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光子晶體雷射耦合波理論之研究 

 

研究生: 郭訓利                         指導教授: 賴明治 教授 

 盧廷昌 教授 

 

國立交通大學 應用數學系數學建模與科學計算碩士班 

 

摘 要 

 

本篇論文主旨在利用耦合波理論探討在四方晶格以及三角晶格結構下造成光子

晶體雷射於橫向電場極化之分析。用來描述二維光學耦合的四方晶格模型是由八

個布拉格衍射的耦合平面波組合而成的；而用來描述二維光學耦合的三角晶格模

型是由六個布拉格衍射的耦合平面波組合而成的。根據光子晶體的布拉格理論，

光子晶體必須滿足特定的布拉格繞射條件才能產生雷射。由於面射型光子晶體的

特性，我們特別著重於在Γ點能帶的研究。共振頻率偏差和閾值增益的振盪模式

在週期性圓孔晶格的情況下已經被探討。這些諧振模式的空間強度分佈也被計算。

我們探討了耦合強度對於閾值增益和頻率偏差的影響。最後，我們考慮正方晶格

和三角晶格面射型光子晶體雷射的輻射損失。這論文有助於我們了解正方晶格和

三角晶格面射型光子晶體雷射的特性。 
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Study of Photonic Crystal Lasers by Coupled Wave Theory 
 

Student : Hsun-Li Kuo                    Advisor: Ming-Chih Lai 

  Tien-Chang Lu 

 

Institute of Mathematical Modeling and Scientific Computing 

National Chiao-Tung University 

 

Abstract 

In this thesis, we investigated the coupled wave analysis for square lattice and 

triangular lattice of photonic crystal (PC) lasers with transverse electric polarization. 

A model for square lattice consisting of eight plane waves coupled by Bragg 

diffraction is used to describe two-dimensional optical coupling. A model for 

triangular lattice consisting of six plane waves coupled by Bragg diffraction is used to 

describe two-dimensional optical coupling. Based on the Bragg diffraction theory for 

PCs period structure, the lasing behavior could only be happened when the Bragg 

condition is satisfied. Our studies are especially focused on the band edge at Γ point 

because of the characteristic of surface emitting condition. The resonant frequency 

deviation and threshold gain for the modes of oscillation have been determined for the 

case of index periodicity with a lattice of circular holes. The spatial intensity 

distributions of these resonant modes have also been calculated. We have investigated 

that the influence of coupling strength is to the threshold gain and frequency deviation. 

Finally, we consider the radiation loss for square lattice and triangular lattice of 

PCSELs. This thesis helped us to understand the characteristics of PCSELs for square 

lattice and triangular lattice. 
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Chapter 1 

Introduction 
 

1.1 Laser 

The concept of laser made by the Schawlow and Townes since 1960 [1] has 

caused considerable interest in the scientific community. The first ruby laser system 

made by Maiman in 1960 [2]. Then in 1962, gallium arsenide (GaAs) semiconductor 

laser is also immediately appear [3-5]. Semiconductor laser due to small size, long life 

and high stability has been widely applied in many different areas, such as optical 

fiber communication, optical storage and laser printing, molecular spectroscopy and 

biomedicine, military and blue-ray DVD, entertainment purposes and so on. Laser 

system is the elementary combination of the pumping source, the gain material, the 

optical cavity and the output coupler. The principle of operation is the input electricity 

or light of the pumping source can make the electronic absorption in the gain material 

and transition to excited state. Until the conduction band electron concentration attain 

to the population inversion and the electricity holes in the valence band combine into 

a large number of electron-hole pairs and emit photons, in order to achieve stimulated 

emission of the state and the optical cavity can limit to photon, choose the operating 

mode and to repeat the above process to achieve laser gain effect [6]. 

Laser can be divided into two classes by the direction of emission : edge emitting 

laser (EEL) and surface emitting laser (SEL). The laser light of edge emitting laser 

propagates parallel to the wafer surface of the semiconductor chip. Edge emitting 

laser is reflected or coupled out at a cleaved edge. The light of surface-emitting lasers 

propagates in the direction perpendicular to the semiconductor wafer surface. 
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Edge emitting laser (EEL) 

Edge-emitting lasers are the original and still very widely used form of 

semiconductor lasers. Their resonator length is typically between a few hundred 

micrometers and a few millimeters. This is sufficient for reaching a high gain, so that 

an edge emitting laser may lase even if the resonator losses are fairly high. The laser 

beam within the edge emitting laser structure is guided in a waveguide structure. 

Typically, one uses a double heterostructure, which restricts the generated carriers to a 

narrow region and at the same time serves as a waveguide for the optical field, as 

shown in Fig 1.1(a). This arrangement leads to a low threshold pump power and a 

high efficiency.  

Surface emitting laser (SEL) 

There are several advantages to producing surface emitting lasers, in contrast to 

the production process of edge-emitting lasers. Edge-emitters cannot be tested until 

the end of the production process. If the edge-emitter does not function properly, 

whether due to bad contacts or poor material growth quality, the production time and 

the processing materials have been wasted. However, surface emitting lasers can be 

tested at several stages throughout the process to check for material quality and 

processing issues. Additionally, because surface emitting lasers emit the beam 

perpendicular to the active region of the laser as opposed to parallel as with an edge 

emitter. Furthermore, even though the surface emitting laser production process is 

more labor and material intensive, the yield can be controlled to a more predictable 

outcome. There are three common kind of surface emitting lasers that is vertical 

cavity surface emitting laser (VCSEL), as shown in Fig 1.1(b), distributed feedback 

laser (DFB) and photonic crystal surface emitting laser (PCSEL). Here, we mainly 

discuss the PCSEL.  
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Photonic Crystal Surface Emitting Laser (PCSEL) 

Fig 1.1(c) shows the schematic diagram of a GaN-based PCSEL devices. The 

two-dimensional (2D) photonic crystal (PC) surface emitting laser is based on 

multidirectionally distributed feedback effect near the band edges in a 2D PC 

structure, which has potential for high-power and single mode surface-emitting lasers. 

PCs with photonic band gaps for photons have many advantages in arbitrarily 

controlling the light emission and propagation and can be utilized to realize various 

new optical devices. By varying the lattice constant of the PC pattern, different lasing 

wavelengths corresponding to different band edges are demonstrated. PCSEL utilizing 

2D distributed feedback mechanism has been attracted much attention and widely 

researched during past decades [7-13]. PCSELs have many advantageous 

characteristics such as single mode operation in a large lasing area, a symmetric beam 

shape and a low divergence angle. Numerical studies have attempted to explain the 

distributed feedback mechanism for PCSELs by using different theoretical methods. 

Sakoda et al. used group-velocity anomaly to evaluate lasing threshold by the plane 

wave expansion method (PWEM) [14]. Lee et al. investigated the quality factor near 

band edges of finite-size photonic crystals (PCs) by the finite-difference time-domain 

(FDTD) method [15]. Sakai et al. calculated the threshold gain deviated from the 

Bragg frequency for square PCs by using the coupled wave theory [16-17]. Nojima 

proposed the multiple scattering method (MSM) to calculate lasing behaviors in PC 

lattice atoms with optical gains [18]. There are different advantages and limitations 

while using these theoretical methods to calculate characteristics of PC lasers. For 

example, the 2D PWEM better applies to the infinite PC structure, which is usually 

not the case for actual devices. FDTD method consumes numerous computer 

resources and calculation time to simulate the finite domain structure. 

On the contrary, coupled wave theory has many advantages such as less 
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calculation time and capability in providing more accurate solutions to modify the 

designs. Therefore, the purpose of this thesis is to investigate the different parameters 

of the square lattice and triangular lattice PC including the influence of the coupling 

constant to the threshold gain and the frequency deviation at different band-edge 

modes. 

 

 

 

 

   
(a)                (b) 

 

       (c) 

Fig 1.1 (a)The schematic diagram of an edge emitting laser (b) The 

schematic diagram of a vertical-cavity surface emitting laser (c)The 

schematic diagram of a photonic crystal surface emitting laser 
  

AlN/GaN DBR

n-type GaN
InGaN/GaN MQWs
p-type GaN

Sapphire
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1.2 Bragg diffraction in 2D Photonic Crystal[8][19] 

A band diagram of a triangular-lattice photonic crystal shows in Fig. 1.1(a). The 

points (A), (B), (C), and (D) are the points M1, K1, Γ2, and M2, respectively. The 

reciprocal space of the structure is a space combined by hexagons. A schematic 

diagram of a reciprocal space shows in Fig. 1.1(b). The K1 and K2 are the Bragg 

vectors with the same magnitude, |K|=2π/a, where a is the lattice constant of the 

photonic crystal. Consider the transverse modes in the 2-D photonic crystal structure, 

the diffracted light wave from the structure must satisfy the relationship :  

2211 KqKqkkk id +=∆=− , ,...)2,1,0,( 21 ±±=qq     (1.1) 

id ωω =           (1.2) 

where dk  is componentxy −  wave vector of diffracted light wave, ik  is xy - 

component  wave vector of incident light wave, 21,qq  is order of coupling, dω  is  

 

 

Fig 1.2 (a) The different band edges of triangular lattice photonic 

crystal in the band diagram (b) Schematic diagram of reciprocal 

space 

(A) (B) 

(C) (D) 

x 

y 

M K 

k1 

k2 Γ 

(a) (b) 
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the frequency of diffracted light wave, and iω  is the frequency of incident light 

wave. Eq. (1.1) represents the phase-matching condition (or momentum 

conservation ), and Eq. (1.2) represents the constant-frequency condition (or energy 

conservation ). When both of equations are satisfied, the lasing behavior would be 

observed. 

It is expected lasing occurs at specific points on the Brillouin-zone boundary ( Γ, 

M, and K ) and at the points at which bands cross and split. At these lasing points, 

waves propagating in different directions couple to significantly increase the mode 

density. It is particularly interesting that each of these points exhibits a different type 

of wave coupling. For example, as shown in Fig. 1.3(a), the coupling at point M1 only 

involves two waves, propagating in the forward and backward directions. This 

coupling is similar to that of a conventional DFB laser. However, there can be six 

equivalent Γ-M directions in the structure ; that is, the cavity can exist independently 

in each of the three different directions to form three independent lasers. Point K1 has 

a unique coupling characteristic unachievable in conventional DFB lasers, the 

coupling of waves propagating in three different directions as shown in Fig. 1.2(b). 

This means the cavity is a triangular. In fact, there can also be six Γ-K directions in 

the structure ; therefore, two different lasing cavities in different Γ-K directions 

coexist independently. At point Γ the coupling includes waves in in-plane all six 

directions ; 0°, 60°, 120°, -60°, -120°, and 180° as shown in Fig. 1.2(c). In addition, 

the coupled light can be emitted perpendicular from the surface according to first 

order Bragg diffraction, as shown in Fig. 1.3(a). This is the same phenomenon that 

occurs in conventional grating-coupled surface-emitting lasers. The light wave of 

band-edges M2, K2 and M3 are also diffraction to an oblique direction vertically. For 

example, Fig. 1.3(b) shows the wave-vector diagram of K2 point where the light wave 
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is diffracted to an angle tilt 30˚ normally from the sample surface. Fig. 1.3(c) the 

wave-vector diagram of one M’ point where the light wave is diffracted into three 

independent angles tilted of about  22.3˚ and  51˚  normally  from  the  sample  

surface, respectively. In these studies, we focus on the folded Γ2 point because of the 

90˚ normally light wave from the sample surface  
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

Fig. 1.3 Wave vector diagram at point (A)M1 (B)K1 (C) Γ2 (D) M2, 

 ki and kd indicate incident and diffracted light wave 
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(a) 

 

(b) 

 

(c) 

 

Fig. 1.4 The wave vector diagram at point Γ2,K2,M3 in vertical 

direction 
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1.3 Outline of the thesis  

This thesis has been organized in the following arrangement. The first chapter of 

the thesis will introduce the different types of edge emission and surface emission 

lasers and the theory of Bragg diffraction in 2D photonic crystal. Chapter 2 begins by 

laying out the theoretical dimensions of the research, the couple wave theory and the 

finite difference method for square lattice and triangular lattice. Chapter 3 describes 

the simulation results, characteristics and calculated result of PCSELs. The last 

chapter assesses the conclusion and future work. 
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Chapter 2 

Fundamentals of Photonic Crystal Surface 

Emitting Lasers 

Introduction 
Electromagnetic can be divided into two classes by the direction of polarization : 

transverse electric (TE) polarized light and transverse magnetic (TM) polarized light, 

as shown in Fig. 2.1. The light's electromagnetic properties are defined by the 

orientation of its electric and magnetic fields. TE polarized light is characterized by its 

magnetic field being parallel to the orientation of photonic crystal columns and hence 

the electric field is perpendicular to the orientation of photonic crystal columns. And 

TM polarized light is characterized by its electric field being parallel to the orientation 

of photonic crystal columns. Here we mainly discuss the TE wave in the photonic 

crystal.  

Square lattice photonic crystal and triangular lattice photonic crystal are common 

two-dimensional (2D) photonic crystal. So we discuss the Square lattice photonic 

crystal and triangular lattice photonic crystal, respectively.  

     

Fig. 2.1 Schematic diagram of the polarization direction of wave 
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2.1.1 Couple-wave theory for square lattice [1-3] 

We first consider the photonic crystal (PC) structure of a square lattice. The PC 

of circular holes with period a  is in the yx −  plane, as shown in Fig. 2.2(a). The 

structure is assumed to be uniform in the z  direction. The dielectric constants of the 

circular holes is aε  and the background material is bε . The circular holes from a 2D 

Bravais lattice with sites given by the vectors : 

2211)( anantr  += .       (2.1) 

Here, 1a  and 2a  are the two primitive basis translation vectors of the square lattice. 

1n  and 2n  are any integer numbers. The enclosed area of the primitive unit cell of 

the lattice is 2
21 aaaAc =×= .  

The vectors )(mG  of reciprocal lattice which is shown as Fig. 2.2(b) are given by : 

2211)( bmbmmG


+= .      (2.2)  

 

   

  (a)                   (b) 

Fig. 2.2 (a) Square lattice photonic crystal structure (b) Schematic 

diagram of eight propagation waves in square reciprocal lattice 

photonic crystal structure 
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Here, 1b


 and 2b


 are the two primitive basis translation vectors of this reciprocal 

lattice. 1m  and 2m  are any integer numbers. The definition of the primitive lattice 

vectors changes the reciprocal lattice vectors satisfies that  

ijji ba πδ2=⋅
    2,1, =ji .     (2.3) 

ijδ  is delta function and the definition is 





≠
=

=
jiif
jiif

ij   ,   0
  ,   1

δ .       (2.4) 

So the two primitive basis translation vectors of this reciprocal lattice are given by 

),(2

),(2

112

221

xy
c

xy
c

aa
A

b

aa
A

b









−=

−=

π

π

 .      (2.5) 

Where ija is the thj  Cartesian component, x  or y , of ia  ( i =1 or 2). If we 

express the primitive translation vectors as ( ) 0 ,  1 aa =  and ( )  , 0 2 aa = , as shown 

in Fig. 2.2(a), the primitive reciprocal lattice vectors are ( ) 0 , /2 1 ab π=


 and 

( ) /2 , 0 2 ab π=


, as shown in Fig. 2.2(b). At first, we would need to find the special 

wave vectors that have contributions at those points of Γ2.  

 The scalar wave equation for the magnetic field zH  in the TE polarization 

mode can be written as the form [4] : 

011
22 =+








∂
∂

∂
∂

+







∂
∂

∂
∂

z
zz H

y
H

kyx
H

kx  
    (2.6) 

where the constant k  is given by [5] : 

∑∑ ⋅⋅ +





=

G
G

0
2

2 22 riG

G

riG
G eiek α

λ
επ

ε
λ
π     (2.7) 

We note that the sign of the second term was negative [5]. In the above formula, 

λ  is the wavelength of the light in free space, Gε  is the Fourier coefficient of the 
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modulated dielectric constant )(rε , )( 00 == Gεε  is the averaged dielectric constant, 

and Gα  is the Fourier coefficient of the modulated gain constant )(rα . In the Eq. 

(2.7), we set that  

00
0  ,  , 

2
εεβα

λ
επ

βα <<<<≡<< ≠GG  .    (2.8) 

These settings allow us to express the constant k  as the form : 









+−= ∑

≠

⋅

0\

2
42 2211

G

riG
Gei

k
κβαββ

β
.     (2.9) 

Here, 





= =

2
 0Gαα  is the averaged gain constant and Gκ  is the coupling constant 

which can be expressed as : 

20
G

G
G iαε

ελ
πκ −−=        (2.10) 

In Eq. (2.9), the periodic variation in the refractive index is included the small 

perturbation in third term through the Fourier expansion. In the Fourier expansion,  

the periodic perturbation terms generates an infinite set of diffraction orders. However, 

as the cavity mode frequency is sufficient close to the Bragg frequency, only the 

second order diffraction and below can do significant contribution, others  can 

consider to be neglected. We consider the resonance at Γ -point, in which when it is 

satisfy the second order Bragg diffraction, it will induce 2D optical coupling and 

result in surface emission. The corresponding coupling coefficient constant 

) 3 , 2 , 1 ( =iiκ  are denoted as : 

0

0

0

2G3

2G2

G1

β

β

β

κκ

κκ

κκ

=

=

=

=

=

=

G

G

G

      (2.11) 

where 
a
πβ 2

0 = . Fig. 2.3 shows a schematic illustration of the pairs of wave vectors 
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that are coupled in each of these three cases. Coupling constant 1κ  describes the 

intensity of the coupling of two plane waves propagating at °45  to each other. 

Coupling constant 2κ  describes the intensity of the coupling of two plane waves 

propagating in directions perpendicular to each other. Coupling constant 3κ  

describes the intensity of the coupling of counterpropagating waves to each other, 

which corresponds to the backward scattering in second-order distributed feedback 

(DFB) lasers. The coupling constant 2κ  does not exist in the case of a square lattice 

with TE polarization. This is because the electric fields of two waves propagating in 

perpendicular directions are orthogonal to each other and the overlap integral 

vanishes.  

While considering a periodic structure, the magnetic field can be described by 

the Bloch mode [4] :  

( )∑ ⋅+−=
G

rGki
Gz eHrH )(  .     (2.12) 

GH  is the amplitude of each plane wave, k  is the wave vector in the first Brillouin 

zone and when it is the Γ  point, it comes to zero. However, at the specific Γ  point 

 

        

Fig. 2.3 Diffraction diagram for each coupling constant for square 

lattice. White arrows indicate pairs of wave vectors and black arrows 

indicate the corresponding reciprocal lattice vectors. 
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discussed for 2D photonic crystal, there are eight propagating waves in PC structure 

denoted as 4321  ,  ,  ,  ,  ,  ,  , FFFFSRSR yyxx  showed in Fig. 2.2(b), the first four items 

are the complex amplitudes of the four propagating waves along the yyxx −−  ,  ,  ,  

directions and the other four items are the complex amplitudes of the four propagating 

waves along Μ−Γ  directions, respectively. Those correspond to GH  in Eq. (2.12). 

Here, we do consider these basic wave vectors along the Χ−Γ  directions with 

0βκ =+G  and Μ−Γ  directions with 02βκ =+G  [1]. The contribution of the 

higher order waves with 02βκ ≥+G , are considered to be negligible. We should 

note that the basic waves and higher order waves are partial waves of the Bloch mode, 

so they have the same eigenvalue β  for specific resonant cavity mode.  

Using these eight waves, the magnetic field in this case can be rewritten the 

expression as the following sum :  

yixiyixiyixiyixi

yi
y

yi
y

xi
x

xi
xz

eFeFeFeF

eyxSeyxReyxSeyxRrH
00000000

0000

4321             

),(),(),(),()(
ββββββββ

ββββ

−−−+−+

−−−

++++

+++=
  (2.13) 

By substituting Eq. (2.9) and Eq. (2.13) into Eq. (2.6), then using Eq. (2.11) and 

comparing the exponential terms, we obtain eight equations of the form : 

41213)( FiFiSiRiR
x xxx κκκδα −−=−+
∂
∂

−        (2.14a) 

31113)( FiFiRiSiS
x xxx κκκδα −−=−+
∂
∂        (2.14b) 

41313)( FiFiSiRiR
y yyy κκκδα −−=−+
∂
∂

−        (2.14c) 

21113)( FiFiRiSiS
y yyy κκκδα −−=−+
∂
∂        (2.14d) 

yx SiSiFiFiF
y

F
x 111

0
111 2

)2( κκβδα −−=+−+
∂
∂

+
∂
∂      (2.14e)

 yx SiRiFiFiF
y

F
x 112

0
222 2

)2( κκβδα −−=+−+
∂
∂

+
∂
∂

−     (2.14f) 
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yx RiSiFiFiF
y

F
x 113

0
333 2

)2( κκβδα −−=+−+
∂
∂

−
∂
∂      (2.14g) 

yx RiRiFiFiF
y

F
x 114

0
444 2

)2( κκβδα −−=+−+
∂
∂

−
∂
∂

−     (2.14h) 

The parameter δ  is a normalized frequency defined by 

)(
2 00

0

2
0

2

ωωββ
β
ββδ −=−≈

−
≡

c
n     (2.15) 

where n  is the averaged refractive index, which is equal to 0ε  and c  is the 

speed of light in free space. The parameter δ  is a measure of the deviation of the 

oscillation frequency ω  from the Bragg frequency 0ω . In the above equations, we 

assume that 1/ 0 ≈ββ , since we take optical coupling at Γ  point and this frequency 

deviation is small.  

One thing we should noted that the coupling coefficient 2κ , which describes the 

intensity of the direct coupling of waves propagating perpendicular to each other 

along the x  and y  axes, does not exist in Eq. (2.14) [1]. We can neglect both the 

first two derivatives and the third terms in each case on the left hand side of Eq. 

(2.14e)~Eq. (2.14h), because the amplitudes vary only slowly and 0 , βδα <<  for the 

lower-order resonant modes. Then by substituting Eq. (2.14e)~Eq. (2.14h) into Eq. 

(2.14a)~Eq. (2.14d) and including diffraction in the direction vertical to the PC plane 

represented by the coupling constant 0κ  [6][7], we obtain four equations of the 

form : 

( ) ( ) yyxxxx RiSiSiRiR
x

Ri
0

2
1

0

2
1

03
0

2
1

0
224
β
κ

β
κκκ

β
κδκα ++−+=

∂
∂

−−−     (2.16a) 

( ) ( ) yyxxxx RiSiRiSiS
x

Si
0

2
1

0

2
1

03
0

2
1

0
224
β
κ

β
κκκ

β
κδκα ++−+=

∂
∂

+−−     (2.16b) 

( ) ( ) xxyyyy RiSiSiRiR
y

Ri
0

2
1

0

2
1

03
0

2
1

0
224
β
κ

β
κκκ

β
κδκα ++−+=

∂
∂

−−−     (2.16c) 
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( ) ( ) xxyyyy RiSiRiSiS
y

Si
0

2
1

0

2
1

03
0

2
1

0
224
β
κ

β
κκκ

β
κδκα ++−+=

∂
∂

+−−     (2.16d) 

For the resonant mode in a square lattice PC cavity with TE polarization, the 

eigenvalues α  provide the threshold gain and the eigenvalues δ  provide the 

frequency deviation from the Bragg condition by numerically solving the Eq. (2.16) 

under some boundary conditions. The wave on the equal sign of the left in the Eq. 

(2.16) is meaning that electromagnetic waves in a square lattice PC by moving receive 

the gain and loss. The wave on the equal sign of the right in the Eq. (2.16) is meaning 

that electromagnetic waves in a square lattice PC are coupling with yyxx SRSR  ,  ,  , , 

respectively. 

 The coupling constants for the circular holes are calculated with the formulas 

[6] : 

( ) ( )
)(

)( 2
2
1 1

0 RG
RGJf

i
a babaG 








−−−−= ααεε

ε
πκ     (2.17) 

2

10 )exp(12 dxdyriG
a

nd

RLg

g ∫∫ ⋅−
∆

Γ
=

λ
πκ       (2.18) 

Here, aε  and bε  are the dielectric constants and aα  and bα  are the gain 

constants of the circular holes and the background material, respectively. The quantity 

22 / aRf π=  is a hole filling factor and R  is the radius of the circular hole. The 

averaged dielectric constant 0ε  is given by )1(0 ff ba −+= εεε . )(1 xJ  is a 

Bessel function of the first kind for integer order one. gd  is the thickness of the 

grating layer and gΓ  is its confinement factor. n∆  is the modulation of the real part 

of the modal index between the waveguide and the bottom of the etched features with 

perfectly vertical sidewalls. λ  is the grating’s resonance wavelength and La  is the 
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area of the reciprocal lattice primitive cell. We exclusively define the vertical coupling 

constant 0κ  using the relation 500/2 22
10 LL κκ = , where L  is the length of the PC 

cavity. 

 We assume the boundary conditions of zero reflectivity and zero gain 

perturbation ( )ba αα −  in this work. We used the finite difference method as 

described in the CH2.1.2 for solving the Eq. (2.16). The electric field distribution 

( ) ( ) 0 ,  ,  , ti
y

ti
x eEeEtrE ωω=  is calculated using the time-dependent magnetic field 

( ) ( )  , 0 , 0 ,H ti
zeHtr ω=  and Maxwell’s equation 

( )
t

trErtr
∂

∂
=×∇

),()(,H ε .      (2.19) 

The intensity envelope of the resonant mode throughout the PC structure is 

determined using the sum ∗∗∗∗ +++ yyyyxxxx SSRRSSRR  
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2.1.2 Finite difference method for square lattice 

We discuss the main relationship of the threshold gain α  and the frequency 

deviation δ  from the Bragg condition. And Eq. (2.16) are the eigenvalue problems. 

So, we change the Eq. (2.16) to the following form : 

( ) ( ) yyxxx RiSiSiRi
x

Ri
0

2
1

0

2
1

03
0

2
1

0
22)4(
β
κ

β
κκκ

β
κδκα ++−++

∂
∂

=−−     (2.20a)  

( ) ( ) yyxxx RiSiRiSi
x

Si
0

2
1

0

2
1

03
0

2
1

0
22)4(
β
κ

β
κκκ

β
κδκα ++−++

∂
∂

−=−−     (2.20b) 

( ) ( ) xxyyy RiSiSiRi
y

Ri
0

2
1

0

2
1

03
0

2
1

0
22)4(
β
κ

β
κκκ

β
κδκα ++−++

∂
∂

=−−     (2.20c) 

( ) ( ) xxyyy RiSiRiSi
y

Si
0

2
1

0

2
1

03
0

2
1

0
22)4(
β
κ

β
κκκ

β
κδκα ++−++

∂
∂

−=−−     (2.20d) 

Now we can make the matrix of Eq. (2.20), as the following form : 

( )























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









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

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
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



∂
∂

−
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∂

+

∂
∂

−

∂
∂

+

=





















−−

y

y

x

x

y

y

x

x

S
R
S
R

y
ABCC

B
y

ACC

CC
x

AB

CCB
x

A

S
R
S
R

iδκα 0    (2.21) 

Here, 
0

2
14

β
κiA = , 03 κκ −= iB , 

0

2
12

β
κiC = . There is a differential item in the matrix. 

The differential item is complex and difficult in the matrix operations. The finite 

difference method that difference is used in place of differential can simplify the 

problems. Numerical solution of the coupled wave Eq. (2.21) can be found by using 

the finite difference method. There are several hundred or thousand of the photonic 

crystal in the x  and y  directions of the practical devices. However, we cut apart 

this photonic crystal cavity into a 18×18 matrix for the calculations, as shown in Fig. 

2.4. We solve the Eq. (2.21) and get the numerical solution that is the complex 

amplitudes at each positions by black dots. The value of each white dot can obtain by 

using the complex amplitudes of the neighboring black dots. For example, the 
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difference equation corresponding to Eq. (2.20a) is written in the form : 

( )

( )

2
)1,(),(2

2
)1,(),(2

2
),1(),(

2
),1(),(4),(),1(

2
),1(),(

0

2
1

0

2
1

03

0

2
1

0

++
+

++
+

++
−+

++
+

−+
=

++
−−

kjRkjR
i

kjSkjS
i

kjSkjSi

kjRkjRi
d

kjRkjR

kjRkjRi

yyyy

xx

xxxx

xx

β
κ

β
κ

κκ

β
κ

δκα

   (2.22) 

where d  is the side length of one segment, and j  and k  denote the index along 

the x  and y  directions, respectively. At all the surrounding boundaries, we set the 

facet reflection to zero : 

0)
2

,()
2

,(),
2

(),
2

( ==−==−
LxSLxRyLSyLR yyxx      (2.23) 

where L  is the length of a square photonic crystal cavity. By solving the eigenvalue 

problem for the sets of difference equations, we obtain the eigenvalue ( )δκα i−− 0  

and the eigenvectors )),,(),,(),,(),,(( etckjSkjRkjSkjR yyxx . 
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Fig. 2.4 Schematic diagram for square lattice for the finite difference 

method. The target of calculations is carried out at the positions of 

the white dots by using the complex amplitudes of the neighboring 

black dots. 
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2.2.1 Couple-wave theory for triangular lattice 

In this section, we consider the PC structure for triangular lattice. The 2D PC 

structure investigated here consists of a triangular lattice with circular holes with 

period a  in the yx −  plane, as shown in Fig. 2.5(a). The structure is assumed to be 

uniform in the z  direction. The dielectric constants of the circular holes is aε  and 

the background material is bε . The enclosed area of the primitive unit cell of the 

lattice for triangular lattice is 
2
3 2

21
aaaAc =×= . If we express the primitive 

translation vectors as 







=  

2
 , 

2
3 1

aaa  and ( )  , 0 2 aa = , as shown in Fig. 2.5(a), the 

primitive reciprocal lattice vectors are 






=  0 , 
3

4 1 a
b π

 and 






=  
a

2 , 
3
2- 2

ππ
a

b


, as 

shown in Fig. 2.5(b). 

 

     

(a)           (b) 

Fig 2.5 (a) Triangular lattice photonic crystal structure (b) Schematic 

diagram of six propagation waves in triangular reciprocal lattice 

photonic crystal structure 
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The scalar wave equation for the magnetic field zH  in the TE polarization 

mode can be written as the form [4] : 

011
22 =+








∂
∂

∂
∂

+







∂
∂

∂
∂

z
zz H

y
H

kyx
H

kx  
    (2.24) 

where the constant k  is given by [5] : 

∑∑ ⋅⋅ +





=

G
G

0
2

2 22 riG

G

riG
G eiek α

λ
επ

ε
λ
π     (2.25) 

Here, λ  is the wavelength of the light in free space, Gε  is the Fourier coefficient of 

the modulated dielectric constant )(rε , )( 00 == Gεε  is the averaged dielectric 

constant, and Gα  is the Fourier coefficient of the modulated gain constant )(rα . In 

the Eq. (2.25), we set low perturbation that  

00
0  ,  , 

2
εεβα

λ
επ

βα <<<<≡<< ≠GG  .    (2.26) 

These settings allow us to express the constant k  as the form : 









+−= ∑

≠

⋅

0\

2
42 2211

G

riG
Gei

k
κβαββ

β
.     (2.27) 

Here, 





= =

2
 0Gαα  is the averaged gain constant and Gκ  is the coupling constant 

which can be expressed as : 

20
G

G
G iαε

ελ
πκ −−=        (2.28) 

We consider the resonance at Γ -point, in which when it is satisfy the second order 

Bragg diffraction, it will induce 2D optical coupling and result in surface emission. 

The corresponding coupling coefficient constant ) 3 , 2 , 1 ( =iiκ  are denoted as : 

0

0

0

2G3

3G2

G1

β

β

β

κκ

κκ

κκ

=

=

=

=

=

=

G

G

G

       (2.29) 
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where 
a3

4
0

πβ = . Fig. 2.6 shows a schematic illustration of the pairs of wave vectors 

that are coupled in each of these three cases. Coupling constant 1κ  describes the 

intensity of the coupling of two plane waves propagating at °60  to each other. 

Coupling constant 2κ  describes the intensity of the coupling of two plane waves 

propagating at °120  to each other. Coupling constant 3κ  describes the intensity of 

the coupling of counterpropagating waves to each other, which corresponds to the 

backward scattering in second-order distributed feedback (DFB) lasers. 

While considering periodic structure, the magnetic field can be described by the 

Bloch mode [4] 

( )∑ ⋅+−=
G

rGki
Gz eHrH )(

 
     (2.30) 

GH  is the amplitude of each plane wave, k  is the wave vector in the first Brillouin 

zone and when it is the Γ  point, it comes to zero. However, at the specific Γ  point 

discussed in this case, the amplitude GH  with 0β=G  are significant and the other 

amplitudes are small and can be neglected. For 2D photonic crystal, there are six 

propagating waves with 0β=G  in PC structure denoted as  , ,  ,  ,  , 54321 HHHHH   

 

   
Fig. 2.6 Diffraction diagram for each coupling constant for triangular 

lattice. White arrows indicate pairs of wave vectors and black arrows 

indicate the corresponding reciprocal lattice vectors. 



 

28 
 

6H . All of these parameters which are shown in Fig. 2.5(b) are considered in our 

model. 

Using these six waves, the magnetic field in this case can be rewritten the 

expression as the following sum : 


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.      (2.31) 

By substituting Eq. (2.27), Eq. (2.28) and Eq. (2.31) into wave Eq. (2.24), then using 

Eq. (2.29), including diffraction in the direction vertical to the PC plane represented 

by the coupling constant 0κ  [6][7] and comparing the exponential terms, we obtain 

six equations of the form : 

( ) ( ) 40353
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x
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where, 654321   ,  , ,  ,  , HandHHHHH  express the envelope magnetic field 

distributions of individual light waves propagating in the six equivalent Μ−Γ  

directions : 0°, +60°, +120°, +180°, +240°, and +300° with respect to the x  axis.  

321   ,  , κκκ and  are the coupling coefficients between light waves propagating at 60° 

to each other ( 21   HandH , 32   HandH , and so on ), at 120° ( 31   HandH , 
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42   , HandH , and so on ), and at 180° ( 41   HandH , 52   HandH , and so on ), 

respectively. δ is the deviation of the wave number β  (expressed as 2πω /c, where ω 

is the frequency and c is the velocity of light ) from the fundamental propagation 

constant 0β  ( equal to a3/4π , where a is the lattice constant ) for each cavity 

mode, and expressed as δ ( ) 0
2
0

2 2/ βββ −= , α is the corresponding threshold gain. For 

the resonant mode in a triangular lattice PC cavity with TE polarization, the 

eigenvalues α  provide the threshold gain and the eigenvalues δ  provide the 

frequency deviation from the Bragg condition by numerically solving the Eq. (2.32) 

under some boundary conditions. The wave on the equal sign of the left in the Eq. 

(2.32) is meaning that electromagnetic waves in a triangular lattice PC by moving 

receive the gain and loss. The wave on the equal sign of the right in the Eq. (2.32) is 

meaning that electromagnetic waves in a triangular lattice PC are coupling with 

654321   ,  , ,  ,  , HandHHHHH , respectively. 

The coupling constants for the circular holes are calculated with the formulas [6] 

( ) ( )
)(

)( 2
2
1 1

0 RG
RGJf

i
a babaG 








−−−−= ααεε

ε
πκ     (2.33) 

Here, aε  and bε  are the dielectric constants and aα  and bα  are the gain 

constants of the circular holes and the background material, respectively. The quantity 

2

2

3
2

a
Rf π

=  is a hole filling factor and R  is the radius of the circular hole. The 

averaged dielectric constant 0ε  is given by )1(0 ff ba −+= εεε . )(1 xJ  is a Bessel 

function of the first kind for integer order one. The definition of coupling constant 0κ  

is the same with that of the square lattice in section 2.1.1.  

We assume the boundary conditions of zero reflectivity and zero gain 
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perturbation ( )ba αα −  in this work. We used the finite difference method as 

described in the Ch2.2.2 for solving the Eq. (2.32). The electric field distribution 

( ) ( ) 0 ,  ,  , ti
y

ti
x eEeEtrE ωω=  is calculated using the time-dependent magnetic field 

( ) ( )  , 0 , 0 ,H ti
zeHtr ω=  and Maxwell’s equation 

( )
t

trErtr
∂

∂
=×∇

),()(,H ε .      (2.34) 

The intensity envelope of the resonant mode throughout the PC structure is 

determined using the sum ∗∗∗∗∗∗ +++++ 665544332211 HHHHHHHHHHHH  
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2.2.2 Finite difference method for triangular lattice 

We discuss the main relationship of the threshold gain α  and the frequency 

deviation δ  from the Bragg condition. And Eq. (2.32) are the eigenvalue problems. 

So, we change the Eq. (2.32) to the following form : 
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Now we can make the matrix of Eq. (2.35), as the following form : 
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 21   vandv  are the )

2
3,

2
1(  and )

2
3,

2
1(−  of direction vector, 

respectively. There is a differential item in the matrix. The differential item is complex 

and difficult in the matrix operations. The finite difference method that difference is 
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used in place of differential can simplify the problems. Numerical solution of the 

coupled wave Eq. (2.36) can be found by using the finite difference method. There are 

several hundred or thousand of the photonic crystal in the yx −  plane of the 

practical devices. However, we cut apart this photonic crystal cavity into a matrix for 

the calculations, as shown in Fig. 2.7. We solve the Eq. (2.36) and get the numerical 

solution that is the complex amplitudes at each positions by black dots. The value of 

each white dot can obtain by using the complex amplitudes of the neighboring black 

dots. For example, the difference equation corresponding to Eq. (2.35a) is written in 

the form : 
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where d  is the side length of one segment, and j  and k  denote the index along 

the x  direction and the direction of +60° with respect to the x  axis, respectively. 

At all the surrounding boundaries, we set the facet reflection to zero : 
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   (2.38) 

where L  is the length of a triangular photonic crystal cavity and n is the positive 

integer. By solving the eigenvalue problem for the sets of difference equations, we 

obtain the eigenvalue ( )δκα i−− 0  and the eigenvectors ),,(),,(( 21 kjHkjH  

)),,(),,(),,(),,( 6543 etckjHkjHkjHkjH . 
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Fig. 2.7 Schematic diagram for triangular lattice for the finite 

difference method. The target of calculations is carried out at the 

positions of the white dots by using the complex amplitudes of the 

neighboring black dots. 
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Chapter 3 

Simulation Results of Photonic Crystal Surface 

Emitting Lasers 

Numerical results 
In this chapter, we would discuss the numerical results by solving the complex 

simultaneous equations based on the coupled wave theory for square lattice and 

triangular lattice, respectively. The normalized frequency deviation from the Bragg 

condition, threshold gain and near field patterns of the resonant modes in the 2D PC 

structure for both square and triangular lattice have been calculated. In addition, the 

relation between the mode pattern and different coupling strengths are also calculated. 

Besides, we have evaluated the threshold gain, the normalized frequency deviation 

and the coupling constants as a function of the hole-filling factor for the fundamental 

modes. Finally, we would discuss the influence of the coupling constant 0κ  to 

different band-edge modes. 
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3.1.1 Mode spectra and mode patterns for square lattice 

The typical band structure of photonic crystal for square lattice with transverse 

electric (TE) polarization shows as Fig. 3.1. And Fig. 3.2 shows the detailed band 

structure around the Γ  point where surface emission is obtained. At the band edges 

of the band structure is easier to form the resonant mode oscillation. The lasing 

oscillation at the mode will occur with the lowest threshold and the smallest optical 

loss [1]. By the reason, calculation of the threshold gain for different resonant modes 

at the band edges point is very important for understanding of the PCSEL 

characteristics.  

We know that the lasing action is easier to achieve the threshold gain at the Γ  

point of the band structure. There are three fundamental modes that is A mode, B 

mode and E mode of doubly degenerate as shown in Fig 3.2. We employing the 

following parameters in the PC model : the holes dielectric constants 8.9=aε , the 

background dielectric constants 0.12=bε , the gain perturbation 0)( =− ba αα , the 

hole filling factor 18.0=f , the lattice period nma 290= , and the PC cavity length 

mL µ50= . The hole filling factor f  define that a circular hole area in the unit cell 

occupied area ratio. According to the numerical solution of the calculation, we plot 

the threshold gain as a function of frequency deviation from the Bragg condition for 

the resonant modes, as shown in Fig. 3.3(a). We classify the groups of resonances as 

,...3,2,1 ±±±=N  according to their frequency deviation from the Bragg condition, 

where N  is the mode number [2]. The more detailed plots for modes 1−=N  and 

1=N  are shown in Fig. 3.3(b) and Fig. 3.3(c), respectively. 

The eigenvectors of Eq. (2.20) provide the complex amplitudes such as xR , xS , 

yR , and yS , which are functions of the positions x  and y . The intensity envelope 
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(mode pattern) of the resonant mode throughout the PC structure can be determined 

from these amplitudes using the sum ∗∗∗∗ +++ yyyyxxxx SSRRSSRR .  

It could be classified that the mode A )6.1259,0.46597( −== LL δα , mode B 

)4.8881,0.57709( −== LL δα , and mode E )4.4137,1.7107( == LL δα  are 

fundamental modes that have a single-lobed intensity pattern throughout the photonic 

crystal, as shown in Fig. 3.4(a-d). We could understand that the lowest frequency of 

these three modes is mode A and mode E is doubly degenerate. Modes A and B have 

twin modes 0A  )4.3506,1.6768( == LL δα  and 0B  )4.4847,1.751( == LL δα , 

respectively. Modes 0A  and 0B  exhibit vase-like patterns with zero intensity at the 

center of the structure, as shown in Fig. 3.4(e-f). The other points in Fig. 3.3(b) and 

Fig. 3.3(c) correspond to higher order modes which consist of a higher order 

transverse mode. A lot of higher order modes in the proximity of mode E are almost 

impossible to distinguish in Fig. 3.3(c). Then, the numerical results of the threshold 

gain for modes A, B, and E by calculation are 0.46597=LAα , 0.57709=LBα , and 

1.7107=LEα , respectively. As a result, mode A has the lowest threshold gain and 

could easily achieve the lasing oscillation. 

Fig. 3.4(g) )... 4.41251.7094,or  -5.4595,0.5522 .( ==== LLLLex δαδα  and 

Fig. 3.4(h) )... 4.41331.7103,or  -5.4781,0.53445 .( ==== LLLLex δαδα  illustrates 

the intensity envelope for the higher order modes around mode E, which have several 

nodes and antinodes. Fig. 3.4(i) 0.59833,or  -5.5065,0.5175 .( === LLLex αδα

)... -5.3942, =Lδ  and Fig. 3.4(j) 1.2426,or  -7.7656,1.3382 .( === LLLex αδα  

)... -8.3053=Lδ  show like the two-lobe pattern and four-lobe pattern, respectively, 

which are the intensity envelope for the higher order modes. The envelopes of other 

higher order modes also exhibit a series of nodes and antinodes. 
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Fig. 3.1 Band structure for square lattice photonic crystal with TE 

polarization 

 

 

Fig. 3.2 The detailed band structure in the proximity of the Γ - point 

for square lattice 
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)(a

 

  

Fig 3.3 (a) Threshold gain as a function of frequency deviation from 

the Bragg condition for square lattice (b) Magnified plot for modes N 

=-1, and (c) for N=1 
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Fig 3.4 (a-d)Mode pattern for square lattice for the fundamental 

modes (A, B, and E), respectively, (e-f) spatial intensity distributions 

0A  and 0B , and (g-j) mode pattern for the higher order modes 
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3.1.2 Threshold gain as a function of hole filling factor for square 

lattice 

The coupling constants are a function of filling factor f  and hence the 

threshold gain should also be strongly dependent on filling factor f . Fig. 3.5 shows 

the coupling constants as a function of the hole filling factor. We note that 3κ  

becomes zero at 3.0=f , which implies that the backward diffraction vanishes. Fig. 

3.7 shows the threshold gain of the fundamental modes A, B, and E as a function of 

hole filling factor. The threshold gain for modes A and B drastically increases in the 

region of 3.0=f . This is because the degree of backward diffraction becomes very 

weak and is insufficient for optical oscillation. This result indicates that the coupling 

constant 3κ  is the dominant factor determining the degree of optical confinement in 

the current system, a square lattice with TE polarization.  

 

  

Fig 3.5 Coupling constants as a function of hole filling factor for 

square lattice  
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To elucidate the origin of the threshold difference among the fundamental modes, 

we calculated the threshold gain for zero surface emission ( 00 =κ ) as shown in Fig. 

3.8 and Fig. 3.9. It is quite obvious that the average of the threshold gain to consider 

the surface emission 0κ  is higher than the average of the threshold gain not to 

consider the surface emission 0κ  for the fundamental modes A, B, and E, as 

compared with Fig. 3.7 and Fig. 3.9. In this case, the threshold gain of mode E greatly 

decreased and the threshold gain between mode E and mode A(or B) is similar , as 

shown in Fig. 3.9. Thus, the major of loss for mode E is surface emission. The 

difference in threshold gain between modes A and B in Fig. 3.7 indicates that the 

emission loss from the edges of the cavity differs. The frequency deviation from the 

Bragg condition don’t have much influence of the surface emission 0κ , as compared 

with Fig. 3.6 and Fig. 3.8.  

In Fig. 3.7, the lowest threshold gains of square PCSELs for A, B and E mode 

are observed at filling factor =0.6,0.6 and 0.05, respectively. The 2D coupling induces 

the curves splitting for modes A and B. Therefore, we could observe a highly mode 

selection with stronger 2D coupling. Besides, in Fig. 3.6, the curves splitting in 

frequency between mode A (or B) and mode E is induced by backward vector of 

coupling constant 3κ . This splitting corresponds to the stopband in 1D DFB lasers, 

which is induced by coupling between the counter propagating waves.  
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Fig 3.6 The frequency deviation as a function of hole filling factor of 

the fundamental modes A, B and E for square lattice for considering 

surface emission 00 ≠κ  

 

 

Fig 3.7 The threshold gain as a function of hole filling factor of the 

fundamental modes A, B and E for square lattice for considering 

surface emission 00 ≠κ  
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Fig 3.8 The frequency deviation as a function of hole filling factor of 

the fundamental modes A, B and E for square lattice for zero surface 

emission 00 =κ  

 

Fig 3.9 The threshold gain as a function of hole filling factor of the 

fundamental modes A, B and E for square lattice for zero surface 

emission 00 =κ  

-12 
-10 

-8 
-6 
-4 
-2 
0 
2 
4 
6 
8 

10 

0 0.2 0.4 0.6 0.8 1 

fr
eq

ue
nc

y 

filling factor 

A 
B 
E 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

0 0.2 0.4 0.6 0.8 1 

th
re

sh
ol

d 
ga

in
 

filling factor 

A 

B 

E 



 

46 
 

3.2.1 Mode spectra and mode patterns for triangular lattice 

The typical band structure of photonic crystal for triangular lattice with 

transverse electric (TE) polarization shows as Fig. 3.10. Fig. 3.11 shows the detailed 

band structure around the Γ  point where surface emission is obtained. At the band 

edges of the band structure is easier to form the resonant mode oscillation.  

We know that the lasing action is easier to achieve the threshold gain at the Γ  

point of the band structure. There are four fundamental modes including A mode, B 

mode, C mode and D mode, as shown in Fig 3.11. B mode and D mode are the mode 

of doubly degenerate, respectively. We import the following parameters in the PC 

model : the holes dielectric constants 8.9=aε , the background dielectric constants 

0.12=bε , the gain perturbation 0)( =− ba αα , the hole filling factor 37.0=f , the 

lattice period nma 290= , and the PC cavity length mL µ50= . The hole filling 

factor f  define that a circular hole area in the unit cell occupied area ratio. 

According to the numerical solution of the calculation, we plot the threshold gain as a 

function of frequency deviation from the Bragg condition for the resonant modes are 

shown in Fig. 3.12.  

The eigenvectors of Eq. (2.36) provide the complex amplitudes such as 1H , 

2H , 3H , 4H , 5H , and 6H , which are functions of the positions x  and y . The 

intensity envelope (mode pattern) of the resonant mode throughout the PC structure 

can be determined from these amplitudes using the sum 

∗∗∗∗ +++ 44332211 HHHHHHHH ∗∗ ++ 6655 HHHH .  

It could be classified that mode A )11.118,2.0388( −== LL δα , mode B 

)2.7631,0.87575( −== LL δα , mode C )12.3982,0.77078( == LL δα  and mode D 

)2.1771,1.9519( == LL δα  are fundamental modes, each mode have a single-lobed 
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intensity pattern throughout the photonic crystal, as shown in Fig. 3.13(a-f). We can 

identify that the lowest frequency of these four modes is mode A, as shown in Fig. 

3.11. At the same time, we can find the six mode patterns for fundamental modes 

which show similarly single-lobed intensity patterns. This observation of the six mode 

patterns can be found by doubly degenerate into two categories. The frequency of the 

band structure, as shown in Fig. 3.11, can be helped to distinguish the different modes. 

The numerical results of the threshold gain for modes A, B, C, and D are 

0388.2=LAα , 0.87575=LBα , 0.77078=LCα  and 1.9519=LDα , respectively. As 

a result, mode C has the lowest threshold gain and could easily achieve the lasing 

oscillation. 

Fig. 3.13(g-j) illustrates the intensity envelope for the higher order modes, which 

have several nodes and antinodes. Fig. 3.13(g) illustrates that the phase of intensity 

envelope of the resonant mode is flipped as crossing a given axis. This produces a 

mode pattern that only exist two lobes. On the other hand, Fig. 3.13(h) illustrates that 

the phase of intensity envelope of the resonant mode is flipped as crossing two given 

axes. This produces a mode pattern that exist four lobes. In the Fig. 3.13(i), it shows 

that the intensity envelope characteristic with six peaks spaced almost evenly around 

the perimeter of the annulus. For this mode, the phases of the six field components 

alternate as a function of azimuthal angle that there are not two of adjacent 

components separated by 60° constructive interference [3]. Finally, Fig. 3.13(j) 

illustrates that the intensity envelope characteristic forms an annular pattern. The 

modes shown in Fig. 3.13(g-i) may be classified as out-of-phase, since pronounced 

destructive interference in the surface-emitted component substantially reduces the 

output power and also degrades the beam quality. The envelopes of other higher order 

modes also exhibit a series of nodes and antinodes. 
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Fig. 3.10 Band structure for triangular lattice photonic crystal with 

TE polarization 

 

 

Fig. 3.11 The detailed band structure in the proximity of the Γ - 

point for triangular lattice 
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Fig 3.12 Threshold gain as a function of frequency deviation from the 

Bragg condition for triangular lattice 

 

  

(a) (b) 

(c) (d) 

B 2.7631L
0.87575L
−=

=
δ
α

'B 2.7631L
0.87575L
−=

=
δ
α

C 12.3982L
0.77078L

=
=

δ
α A 11.118L

2.0388L
−=

=
δ
α



 

50 
 

(e) (f) 

(g) (h) 

(i) (j) 

Fig 3.13 (a-f)Mode pattern for triangular lattice for the fundamental 

modes (A, B, C, and D), respectively and (g-j) mode pattern for the 

higher order modes 
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3.2.2 Threshold gain as a function of hole filling factor for triangular 

lattice 

The coupling constants are calculated as a function of filling factor f  and 

hence the threshold gain should also be strongly dependent on filling factor f . Fig. 

3.14 shows the coupling constants as a function of the hole filling factor. It should be 

noted that 3κ  becomes zero at 25.0=f , which implies that the backward 

diffraction vector is vanished. The threshold gain could be affected by this factor. On 

the other hand, the 0κ  has the maximum value at 45.0=f  which implies that this 

condition has the maximum radiation loss. We could also obtain that 2κ  and 3κ  

have the maximum value at 15.0=f , 1κ  and 0κ  have the maximum value at 

45.0=f , and 2κ  becomes zero at 35.0=f .  

Fig. 3.18 shows the threshold gain of the fundamental modes A, B, C and D as a 

function of hole filling factor. It is clearly the threshold gain for modes C and D 

 

Fig 3.14 Coupling constants as a function of hole filling factor for 

triangular lattice 
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drastically increases in the region of 25.0=f . It is because the degree of backward 

diffraction vector becomes very weak and is insufficient for optical oscillation. This 

result indicates that the coupling constant 3κ  is the mainly factor of determining the 

degree for optical resonant in the current system. 

Fig. 3.15 and Fig. 3.16 show that the frequency deviation and threshold gain as a 

function of hole filling factor of the fundamental modes A, B, C and D for triangular 

lattice with considering surface emission 0κ , respectively. The threshold gain of 

mode A and B have the lowest value at 12.0=f  in Fig 3.16. It is because the 

coupling constant 2κ  and 3κ  are the maximum value and could provide sufficient 

optical resonant. At the same time, the threshold gain for mode A and D has the local 

maximum value at 45.0=f , because the coupling constant 0κ  and 1κ  are the 

maximum value which would increase the optical loss. In particular, the threshold 

gain of fundamental modes becomes larger when the hole filling factor f  approach 

zero or one. In this case, the photonic crystal is without any function. 

To elucidate the originally difference among the fundamental modes, we 

calculated the threshold gain and frequency deviation as a function of filling factor for 

zero surface emission ( 00 =κ ), as shown in Fig. 3.17 and Fig. 3.18. It is obviously 

that all of the threshold gain with considering surface emission 0κ  is higher than that 

without surface emission 0κ  for the fundamental modes A, B, C and D. In Fig. 3.18, 

by compared with these two conditions (with or without 0κ ), the curves of the 

threshold gain for mode A and D at 45.0=f  show smooth tendency instead of 

violent variation in Fig. 3.16 indicating that the threshold gain for mode A and D are 

mainly affected by the coupling constant 0κ .The influence of radiation loss 0κ  is 
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larger than the coupling constant 1κ  for these two modes. At the same time, the 

curve of threshold gain of mode A is similar with mode B for zero surface emission, 

as shown in Fig. 3.18. The mainly difference between the threshold gain of mode A 

and B for surface emission is shown in Fig. 3.16. It can be seen the curve of mode A is 

gradually increased with considering 0κ . Thus, the influence of surface emission 

factor for mode A is larger than mode B. As for the deviation frequency for mode A, B, 

C and D without considering 0κ , the tendency of each mode shows similar curves 

between Fig. 3.15 and Fig. 3.17. It indicates that the frequency deviation from the 

Bragg condition does not affect by the surface emission factor 0κ . 

At last, we could finalize these results of threshold gain for each mode. In Fig. 

3.16, the lowest threshold gains of triangular PCSELs for A, B, C and D mode are 

observed at filling factor =0.1, 0.1, 0.05 and 0.05, respectively. The surface emission 

coupling induces the curves splitting for modes A and B. Therefore, we could observe 

a highly mode selection with stronger 2D coupling. In Fig. 3.15, the curves splitting in 

frequency between mode A (or B) and mode C(or D) is induced by backward vector 

of coupling constant 3κ . This splitting corresponds to the stopband in 1D DFB lasers, 

which is induced by coupling between the counter propagating waves. 
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Fig 3.15 The frequency deviation as a function of hole filling factor of 

the fundamental modes A, B, C and D for triangular lattice for 

considering surface emission 00 ≠κ  

 

 
Fig 3.16 The threshold gain as a function of hole filling factor of the 

fundamental modes A, B, C and D for triangular lattice for 

considering surface emission 00 ≠κ  
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Fig 3.17 The frequency deviation as a function of hole filling factor of 

the fundamental modes A, B, C and D for triangular lattice for zero 

surface emission 00 =κ  

 

 
Fig 3.18 The threshold gain as a function of hole filling factor of the 

fundamental modes A, B, C and D for triangular lattice for zero 

surface emission 00 =κ  
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Chapter 4 

Conclusion 
 We have developed the coupled wave theory for square lattice and triangular 

lattice of photonic crystal lasers with transverse electric polarization. Numerical 

calculations by solving the eigenvalue problem have shown the threshold gain, the 

frequency deviation and the mode pattern of the 2D resonant modes. The intensity 

pattern of the fundamental modes was found to depend on the coupling strength, with 

peaks in intensity at the ends of the structure for weak coupling and maximum 

intensity at the center for strong coupling.  

For square lattice, the lowest threshold gains of PCSELs for fundamental mode 

A, B and E are observed at filling factor f =0.6, 0.6 and 0.05, respectively. The 

surface emission 0κ  and backward coupling 3κ  are the dominant factor of 

determining the degree of optical confinement in the current system for the 

fundamental mode. The surface emission coupling constant 0κ  induces the curve 

splitting between modes A (or B) and E.  

As for triangular lattice, the lowest threshold gains of PCSELs for fundamental 

mode A, B, C and D are observed at filling factor f =0.1, 0.1, 0.05 and 0.05, 

respectively. The surface emission 0κ  and backward coupling 3κ  are the dominant 

factor of determining the degree of optical confinement in the current system for the 

fundamental mode. The surface emission coupling constant 0κ  induces the curve 

splitting between modes A and B. Therefore, we could observe a highly mode 

selection with stronger 2D coupling. 

The out of plane radiation of photonic crystal has been considered by coupling 
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coefficient 0κ , and it has massive influence to threshold gain of PCSELs. The results 

obtained in this thesis provide fundamental insight into the 2D DFB effect of the PC 

lasers. To fabricate low threshold gain PCSELs, coupled wave theory provides us a 

more convenient and faster method to modify our designs. A further development in 

designing and optimizing the 2D PC lasers by the current method is envisaged. 
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Appendix  Code (in Matlab System)\  

Mode patterns of photonic crystal with square lattice 

clc 

clear 

L=50*10^(-4);                 % length of PC cavity 

Epsa=9.8;       % dielectric constants of the circular holes 

Epsb=12.0;      % dielectric constants of the background 

a=290*10^(-7);       % lattice constant 

b=2*pi/a;                      % wave number 

%-----------------------coupling constant--------------------------- 

G=[b sqrt(2)*b 2*b]; 

z2=1; 

for z1=1:3 

    f(z2)=0.18;                 % filling factor 

    r(z2)=a*sqrt(f(z2)/(pi)); 

    Eps0(z2)=sqrt(Epsa*f(z2)+Epsb*(1-f(z2))); 

kG(z2)=0.2841*(-(pi)*(Epsa-Epsb)/(a*Eps0(z2)))*2*f(z2)* 

BESSEL(1,G(z1)*r(z2))/(G(z1)*r(z2)); 

         kG(isnan(kG))=1; 

if z1==1 

    kG1(z2)=kG(z2); 

    k0(z2)=2*kG1(z2)*kG1(z2)*L/500; 

end 

k(z1)=kG(z2); 

end 

%------------------------------kappa variable----------------------- 

n=18;           % even 

k1=k(1); 

k2=k(2); 

k3=k(3); 

%------------------------------parameter----------------------------- 

A=(i*4*(k1)^2)/b; 

C=i*2*(k1^2)/b; 

B=i*(k3)-k0; 

d=L/n; 

%----------------------------boundary & phase shift--------------- 

ro=0.0; 

phi=0*pi; 

phs=pi*0/18; 

brro=ro; 

brph=phi; 

blro=ro; 

blph=phi; 

buro=0; 

buph=phi; 

bdro=0; 

bdph=phi; 

%----------------------------------matrix----------------------------- 

A11=(0.5*A+1/d)*eye(n)+diag((0.5*A-1/d)*ones(1,n-1),-1); 

A11(n,n)=A11(n,n)+0.5*B*brro*exp(i*brph); 

Mn11=kron(eye(n),A11); 

A12=(0.5*B)*eye(n)+diag((0.5*B)*ones(1,n-1),1); 

A12(1,1)=A12(1,1)+(0.5*A-1/d)*blro*exp(i*blph); 

P=diag([exp(-i*phs)*ones(1,n/2) exp(i*phs)*ones(1,n/2)]); 

M12=kron(eye(n),P*A12); 

A13=diag(0.5*C*buro*exp(i*buph)*[zeros(1,n*(n-1)) 

ones(1,n)]); 

M13=(0.5*C)*eye(n*n)+diag((0.5*C)*ones(1,n*n-n),-n)+A1

3; 

A14=diag(0.5*C*bdro*exp(i*bdph)*[ones(1,n) 

zeros(1,n*(n-1))]); 

M14=(0.5*C)*eye(n*n)+diag((0.5*C)*ones(1,n*n-n),n)+A1

4; 

%----------------------------------------------------------------------- 

A21=(0.5*B)*eye(n)+diag((0.5*B)*ones(1,n-1),-1); 

A21(n,n)=A21(n,n)+(0.5*A-1/d)*brro*exp(i*brph); 

Q=diag([exp(i*phs)*ones(1,n/2) exp(-i*phs)*ones(1,n/2)]); 

M21=kron(eye(n),Q*A21); 

A22=(0.5*A+1/d)*eye(n)+diag((0.5*A-1/d)*ones(1,n-1),1); 

A22(1,1)=A22(1,1)+(0.5*B)*blro*exp(i*blph); 

Mn22=kron(eye(n),A22); 

%----------------------------------------------------------------------- 
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A31=(0.5*C)*eye(n)+diag((0.5*C)*ones(1,n-1),-1); 

A31(n,n)=A31(n,n)+(0.5*C)*brro*exp(i*brph); 

M31=kron(eye(n),Q*A31); 

A32=(0.5*C)*eye(n)+diag((0.5*C)*ones(1,n-1),1); 

A32(1,1)=A32(1,1)+(0.5*C)*blro*exp(i*blph); 

M32=kron(eye(n),P*A32); 

A33=diag((0.5*B)*buro*exp(i*buph)*[zeros(1,n*(n-1)) 

ones(1,n)]); 

Mn33=(0.5*A+1/d)*eye(n*n)+diag((0.5*A-1/d)*ones(1,n*n-

n),-n)+A33; 

A34=diag((0.5*A-1/d)*bdro*exp(i*bdph)*[ones(1,n) 

zeros(1,n*(n-1))]); 

M34=(0.5*B)*eye(n*n)+diag((0.5*B)*ones(1,n*n-n),n)+A3

4; 

%----------------------------------------------------------------------- 

A43=diag((0.5*A-1/d)*buro*exp(i*buph)*[zeros(1,n*(n-1)) 

ones(1,n)]); 

M43=(0.5*B)*eye(n*n)+diag((0.5*B)*ones(1,n*n-n),-n)+A4

3; 

A44=diag((0.5*B)*bdro*exp(i*bdph)*[ones(1,n) 

zeros(1,n*(n-1))]); 

Mn44=(0.5*A+1/d)*eye(n*n)+diag((0.5*A-1/d)*ones(1,n*n-

n),n)+A44; 

TT=[Mn11 M12 M13 M14;M21 Mn22 M13 M14;M31 M32 

Mn33 M34;M31 M32 M43 Mn44]; 

%----------------------------------------------------------------------- 

R11=eye(n)+diag(ones(1,n-1),-1); 

Rn11=kron(eye(n),R11); 

R22=eye(n)+diag(ones(1,n-1),1); 

Rn22=kron(eye(n),R22); 

Rn33=eye(n*n)+diag(ones(1,n*n-n),-n); 

Rn44=eye(n*n)+diag(ones(1,n*n-n),n); 

Z=zeros(n*n); 

R=[Rn11 Z Z Z;Z Rn22 Z Z;Z Z Rn33 Z;Z Z Z Rn44]; 

Y=inv(R); 

T=Y*TT; 

[VR D]=eig(T); 

realpart=L*(real(2*diag(D)))+k0*L; 

imagpart=L*(-imag(2*diag(D))); 

figure() 

plot(imagpart,realpart,'.') 

axis([-20,20,0,5]) 

N=find(realpart<1.5); 

S=size(N); 

%---------------------------Mode pattern Hz------------------------ 

for z=1:S(1) 

V=VR(:,N(z)); 

for y=1:n 

    for x=1:n 

    if x==1 & y==1 

        Rx=0; 

        Sx1=V(n*n+(y-1)*n+x+1); 

        Ry=0;  

        Sy1=V(3*n*n+(y)*n+x); 

    elseif x==1 & y==n 

          Rx=0; 

          Sx1=V(n*n+(y-1)*n+x+1); 

          Ry=V(2*n*n+(y-2)*n+x);   

          Sy1=0; 

    elseif x==n & y==1 

            Rx=V(n*(y-1)+x-1); 

            Sx1=0; 

            Ry=0; 

            Sy1=V(3*n*n+(y)*n+x); 

    elseif x==n & y==n 

             Rx=V(n*(y-1)+x-1); 

             Sx1=0;            

             Ry=V(2*n*n+(y-2)*n+x);     

             Sy1=0; 

    elseif x==1 

          Rx=0; 

          Sx1=V(n*n+(y-1)*n+x+1); 

          Ry=V(2*n*n+(y-2)*n+x);   

          Sy1=V(3*n*n+(y)*n+x); 

    elseif x==n 

          Rx=V(n*(y-1)+x-1); 
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          Sx1=0; 

          Ry=V(2*n*n+(y-2)*n+x);   

          Sy1=V(3*n*n+(y)*n+x); 

    elseif y==1 

            Rx=V(n*(y-1)+x-1); 

            Sx1=V(n*n+(y-1)*n+x+1); 

            Ry=0; 

            Sy1=V(3*n*n+(y)*n+x); 

    elseif y==n 

             Rx=V(n*(y-1)+x-1); 

             Sx1=V(n*n+(y-1)*n+x+1);            

             Ry=V(2*n*n+(y-2)*n+x);     

             Sy1=0; 

    else 

             Rx=V(n*(y-1)+x-1); 

             Sx1=V(n*n+(y-1)*n+x+1);            

             Ry=V(2*n*n+(y-2)*n+x);     

             Sy1=V(3*n*n+(y)*n+x); 

    end 

      Rx1=V(n*(y-1)+x);     

      Sx=V(n*n+(y-1)*n+x); 

      Ry1=V(2*n*n+(y-1)*n+x); 

      Sy=V(3*n*n+(y-1)*n+x); 

SE(x,y)=abs(Rx+Rx1)*abs(Rx+Rx1)+abs(Sx+Sx1)*abs(Sx+

Sx1)+abs(Ry+Ry1)*abs(Ry+Ry1)+abs(Sy+Sy1)*abs(Sy+Sy

1);     

    end 

end 

figure(3) 

[X ,Y]=meshgrid(1:n,1:n); 

Plot_Result=surf(X,Y,SE); 

f0=f(z2)*100; 

cd('C:\Users\jky\Desktop\jky\1'); 

saveas(Plot_Result,strcat(num2str(f(z2)),'gain',num2str(realp

art(N(z))),'w', num2str(imagpart(N(z))),'s',num2str(N(z)), 

'.jpg')); 

cd('C:\Users\jky\Desktop\couplingconstant'); 

end 
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