 

Fig. 3.8 Structure of gain-shape VQ. 

 

3.4.4 Multiple-Choice Index Assignment 

Goal of the ECG preprocess is to ensure that the BER of two correlated sources is low 

enough to be compensated by the channel decoder. To better match DSC, multiple-choice 

index assignment scheme is proposed to lower the BER while keeping reasonable 

reconstruction quality. In the so-called multiple-index VQ, the process of codebook training is 

the same as in gain-adaptive VQ. Besides training a codebook, there is an additional step to 

construct the reference model. Consider the k -dimensional VQ of an ECG signal which 

consists of n cycles and m  points per cycle. The detailed steps of building a reference 

model are described as follows: 

1. Quantize all training sequences (the total number of points is n m ), and arrange 

the resulting ( / )n m k  indexes as a 2-dimensional array of n rows and /m k  

columns. 
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2. For each of /m k  columns, find the index which occurs the most among the rows. 

This results in a total of /m k  indexes, which form the reference model. 

When looking up codebook, the index is chosen by the following rules: 

1. Compare the i-th input vector to every codewords of the codebook and find five 

indexes 1 2 3 4 5( , , , , )I i i i i i  that represent top-five closest codewords. 

2. Choose among them the index with minimum Hamming distance to the refi  as the 

output. 
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Chapter 4 System Architecture and Software Implementation 

 

There are three major components in the ECG system, including 1) a sensor for ECG 

measurement; 2) a front-end device for ECG compression; and 3) a back-end server for signal 

reconstruction. To increase the mobility, wireless communication technologies such as 

Bluetooth and mobile cellular network are involved in the real-time implementation. In the 

previous chapter we introduce the DSC theorem and practical methods to construct ECG 

correlation model. The encoder is implemented on an embedded system development board, 

which serves as the front-end device, while the decoder is designed on the back-end server. 

 

4.1 Hardware Architecture 

The hardware architecture is illustrated in Fig. 4.1. The patient unit consists of the 

BtECG sensor and the embedded system development board WinFast PXA310 mini-board. 

ECG signals are first measured by BtECG sensor and transmitted to the board, where the 

ECG signals are segmented and compressed. Afterwards the compressed ECG data are 

transmitted via a wireless link to the back-end server. The wireless transmission from the 

board to the server includes 1) a Bluetooth link between the board and a mobile telephone; 2) 

WCDMA to a base station; and 3) Internet to the server. To proceed with this, the WinFast 

PXA310 board is connected to a Bluetooth module via a USB interface. In addition, a 

commercially available Bluetooth-enabled 3G mobile telephone SAMSUNG S3370 is used.  

WinFast 
PXA 310 

mini-board

Bluetooth 
module

BtECG 
sensor

Patient unit

3G network 
infrastructure

Internet

Server (PC)

Bluetooth link

WCDMA

 

Fig. 4.1 The hardware architecture of the mobile ECG system. 

  

 

The specification of the patient unit is summarized in Table 4.1. A detailed description of 
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the BtECG sensor and WinFast PXA310 mini-board are given in 4.1.1 and 4.1.2 respectively. 

Table 4.1 The specification of the patient unit. 

BtECG sensor 
Size: 5.5 cm * 3.5 cm * 1.6 cm 
Duration of power supply: 20 hours 

ECG signals 

Channel: one ECG channel 
ADC resolution: 12 bits 
Sampling rate: 250 Hz 
Band-pass filter: 0.1 Hz-40 Hz 

Bluetooth module 

Version: v2.1 + EDR 
Frequencies: 2.402-2.48 Hz 
RF power coverage: 10 meters (Class II) 
Theoretical data rate: 3 Mbps 

WinFast PXA310 mini-board 

Size: 11 cm * 9.5 cm * 3.5 cm 
Marvell PXA 310 processor: 
-Intel XScale core with 624 MHz 
-2*256 kB SRAM 
-USB 1.1 and other peripheral 

 

4.1.1 BtECG Sensor 

The BtECG sensor is developed by K&Y Lab. and LeadTek Research Inc. Its small size 

sensor and Bluetooth communication capability are extremely suitable for use in developing 

wireless medical telemetry applications. BtECG sensor comprises an analog-to-digital 

converter (ADC), a DSP processor KY202, and a Bluetooth module. The processor 

incorporates into one single chip the novel technologies of heart rate variability (HRV), 

including R wave detection, noise rejection, interpolation in time domain, and fast Fourier 

transform in frequency domain. All the analysis results, together with measured ECG signals, 

are transmitted via Bluetooth. The appearance of BtECG sensor is shown in Fig. 4.2. Two 

physiological signals can be collected by using three electrodes. Two of the three electrodes 

are used for measuring ECG and the other for body temperature. Since the ADC resolution is 

12 bits, the value of an ECG sample ranges from 0 to 4095. A segment of ECG waveforms 

measured by BtECG sensor is given in Fig. 4.3. 

 

Fig. 4.2 The appearance of BtECG sensor. 
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Fig. 4.3 A segment of ECG waves collected by BtECG sensor. 

 

4.1.2 WinFast PXA310 Mini-Board 

WinFast PXA 310 mini (mini-board) featuring the Marvell PXA310 processor is chosen 

in our application. The board which serves as the front-end device is shown in Fig. 4.4. 

Marvell PXA310 processor uses an optimized XScale architecture with a top clock speed of 

624 MHz. Many peripheral components are supported by WinFast PXA 310 mini, as shown in 

Fig. 4.5. Among them, USB 1.1 and 10/100 Ethernet are used. A Bluetooth USB module can 

be incorporated to allow the board to communicate with BtECG sensor and the mobile 

telephone. 

 

Fig. 4.4 The exterior of WinFast PXA310 mini-board. 

 

Fig. 4.5 Block diagram of WinFast PXA310 mini. 
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4.2 Software Implementation 

The software design in our implementation can be divided into two parts, the one is on 

the development board and the other is on the server. 

 

4.2.1 Development Language and Tools 

To match the WinCE 6.0 operating system installed on the PXA310 mini, we have 

chosen Microsoft Visual Studio 2005 for our software development. In addition, Windows 

Embedded CE 6.0 platform builder is installed on a PC to develop applications operating on 

WinCE 6.0. Windows Embedded CE 6.0 platform builder is a plug-in of Microsoft Visual 

Studio 2005, where the application on the board is developed by using Microsoft Foundation 

Class (MFC). The software on the server is developed with MATLAB 7.6. 

 

4.2.2 Software design 

 Goal of the software development on the server is to receive and reconstruct the 

compressed ECG signals. A socket is created to listen and accept the connection request, and 

then receive data coming from the board. Once receiving a complete heartbeat segment, they 

are decoded. The proposed modified DSC decoder and GSVQ decoder are implemented. The 

resulting decoded signals are then period normalized to its original heartbeat length and the 

reconstructed signals can be monitored on the screen. 

As shown in Fig. 4.6, the software implemented on the board performs the following 

three tasks: 

1.  System initialization: In the phase of system initialization, the connection between 

the board and the server is established and the resources are allocated. The recvBuf 

with a buffer size of 512 bytes is allocated to store the data coming from BtECG. 

The sendBuf is allocated to store the compressed ECG signals prior to transmission. 

The size of sendBuf is not fixed but depends on the parameters chosen in the 

compression method. The link between the board and the server is set up as 

described in 4.2. A COM port and a socket are created for communicating with the 

mobile telephone and the server, respectively. To transmit data to the server, the IP 

address and the port of the server are specified. In addition, many parameters used 

for ECG compression such as the size of shape codebook are set. 

2. ECG signal compression: The ECG signals received from BtECG sensor are stored 

in recvBuf. The PXA 310 processor is notified to read the data in recvBuf when the 

buffer is full. Once the QRS of each complete ECG cycle has been detected, a 1-D 
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to 2-D process proceeds with period normalization and compression. The remaining 

ECG signals, not forming a complete cycle, will be QRS detected until the next 

time when the processor reads the recvBuf. Afterwards, a series of compression 

processes is applied. The PXA 310 processor stores the following information to the 

sendBuf prior to transmission: heartbeat length from period normalization, gain 

index from GSVQ and syndrome from the DSC encoder. 

3. Wireless communication: The board will retrieve the contents in the sendBuf and 

then transmit to the server based on TCP protocol. To realize the TCP/IP 

transmission, the Windows Sockets (Winsock) application programming interface 

provided by Microsoft is used. 

 

Multiple-index 
assignment

System 
initialization

QRS detection

Yes

No

Yes

Gain-shape VQ 
encoder

R wave
detected?

recvBuf full?

No
DSC encoder

Period 
normalization

Write to sendBuf for 
transmission  

Fig. 4.6 The software architecture on the transmitter side. 

We digress here for a moment to discuss an issue. As described in 4.1.1, BtECG sensor 

performs R wave detection. Why should we implement the QRS complex detection on the 

board? It is because BtECG sensor only uses R wave detection to calculate HRV, but it does 

not transmit any information about R wave to the board. The board does not know the R wave 

location within the received ECG signals, and the QRS complex detection is needed on the 

board. 

The wireless transmissions in our work can be divided into two parts. A built-in 

Bluetooth module is responsible for transmitting signals from BtECG sensor to the board. The 

second part takes charge of transmitting compressed data from the board to server (PC) and 

there are many available wireless technologies. Mobile cellular network is a better choice. 
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With a Bluetooth-enabled cell phone, data can be transmitted to the phone and then to the PC 

whenever the cell phone is in the working range of mobile cellular network. 

A Bluetooth profile is a specification with respect to Bluetooth wireless communication 

between two devices. There are many profiles in Bluetooth technology. Among them, Serial 

Port Profile (SPP) and Dial-up Network Profile (DUN) are used in our work. SPP emulates a 

serial cable to provide a substitute for RS-232. DUN is based on SPP and is a wireless 

technology standing for connecting to the Internet with a cell phone. In our work, the 

development board can access the Internet by dialing up on the cell phone wirelessly. From 

this perspective, the cell phone can be simply viewed as a modem. 

It is the Bluetooth stack that allows the transmission between the board and the server to 

work. Fig. 4.7 shows the implementation of Bluetooth stack in the WinCE. Among various 

layer, only Radio Frequency Communication (RFCOMM), Service Discovery Protocol (SDP), 

and COM Port Emulation layer are concerned. The SPP is based on the RFCOMM which 

refers to serial port emulation. SDP is used so that a device can discover the nearby devices 

and their services. The COM Port Emulation allows virtual COM ports to be created over 

RFCOMM layer, and it hosts SPP and DUN. Depending on the Bluetooth device, a profile is 

given in companion with a specific RFCOMM channel number. RFCOMM channel number 

can be acquired by using SDP. 

 

Fig. 4.7 The Bluetooth implementation in WinCE. 

In our work, the development board first uses SDP to discover nearby devices and their 
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services. Therefore, the addresses and services (RFCOMM channel numbers) of remote 

devices are recognized. Suppose that a Bluetooth-enabled cell phone is discovered. The board 

creates a virtual COM port together with the COM port number and the RFCOMM channel 

number to connect to the phone. By assigning the RFCOMM channel number (for DUN), the 

board can use the cell phone as a modem. This is the way how the WinFast PXA310 

mini-board accesses the Internet via mobile cellular networks. Once the board accesses the 

Internet, compressed ECG data can be transmitted through the TCP protocol for reliable data 

transmission. The board connects to the BtECG sensor in a similar way, but there are two 

differences in data transmission. First, after using SDP, the board uses the SPP to connect to 

the device, rather than DUN. Second, when receiving ECG data from BtECG sensor, the 

board simply reads data from the COM port. Notice that this COM port is different from the 

port for communicating with the cell phone. Details of Bluetooth communication 

implementation are described in Appendix A. 

To make the application more responsive to I/O, multithreading programming technique 

is used in this work. There are three threads and each of which has its own missions and data. 

While one thread is used to perform the ECG compression, the other two threads are 

responsible for receiving ECG data from BtECG sensor and transmitting the compressed ECG 

data to the server wirelessly. A thread often needs to communicate with other threads and 

therefore, shared memory model is used for interprocess communication. Concurrent access 

to shared memory can be a potential problem since it may result in data inconsistency. In our 

work, critical section object provided by Win32 Application Programming Interface (API) is 

used to maintain data consistency. 

 

4.2.3 Data Format of Compressed ECG 

Three types of data (heartbeat length, gain indexes, and syndromes) are stored in packets 

prior to the transmission from the board to the PC. There are five fields within a packet, as 

described as follows. 

[A] Number of Cycles 

This field indicates how many ECG cycles are in the packets. It occupies 8 bits, so a 

packet can contain up to 256 ECG cycles. 

[B] Header 

 This field is 8 bits long and contains some attributes of the packet. Recall that the board 

needs to transmit side information to DSC decoder. There is one bit in this field to indicate 

whether the packet contains side information. Other 7 bits are not used, but reserved for 
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further usages. 

[C]  Gain Indexes 

 The length of this field is variable depending on how many gain indexes are transmitted. 

For each index, it is 8 bits long. As we will see in Chapter 5, we only use 6 bits to represent an 

index, and keep the space for future expansion to 8 bits. 

[D] Heartbeat Length 

 The length of this field is variable depending on how many ECG cycles are transmitted. 

This field contains the original length of each ECG cycle (e.g., the number of points in an 

ECG cycle before period normalization). The sample rate of BtECG sensor is 250 Hz and 

human record 78 beats per minute in average. We can conclude that the length of an ECG 

cycle will be more than 256. In our work, we use 2 bytes to record the length of a cycle. 

[E] Compressed Data 

 The length of the field is also variable. Data can be divided into two categories, 

syndrome and side information. For side information, we allocate 8 bits to record the index of 

normalized ECG vector. For the syndrome, we pack four syndromes (2 bits per syndrome) 

into a byte. 
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Chapter 5 Simulation and Implementation Results 

 

In the previous chapters we have described some new ECG compression algorithm. In 

the first step, offline simulations are conducted to test and verify the proposed ECG 

compression algorithm. QRS complex detection and period normalization are applied for 

preprocessing. Algorithm I refers to the non-DSC compression algorithm using the backward 

gain-adaptive VQ. Algorithm II represents the combined use of gain-shape VQ and DSC. In 

both algorithms, two MIT-BIH recordings, MIT-100 and MIT-122, are used as our ECG 

sources, and each is sampled at 360 sample/second and quantized with 11 bits. After 

simulation, we implemented the mobile DSC-based ECG system as described in Chapter 4. In 

this chapter, we first illustrate the experimental setup used in offline simulation. Simulation 

results and some discussions on Algorithm I and Algorithm II are given. Finally, the real-time 

implementation results of the mobile ECG system are presented. 

 

5.1 Offline Simulation 

5.1.1 Experimental Setup 

Two preprocesses are applied to MIT-100 and MIT-122. We first have these ECG sources 

QRS detected, and period normalization is then applied to make each cycle have 288 points. 

These period-normalized signals are used as sources for Algorithm I and Algorithm II. In each 

source, we choose the first 1,500 ECG cycles as training sequences, and the latter 200 ECG 

cycles as testing sequences. We use 9 bits to record the original heartbeat length as side 

information. 

Percent root mean square difference (PRD), compression ratio (CR), and symbol error 

rate (SER) are used to evaluate the performance. PRD is a measure of the fidelity of the 

compressed signal and is given by 
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where L  is the number of ECG samples, x  is the original signal, and x̂  is the 

reconstructed signal. The CR is defined as 
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where xn  denotes the number of bits per sample in the original signal, dn  denotes the 

number of bits per sample in the encoded signal, gn  denotes the number of bits per sample 

used to code the index of gain, and pn  denotes the number of bits per sample used to code 

the length of an ECG cycle. SER is the number of VQ index errors divided by the total 

number of VQ indexes per cycle. 

  

5.1.2 Experimental Results of Algorithm I 

Following the preprocessing steps described in 5.1, backward gain-adaptive VQ is 

applied with 0gn   bps and vector dimension 4k  . We first calculate the gains of 

period-normalized signals by using (36) and (37), where 0.45  . After gain normalizing, a 

(4,6)  vector quantizer is applied to the gain-normalized vector. With this arrangement, we 

have 11xn   bps, 1.5dn   bps, 0gn   bps, and 0.03125pn   bps. 

Table 5.1 summarizes the performance results of Algorithm I. Original and reconstructed 

waveforms of MIT-100 and MIT-122 are shown in Fig. 5.1 and Fig. 5.2, respectively. 

Table 5.1 Performance results of Algorithm I. 

ECG sources PRD CR 
MIT-100 4.338 7.18 
MIT-122 4.6073 7.18 
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(a) (a) 

(b) (b) 

(c) (c) 
Fig. 5.1 Results of Algorithm I: (a) a typical 
segment of waveforms in MIT-BIH 100, (b) 
reconstructed ECG waveforms, and (c) error 
signals. 

Fig. 5.2 Results of Algorithm I: (a) a typical 
segment of waveforms in MIT-BIH 122, (b) 
reconstructed ECG waveforms, and (c) error 
signals. 

 

The results show that most reconstruction errors occur near the QRS complex. The 

reason is that most of the gain-normalized signals have low amplitude, implying that many 

low-amplitude vectors may exist in the codebook. However, the vectors representing the QRS 

complex are of high amplitude. When vector quantizing, these vectors are prone to being 



 

 39

assigned indexes corresponding to low-amplitude signals. These errors still cannot be well 

corrected even if gains are multiplied back. 

We found that PRD is high if DSC is applied. Moreover, at the transmitter and receiver 

sides, the gain estimators use their past reconstructed signals and gain to predict the current 

gain. The errors will be propagated if the past reconstructed signals have large distortion. This 

disadvantage results in poor reconstruction quality. 

 

5.1.3 Experimental Results of Algorithm II 

Following the preprocessing steps described in 5.1, gain-shape VQ is applied. Gains of 

period-normalized signals are calculated by using (38), where 4k  . Through gain 

normalization, we have the shape signals. Both gains and shapes are vector quantized, where 

a (4,6)  vector quantizer for the shapes, and a (36,6)  vector quantizer for the gains. With 

this arrangement, we have 11xn  bps, 0.5dn  bps, 0.041667gn  bps, and 0.03125pn   

bps. After gain-shape VQ and the multiple-choice index assignment scheme have been 

applied, the DSC encoder and decoder are used for further compression. A rate 4/6 RSC code 

is chosen for the syndrome former. The generator matrix G  is given by 
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The SF-ISF pair is designed as 
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The block diagram of the 4/6 RSC code is shown in Fig. 5.3. The 72 indexes corresponding to 

the 288 points of the first ECG cycle are viewed as side information Y  at the decoder side. 

And a total of 14,328 indexes of the following 199 ECG cycles are taken as the ECG source 

X  to be compressed. 

2s

1s

1x

4x

2x

3x

5x

6x

1u

4u

2u

3u

1x

4x

2x

3x

5x

6x

 

Fig. 5.3 The proposed rate 4/6 RSC code and its SF: (a) the encoder. (b) the implementation 

of SF. 

 

Table 5.2 summarizes the performance of Algorithm II. Original and reconstructed 

waveforms of MIT-100 and MIT-122 are shown in Fig. 5.4 and Fig. 5.5, respectively. 

 

Table 5.2 Performance results of Algorithm II. 

ECG sources SER PRD CR 
MIT-100 1.15 10.5679 19.2 
MIT-122 0.99 4.3272 19.2 
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(a) (a) 

(b) (b) 

(c) (c) 
Fig. 5.4 Results of Algorithm II: (a) a 
typical segment of waveforms in MIT-BIH 
100, (b) reconstructed ECG waveforms, and 
(c) error signals. 

Fig. 5.5 Results of Algorithm II: (a) a 
typical segment of waveforms in MIT-BIH 
122, (b) reconstructed ECG waveforms, and 
(c) error signals. 

 

Prior to the DSC encoding, the ECG correlation model is constructed by using 

gain-shape VQ and multiple-choice index assignment. The result shows that high CR is 
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achieved while keeping PRD in an acceptable range. Like Algorithm I, most reconstruction 

errors occur near the QRS complex. Compared to 0gn   bps of backward gain-adaptive VQ, 

gain-shape VQ adds overhead 0.041667gn   bps. This is because the gains should be 

transmitted as side information to the decoder, but it avoids the error propagation problem. If 

DSC is applied or the communication channel is noisy, gain-shape VQ performs much better 

than backward gain-adaptive VQ. 

 

5.2 Real-Time Implementation 

In addition to offline simulations, the mobile ECG monitoring system is implemented in 

real-time as described in Chapter 4. The ECG signals measured by BtECG sensor are sampled 

at 250 samples/s and quantized with 12 bits. We first measure the ECG signals for 30 minutes, 

and the first 1,500 ECG cycles are used to train the shape codebook and gain codebook. The 

system parameters are the same as those used in Algorithm II in offline simulations. Therefore, 

we have 12 / (0.5 0.041667 0.03125) 20.95CR     . Fig. 5.6 shows the experimental setup 

of the system. A person who wears the BtECG sensor has the electrodes attached. The 

function of the board is to store, compress, frame, and multiplex the incoming data. The 

compressed data are then fed to a SAMSUNG S3370 mobile telephone via a Bluetooth link. 

Afterwards the telephone and the server are connected via mobile cellular networks. Finally, 

the server reconstructs the ECG signals and displays them on the screen. Experimental results 

clearly demonstrate that clinical features are retrained. 

 

Fig. 5.6 Experimental setup: the WinFast PXA310 mini-board, the SAMSUNG S3370 

mobile telephone, and the server (PC). 
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Chapter 6 Conclusions and Future Works 

 

The main contribution of this thesis is to implement a mobile ECG system based on the 

DSC algorithm. We first introduce the DSC theorem and its practical implementation. For the 

DSC application, both the ECG source correlation modeling and the channel code used for SF 

are essential. VQ is used to construct the correlation model and two preprocess, including 

QRS complex detection and period normalization, are used to maximize the inter-beat 

correlation. Compared with conventional VQ, gain-adaptive VQ is shown to obtain better 

performance. Also proposed is a multiple-choice index assignment scheme (multiple-index 

VQ) which better matches the DSC application. In this work, RSC is used for SF and a 

modified BCJR algorithm is proposed for symbol decoding of binary convolutional code. 

Both the offline simulations and real-time implementation are conducted to verify the 

proposed ECG compression algorithm. The result shows that the proposed algorithm achieves 

good reconstruction quality with high compression ratio. 

The ECG compression system is implemented on an embedded system and PC. Besides 

ECG compression, our implementation supports the remote monitoring of ECG signals by 

using wireless technologies. Our system is distinct from others in using the cell phone to 

transmit the ECG signals, making it more portable. Moreover, the system still works well 

when making a phone call. Due to the rapid development of the smart phone, the computing 

hardware in the phone becomes faster and faster. A future development will be carried out to 

implement the system on a smart phone. 

Future directions in research are listed as follows. 

1. Backward gain-adaptive VQ is still an attractive way to model the ECG correlation 

without extra need of gain-related side information. Other gain estimators may also 

be investigated to achieve better performance when DSC is applied. 

2. We follow the DSC theorem that assumes the correlation between two sources is 

modeled by a virtual binary symmetric channel. Whether the correlation of the VQ 

indexes can be modeled by more elaborate channel modes, like Markov-chain 

model, still needs observing. 

3. In this work, only normal ECG signals are investigated. Analyzing the abnormal 

heart beats is more challenging. Some useful information (heart rate variability) 

analyzed by BtECG sensor is sent to the server for further usage. Please refer to 

Appendix B for more information about heart rate variability. 
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Appendix A. Bluetooth Communication Implementation 

  

 In Chapter 4, we described the way how the WinFast PXA310 mini-board communicates 

with the back-end server. The board accesses the Internet by using a Bluetooth-enabled 

mobile telephone as a modem. Also, the server (PC) is connected to the Internet. First, the 

connection between the board and the server is setup and then data transmission begins. The 

transmission between the board and the telephone is implemented in a Bluetooth link while 

that between the telephone and the server is the mobile cellular network and the Internet. Data 

is first transmitted to the telephone and then to the server. To achieve this goal, the Windows 

Sockets (Winsock) application programming interface (API) provided by Microsoft is used. 

Details of WinSock are available in [26]. This appendix demonstrates the methods 

implemented on the board used to communicate with Bluetooth device (the telephone) and 

server. 

 

[A] Discovering Bluetooth Devices 

 The main task of discovering a device is to retrieve the address of the device. Four 

WinSock programming elements are used when creating query for discovering Bluetooth 

devices: WSAQUERYSET structure, WSALookupServiceBegin function, WSALookupNext 

function, and WSALookupServiceEnd function. 

1. Create and configure the WSAQUERYSET variable to restrict the query to 

Bluetooth devices. 

2. Call WSALookupServiceBegin function to perform a device inquiry by passing the 

WSAQUERYSET variable created in the step 2. Also, a parameter is passed to 

enable Service Discovery Protocol (SDP) to search Bluetooth devices. A handle h is 

returned if the function is successful. 

3. Call WSALookupServiceNext function to emulate devices scanned in step 2. First, 

initialize a WSAQUERYSET structure to store device data which will be returned 

later by WSALookupServiceNext. Second, call WSALookupServiceNext by passing 

the handle h returned by WSALookupServiceBegin and the names and the address of 

the Bluetooth devices are obtained. The address will be stored in a bt_addr variable 

which will be used when querying for services on the device. 

4. Call WSALookupServiceEnd function by passing the handle h to terminate the 

process of device discovery. 
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[B] Querying Service on Remote Bluetooth Devices 

 Now a Bluetooth device is discovered and its address is stored in the bt_addr variable. In 

querying for service, four WinSock programming elements are also used: WSAQUERYSET 

structure, WSALookupServiceBegin function, WSALookupNext function, and 

WSALookupServiceEnd function. The procedure of querying service is similar to that of 

discovering devices, but there exist two differences. 

1. When configuring the WSAQUERYSET structure, the device address bt_addr is 

specified. 

2. When calling the WSALookupServiceBegin function, a different parameter is passed 

to perform a service query on the device. 

Services are returned after calling WSALookupServiceNext function and each is stored as an 

integer channel, which is the so-called RFCOMM channel number. To connect to the server 

by using a Bluetooth-enabled mobile telephone, the phone must have the Dial-up Network 

profile (DUN) service. 

 

[C] Connection Remote Bluetooth Devices 

 The connection between two Bluetooth devices can be created by using the WinCE 6.0 

Com Port emulator facility, which provides access to the RFCOMM layer based on a virtual 

COM port. Before setting up a connection, a remote Bluetooth device address bt_addr and its 

service channel must be discovered. The following describes how the connection is setup and 

released. 

1. Configure the PORTEMUPortParams structure by specifying two attributes 

bt_addr and channel for a virtual COM port. 

2. Register the device by calling the RegisterDevice function, which specifies the port 

type as COM and the port number. Also passed to the function is the 

PORTEMUPortParams structure. 

3.  Call the CreateFile function to open the COM port. 

4.  If the existing virtual COM port is no longer in use, call the CloseHandle and 

DeregisterDevice function to remove the port. 

With opening a virtual COM port by assigning the correct bt_addr and channel, the board 

now should be able to access the Internet by using the Bluetooth-enabled mobile phone as a 

modem. 
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[D] Communication between the Board and the Server 

 Both the board and the server are capable of accessing the Internet. Now the connection 

between the board and the server can be established and the transmission is based on TCP 

client-server model. To realize such transmission, the Winsock API provided by Microsoft is 

used. The server creates a socket to listen and accept the client’s connection request by calling 

socket, bind, listen and accept function. The board which serves as the client creates a socket 

and makes a connection request by calling socket and connect function. Once the request is 

accepted by the server, the connection is established and data transmission can be realized by 

calling send and recv function. Finally, the connection can be released by calling close 

function. 
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Appendix B. Heart Rate Variability 

  

 Heart beats are controlled not only by the sinoatrial node (SA) but also the autonomic 

nervous system (ANS). The ANS is a part of the nervous system and non-voluntarily controls 

all organs of the body. The ANS can be classified into two subsystems: sympathetic nervous 

system (SNS) and parasympathetic nervous system (PSNS). An increase in SNS stimulation 

causes increase in heart rate, while an increase in PSNS stimulation causes decrease in heart 

rate. Research has shown the significant relationship between the ANS and cardiovascular 

mortality. Heart rate variability (HRV) is a physiological phenomenon where the interval 

between two consecutive heart beats oscillates and is widely used as a tool in heart disease 

diagnosis. Among many methods [27], two most widely used methods are time-domain 

methods and frequency-domain methods. 

 

[A] Time Domain Methods 

 Time-domain methods are based on inter-beat or NN intervals. The term NN is similar to 

RR, but it emphasizes that the beats are normal beats. The following variables can be 

calculated for both long-term and short-term ECG recordings: 

1. SDNN: The standard deviation of NN interval reflects all the cyclic components 

responsible for variability and is calculated over a 24-hour period. 

2. SDANN: The standard deviation of the average NN intervals is often calculated 

over 5 minutes, which is a measure of changes in heart rate due to cycles longer 

than 5 minutes. 

3. Square root of the mean squared differences of successive NN intervals (RMSSD). 

4.  The number of interval differences of successive NN intervals more than 50 ms 

(NN50). 

5. The proportion of NN50 divided by the total number of NN intervals (pNN50). 

 

[B] Frequency Domain Methods 

 Power spectral density (PSD) analysis, which can be achieved by use of Fast Fourier 

Transformation (FFT), provides the information of power distribution as a function of 

frequency. Total power (TP, 0-0.625 Hz), very low frequency (VLF, ≤ 0.04 Hz), low 

frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) are three main 

components obtained from short-term recordings of 2-5 minutes. Measurement of these 
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components is made in absolute values of power (ms2). It is found that HF activity reflects the 

parasympathetic tone and fluctuations caused by respiratory sinus arrhythmia. LF reflects 

both parasympathetic and sympathetic tone. However, the physiological meaning of VLF is 

unclear and disputable. 

 

[C] Measured Data of BtECG Sensor 

 BtECG sensor is equipped with a KY202 DSP module for HRV. The technologies of 

HRV include R point detection, interpolation in time domain, and FFT in frequency domain. 

The analysis result is formatted in ASCII code such as “HR=085”, which refers to the mean 

heart rate is 85 beats per minutes. More results are summarized as follows. 

 

Table C.1  HRV parameters measured from BtECG sensor 

Command Function Remarks 

HR=nnn Mean heart rate 
n=0~9 (Here, we have three 
consecutive n, which denotes 
that it is three bytes long.) 

SD=nnn Standard deviation of RR intervals n=0~9 
HF=nnnnn High frequency power (0.15~0.4Hz) of HRV n=0~9 
LF=nnnnn Low frequency power (0.04-0.15Hz) of HRV n=0~9 
VL=nnnnn Very low frequency power (0-0.04Hz) of HRV n=0~9 
TP=nnnnn Total power (0-0.625Hz) of HRV n=0~9 
WL=nnnnn Windows length n=0~9 
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