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Study of Photonic Crystal Lasers by Coupled Wave Theory

Student : Hsun-Li Kuo Advisor: Ming-Chih Lai
Tien-Chang Lu

Institute of Mathematical Modeling and Scientific Computing
National Chiao-Tung University

Abstract

In this thesis, we investigated the coupled wave analysis for square lattice and
triangular lattice of photonic crystal (PC) lasers with transverse electric polarization.
A model for square lattice consisting of eight plane waves coupled by Bragg
diffraction is used to describe two-dimensional optical coupling. A model for
triangular lattice consisting of six plane waves coupled by Bragg diffraction is used to
describe two-dimensional optical coupling. Based on the Bragg diffraction theory for
PCs period structure, the lasing behavior could only be happened when the Bragg
condition is satisfied. Our studies are especially focused on the band edge at I point
because of the characteristic of surface emitting condition. The resonant frequency
deviation and threshold gain for the modes of oscillation have been determined for the
case of index periodicity with a lattice of circular holes. The spatial intensity
distributions of these resonant modes have also been calculated. We have investigated
that the influence of coupling strength is to the threshold gain and frequency deviation.
Finally, we consider the radiation loss for square lattice and triangular lattice of
PCSELSs. This thesis helped us to understand the characteristics of PCSELSs for square

lattice and triangular lattice.
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Chapter 1

Introduction

1.1 Laser

The concept of laser made by the Schawlow and Townes since 1960 [1] has
caused considerable interest in the scientific community. The first ruby laser system
made by Maiman in 1960 [2]. Then in 1962, gallium arsenide (GaAs) semiconductor
laser is also immediately appear [3-5]. Semiconductor laser due to small size, long life
and high stability has been widely applied in many different areas, such as optical
fiber communication, optical storage and laser printing, molecular spectroscopy and
biomedicine, military and blue-ray DVD, entertainment purposes and so on. Laser
system is the elementary combination of the pumping source, the gain material, the
optical cavity and the output coupler. The principle of operation is the input electricity
or light of the pumping source can make the electronic absorption in the gain material
and transition to excited state. Until the conduction band electron concentration attain
to the population inversion and the electricity holes in the valence band combine into
a large number of electron-hole pairs and emit photons, in order to achieve stimulated
emission of the state and the optical cavity can limit to photon, choose the operating
mode and to repeat the above process to achieve laser gain effect [6].

Laser can be divided into two classes by the direction of emission : edge emitting
laser (EEL) and surface emitting laser (SEL). The laser light of edge emitting laser
propagates parallel to the wafer surface of the semiconductor chip. Edge emitting
laser is reflected or coupled out at a cleaved edge. The light of surface-emitting lasers

propagates in the direction perpendicular to the semiconductor wafer surface.



Edge emitting laser (EEL)

Edge-emitting lasers are the original and still very widely used form of
semiconductor lasers. Their resonator length is typically between a few hundred
micrometers and a few millimeters. This is sufficient for reaching a high gain, so that
an edge emitting laser may lase even if the resonator losses are fairly high. The laser
beam within the edge emitting laser structure is guided in a waveguide structure.
Typically, one uses a double heterostructure, which restricts the generated carriers to a
narrow region and at the same time serves as a waveguide for the optical field, as
shown in Fig 1.1(a). This arrangement leads to a low threshold pump power and a
high efficiency.

Surface emitting laser (SEL)

There are several advantages to producing surface emitting lasers, in contrast to
the production process of edge-emitting lasers. Edge-emitters cannot be tested until
the end of the production process. If the edge-emitter does not function properly,
whether due to bad contacts or peor material growth quality, the production time and
the processing materials have been wasted. However, surface emitting lasers can be
tested at several stages throughout the process to check for material quality and
processing issues. Additionally, because surface emitting lasers emit the beam
perpendicular to the active region of the laser as opposed to parallel as with an edge
emitter. Furthermore, even though the surface emitting laser production process is
more labor and material intensive, the yield can be controlled to a more predictable
outcome. There are three common kind of surface emitting lasers that is vertical
cavity surface emitting laser (VCSEL), as shown in Fig 1.1(b), distributed feedback
laser (DFB) and photonic crystal surface emitting laser (PCSEL). Here, we mainly

discuss the PCSEL.



Photonic Crystal Surface Emitting Laser (PCSEL)

Fig 1.1(c) shows the schematic diagram of a GaN-based PCSEL devices. The
two-dimensional (2D) photonic crystal (PC) surface emitting laser is based on
multidirectionally distributed feedback effect near the band edges in a 2D PC
structure, which has potential for high-power and single mode surface-emitting lasers.
PCs with photonic band gaps for photons have many advantages in arbitrarily
controlling the light emission and propagation and can be utilized to realize various
new optical devices. By varying the lattice constant of the PC pattern, different lasing
wavelengths corresponding to different band edges are demonstrated. PCSEL utilizing
2D distributed feedback mechanism has been attracted much attention and widely
researched during past decades [7-13].. .PCSELs have many advantageous
characteristics such as single mode operation-in a large lasing area, a symmetric beam
shape and a low divergence angle. Numerical studies-have attempted to explain the
distributed feedback mechanism for PCSELS by using different theoretical methods.
Sakoda et al. used group-velocity anemaly to-evaluate lasing threshold by the plane
wave expansion method (PWEM) [14]. Lee et al. investigated the quality factor near
band edges of finite-size photonic crystals (PCs) by the finite-difference time-domain
(FDTD) method [15]. Sakai et al. calculated the threshold gain deviated from the
Bragg frequency for square PCs by using the coupled wave theory [16-17]. Nojima
proposed the multiple scattering method (MSM) to calculate lasing behaviors in PC
lattice atoms with optical gains [18]. There are different advantages and limitations
while using these theoretical methods to calculate characteristics of PC lasers. For
example, the 2D PWEM better applies to the infinite PC structure, which is usually
not the case for actual devices. FDTD method consumes numerous computer
resources and calculation time to simulate the finite domain structure.

On the contrary, coupled wave theory has many advantages such as less
3



calculation time and capability in providing more accurate solutions to modify the
designs. Therefore, the purpose of this thesis is to investigate the different parameters
of the square lattice and triangular lattice PC including the influence of the coupling
constant to the threshold gain and the frequency deviation at different band-edge

modes.

p-contact

—e p-type GaN
——e InGaN/GaNMQWs
—e n-type GaN

AIN/GaN DBR

——e Sapphire

(c)
Fig 1.1 (a)The schematic diagram of an edge emitting laser (b) The

schematic diagram of a vertical-cavity surface emitting laser (c)The

schematic diagram of a photonic crystal surface emitting laser



1.2 Bragg diffraction in 2D Photonic Crystalgg

A band diagram of a triangular-lattice photonic crystal shows in Fig. 1.1(a). The
points (A), (B), (C), and (D) are the points M1, K1, I'2, and M2, respectively. The
reciprocal space of the structure is a space combined by hexagons. A schematic
diagram of a reciprocal space shows in Fig. 1.1(b). The K1 and K2 are the Bragg
vectors with the same magnitude, |K|=2m/a, where a is the lattice constant of the
photonic crystal. Consider the transverse modes in the 2-D photonic crystal structure,

the diffracted light wave from the structure must satisfy the relationship :

ky —k =Ak =q,K, +0,K,, (q,,0,=0,£1%2,...) (1.1)
W, =, (1.2)
where Kk, is xy-—component wave vector of diffracted light wave, k; is xy-

component wave vector of incident light wave, @,,q, is order of coupling, @, Iis

TM Band Structure

0.9 .
0.8 .
- 074 - - - ..:.: M K
= S L2
307 e ° °
i Ve e
: =3 -
P * .‘-..
L)
%, *

Frequency (wa/2nc:

(@) (b)

Fig 1.2 (a) The different band edges of triangular lattice photonic
crystal in the band diagram (b) Schematic diagram of reciprocal

space



the frequency of diffracted light wave, and @, is the frequency of incident light

wave. Eq. (1.1) represents the phase-matching condition (or momentum
conservation ), and Eq. (1.2) represents the constant-frequency condition (or energy
conservation ). When both of equations are satisfied, the lasing behavior would be
observed.

It is expected lasing occurs at specific points on the Brillouin-zone boundary ( T,
M, and K ) and at the points at which bands cross and split. At these lasing points,
waves propagating in different directions couple to significantly increase the mode
density. It is particularly interesting that each of these points exhibits a different type
of wave coupling. For example, as shown in Fig. 1.3(a), the coupling at point M1 only
involves two waves, propagating «in the forward and backward directions. This
coupling is similar to that of @ conventional DEB laser. However, there can be six
equivalent I'-M directions in the structure ; that is, the cavity can exist independently
in each of the three different directions to form three independent lasers. Point K1 has
a unique coupling characteristic ‘unachievable in conventional DFB lasers, the
coupling of waves propagating in three different directions as shown in Fig. 1.2(b).
This means the cavity is a triangular. In fact, there can also be six I'-K directions in
the structure ; therefore, two different lasing cavities in different I'-K directions
coexist independently. At point I" the coupling includes waves in in-plane all six
directions ; 0°, 60°, 120°, -60°, -120°, and 180° as shown in Fig. 1.2(c). In addition,
the coupled light can be emitted perpendicular from the surface according to first
order Bragg diffraction, as shown in Fig. 1.3(a). This is the same phenomenon that
occurs in conventional grating-coupled surface-emitting lasers. The light wave of
band-edges M2, K2 and M3 are also diffraction to an oblique direction vertically. For

example, Fig. 1.3(b) shows the wave-vector diagram of K2 point where the light wave



is diffracted to an angle tilt 30° normally from the sample surface. Fig. 1.3(c) the
wave-vector diagram of one M’ point where the light wave is diffracted into three
independent angles tilted of about 22.3° and 51° normally from the sample
surface, respectively. In these studies, we focus on the folded I'2 point because of the

90° normally light wave from the sample surface



(A) (B)

Fig. 1.3 Wave vector diagram at point (A)M1 (B)K1 (C) I'2 (D) M2,

ki and kd indicate incident and diffracted light wave




(a)

(b)

(©)

Fig. 1.4 The wave vector diagram at point '2,K2,M3 in vertical

direction




1.3 Outline of the thesis

This thesis has been organized in the following arrangement. The first chapter of
the thesis will introduce the different types of edge emission and surface emission
lasers and the theory of Bragg diffraction in 2D photonic crystal. Chapter 2 begins by
laying out the theoretical dimensions of the research, the couple wave theory and the
finite difference method for square lattice and triangular lattice. Chapter 3 describes
the simulation results, characteristics and calculated result of PCSELs. The last

chapter assesses the conclusion and future work.
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Chapter 2
Fundamentals of Photonic Crystal Surface
Emitting Lasers

Introduction

Electromagnetic can be divided into two classes by the direction of polarization :
transverse electric (TE) polarized light and transverse magnetic (TM) polarized light,
as shown in Fig. 2.1. The light's electromagnetic properties are defined by the
orientation of its electric and magnetic fields. TE polarized light is characterized by its
magnetic field being parallel to the orientation of photonic crystal columns and hence
the electric field is perpendicular to:the orientation of photonic crystal columns. And
TM polarized light is characterized by its electric field-being parallel to the orientation
of photonic crystal columns.-Here we mainly discuss the TE wave in the photonic
crystal.

Square lattice photonic crystal and triangular lattice photonic crystal are common
two-dimensional (2D) photonic crystal. So we discuss the Square lattice photonic

crystal and triangular lattice photonic crystal, respectively.

the electric field polarization the electric field polarization

TE pol.arized wave ™ pblarized wave

Fig. 2.1 Schematic diagram of the polarization direction of wave

13



2.1.1 Couple-wave theory for square lattice ;-3
We first consider the photonic crystal (PC) structure of a square lattice. The PC

of circular holes with period a is in the x—y plane, as shown in Fig. 2.2(a). The

structure is assumed to be uniform in the z direction. The dielectric constants of the

circular holes is &, and the background material is &,. The circular holes from a 2D

Bravais lattice with sites given by the vectors :

r(t) =na +n,a,. (2.1)
Here, & and a, are the two primitive basis translation vectors of the square lattice.
n, and n, are any integer numbers. The enclosed area of the primitive unit cell of

the lattice is A, =|a, xa,|=a’.

The vectors G(m) of reciprocal lattice which is shown as Fig. 2.2(b) are given by :

G(m) = myb, +myb; . (2.2)
© O O 0.0 [ J ® () ® o
&, F R F.
O O & o o 1 o
a, (—Eb
O O @ o S oR @
a, X X
O O O O O0 ° e o
Y b E Sv FZ
I O 0a0 O O ’ e o o
O b r-xtr_m
(a) (b)

Fig. 2.2 (a) Square lattice photonic crystal structure (b) Schematic
diagram of eight propagation waves in square reciprocal lattice

photonic crystal structure

14



Here, b, and b, are the two primitive basis translation vectors of this reciprocal

lattice. m; and m, are any integer numbers. The definition of the primitive lattice

vectors changes the reciprocal lattice vectors satisfies that

g-b =275, i j=12. (2.3)

o; s delta function and the definition is

1.,if i=j
s=1 " =L (24)
0 ,if 1#]
So the two primitive basis translation vectors of this reciprocal lattice are given by
~ 27,
b, = K(azy’_azx)
(2.5)
~ 2T, -
bz :K(_aiy’ali)

Where a;is the J, Cartesian component,” x or.y, of a (i=1 or 2). If we
express the primitive translation vectors as & =(a,0) and a,=(0,a ), as shown

in Fig. 2.2(a), the primitive reciprocal lattice’ vectors are b =(2xa,0) and

b, =(0,2aa ), as shown in Fig. 2.2(b). At first, we would need to find the special

wave vectors that have contributions at those points of I',.

The scalar wave equation for the magnetic field H, in the TE polarization

mode can be written as the form [4] :

i(iﬁ“z}i LM h, o (2.6)
ox\ k= ox oy\ k® oy

where the constant k is given by [5] :

2
= (27”) 2 68" i e, D e (2.7)
G G

A
We note that the sign of the second term was negative [5]. In the above formula,

A is the wavelength of the light in free space, &; is the Fourier coefficient of the

15



modulated dielectric constant &(r), &,(=¢s.,) is the averaged dielectric constant,

and ¢« is the Fourier coefficient of the modulated gain constant «(r). In the Eqg.

(2.7), we set that

Zﬂ\/g
A

These settings allow us to express the constant k as the form :

a<< f= O << B, g0 << & - (2.8)

L2 4
k ﬂ \G=0

Here, a(= %) is the averaged gain constant and x is the coupling constant

L :i[ﬂz—iZaﬂ+2ﬂZKGeiG'rj. (2.9)

which can be expressed as :

% (2.10)

V3 .
Kg=——F7—2¢&g —|
N PR (T

In Eq. (2.9), the periodic variation in;the-refractive index is included the small
perturbation in third term through the Fourier expansion. In the Fourier expansion,
the periodic perturbation terms generates an-infinite set of diffraction orders. However,
as the cavity mode frequency is sufficient close to the Bragg frequency, only the
second order diffraction and below can do significant contribution, others can
consider to be neglected. We consider the resonance at I'-point, in which when it is
satisfy the second order Bragg diffraction, it will induce 2D optical coupling and

result in surface emission. The corresponding coupling coefficient constant

K (i=1,2,3) aredenoted as :

k= KG‘\G\:ﬂO
Ky = Ko|i1yap, (2.11)
K3 = Kg |62,

2 . . : :
where /5, -7 Fig. 2.3 shows a schematic illustration of the pairs of wave vectors
a

16



that are coupled in each of these three cases. Coupling constant x, describes the
intensity of the coupling of two plane waves propagating at 45° to each other.

Coupling constant x, describes the intensity of the coupling of two plane waves

propagating in directions perpendicular to each other. Coupling constant &,

describes the intensity of the coupling of counterpropagating waves to each other,
which corresponds to the backward scattering in second-order distributed feedback
(DFB) lasers. The coupling constant x, does not exist in the case of a square lattice
with TE polarization. This is because the electric fields of two waves propagating in
perpendicular directions are orthogonal to each other and the overlap integral
vanishes.

While considering a periodic. structure, the- magnetic field can be described by
the Bloch mode [4] :

H, (1) =Y Hee e (2.12)
G

H, is the amplitude of each plane wave, k is.the-wave vector in the first Brillouin

zone and when itisthe I' point, it comes to zero. However, at the specific ' point

O\i @ O O @ O @) @

(6) o——> @ OM @) O?O

@ (@] Q O O @ @ ® @)
K, K, K3

Fig. 2.3 Diffraction diagram for each coupling constant for square
lattice. White arrows indicate pairs of wave vectors and black arrows

indicate the corresponding reciprocal lattice vectors.
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discussed for 2D photonic crystal, there are eight propagating waves in PC structure

denoted as R,,S,,R,,S,,F,F,,F,F, showed in Fig. 2.2(b), the first four items

are the complex amplitudes of the four propagating waves along the x,—x,y,-YVy

directions and the other four items are the complex amplitudes of the four propagating

waves along I'-M directions, respectively. Those correspond to H, in Eq. (2.12).

Here, we do consider these basic wave vectors along the I'— X directions with

k+G|=4, and T—M directions with |« +G|=+/24, [1]. The contribution of the

higher order waves with |K+G|22ﬂo, are considered to be negligible. We should

note that the basic waves and higher order waves are partial waves of the Bloch mode,

so they have the same eigenvalue A *for specific resonant cavity mode.
Using these eight waves; the magnetic field ‘Iin-this case can be rewritten the
expression as the following sum :

H z (r) = RX (X, Y)e*iﬂox + SX(X' y)eiﬁox + Ry (X, y)e—iﬂoy + Sy(X, y)efiﬂoy

2.13
4 Fleiﬂox"'iﬁoy + er—iﬂox+iﬂoy + FseiﬂoX—iﬂoy e F4e—iﬁo)<—iﬁoy ( )

By substituting Eq. (2.9) and Eq. (2.13) into Eqg. (2.6), then using Eq. (2.11) and

comparing the exponential terms, we obtain eight equations of the form :

—%RX+(a—i5)RX =ir,S, —ixF, —ixF, (2.1448)
0 . : : .

&SXJr(a—Ié)SX =iK,R, —ixF —ixF, (2.14b)

0 : : : .

—aRer(a—lﬁ)Ry =i, —ixF —iF, (2.14c)
(%Ser(a—i&)Sy =iiR, iR —ixF, (2.144d)
§F1+%Fl+(2a—i§)ﬁ+i%ﬁ=—iKlSX—iK18y (2.14e)
—§F2+%F2+(2a—i5)F2+i%Fz=—iK1RX—iKlSy (2.141)
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%Fs—%F3+(2a—i5)F3+i%F3=—iK13x—iK1Ry (2.149)
—%H —% F, +(2a —i58)F, +i%F4 =—ixR, —ixR, (2.14h)

The parameter ¢ is a normalized frequency defined by

5Eﬂ2_ﬂ02
2/3

where n is the averaged refractive index, which is equal to \/g and c is the

~B-p, =§(w—wo) (2.15)

speed of light in free space. The parameter o is a measure of the deviation of the

oscillation frequency « from the Bragg frequency a,. In the above equations, we

assume that S/ f, =1, since we take optical coupling at I" point and this frequency

deviation is small.
One thing we should noted-that the coupling coefficient «,, which describes the

intensity of the direct coupling “of waves propagating perpendicular to each other

along the x and y axes, does not exist in Eq. (2:14) [1]. We can neglect both the

first two derivatives and the third terms in_each case on the left hand side of Eq.

(2.14e)~Eq. (2.14h), because the amplitudes vary only slowly and o« , 6 << 3, for the

lower-order resonant modes. Then by substituting Eq. (2.14e)~Eq. (2.14h) into Eq.

(2.14a)~Eq. (2.14d) and including diffraction in the direction vertical to the PC plane

represented by the coupling constant x, [6][7], we obtain four equations of the

form :

. 0 Akt . 2k . 2K
(@-x,—i0)R, ——R, =i—LR, +(ix;—1)S, +i—+S, +i—LR,  (2.16a)

ax 0 0 0

2 2 2
(a—r,—id)s, + 25 =i SX+(iK3—KO)RX+i2£Sy+i2£Ry (2.16D)

ax 0 0 0

2 2 2
(a—Ko—ié‘)Ry—iRy=i4Kl Ry+(iK3—K0)sy+i2isx+i2£Rx (2.16¢)

oy B Bo By
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0 4k}

2
(a—ry—i5)3, oS -y K

2} R

S, +(irc; — xR, +i =S, +i—L (2.16d)

0 0 0

For the resonant mode in a square lattice PC cavity with TE polarization, the
eigenvalues « provide the threshold gain and the eigenvalues ¢ provide the
frequency deviation from the Bragg condition by numerically solving the Eq. (2.16)
under some boundary conditions. The wave on the equal sign of the left in the Eq.
(2.16) is meaning that electromagnetic waves in a square lattice PC by moving receive

the gain and loss. The wave on the equal sign of the right in the Eq. (2.16) is meaning

that electromagnetic waves in a square lattice PC are coupling with R _,S_,R,,S

x 1 ¥x 0 y 1 Yy

respectively.

The coupling constants for the circular holes are calculated with the formulas

[6]:

A (=== r 2N )]
o=~ (e e @17
O_ld“g 27mAn 1 Hexp( 1G;~r)dxdy (2.18)

Here, ¢, and ¢, are the dielectric constants and «, and ¢, are the gain

a

constants of the circular holes and the background material, respectively. The quantity

f =zR*/a” is a hole filling factor and R is the radius of the circular hole. The

averaged dielectric constant &, is given by 50:\/gaf +5,1-f). J(x) is a
Bessel function of the first kind for integer order one. d; is the thickness of the

grating layer and I, is its confinement factor. An is the modulation of the real part

9

of the modal index between the waveguide and the bottom of the etched features with

perfectly vertical sidewalls. A is the grating’s resonance wavelength and a, is the
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area of the reciprocal lattice primitive cell. We exclusively define the vertical coupling
constant x, using the relation &L =2x’L*/500, where L is the length of the PC
cavity.

We assume the boundary conditions of zero reflectivity and zero gain

perturbation (o, —a,) in this work. We used the finite difference method as

described in the CH2.1.2 for solving the Eq. (2.16). The electric field distribution

E(r,t):(EXe""t : Eye“"t ,O) is calculated using the time-dependent magnetic field

H(r,t)=(0,0,H,e* ) and Maxwell’s equation

oE(r,t)

va(r,t):g(r)T (2.19)

The intensity envelope of the“resonant mode  throughout the PC structure is

determined using the sum R RY'+S,S +R R +§ S’
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2.1.2 Finite difference method for square lattice
We discuss the main relationship of the threshold gain « and the frequency
deviation 6 from the Bragg condition. And Eq. (2.16) are the eigenvalue problems.

So, we change the Eq. (2.16) to the following form :

2 2 2
(=1, —i0)R, = (- +iM)R +(in,—x,)S, +i 25 S, +i 2Ky R,  (2.20a)
6X 0 0 0
2 2 2
(o —x, —i5)S, :(_gn“’fl S, +(irc, — 1, R +i 252 S, +i 23 R,  (2.20b)
0 0 0
2 2 2
(@-r,—i0)R, _ (&4t )R, +(ir; —1,)S, +i 2K g 1i2KR (2.200)
ay ﬁo 0 0
2 2 2
(-, -i8)8, = (- +i¥0)S 4 iy~ )R, +i 205 +i 2R, (2.20d)
ay ﬂo 0 0
Now we can make the matrix of Eq. (2.20), as the following form :
A+§ B ~. C
R, i 6 R,
S B -— C C S
(=1, —i5) | = 2 ' 2.21)
IR o e AarlllB |R
S, 5 S,
C C B A-—
i oy |
AK! :  2K) o e :
Here, A=i—, B=ix;—-x,, C=1—=. There is a differential item in the matrix.
0 0

The differential item is complex and difficult in the matrix operations. The finite
difference method that difference is used in place of differential can simplify the
problems. Numerical solution of the coupled wave Eq. (2.21) can be found by using
the finite difference method. There are several hundred or thousand of the photonic
crystal in the x and y directions of the practical devices. However, we cut apart
this photonic crystal cavity into a 18 x 18 matrix for the calculations, as shown in Fig.
2.4. We solve the Eq. (2.21) and get the numerical solution that is the complex
amplitudes at each positions by black dots. The value of each white dot can obtain by

using the complex amplitudes of the neighboring black dots. For example, the
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difference equation corresponding to Eqg. (2.20a) is written in the form :

(a-ry-ig) RO TRAHL0
_RU+LK)-R,(1.K) . 4rf R, (j,k)+R,(j+1k)
d 2 2
Hiny ) S0+ 8.0 4110
26 S, +S, (1 k+D) 2k R, (1K) +R, (. +D)
B 2 By 2

(2.22)

where d is the side length of one segment, and j and k denote the index along

the x and y directions, respectively. At all the surrounding boundaries, we set the

facet reflection to zero :

L L L L
R, (_E’ y)= SX(E, y)= Ry(X!_E) = Sy(XIE) =0

(2.23)

where L is the length of a square photonic crystal.cavity. By solving the eigenvalue

problem for the sets of differénce equations, we obtain the eigenvalue (o —x, —id)

and the eigenvectors (R, (],k);S, (1,k), R, (1K), S, (J:k),etc).
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R.(j,k),S.(j,k) R (j,k+1) S, (J,k+1)

Uy
.

Somd | 405‘1 R LIS, +10)

ool e
dIo-Q—-oQ—-o-—l “Q-Q--o‘o ' 3

o AR n

.= ~ = =~ ~ =~ o~ ‘{.2(

el | B

eO9OS | 90O 9O OR (; -

_’ . | . ._ RL(Jsk)a‘S\(Jak)

Fig. 2.4 Schematic diagram for square lattice for the finite difference

method. The target of calculations is carried out at the positions of
the white dots by using-the ‘complex-amplitudes of the neighboring
black dots.
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2.2.1 Couple-wave theory for triangular lattice
In this section, we consider the PC structure for triangular lattice. The 2D PC
structure investigated here consists of a triangular lattice with circular holes with

period a inthe x—y plane, as shown in Fig. 2.5(a). The structure is assumed to be

uniform in the z direction. The dielectric constants of the circular holes is ¢, and

the background material is &,. The enclosed area of the primitive unit cell of the

2
lattice for triangular lattice is A$=|a1><az|:\/§2a . If we express the primitive
translation vectors as &, :[ %,%J and a, = ( 0,a ) as shown in Fig. 2.5(a), the

primitive reciprocal lattice vectors are 61:(_\%[ ,Oj and b, =£_- éﬂ%j as
a a

shown in Fig. 2.5(b).

L ] L] L
8a 2 aa o E . a
~o — Ob b ) H, H, .
@) (@)
O a, N
o al o >e [ A °
.\
L‘ Q) H3 .\/JI-IZ
* o a Jra
() (b)

Fig 2.5 (a) Triangular lattice photonic crystal structure (b) Schematic
diagram of six propagation waves in triangular reciprocal lattice

photonic crystal structure
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The scalar wave equation for the magnetic field H, in the TE polarization

mode can be written as the form [4] :

9 izﬁHz +i iz@Hz +H,=0 (2.24)
ox\ k® oOx oy\ k° oy

where the constant k is given by [5] :

2
. 2 .
k? =(2—”j > e +i”—\/gz%e'e" (2.25)

Here, A is the wavelength of the light in free space, &5 is the Fourier coefficient of
the modulated dielectric constant &(r) , &,(=¢&5,) is the averaged dielectric

constant, and « is the Fourier coefficient of the modulated gain constant a(r). In
the Eq. (2.25), we set low perturbation that

27r\/?o
A

These settings allow us to express the constant k as the form :

a<< pf=

cOe << P €0 << &, - (2.26)

% = %[ﬁz —i20f3 + 2ﬁ\§)xeei6*] . (2.27)

Here, a(: %} Is the averaged gain constant and x is the coupling constant
which can be expressed as :

. Qg
—_———. — 1 —= 2.28
N (2.28)

Kg =

We consider the resonance at I'-point, in which when it is satisfy the second order

Bragg diffraction, it will induce 2D optical coupling and result in surface emission.

The corresponding coupling coefficient constant x; (i=1,2,3) are denoted as :

K1 = Kg (6|4,

(2.29)

K2 = K6|6ly3p,

Ky = KG‘\G\:ZﬁO
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Ar
J3a

that are coupled in each of these three cases. Coupling constant x, describes the

where S, = . Fig. 2.6 shows a schematic illustration of the pairs of wave vectors

intensity of the coupling of two plane waves propagating at 60° to each other.

Coupling constant x, describes the intensity of the coupling of two plane waves
propagating at 120° to each other. Coupling constant x, describes the intensity of

the coupling of counterpropagating waves to each other, which corresponds to the
backward scattering in second-order distributed feedback (DFB) lasers.

While considering periodic structure, the magnetic field can be described by the
Bloch mode [4]

H,(r)=> Hge o (2.30)
G

H, is the amplitude of each plane wave, K is the wave vector in the first Brillouin

zone and when itisthe I' point, it comes to zero. However, at the specific ' point

discussed in this case, the amplitude: ‘H; with |G| = f, are significant and the other

amplitudes are small and can be neglected. For 2D photonic crystal, there are six

propagating waves with |G|= 3, inPC structure denotedas H,,H,,H,,H,, Hy,

{——
O & &) ®) O © @ O O
K K K3

Fig. 2.6 Diffraction diagram for each coupling constant for triangular
lattice. White arrows indicate pairs of wave vectors and black arrows

indicate the corresponding reciprocal lattice vectors.
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Hy. All of these parameters which are shown in Fig. 2.5(b) are considered in our

model.
Using these six waves, the magnetic field in this case can be rewritten the

expression as the following sum :

x /3 ) x 3
. —ify| S+=—-Y —ifo| —+—-Y
H,(r)=H,e™ +H,e {2 ? ]+H3e [ e ] (2:31)
. —iﬁo[—g—;YJ —iﬂo(g—;y] .
+H,e" +Hge +Hge
By substituting Eq. (2.27), Eq. (2.28) and Eqg. (2.31) into wave Eq. (2.24), then using
Eqg. (2.29), including diffraction in the direction vertical to the PC plane represented

by the coupling constant x, [6][7] and comparing the exponential terms, we obtain

six equations of the form :

—§H1+(a—xo—i5)H —|?(H +H, =i 3 B2 (H,+ Ho)+ iy — ,)H, (2.32a)

X

Loy ey, -k, ~i0)Hy= i (H A H )+ i2 (H, + H; )+ (ix, - ,)H (2.32b)

28X 2 2 ay 2 0 2 2 1 3 2 4 6 3 0 5

10 V30 . K K :

2axH3—7&H3+(0:—K0—|5)H3:—|?1(H2+H4)+|72(H1+HE.))+(|1<3—1<O)H6 (2.32c)

0 . K K, . q

&H4+(0{—K0—I5)H4=—I?(H3+H5)+I?(H2+H6)+(IK3—K0)H1 (2.32d)
f@ : K K .

28x H, + 2% +(oz—z<0—|5)H5:—|51(H4+H6)+|?2(H1+H3)+(|/c3—z<0)H2 (2.32¢)

f@ , K K .
_E&H 25 +(0!—K0—I5)H6=—I?1(H1+H5)+I?2(H2+H4)+(IK3—K0)H3 (2.32f)
where, H,,H,,H; H,,H,,and H, express the envelope magnetic field

distributions of individual light waves propagating in the six equivalent I'-M

directions : 0°, +60°, +120°, +180°, +240°, and +300° with respect to the x axis.

K, , Kk, ,and x, are the coupling coefficients between light waves propagating at 60°
to each other ( H,and H,, H,and H,, and so on ), at 120° ( H,and H,,
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H,,and H,, and so on ), and at 180° ( H,and H,, H,and H,, and so on ),

respectively. § is the deviation of the wave number [ (expressed as 2nw /c, where ®

is the frequency and c is the velocity of light ) from the fundamental propagation

constant S, ( equal to 4x/ \/3a, where a is the lattice constant ) for each cavity

mode, and expressed as &= (ﬂ ‘- B )/ 23, a is the corresponding threshold gain. For

the resonant mode in a triangular lattice PC cavity with TE polarization, the
eigenvalues « provide the threshold gain and the eigenvalues ¢ provide the
frequency deviation from the Bragg condition by numerically solving the Eq. (2.32)
under some boundary conditions. The wave on the equal sign of the left in the Eq.
(2.32) is meaning that electromagnetic. waves in a triangular lattice PC by moving
receive the gain and loss. The wave on theequal sign of the right in the Eq. (2.32) is

meaning that electromagnetic waves in a triangular.lattice PC are coupling with
H,,H,,H,,H,, Hy,and H, respectively.

The coupling constants for the circular holes are calculated with the formulas [6]

Kg :{—L(ga—gb)—ii(aa—ab) Zle—qG|R) (2.33)

as, 2 (GR)

Here, &, and &, are the dielectric constants and «, and ¢, are the gain

a

constants of the circular holes and the background material, respectively. The quantity
_zR
NEES

averaged dielectric constant ¢, isgivenby ¢, =¢,f +5,(1-1f). J,(X) is a Bessel

f is a hole filling factor and R is the radius of the circular hole. The

function of the first kind for integer order one. The definition of coupling constant x,

is the same with that of the square lattice in section 2.1.1.

We assume the boundary conditions of zero reflectivity and zero gain
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perturbation (o, —a,) in this work. We used the finite difference method as
described in the Ch2.2.2 for solving the Eq. (2.32). The electric field distribution
E(r,t)=(Ee“ E,e*,0) is calculated using the time-dependent magnetic field

H(r,t)=(0,0,H,e"* ) and Maxwell’s equation

OE(r,t)

V x H(r,t)=&(r) (2.34)

The intensity envelope of the resonant mode throughout the PC structure is

determined using the sum H,H +H,H, +H,H; +H,H, + H.H, + H,H,
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2.2.2 Finite difference method for triangular lattice
We discuss the main relationship of the threshold gain « and the frequency
deviation 6 from the Bragg condition. And Eq. (2.32) are the eigenvalue problems.

So, we change the Eq. (2.32) to the following form :

(a—zco—ia)|-|1=§Hl 2(H +H, )+ > 52 (H, +H, )+ (i, - x)H, (2.35a)

(-, ~i0)H, = Ea—H \zf:yH —|2(H +H,)+i 2(H4+H6)+(iK3—K0)H5 (2.35b)
. 0 :

(-, ~i0)H, =~ Ea H, + ‘Zf@yH - 2(H +H,)+i 2(H1+H5)+(IK3—KO)H6 (2.35c)
. 0 K, K, .

(a—KO—Ié‘)H4=—&H4—I?(HS-I—H5)+I?(H2+H6)+(IK3—KO)H1 (2.35d)
. 10 0

(a—xo—|§)H5_—55H5 \gay 2(|-| +H,)+i 2(H +H, )+ (ix, -k, )H, (2.35¢€)
. 10, B0 K N .

(a—K0—|5)H6=E&H6 ) ayH ?(H1+H5)+|?(H2+H4)+(IK3—K0)H3 (2.35f)

Now we can make the matrix.of Eg. (2.35), as the following form :

N \TY Y~ B A
OX
o 0 L
H H
H2 B A 2 A B C HZ
(—x, —i5) °|= OV, ) 3 (2.36)
Hl lc B A -2 A B | He
H5 ax a H5
_HG_ B C B A —El A _H6_
0
A B C B N ———
L aVZ_
Here, 0 _10 N30 o 10 N80 ,_m gk
ov, X 2 oy ov, 20x 2 oy 2 2
143 143

C=ix,—« v,andv, are the (=,—) and (-=,—) of direction vector,
e 2 (2 2) (2 2)

respectively. There is a differential item in the matrix. The differential item is complex

and difficult in the matrix operations. The finite difference method that difference is
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used in place of differential can simplify the problems. Numerical solution of the
coupled wave Eq. (2.36) can be found by using the finite difference method. There are
several hundred or thousand of the photonic crystal in the x—y plane of the
practical devices. However, we cut apart this photonic crystal cavity into a matrix for
the calculations, as shown in Fig. 2.7. We solve the Eq. (2.36) and get the numerical
solution that is the complex amplitudes at each positions by black dots. The value of
each white dot can obtain by using the complex amplitudes of the neighboring black
dots. For example, the difference equation corresponding to Eq. (2.35a) is written in

the form :

i) PR (41
2
_ L+ = H (k) R H 0+ H, (), k +D)
d 2 2
—iﬁ He(j,k)+ Hs(j’k+1)+iﬁ H,(§, k)+ H,(j-Lk+1)
2 2 2 2
+i%H5<j,k)+;5(j,k+1)+(iK3 H4<j,k)+;4(j+1,k)

(@ -

(2.37)

—Ko)

where d is the side length of one‘segment, and j and k denote the index along
the x direction and the direction of +60° with respect to the x axis, respectively.
At all the surrounding boundaries, we set the facet reflection to zero :
Hl(—%, y)= Hl(—%+ n,-n) = H4(%, y) = H4(%—n,+n)
- Hz(x,—%) - Hz(—n,—%+ n) = Hs(x,g) - H5(n,%—n) (2.38)
~ Ha(x-2) = Hy(5¥) = Ho(x =) = He(2 ) =0
where L is the length of a triangular photonic crystal cavity and n is the positive

integer. By solving the eigenvalue problem for the sets of difference equations, we

obtain the eigenvalue (a —x, —i5) and the eigenvectors (H,(j,k),H,(j,k),

Hy(J, k), H, (1, k), Hs (1,K), He (1, k), ete)
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H,(j,k),H,(j,k)  H;(G=Lk+1),He(j-1k+1)
£ ® H,(j,k+1),H.(j,k+1)
’,Hl(j+lsk)sH4(j+lak)
'-'_‘H3(jak)9H6(jsk)
------- .__'Hz(jak)sHS(jak)

Fig. 2.7 Schematic diag ingular lattice for the finite

difference method. The-ta ations is carried out at the
positions of the white dots he complex amplitudes of the

neighboring black dots.

33



[1]
[2]
[3]
[4]
[5]
[6]
[7]

References

K. Sakai, E. Miyai, and S. Noda, Appl. Phys. Lett. 89, 021101 (2006)

K. Sakai, E. Miyai, and S. Noda, Opt. Express 15, 3981 (2007)

K. Sakal, J. Yue, and S. Noda, Opt. Express 16, 6033 (2008)

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 39, 6, 689 (2003)

R. F. Kazarinov and C. H. Henry, IEEE J. Quantum Electron. 21, 2, 144 (1985)

34



Chapter 3
Simulation Results of Photonic Crystal Surface
Emitting Lasers

Numerical results

In this chapter, we would discuss the numerical results by solving the complex
simultaneous equations based on the coupled wave theory for square lattice and
triangular lattice, respectively. The normalized frequency deviation from the Bragg
condition, threshold gain and near field patterns of the resonant modes in the 2D PC
structure for both square and triangular lattice have been calculated. In addition, the
relation between the mode pattern and different coupling strengths are also calculated.
Besides, we have evaluated the threshold gain, the normalized frequency deviation

and the coupling constants as-a function of the hole-filling factor for the fundamental

modes. Finally, we would discuss the influence of the coupling constant x, to

different band-edge modes.
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3.1.1 Mode spectra and mode patterns for square lattice

The typical band structure of photonic crystal for square lattice with transverse
electric (TE) polarization shows as Fig. 3.1. And Fig. 3.2 shows the detailed band
structure around the T'" point where surface emission is obtained. At the band edges
of the band structure is easier to form the resonant mode oscillation. The lasing
oscillation at the mode will occur with the lowest threshold and the smallest optical
loss [1]. By the reason, calculation of the threshold gain for different resonant modes
at the band edges point is very important for understanding of the PCSEL
characteristics.

We know that the lasing action is easier to achieve the threshold gain at the T’
point of the band structure. There are .three fundamental modes that is A mode, B

mode and E mode of doubly degenerate as-shown in Fig 3.2. We employing the

following parameters in the PC model : the holes dielectric constants ¢, =9.8, the

background dielectric constants ¢, =12.0, the gain perturbation («, —¢,)=0, the

hole filling factor f =0.18, the lattice period a =290nm, and the PC cavity length
L =50um. The hole filling factor f define that a circular hole area in the unit cell
occupied area ratio. According to the numerical solution of the calculation, we plot
the threshold gain as a function of frequency deviation from the Bragg condition for
the resonant modes, as shown in Fig. 3.3(a). We classify the groups of resonances as
N =+1+2,43,... according to their frequency deviation from the Bragg condition,
where N is the mode number [2]. The more detailed plots for modes N =-1 and

N =1 are shown in Fig. 3.3(b) and Fig. 3.3(c), respectively.

The eigenvectors of Eq. (2.20) provide the complex amplitudes suchas R,, S

X!

R,,and S , which are functions of the positions x and y. The intensity envelope
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(mode pattern) of the resonant mode throughout the PC structure can be determined
from these amplitudes using the sum R R;+S,S, +R R/ +S S .

It could be classified that the mode A (aL =0.46597,0L =—-6.1259), mode B
(aL=0.57709,0L=-4.8881) , and mode E (aL=1.7107,6L=4.4137) are
fundamental modes that have a single-lobed intensity pattern throughout the photonic
crystal, as shown in Fig. 3.4(a-d). We could understand that the lowest frequency of

these three modes is mode A and mode E is doubly degenerate. Modes A and B have

twin modes A, (aL=1.6768,0L=4.3506) and B, (oL =1.751 4L =4.4847)

respectively. Modes A, and B, exhibit vase-like patterns with zero intensity at the

center of the structure, as shown in Fig.:3.4(e-f). The other points in Fig. 3.3(b) and
Fig. 3.3(c) correspond to higher order modes which consist of a higher order
transverse mode. A lot of higher order modes in the proximity of mode E are almost
impossible to distinguish in Fig. 3.3(c). Then, the numerical results of the threshold
gain for modes A, B, and E by calculation are-e,L =0.46597, oL =0.57709, and
a.L=1.7107, respectively. As a result, mode A has the lowest threshold gain and
could easily achieve the lasing oscillation.

Fig. 3.4(g) (ex.al =0.5522,8 =-5.45950r ol =1.7094,8L =4.4125..) and
Fig. 3.4(h) (ex.alL =0.53445,6L =-5.47810or oL =1.7103,0L =4.4133...) illustrates
the intensity envelope for the higher order modes around mode E, which have several
nodes and antinodes. Fig. 3.4(i) (ex.alL =0.5175,6L =-5.50650r al. =0.59833,
,0L=-53942..) and Fig. 3.4() (ex.aL=1.3382,6L=-7.76560r alL =1.2426,
oL =-8.3053...) show like the two-lobe pattern and four-lobe pattern, respectively,
which are the intensity envelope for the higher order modes. The envelopes of other

higher order modes also exhibit a series of nodes and antinodes.
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Fig 3.4 (a-d)Mode pattern for square lattice for the fundamental

modes (A, B, and E), respectively, (e-f) spatial intensity distributions

A, and B,, and (g-j) mode pattern for the higher order modes
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3.1.2 Threshold gain as a function of hole filling factor for square

lattice

The coupling constants are a function of filling factor f and hence the

threshold gain should also be strongly dependent on filling factor f . Fig. 3.5 shows
the coupling constants as a function of the hole filling factor. We note that x,

becomes zero at f =0.3, which implies that the backward diffraction vanishes. Fig.
3.7 shows the threshold gain of the fundamental modes A, B, and E as a function of

hole filling factor. The threshold gain for modes A and B drastically increases in the

region of f =0.3. This is because the degree of backward diffraction becomes very

weak and is insufficient for optical oscillation. This result indicates that the coupling

constant x, is the dominant factor determining the degree of optical confinement in

the current system, a square lattice with TE polarization.
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Fig 3.5 Coupling constants as a function of hole filling factor for

square lattice
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To elucidate the origin of the threshold difference among the fundamental modes,

we calculated the threshold gain for zero surface emission (x, =0) as shown in Fig.

3.8 and Fig. 3.9. It is quite obvious that the average of the threshold gain to consider

the surface emission x, is higher than the average of the threshold gain not to

consider the surface emission x, for the fundamental modes A, B, and E, as

compared with Fig. 3.7 and Fig. 3.9. In this case, the threshold gain of mode E greatly
decreased and the threshold gain between mode E and mode A(or B) is similar , as
shown in Fig. 3.9. Thus, the major of loss for mode E is surface emission. The
difference in threshold gain between modes A and B in Fig. 3.7 indicates that the

emission loss from the edges of the cavity differs. The frequency deviation from the

Bragg condition don’t have much influence of the surface emission x,, as compared
with Fig. 3.6 and Fig. 3.8.

In Fig. 3.7, the lowest threshold gains of square PCSELs for A, B and E mode
are observed at filling factor =0.6,0.6 and 0.05, respectively. The 2D coupling induces
the curves splitting for modes A and B. Therefore, we could observe a highly mode
selection with stronger 2D coupling. Besides, in Fig. 3.6, the curves splitting in

frequency between mode A (or B) and mode E is induced by backward vector of

coupling constant ;. This splitting corresponds to the stopband in 1D DFB lasers,

which is induced by coupling between the counter propagating waves.
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3.2.1 Mode spectra and mode patterns for triangular lattice

The typical band structure of photonic crystal for triangular lattice with
transverse electric (TE) polarization shows as Fig. 3.10. Fig. 3.11 shows the detailed
band structure around the I' point where surface emission is obtained. At the band
edges of the band structure is easier to form the resonant mode oscillation.

We know that the lasing action is easier to achieve the threshold gain at the T’
point of the band structure. There are four fundamental modes including A mode, B
mode, C mode and D mode, as shown in Fig 3.11. B mode and D mode are the mode

of doubly degenerate, respectively. We import the following parameters in the PC

model : the holes dielectric constants &, =9.8, the background dielectric constants

&, =12.0, the gain perturbation (e, =e,)="0the hole filling factor f =0.37, the
lattice period a=290nm, and the PC cavity length L =50um. The hole filling
factor f define that a circular hole area in the unit cell occupied area ratio.
According to the numerical solution of the calculation, we plot the threshold gain as a
function of frequency deviation from the Bragg condition for the resonant modes are

shown in Fig. 3.12.

The eigenvectors of Eq. (2.36) provide the complex amplitudes such as H,,

H,, H;, H,, H., and H, which are functions of the positions x and y. The

intensity envelope (mode pattern) of the resonant mode throughout the PC structure
can be  determined from  these  amplitudes using the  sum
HH +H,H, +H,H; +H,H, + H.H. + H H;.

It could be classified that mode A (oL =2.0388,0L=-11.118) , mode B

(oL =0.87575,8L =-2.7631), mode C (L =0.77078,6L =12.3982) and mode D

(aL =1.9519,0L = 2.1771) are fundamental modes, each mode have a single-lobed
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intensity pattern throughout the photonic crystal, as shown in Fig. 3.13(a-f). We can
identify that the lowest frequency of these four modes is mode A, as shown in Fig.
3.11. At the same time, we can find the six mode patterns for fundamental modes
which show similarly single-lobed intensity patterns. This observation of the six mode
patterns can be found by doubly degenerate into two categories. The frequency of the
band structure, as shown in Fig. 3.11, can be helped to distinguish the different modes.

The numerical results of the threshold gain for modes A, B, C, and D are

a,L=2.0388, a,L=0.87575, a.L=0.77078 and a,L =1.9519, respectively. As

a result, mode C has the lowest threshold gain and could easily achieve the lasing
oscillation.

Fig. 3.13(g-j) illustrates the intensity envelope for the higher order modes, which
have several nodes and antinodes. Fig. 3.13(g) illustrates that the phase of intensity
envelope of the resonant mode is flipped as crossing-a given axis. This produces a
mode pattern that only exist two lobes. On the other hand, Fig. 3.13(h) illustrates that
the phase of intensity envelope of the resonant mode is flipped as crossing two given
axes. This produces a mode pattern that exist four lobes. In the Fig. 3.13(i), it shows
that the intensity envelope characteristic with six peaks spaced almost evenly around
the perimeter of the annulus. For this mode, the phases of the six field components
alternate as a function of azimuthal angle that there are not two of adjacent
components separated by 60° constructive interference [3]. Finally, Fig. 3.13(j)
illustrates that the intensity envelope characteristic forms an annular pattern. The
modes shown in Fig. 3.13(g-i) may be classified as out-of-phase, since pronounced
destructive interference in the surface-emitted component substantially reduces the
output power and also degrades the beam quality. The envelopes of other higher order

modes also exhibit a series of nodes and antinodes.
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3.2.2 Threshold gain as a function of hole filling factor for triangular
lattice

The coupling constants are calculated as a function of filling factor f and
hence the threshold gain should also be strongly dependent on filling factor f . Fig.

3.14 shows the coupling constants as a function of the hole filling factor. It should be

noted that x, becomes zero at f =0.25, which implies that the backward
diffraction vector is vanished. The threshold gain could be affected by this factor. On
the other hand, the x, has the maximum value at f =0.45 which implies that this

condition has the maximum radiation loss. We could also obtain that x, and «,

have the maximum value at f =0.15)'x; :and x, have the maximum value at

f =0.45,and x, becomes zeroat f =0.35.
Fig. 3.18 shows the threshold gain of the fundamental modes A, B, C and D as a

function of hole filling factor. It is clearly the threshold gain for modes C and D
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Fig 3.14 Coupling constants as a function of hole filling factor for

triangular lattice
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drastically increases in the region of f =0.25. It is because the degree of backward

diffraction vector becomes very weak and is insufficient for optical oscillation. This
result indicates that the coupling constant «, is the mainly factor of determining the
degree for optical resonant in the current system.

Fig. 3.15 and Fig. 3.16 show that the frequency deviation and threshold gain as a

function of hole filling factor of the fundamental modes A, B, C and D for triangular
lattice with considering surface emission x,, respectively. The threshold gain of
mode A and B have the lowest value at f =0.12 in Fig 3.16. It is because the
coupling constant x, and x; are the maximum value and could provide sufficient
optical resonant. At the same time, the threshold gain for mode A and D has the local

maximum value at f =0.45, because the coupling constant x, and x; are the

maximum value which would increase the optical loss. In particular, the threshold

gain of fundamental modes becomes larger when the hole filling factor f approach
zero or one. In this case, the photonic crystal-is without any function.
To elucidate the originally difference among the fundamental modes, we

calculated the threshold gain and frequency deviation as a function of filling factor for

zero surface emission (x, =0), as shown in Fig. 3.17 and Fig. 3.18. It is obviously
that all of the threshold gain with considering surface emission «, is higher than that
without surface emission x, for the fundamental modes A, B, C and D. In Fig. 3.18,

by compared with these two conditions (with or without x,), the curves of the
threshold gain for mode A and D at f =0.45 show smooth tendency instead of
violent variation in Fig. 3.16 indicating that the threshold gain for mode A and D are

mainly affected by the coupling constant x,.The influence of radiation loss x, is
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larger than the coupling constant x; for these two modes. At the same time, the
curve of threshold gain of mode A is similar with mode B for zero surface emission,
as shown in Fig. 3.18. The mainly difference between the threshold gain of mode A

and B for surface emission is shown in Fig. 3.16. It can be seen the curve of mode A is

gradually increased with considering x,. Thus, the influence of surface emission

factor for mode A is larger than mode B. As for the deviation frequency for mode A, B,

C and D without considering x,, the tendency of each mode shows similar curves

between Fig. 3.15 and Fig. 3.17. It indicates that the frequency deviation from the

Bragg condition does not affect by the surface emission factor x,.

At last, we could finalize these results of threshold gain for each mode. In Fig.
3.16, the lowest threshold gainsof triangular PCSELs for A, B, C and D mode are
observed at filling factor =0.1,0.1; 0.05 and 0:05, respectively. The surface emission
coupling induces the curves splitting for modes A and B. Therefore, we could observe
a highly mode selection with stronger-2D coupling. In Fig. 3.15, the curves splitting in

frequency between mode A (or B) and mode C(or D) is induced by backward vector

of coupling constant . This splitting corresponds to the stopband in 1D DFB lasers,

which is induced by coupling between the counter propagating waves.
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Chapter 4

Conclusion

We have developed the coupled wave theory for square lattice and triangular
lattice of photonic crystal lasers with transverse electric polarization. Numerical
calculations by solving the eigenvalue problem have shown the threshold gain, the
frequency deviation and the mode pattern of the 2D resonant modes. The intensity
pattern of the fundamental modes was found to depend on the coupling strength, with
peaks in intensity at the ends of the structure for weak coupling and maximum
intensity at the center for strong coupling.

For square lattice, the lowest threshold gains of PCSELs for fundamental mode

A, B and E are observed at filling factor f=0.6, 0.6 and 0.05, respectively. The
surface emission x, and backward coupling x, -are the dominant factor of
determining the degree of -optical confinement /in- the current system for the
fundamental mode. The surface ‘emission.coupling constant x, induces the curve

splitting between modes A (or B) and E.
As for triangular lattice, the lowest threshold gains of PCSELs for fundamental

mode A, B, C and D are observed at filling factor f =0.1, 0.1, 0.05 and 0.05,
respectively. The surface emission x, and backward coupling x, are the dominant

factor of determining the degree of optical confinement in the current system for the

fundamental mode. The surface emission coupling constant x, induces the curve

splitting between modes A and B. Therefore, we could observe a highly mode
selection with stronger 2D coupling.

The out of plane radiation of photonic crystal has been considered by coupling
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coefficient x,, and it has massive influence to threshold gain of PCSELs. The results

obtained in this thesis provide fundamental insight into the 2D DFB effect of the PC
lasers. To fabricate low threshold gain PCSELSs, coupled wave theory provides us a
more convenient and faster method to modify our designs. A further development in

designing and optimizing the 2D PC lasers by the current method is envisaged.
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Appendix Code (in Matlab System)\

Mode patterns of photonic crystal with square lattice

cle
clear
L=50*10"(-4); % length of PC cavity
Epsa=9.8; % dielectric constants of the circular holes
Epsh=12.0; % dielectric constants of the background
a=290*10"(-7); % lattice constant
b=2*pila; % wave number
G=[b sqrt(2)*b 2*b];
72=1,
for z1=1:3
f(z2)=0.18; % filling factor
r(z2)=a*sqrt(f(z2)/(pi));
Eps0(z2)=sqrt(Epsa*f(z2)+Epsb*(1-f(z2)));
kG(z2)=0.2841*(-(pi)*(Epsa-Epsb)/(a*Eps0(z2)))*2*f(z2)*
BESSEL(1,G(z1)*r(z2))/(G(z1)*r(z2));
kG(isnan(kG))=1;
if z1==1
kG1(z2)=kG(z2);
k0(z2)=2*kG1(22)*kG1(z2)*L/500;
end
k(z1)=kG(z2);

end

% kappa variable-----------------------

n=18; % even
k1=Kk(1);
k2=Kk(2);

k3=k(3);

% parameter
A=(i*4*(k1)"2)/b;

C=i*2*(k1"2)/b;

B=i*(k3)-k0;

d=L/n;

% boundary & phase shift---------------

r0=0.0;
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phi=0*pi;
phs=pi*0/18;
brro=ro;
brph=phi;
blro=ro;
blph=phi;
buro=0;
buph=phi;
bdro=0;
bdph=phi;

% matrix

A11=(0.5*A+1/d)*eye(n)+diag((0.5*A-1/d)*ones(1,n-1),-1);
A11(n,n)=Al11(n,n)+0.5*B*brro*exp(i*brph);
Mnll=kron(eye(n),All);
A12=(0.5*B)*eye(n)+diag((0.5*B)*ones(1,n-1),1);
A12(1,1)=A12(1,1)+(0.5*A-1/d)*blro*exp(i*blph);
P=diag([exp(-i*phs)*ones(1,n/2) exp(i*phs)*ones(1,n/2)]);
M12=kron(eye(n),P*A12);
Al3=diag(0.5*C*buro*exp(i*buph)*[zeros(1,n*(n-1))
ones(1,n)]);
M13=(0.5*C)*eye(n*n)+diag((0.5*C)*ones(1,n*n-n),-n)+Al
3;

Al4=diag(0.5*C*bdro*exp(i*bdph)*[ones(1,n)
zeros(1,n*(n-1))]);
M14=(0.5*C)*eye(n*n)+diag((0.5*C)*ones(1,n*n-n),n)+Al
4;

%

A21=(0.5*B)*eye(n)+diag((0.5*B)*ones(1,n-1),-1);
A21(n,n)=A21(n,n)+(0.5*A-1/d)*brro*exp(i*brph);
Q=diag([exp(i*phs)*ones(1,n/2) exp(-i*phs)*ones(1,n/2)]);
M21=kron(eye(n),Q*A21);
A22=(0.5*A+1/d)*eye(n)+diag((0.5*A-1/d)*ones(1,n-1),1);
A22(1,1)=A22(1,1)+(0.5*B)*blro*exp(i*blph);

Mn22=kron(eye(n),A22);

%



A31=(0.5*C)*eye(n)+diag((0.5*C)*ones(1,n-1),-1);
A31(n,n)=A31(n,n)+(0.5*C)*brro*exp(i*brph);
M31=kron(eye(n),Q*A31);
A32=(0.5*C)*eye(n)+diag((0.5*C)*ones(1,n-1),1);
A32(1,1)=A32(1,1)+(0.5*C)*blro*exp(i*blph);
M32=kron(eye(n),P*A32);
A33=diag((0.5*B)*buro*exp(i*buph)*[zeros(1,n*(n-1))
ones(1,n)]);
Mn33=(0.5*A+1/d)*eye(n*n)+diag((0.5*A-1/d)*ones(1,n*n-
n),-n)+A33;
A34=diag((0.5*A-1/d)*bdro*exp(i*bdph)*[ones(1,n)
zeros(1,n*(n-1))1);
M34=(0.5*B)*eye(n*n)+diag((0.5*B)*ones(1,n*n-n),n)+A3
4,

%

A43=diag((0.5*A-1/d)*buro*exp(i*buph)*[zeros(1,n*(n-1))
ones(1,n)]);
M43=(0.5*B)*eye(n*n)+diag((0.5*B)*ones(1,n*n-n),-n)+A4
3

Ad4=diag((0.5*B)*bdro*exp(i*bdph)*[ones(1,n)
zeros(1,n*(n-1))]);
Mn44=(0.5*A+1/d)*eye(n*n)+diag((0.5*A-1/d)*ones(1,n*n-
n),n)+A44;

TT=[Mn11 M12 M13 M14;M21 Mn22 M13 M14;M31 M32
Mn33 M34;M31 M32 M43 Mn44];

%

R11=eye(n)+diag(ones(1,n-1),-1);
Rnll=kron(eye(n),R11);
R22=eye(n)+diag(ones(1,n-1),1);
Rn22=kron(eye(n),R22);
Rn33=eye(n*n)+diag(ones(1,n*n-n),-n);
Rn44=eye(n*n)+diag(ones(1,n*n-n),n);
Z=zeros(n*n);

R=[Rn11ZZ Z;ZRn22 Z Z;Z ZRn33 Z;Z Z Z Rn44];
Y=inv(R);

T=Y*TT;

[VR D]=eig(T);

realpart=L*(real(2*diag(D)))+k0*L;
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imagpart=L*(-imag(2*diag(D)));
figure()

plot(imagpart,realpart,'.’)
axis([-20,20,0,5])
N=find(realpart<1.5);

S=size(N);

%

Mode pattern Hz---------=-=-=-=-=-=----
for z=1:5(1)
V=VR(;,N(2));
fory=1:n
for x=1:n
ifx==1&y==1
Rx=0;
Sx1=V(n*n+(y-1)*n+x+1);
Ry=0;
Sy1=V(3*n*n+(y)*n+x);
elseif x==1 & y==n
Rx=0;
Sx1=V(n*n+(y-1)*n+x+1);
Ry=V(2*n*n+(y-2)*n+x);
Sy1=0;
elseif x==n & y==1
Rx=V(n*(y-1)+x-1);
Sx1=0;
Ry=0;
Sy1=V(3*n*n+(y)*n+x);
elseif x==n & y==n
Rx=V(n*(y-1)+x-1);
Sx1=0;
Ry=V(2*n*n+(y-2)*n+x);
Sy1=0;
elseif x==
Rx=0;
Sx1=V(n*n+(y-1)*n+x+1);
Ry=V(2*n*n+(y-2)*n+x);
Sy1=V(3*n*n+(y)*n+x);
elseif x==n

Rx=V(n*(y-1)+x-1);



Sx1=0; Sx=V(n*n+(y-1)*n+x);
Ry=V(2*n*n+(y-2)*n+x); Ry1=V(2*n*n+(y-1)*n+x);
Sy1=V(3*n*n+(y)*n+x); Sy=V(3*n*n+(y-1)*n+x);

elseif y==1 SE(x,y)=abs(Rx+Rx1)*abs(Rx+Rx1)+abs(Sx+Sx1)*abs(Sx+

Rx=V(n*(y-1)+x-1);

Sx1)+abs(Ry+Ry1l)*abs(Ry+Ry1)+abs(Sy+Syl)*abs(Sy+Sy

Sx1=V(n*n+(y-1)*n+x+1); 1);

Ry=0; end

Sy1=V(@*n*n+(y)*n+x); end
elseif y==n figure(3)

Rx=V(n*(y-1)+x-1);
Sx1=V(n*n+(y-1)*n+x+1);

Ry=V(2*n*n+(y-2)*n+x);

[X,Y]=meshgrid(1:n,1:n);
Plot_Result=surf(X,Y,SE);

f0=f(22)*100;

Sy1=0; cd('C:\Users\jky\Desktop\jky\1');

else saveas(Plot_Result,strcat(num2str(f(z2)),'gain',num2str(realp
Rx=V(n*(y-1)+x-1); art(N(z))),'w', num2str(imagpart(N(z))),'s' ,num2str(N(z)),
SX1=V(N*n+(y-1)*n+x+1); "ipg));
Ry=V(2*n*n+(y-2)*n+x); cd('€:\Users\jky\Desktop\couplingconstant');
Sy1=V(3*n*n+(y)*n+x); end

end

Rx1=V(n*(y-1)+x);
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