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研究生：張書維 指導教授：魏恆理 

 

 

國立交通大學應用化學系碩士班 

 

摘摘摘摘 要要要要 

為了描述激發態與開殼層系統，多參考態微擾理論  (multireference 

perturbation theory) 是精確的電子相關 (electron-correlation) 方法中為最受信

賴且計算上較可實行的。然而，多參考態微擾理論卻存在著一個嚴重的問題，

稱之為入侵態 (intruder states) 問題。入侵態會使得系統的位能面不連續且導致

沒有物理意義的結果。多參考態微擾理論配合位移技術 (shift techniques) 的使

用可以很有效地移除入侵態。儘管如此，用多參考態微擾理論來研究系統的化

學性質會隨著位移技術所使用的參數而劇烈地改變。我們因此著手進行各種可

運用的位移技術研究，即實數位移 (real shift)、虛數位移 (imaginary shift) 與入

侵態規避技術 (intruder state avoidance technique)，並找出其適當的位移參數值。
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本論文藉由不同的多參考態微擾理論的方法結合各種位移技術，研究了 15 種雙

原子分子中的 65 條低能量電子態 (low-lying electronic states) 之位能曲線。我

們用不同的位移值來極限測試這些位能曲線及其光譜常數  (spectroscopic 

constants) 並與實驗值作比較。最後，運用統計分析來決定每一種位移技術的

優化的位移參數值。研究結果顯示當使用優化的位移參數值，不僅可以有效地

移除入侵態，還可以減少研究系統在光譜常數上的誤差。 
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Abstract 

For describing excited states and open-shell systems, multireference 

perturbation theory (MRPT) is the most reliable and computationally feasible among 

accurate electron-correlation methods. However, the MRPT methods are subject to a 

serious problem, known as the intruder state problem. The intruder states shall cause 

discontinuities in the potential energy surface of a system leading to non-physical 

results. The use of shift techniques in the MRPT may efficiently eliminate intruder 

states. Nevertheless, the chemical properties of the system studied using MRPT can 

change strongly depending on the parameter employed in the shift techniques. We 

therefore undertook an investigation for available shift techniques (e.g., real shift, 

imaginary shift, and intruder state avoidance techniques) to find appropriate values 

of these shift parameters. In this Thesis, 65 potential energy curves of low-lying 
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electronic states of 15 diatomic molecules were studied using different MRPT 

methods combined with various shift techniques. The potential energy curves and 

their spectroscopic constants were critically evaluated for various values of the shift 

parameter, and compared with experiment. Finally, we used statistical analysis to 

determine the optimal value of the shift parameter in each shift technique. The 

research results show that the shift techniques can efficiently eliminate the intruder 

states and at same time they also reduce the error in spectroscopic parameters of the 

studied system when an optimal value of shift parameter is used. 
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Chapter 1 
 
 
Introduction 
 

Theoretical calculations and quantum chemistry are getting more and more 

important in recent years because scientists can employ computational techniques to 

predict, explain, and rationalize many chemical properties of molecules such as 

equilibrium structures, dipole moments, excitation energies, infrared spectra, Raman 

spectra, reaction mechanisms, etc. Especially thanks to the fast development of 

computing technology and enhancement of the speed of the central processing units 

(CPU), we are able to deal with the constantly growing computational cost. On the 

other hand, personal computers are much cheaper and faster than supercomputers ten 

years ago. It is easy to get a personal computer and employ it in theoretical 

calculations helping one’s research. 

In quantum chemistry, the Schrödinger equation is a complicated problem that 

cannot be solved exactly because of existence of electron-electron interactions in a 

many-electron system. Hartree-Fock (HF) theory was developed to solve the 

Schrödinger equation approximately. Afterward many electron-correlation methods 

have been developed based on the Hartree-Fock (HF) equations. Thus the 

Hartree-Fock (HF) method certainly became a keystone of quantum chemistry. The 

popular electron-correlation methods include multiconfiguration self-consistent field 
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(MCSCF), configuration interaction (CI), coupled-cluster (CC), Møller-Plesset 

perturbation theory (MPPT), multireference perturbation theories (MRPT), etc. These 

methods take into account electron correlation to overcome the defect of the HF 

method and to improve the accuracy. Unfortunately, computational costs of both the 

CI methods and the CC methods are indeed expensive even though these methods are 

regarded as very accurate methods. Another popular class of methods is called density 

functional theory (DFT), in which electronic energy of a system can be expressed in 

terms of a functional of the electron density. An advantage of DFT is much lower 

computational cost. 

Many chemical problems often involve excited states, multiplet electronic 

structures and quasi-degenerate systems. However, the HF method and MPPT method 

are based on a single Slater determinant and therefore are not adequate to describe 

such open-shell systems. In DFT, there is no systematic way to deal with the excited 

states and the spin multiplet systems. Scientists devoted substantial effort developing 

accurate methods for solving these problems. One of possible reliable and 

computationally feasible ways to describe this kind of systems is a combination of the 

multiconfiguration self-consistent field (MCSCF) method together with an 

appropriate electron-correlation technique such as multireference configuration 

interaction (MRCI) method, multireference coupled-cluster (MRCC) method, or 

multireference perturbation theory (MRPT). The MCSCF wavefunctions are used as 

reference states in MRCI, MRCC and MRPT. Here, a limitation is that both MRCI 

and MRCC can only be applied for small molecules (<10 atoms) and only the MRPT 
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methods are applicable for larger systems (about 20 atoms). 

Based on Rayleigh-Schrödinger perturbation theory (RSPT), the popular MRPT 

methods include complete active space perturbation theory (CASPT2)1,2, 

multireference Møller-Plesset perturbation theory (MRMP)3, multiconfigurational 

quasidegenerate perturbation theory (MCQDPT)4 and n-electron valence state 

perturbation theory (NEVPT2)5. Most of these methods may suffer from the problem 

of intruder states. 

 
Figure 1.1  CASPT2/MOLCAS potential energy curves computed with two values 
of the imaginary shift parameter σ for the 1A Π  excited state of CO. 

 

Figure 1.1 shows the potential energy curves of the excited 1Π  state of CO obtained 

from the CASPT2 calculations. The black curve, obtained with the standard CASPT2 

method, has a problem with a strong intruder state around 1.2 Å and with weak 
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intruder states around 1.8 and 2.3 Å. It is clear that the intruder states constitute a 

serious problem, which distorts the shape of the curve around its minimum causing 

loosing significant information. Fortunately, introducing shift techniques in 

perturbation theory calculations can efficiently remove the intruder states. The 

perturbation theory shift techniques are available in a few flavors: real shift technique6, 

imaginary shift technique7, intruder state avoidance (ISA) technique8, etc. After 

applying an intruder state removal technique, the potential energy curve in Figure 1.1 

(red curve) became continuous and well-behaving. Recently certain undesired 

properties of the shift techniques have been discovered. It was found that it is possible 

to obtain almost arbitrary results in the calculations by using improper shift parameter 

value because the chemical properties of molecules turned out to depend strongly on 

the shift parameter.9 For example, a possibility of a wrong prediction of the ground 

state for the scandium dimer was recently communicated due to improper choice of 

the shift parameter.10,11 

Since there is no standard way to select the proper value of the shift parameter, 

our investigations presented in the body of this Thesis center on the determination of 

an appropriate determinant applicable for determination of an appropriate value of the 

shift parameter. We therefore studied the behavior of three types of shift techniques 

(e.g., real shift, imaginary shift and ISA shift) implemented in three standard chemical 

programs by performing perturbation theory calculations combined with shift 

techniques for a set of simple molecules and comparing the resulting spectroscopic 

constants with experiment. Potential energy curves of 65 low-lying electronic states 
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of 15 diatomic molecules consisting of the first- or second-periodic elements were 

studied using different MRPT methods. Subsequently, the resulting spectroscopic 

constants such as the equilibrium distance, the vibrational frequency and the 

dissociation energy were calculated for every choice of the shift parameter. The 

analysis of these results helped us to propose an optimal value of the shift parameter 

for each of the studied shift techniques. This appropriate choice can reduce the error 

and eliminate large deviations of spectroscopic constants caused by intruder states or 

improper selection of the value of the shift parameter. 

The detailed introduction about MCSCF, MRPT, intruder states and shift 

techniques is given in Chapter 2. Our research approaches and the usage of the 

chemical programs are shown in Chapter 3. The results and discussion of analysis of 

each shift technique are presented in Chapter 4. The conclusions of this These is 

shown in Chapter 5. An additional project is present in Appendix A, in which we 

have used DFT/B3LYP to simulate the IR spectra of p-nitroaniline (PNA). The 

prediction is successful owing to employing an explicitly solvated model of PNA. 
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Chapter 2 
 
 
Computational Theory 
 

2.1 The Variational Method 

The time-independent Schrödinger equation 

Ĥ EΨ = Ψ  (2.1.1) 

where Ĥ is the Hamiltonian operator, Ψ is an eigenfunction of Ĥ, and E is the 

corresponding eigenvalue, can be conveniently expressed using the bracket notation. 

The bra vector Ψ  and the ket vector Ψ  are defined in the bracket notation as 

∗Ψ ≡ Ψ   

Ψ ≡ Ψ  (2.1.2) 

Using this notation, the Schrödinger equation in Eq. (2.1.1) can be rewritten as 

Ĥ EΨ = Ψ  (2.1.3) 

The expectation value of the Hamiltonian and the overlap integral is expressed as 

ˆ ˆH H d∗Ψ Ψ ≡ Ψ Ψ τ∫   

1Ψ Ψ =  (2.1.4) 

In practice, however, it is very complicated to find Ψ. One follows then an indirect 
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approach in order to find a good approximation to Ψ following so called variational 

principle12,13. The variational method is an important way to approximate the exact 

energy of the Schrödinger equation. Assuming that the Hamiltonian operator Ĥ  

possess a set of eigenfunctions iϕ  and eigenenergies iε , and denoting the ground 

state energy as 0ε , we have 

i i iĤ ϕ ≡ ε ϕ  (2.1.5) 

An arbitrary function Φ  that obeys the same boundary conditions as the 

eigenfunctions iϕ  can be expanded in a complete set of the orthonormal functions 

iϕ  

i i
i

cΦ = ϕ∑  (2.1.6) 

Substituting Eq. (2.1.6) into the Schrödinger equation and multiplying by Φ  on the 

left side one obtains 

ĤΦ Φ  = j i i j i
j i

c c∗ ε ϕ ϕ∑∑   

             = j i j ji
j i

c c∗ ε δ∑∑   

             = 2
i i

i

c ε∑  (2.1.7) 

where we assumed that the eigenfunctions iϕ  are orthonormal, 

j i jiϕ ϕ = δ . Since 0ε  is the eigenenergy of the ground state, for all the other 

eigenenergies i 0ε ≥ ε . Equation (2.1.7) can be then written as 

2 2
i i i 0

i i

Ĥ c cΦ Φ = ε ≥ ε∑ ∑
 

(2.1.8) 
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Because 
2

j i ji i
j i i

c c c∗Φ Φ = δ =∑∑ ∑ , substituting Φ Φ  into right side of 

Eq. (2.1.8) and rearranging the equation gives 

0

ĤΦ Φ
≥ ε

Φ Φ
 (2.1.9) 

The arbitrary function Φ  is called a trial function and the ratio in Eq. (2.1.9) called 

Rayleigh quotient, expresses the energy of the trial function. Consequently, this ratio 

shows that the energy of the trial function is always higher than the ground state 

energy. In order to approach the exact energy, the variational method minimizes the 

energy via applying appropriate trial function or varying parameters of the trial 

function. 

 

 

2.2 The Rayleigh-Schrödinger Perturbation Theory 

Perturbation theory provides another route to approach the exact solution12,13. 

We can achieve high accuracy of the energy and the wavefunction by including high 

order corrections. The main idea in perturbation theory is to divide the Hamiltonian 

operator into the unperturbed operator 0Ĥ  and the perturbation operator V̂  

0ˆ ˆ ˆH H V= + λ  (2.2.1) 

The time-independent Schrödinger equation Eq. (2.1.3) can be written as 

( )0
n n n

ˆ ˆH V E+ λ Ψ = Ψ  (2.2.2) 
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We expand the exact eigenfunctions and the eigenvalues as a Taylor series in λ 

( ) ( ) ( )0 1 22
n n n n ...Ψ = Ψ + λ Ψ + λ Ψ +   

( ) ( ) ( )0 1 22
n n n nE E E E ...= + λ + λ +  (2.2.3) 

We refer to ( )0
nΨ  and ( )0

nE   as the zeroth-order wavefunction and the zeroth-order 

energy, to ( )1
nΨ  and ( )1

nE   as the first-order wavefunction and first-order energy, and 

so on. Substitution of the wavefunction and the energy as expressed by Eq. (2.2.3) 

into Eq. (2.2.2) gives 

( ) ( ) ( ) ( )( )0 1 20 2
n n n

ˆ ˆH V ...+ λ Ψ + λ Ψ + λ Ψ + =   

( ) ( ) ( )( ) ( ) ( ) ( )( )0 1 2 0 1 22 2
n n n n n nE E E ... ...+ λ + λ + Ψ + λ Ψ + λ Ψ +  (2.2.4) 

Collecting terms of Eq. (2.2.4) involving the same power of λ, we get 

( ) ( ) ( )0 0 00 0
n n n

ˆ :  H Eλ Ψ = Ψ  (2.2.5) 

( ) ( ) ( ) ( ) ( ) ( )1 0 0 1 1 01 0
n n n n n n

ˆ ˆ :   H V E Eλ Ψ + Ψ = Ψ + Ψ   (2.2.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 0 2 1 1 2 02 0
n n n n n n n n

ˆ ˆ :   H V E E Eλ Ψ + Ψ = Ψ + Ψ + Ψ  (2.2.7) 

and so on. To simplify the derivation, we can choose the condition ( )0
n n 1Ψ Ψ =

which is referred to as the intermediate normalization. Multiplying ( )0
nΨ  οn left side 

of wavefunction of Eq. (2.2.3), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 1 2 22
n n n n n n n n ... 1Ψ Ψ = Ψ Ψ + λ Ψ Ψ + λ Ψ Ψ + =  

 

Since λ is a variable, we get the orthogonality condition ( )0
n n 0Ψ Ψ =

 
. Multiplying 
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( )0
nΨ  οn left side of each equation in Eq. (2.2.5), Eq. (2.2.6) and Eq. (2.2.7) and 

using the intermediate normalization, we have 

( ) ( ) ( )0 0 00
n n n

ˆE H= Ψ Ψ  (2.2.8) 

( ) ( ) ( )1 0 0
n n n

ˆE V= Ψ Ψ  (2.2.9) 

( ) ( ) ( )2 0 1
n n n

ˆE V= Ψ Ψ  (2.2.10) 

The first-order correction energy ( )1
nE   is the integral of the perturbation operator V̂  

over the unperturbed wavefunction. We need to correct the energy further because the 

unperturbed wavefunction is not the exact wavefunction. For finding the second-order 

correction energy ( )2
nE , we need to know the first-order correction wavefunction. The 

first-order correction wavefunction can be expanded as a linear combination of 

zero-order correction wavefunctions 

( ) ( ) ( ) ( )1 0 0 1
n m m n

m n≠

Ψ = Ψ Ψ Ψ∑  (2.2.11) 

Using Eq. (2.2.11), the second-order correction energy Eq. (2.2.10) can be written as 

( ) ( ) ( ) ( ) ( )2 0 0 0 1
n n m m n

m n

ˆE V
≠

= Ψ Ψ Ψ Ψ∑
 

 (2.2.12) 

Substituting Eq. (2.2.11) into Eq.  (2.2.6) and then multiplying by ( )0
mΨ  on the left 

side, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 0 0 0 1 0 1 00
m n m n m n n m n n

ˆ ˆH V E EΨ Ψ + Ψ Ψ = Ψ Ψ + Ψ Ψ   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 0 0 0 1
m m n m n n m n

ˆE V EΨ Ψ + Ψ Ψ = Ψ Ψ  (2.2.13) 



 

11 

 

Rearrangement of Eq. (2.2.13) gives 

( ) ( )
( ) ( )

( ) ( )

0 0
m n0 1

m n 0 0
n m

V̂

E E

Ψ Ψ
Ψ Ψ =

−
 (2.2.14) 

Substituting Eq. (2.2.14) into Eq. (2.2.11), we get the first-order correction 

wavefunction 

( )
( ) ( )

( ) ( )
( )

0 0
m n1 0

n m0 0
m n n m

V̂

E E≠

Ψ Ψ
Ψ = Ψ

−
∑  (2.2.15) 

Substituting Eq. (2.2.14) into the ( ) ( )0 1
m nΨ Ψ of Eq.  (2.2.12), we get the 

second-order correction energy 

( )2
nE  = 

( ) ( ) ( ) ( )

( ) ( )

0 0 0 0
n m m n

0 0
m n n m

ˆ ˆV V

E E≠

Ψ Ψ Ψ Ψ

−
∑   

       = 
( ) ( )

( ) ( )

20 0
n m

0 0
m n n m

V̂

E E≠

Ψ Ψ

−
∑   (2.2.16) 

The second-order correction energy in Eq. (2.2.16) is given in terms of the 

unperturbed wavefunctions and energies. It also shows that the main effect of the 

perturbation comes from the eigenfunctions ( )0
mΨ , whose energies are located near 

the energy of the eigenfunction ( )0
nΨ  because the correction energy is inversely 

proportional to the zeroth-order energy difference between eigenfunctions ( )0
nΨ  

and ( )0
mΨ . This form of the perturbation theory is referred to as the 

Rayleigh-Schrödinger perturbation theory (RSPT); it is widely applied in the 

quantum chemistry. 
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2.3 The Hartree-Fock Method 

Assuming that electrons move independently in an average field, the 

many-electron wavefunction can be written as a product of spin orbitals ( )xχ  for 

each electron, where x represents collectively the space and spin coordinates. 

( ) ( ) ( )1 2 N1 2 ... NΨ = χ χ χ  (2.3.1) 

To satisfy the Pauli exclusion principle, the wavefunction must be antisymmetric with 

respect to interchange of two electrons. This can be achieved if the wavefunction is 

written as a normalized Slater determinant SDΨ  .
12 

SDΨ  = 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 N

1 2 N

1 2 N

1 1 1

2 2 21

N!
N N N

χ χ χ

χ χ χ

χ χ χ

⋯

⋯

⋮ ⋮ ⋮

⋯

  

          = ( ) ( ) ( )1 2 N

1
det 1 2 ... N

N!
χ χ χ  (2.3.2) 

The Born-Oppenheimer approximation describes the motion of eN  electrons in the 

field of fixed locations of nN  nuclei. The main justification for the 

Born-Oppenheimer approximation is the observation that the electrons move much 

faster than the nuclei. The motion of electrons can be decoupled from nuclei to obtain 

the electronic Hamiltonian operator eĤ 14 

e e en n nN N NN N N
2 A

e i
i 1 A 1 i 1 j i A 1 B AiA ij AB

Z1 1 1
Ĥ

2 r r r= = = > = >

 
= − ∇ − + + 

 
∑ ∑ ∑∑ ∑∑  (2.3.3) 
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The electronic Hamiltonian operator eĤ  is composed of one-electron operators ih , 

two-electron operators ijg  and the nuclear repulsion operator nnV̂  

e e eN N N

e i ij nn
i 1 i 1 j i

ˆ ˆH h g V
= = >

= + +∑ ∑∑   

where 

nN
2 A

i i
A 1 iA

Z1
h

2 r=

= − ∇ −∑   

ij
ij

1
g

r
=   

n nN N

nn
A 1 B A AB

1
V̂

r= >

=∑∑
 

(2.3.4) 

Appling the normalized Slater determinant SDΨ , the energy of electronic 

Hamiltonian operator eĤ  is given by 

E = SD e SDĤΨ Ψ   

   = 
e e eN N N

SD i ij nn SD
i 1 i 1 j i

ˆh g V
= = >

Ψ + + Ψ∑ ∑∑  (2.3.5) 

At this point, the Slater determinant SDΨ  can be expressed conveniently by an 

antisymmetrizer operator Â  acting on the product of spin orbitals 

( ) ( ) ( )SD 1 2 NÂ 1 2 ... NΨ = χ χ χ   

Â  = ( ) n

N!
p

n
n 1

1 ˆ1 P
N! =

−∑   

     = ( )ij ijk
i j i j k

1 ˆ ˆ1 P P ...
N!

− + −∑∑ ∑∑∑  (2.3.6) 

where Â  can generate N! possible permutations of electron coordinates by 
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permutation operators such as ijP̂  (interchanges two electron coordinates), ijkP̂  

(interchanges three electron coordinates), etc., and np  is the number of 

transpositions. For instance 

( ) ( ) ( )1 2 3Â 1 2 3χ χ χ   

= ( ) ( ) ( ) ( )12 13 23 123 132 1 2 3

1 ˆ ˆ ˆ ˆ ˆ1 P P P P P 1 2 3
3!

− − − + + χ χ χ   

= ( ) ( ) ( ) ( ) ( ) ( )[ 1 2 3 2 1 3

1
1 2 3 1 2 3

3!
χ χ χ − χ χ χ −   

            ( ) ( ) ( ) ( ) ( ) ( )3 2 1 1 3 21 2 3 1 2 3χ χ χ − χ χ χ +   

            ( ) ( ) ( ) ( ) ( ) ( )]3 1 2 2 3 11 2 3 1 2 3χ χ χ + χ χ χ  (2.3.7) 

For one-electron operator and two-electron operator, we use the antisymmetrizer 

operator expression of the Slater determinant to simplify the derivation of the 

Hartree-Fock equations 

e e eN N N

SD i ij SD
i 1 i 1 j i

h g
= = >

Ψ + Ψ∑ ∑∑   

= ( ) ( ) ( ) ( ) ( ) ( )
e e eN N N

1 2 N i ij 1 2 N
i 1 i 1 j i

ˆ ˆA 1 2 ... N h g A 1 2 ... N
= = >

χ χ χ + χ χ χ∑ ∑∑
 

 

= ( ) ( ) ( ) ( ) ( ) ( )
e e eN N N

1 2 N i ij 1 2 N
i 1 i 1 j i

ˆ ˆ1 2 ... N h g AA 1 2 ... N
= = >

χ χ χ + χ χ χ∑ ∑∑   

= ( ) ( ) ( )
eN

1 2 N i
i 1

N! 1 2 ... N h
=


χ χ χ +


∑   

             ( ) ( ) ( )
e eN N

ij 1 2 N
i 1 j i

ˆg A 1 2 ... N
= >


χ χ χ 


∑∑   
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= ( ) ( ) ( ) ( ) ( ) ( )
eN

1 2 N i 1 2 N
i 1

ˆN! 1 2 ... N h A 1 2 ... N
=


χ χ χ χ χ χ +


∑   

             
e eN N

1 2 N ij 1 2 N
i 1 j i

ˆ(1) (2)... (N) g A (1) (2)... (N)
= >


χ χ χ χ χ χ 


∑∑  (2.3.8) 

For each one-electron operator, only a matrix element without any permutation of 

electron coordinates survives. The other matrix elements vanish because of 

orthonormality of the remaining permuted spin orbitals. Choosing the one-electron 

operator for coordinate of electron 1 as an example, we have 

( ) ( ) ( ) ( ) ( ) ( )1 2 N 1 1 2 N
ˆ1 2 ... N h A 1 2 ... Nχ χ χ χ χ χ   

= ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 N N1 h 1 2 2 ... N Nχ χ χ χ χ χ −   

   ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 N N1 h 1 2 2 ... N N ...χ χ χ χ χ χ −   

= ( ) ( )1 1 11 h 1χ χ   

= ( )1h 1  (2.3.9) 

For each two-electron operator, only two types of matrix elements survive. One is the 

term without any permutation, and in the other two electron coordinates are 

interchanged. Choosing the two-electron operator for coordinates of electron 1 and 

electron 2 as an example, we have 

( ) ( ) ( ) ( ) ( ) ( )1 2 N 12 1 2 N
ˆ1 2 ... N g A 1 2 ... Nχ χ χ χ χ χ   

= ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 N 12 12 1 2 N
ˆ1 2 ... N g 1 P 1 2 ... Nχ χ χ − χ χ χ   
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= ( ) ( ) ( ) ( ) ( ) ( )1 2 N 12 1 2 N1 2 ... N g 1 2 ... Nχ χ χ χ χ χ −   

   ( ) ( ) ( ) ( ) ( ) ( )1 2 N 12 2 1 N1 2 ... N g 1 2 ... Nχ χ χ χ χ χ   

= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 12 1 2 1 2 12 2 11 2 g 1 2 1 2 g 1 2χ χ χ χ − χ χ χ χ   

= 12 12J K−  (2.3.10) 

The 12J  matrix element is called the Coulomb integral ant the 12K  matrix element is 

called the exchange integral. Nuclear repulsion operator integrates to a constant 

because it is independent of the electron coordinates. We can simply write 

SD nn SDV̂Ψ Ψ   

= nn SD SDV̂ Ψ Ψ   

= nnV̂
 

(2.3.11) 

As mentioned above, the energy Eq. (2.3.5) can be written as 

E = ( ) ( )
e e eN N N

i ij ij nn
i 1 i 1 j i

ˆh i J K V
= = >

+ − +∑ ∑∑   

   = ( ) ( ) ( )
e e eN N N

i i i ij ij nn
i 1 i 1 j 1

1 ˆi h i J K V
2= = =

χ χ − − +∑ ∑∑  (2.3.12) 

To derive the Hartree-Fock equations, we minimize the energy by using the Lagrange 

method of undetermined multipliers.15 Constructing the Lagrange function L, we 

define 
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( ) ( )
e eN N

ij i j ij
i j

L E i j= − ε χ χ − δ  ∑∑  (2.3.13) 

where ijε  is a Lagrange multiplier. Setting the variation of the energy to zero, we 

have 

( ) ( ) ( ) ( )
e eN N

ij i j i j
i j

L E i j i j 0δ = δ − ε δχ χ + χ δχ =  ∑∑   

where 

Eδ  = ( ) ( ) ( ) ( )[
eN

i i i i i i
i 1

i h i i h i
=

δχ χ + χ δχ∑  +  

          ( ) ( ) ( ) ( )
e eN N

i j ij i j
i 1 j 1

1
i j g i j

2 = =

δχ χ χ χ +∑∑   

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j ij i j i j ij i ji j g i j i j g i jχ δχ χ χ + χ χ δχ χ +
 

 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j ij i j i j ij j ii j g i j i j g i jχ χ χ δχ − δχ χ χ χ −   

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j ij j i i j ij j ii j g i j i j g i jχ δχ χ χ − χ χ δχ χ −   

          ( ) ( ) ( ) ( )i j ij j ii j g i jχ χ χ δχ   (2.3.14) 

The summation of both first and second terms in square brackets of Eδ  for all i and j 

is identical. The first and third terms in square brackets of Eδ  are complex 

conjugated with regard to each other. We can recognize similar pattern also in other 

terms and obtain 

Lδ
 
= ( ) ( ) ( ) ( ) ( ) ( )

e e eN N N

i i i i j ij i j
i 1 i 1 j 1

i h i i j g i j
= = =

δχ χ + δχ χ χ χ −∑ ∑∑    
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         ( ) ( ) ( ) ( ) ( ) ( )i j ij j i ij i ji j g i j i jδχ χ χ χ − ε δχ χ +   

          complex conjugate = 0 (2.3.15) 

At this point, we define two operators for convenience 

( ) ( ) ( ) ( ) ( )j i j ij j iJ i i j g j iχ = χ χ χ   

( ) ( ) ( ) ( ) ( )j i j ij j iK i i j g i jχ = χ χ χ  (2.3.16) 

Where ( )jJ i  is known as the Coulomb operator and ( )jK i  is known as the 

exchange operator. Both descriptions of two operators treat an affected electron as a 

mean field formed from other electrons. Substituting Eq. (2.3.16) into Eq. (2.3.15), 

we have 

Lδ  = ( ) ( ) ( ) ( )
e eN N

i i i j j i
i 1 j 1

(i) h i J i K i i
= =


δχ χ + − χ −   


∑ ∑   

          ( )
eN

ij i
j 1

i
=


ε χ 


∑  + complex conjugate = 0 (2.3.17) 

Since ( )i 1δχ  is arbitrary, the terms in the braces must be zero for all i 

( ) ( ) ( ) ( )
e eN N

i j j i ij i
j 1 j 1

h J i K i i i
= =

 
+ − χ = ε χ   

 
∑ ∑   

( ) ( )
eN

i i ij i
j 1

f i i
=

χ = ε χ∑  (2.3.18) 

The Fock operator if  is defined as the quantity in the braces in Eq. (2.3.18). We can 

diagonalize the matrix of the Lagrange multipliers ijε  by an appropriate unitary 

transformation 

( ) ( )i i i if i iχ = ε χ  (2.3.19) 
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The equations (2.3.19) are referred to as the Hartree-Fock (HF) equations. In HF 

equations, the definitions of the Coulomb operator ( )jJ i  and the exchange operator 

( )jK i  depend on the spin orbitals of all electrons. Hence we need to employ the 

self-consistent field (SCF) method to solve the HF equations iteratively until the total 

energy and wavefunction are converged, and get the HF energy. That is to say that the 

minimized energy and optimized wavefunction are determined when their differences 

from the previous iteration are both under acceptable thresholds respectively. 

 

 

2.4 Configuration State Function 

The Hartree-Fock method treats the interactions between electrons only in an 

average way. It neglects the instantaneous Coulombic interactions between electrons. 

The difference of exact nonrelativistic energy nonE  and Hartree-Fock energy HFE  is 

usually called the correlation energy corrE 12 

corr non HFE E E= −  (2.4.1) 

Considering that the Hartree-Fock wavefunction, constructed as a single Slater 

determinant, does not properly describe the character of the exact wavefunction, we 

can account for the electron correlation by constructing a wavefunction including 

many determinants, or equivalently, many configuration state functions (CSF). The 

configuration state functions consist of all spin symmetry-adapted singly excited 

determinants r
aΦ , doubly excited determinants rs

abΦ , triply excited determinants 

rst
abcΦ , etc. 



 

20 

 

 
Figure 2.1  Excited determinants formed from a HF determinant.15 

 

The configuration interaction (CI) method uses following CI wavefunctions and, 

employs variational method to optimize the CI wavefunctions and the energy. The CI 

wavefunction CIΨ  is constructed as a linear combination of the CSFs 

r r rs rs rst rst
CI HF HF a a ab ab abc abc

a ,r a b a b c
r s r s t

C C C C ...
< < <
< < <

Ψ = Φ + Φ + Φ + Φ +∑ ∑ ∑   

where r
aC , rs

abC , rst
abcC ,etc. are CI coefficients and 

HF 1 2 a b n

1
det ... ...

N!
Φ = χ χ χ χ χ   

r
a 1 2 r b n

1
det ... ...

N!
Φ = χ χ χ χ χ   

rs
ab 1 2 r s n

1
det ... ...

N!
Φ = χ χ χ χ χ  (2.4.2) 

and so on. 
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Including all possible CSFs in the CI calculations results in so-called full CI (FCI) 

method, which reproduces the exact solutions when used with an infinite basis set and 

small basis sets. Unfortunately, we cannot use infinite basis sets. On the other hand, 

the number of CSFs in the FCI calculations is too large even for very small molecules. 

Suppose we have M spatial wavefunctions, from which we can construct 2M spin 

orbitals, and N electrons. The total number of the CSFs is 
2M

N
 
 
 

. Taking into 

account only CSFs with proper spin multiplicity (2S+1), the number of CSFs is 

expressed by Weyl’s formula16 as 

M 1 M 1
2S 1

1 1
M 1 N S N S 1

2 2

+ +  
+   

  + − + +
  

 (2.4.3) 

where S is the spin angular momentum. For instance, the calculation for H2O with a 

small basis set, 6-31(d) containing 19 basis set functions and 10 electrons. The total 

number of singlet CSFs is 3.0 × 107, which is extremely large. Thus we need to deal 

with a matrix with size 3.0 × 107 by 3.0 × 107. For this reason, the FCI calculation is 

not feasible for general systems. 

 

 

2.5 The Multiconfiguration Self-Consistent Field Method 

The multiconfiguration self-consistent field (MCSCF) method is particularly 

important for excited states calculations, quasi-degenerate systems, and biradical 

structures. The MCSCF wavefunction is constructed as a linear combination of CSFs 

containing not only the CI coefficients, but also the coefficients of molecular orbitals. 
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Simultaneous optimization of both the CI coefficients and the molecular orbital 

coefficients leads to demanding computations but we can get good results by 

choosing only a few chemically important CSFs. The MCSCF method is an 

approximation of the CI method. A common strategy is the complete active space 

self-consistent field (CASSCF) method17. The concept of complete active space (CAS) 

is based on division of the orbitals into inactive orbitals, active orbitals and virtual 

orbitals (see Figure 2.2). Characteristics of the three classes of orbitals are as follows: 

●    The inactive orbitals are always doubly occupied. 

●    The active orbitals allow all possible occupations (0, 1, or 2). 

●    The virtual orbitals are always empty. 

 
Figure 2.2  Illustration of complete active space. 

 

The electrons except the electrons within inactive orbitals are called active electrons. 

The CSF basis is constructed by forming all possible distributions of active electrons 

among active orbitals. This ansatz allows for serious reduction of the computing time. 
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2.6 The Multireference Perturbation Theory 

In applications of the Rayleigh-Schrödinger perturbation theory, one needs to 

define zeroth-order Hamiltonian and the remaining perturbation operator. For 

instance, the single reference Møller-Plesset perturbation theory adopts the zero-order 

Hamiltonian 0Ĥ  and perturbed operator V̂  as 

eN
0

i
i 1

Ĥ f
=

=∑   

e e e eN N N N
0

e j j
i 1 j i i 1 j 1ij

1ˆ ˆ ˆV H H J (i) K (i)
r= > = =

= − = − −  ∑∑ ∑∑  (2.6.1) 

The perturbation V̂  is the difference of between the two-electron potential in the 

original electronic Hamiltonian and in the Fock operator. For multiconfigurational 

systems, the multireference perturbation theories (MRPT) adopt slightly more 

complicated form of the zero-order Hamiltonian. The use of the CASSCF 

wavefunction as the zero-order wavefunction combined with perturbation theory is 

referred to as the complete active space perturbation theory (CASPT2) developed by 

Roos et al. The second-order perturbation theory correction to energy is given by 

( )
( ) ( )
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2
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k k

V̂ k
E

E Eα

α

α
=

−
∑  (2.6.2) 

where α indicates the CASSCF reference state and k indicates a singly or doubly 

excited intermediate state. Other popular variants of perturbation theories are the 

multireference Møller-Plesset perturbation theory (MRMP) and the 

multiconfigurational quasidegenerate perturbation theory (MCQDPT) developed by 
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Hirao and Nakano. In fact, the MRMP and MCQDPT are the same in case of single 

state calculation. The MRPT methods mentioned above could occur divergences due 

to the intruder states. Recently, n-electron valence state perturbation theory 

(NEVPT2), one of the MRPT methods, was developed by Angeli et al., and is 

characterized by absence of intruder states. 

 In order to reduce the systematic error in CASPT2, two modifications of the 

zero-order Hamiltonian were proposed. One is adding a correction function such as 

g1, g2 or g3 to the zero-order Hamiltonian18. The other is introducing the IPEA-shift19 

in the definition of the zero-order Hamiltonian. Because of the success of the 

IPEA-shift applicable to CASPT2 calculations, the default value (0.25 a.u.) of the 

IPEA-shift has been employed in the MOLCAS chemical program. In this study, we 

also investigated the CASPT2 with the g1 correction and CASPT2 with IPEA-shift. 

 

 

2.7 Intruder States and Shift Techniques 

Intruder states appear in the MRPT calculations when the difference between the 

zero-order energy of the reference state and of an excited intermediate state in the 

Eq. (2.6.2) is small ( ( ) ( )0 0
kE Eα ≃ ). Consequently, the second-order correction energy 

( )2E α
 may become extremely large, approaching +∞ or −∞ in the limit of a perfect 

degeneracy. The occurrence of the intruder state result in overcorrection, 

discontinuity of potential energy surface and irrational chemical information. 

Such problems can be solved by including more appropriate orbitals in the active 
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space, as usually a poor choice of CSFs describing the electronic structure is the origin 

of the intruder state problem. However, in most situations such calculations are not 

feasible. A convenient way to avoid intruder states is using shift techniques that 

introduce a shift parameter σ in the denominator of the Eq. (2.6.2) to prevent it from 

vanishing 

( )
( ) ( )

2

2
0 0

k k

V̂ k
E

E Eα

α

α
=

− + σ
∑  (2.7.1) 

The following shift techniques were developed by using different definition of the 

shift parameter. The level shift technique using real value as the shift parameter is 

called here as the real shift technique. The imaginary level shift technique uses an 

imaginary shift parameter iσ. The intruder state avoidance (ISA) technique employed 

in MCQDPT and MRMP methods defines the shift parameter as 

( ) ( )0 0
k

b

E Eα

σ =
−

 (2.7.2) 

where b is a small constant at our disposal. Although shift techniques can eliminate 

intruder states effectively, these modifications may sometimes lead to wrong 

information without any chemical or physical meaning. 
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Chapter 3 
 
 
Computational Details 
 

The potential energy curves of 15 diatomic molecules have been determined 

with Dunning’s augmented correlation-consistent polarized valence triple zeta 

(aug-cc-pVTZ) basis sets. The total number of low-lying electronic states considered 

in the Thesis is 65. The selected molecules consisted of first or second row elements. 

The list of low-lying electronic states for each selected molecule and their 

experimental spectroscopic constants are given in Table 1 and Table 2, respectively. 

The CASSCF calculations are the first step in the multireference perturbation 

treatment. For molecules with more than one electronic state, we adopted here the 

state-averaged CASSCF approach. Otherwise, the state-specific CASSCF approach is 

used for single state calculation. Both state-averaged and state-specific CASSCF 

calculations were performed with MOLPRO (version 2009) program.20,21 A 

computational strategy employing full valence space including all valence orbitals 

and valence electrons was adopted for the studied here molecules. To provide 

appropriate CASSCF wavefunctions for the subsequent MRPT calculations, it is 

important to take care of the potential energy curves of the studied low-lying 

electronic states for each molecule. We look particular care for every potential energy 

curves to assume continuity and well-behaving character of the curves through the 



 

27 

 

full range of the standard distances. 

All the MRPT methods employed the same reference wavefunctions defined as 

the CASSCF wavefunctions. We attempted to uniformly take this CASSCF 

wavefunctions into GAMESS (2009) and MOLCAS (version 7.4) programs. 

However, the GAMESS program has a distinct definition of the atomic orbitals from 

the other programs. The atomic orbital nlmΨ  consists of the radial part nR (r)  and 

the angular part m
lY ( , )θ ϕ  

m
nlm n lNR (r)Y ( , )Ψ = θ ϕ   

where N is normalized constant. The angular part can be described as two following 

types of functions; the Cartesian type is used in the GAMESS program while the 

spherical harmonic type is used in the other programs. The coefficients of these two 

types of orbitals can be converted to each other as shown in Table 3. Accordingly, 

the CASSCF wavefunctions obtained from the MOLPRO can be applied to the other 

programs. 

Three different shift techniques applicable to multireference perturbation 

theories were studied in present Thesis. The real shift technique was used for 

CASPT2 implemented in MOLPRO program. We refer to these calculations as 

CASPT2/MOLPRO. We investigated the shift parameter from 0.0 to 1.0 a.u. The ISA 

technique was used together with MCQDPT and MRMP, both implemented in 

GAMESS program. The range of the shift parameter was from 0.0 to 0.5 a.u. Because 

MRMP is a special case of MCQDPT, we refer to both of these calculations as 

MCQDPT/GAMESS. The imaginary shift technique was used together with CASPT2 
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implemented in MOLCAS program. The range of the employed shift parameter was 

from 0.0 to 1.5 a.u. We refer to these calculations as CASPT2/MOLCAS. A related 

CASPT2/MOLCAS calculation using additional 0.25 a.u. IPEA shift are referred to as 

IPEA-CASPT2/MOLCAS. Finally, the last studied method was CASPT2 with the g1 

correction referred to as G1-CASPT2/MOLCAS. 

The maximal value of the studied shift parameter was chosen as a very large 

number, which is typically much larger than usual choice done in quantum chemical 

calculations. The reason for such a choice comes from the fact that we wanted to 

cover a large range of shift parameters. The spectroscopic constants (e.g., the 

equilibrium distance, the vibrational frequency and the dissociation energy) 

determined for each value of shift parameter for each potential curve were critically 

evaluated by using statistical methods. 

  



 

29 

 

Chapter 4 
 
 
Results and Discussion 
 

4.1 Potential Energy Curves 

Potential energy curves of diatomic molecules provide the simplest way to test 

various quantum chemical techniques. In this project we determine equilibrium 

constants Re, vibrational frequencies ωe, and dissociation energies De in order to 

evaluate the accuracy of various multireference perturbation theories using the shift 

techniques. The calculated spectroscopic constants can be critically assessed by 

comparison with accurate experimental data derived from vibrational spectroscopy. 

For theoretical calculations, it is convenient to use only one variable, the distance 

between two atoms, to simplify the complicated chemical problems and compare with 

experiment. 

The potential energy curves of the 65 low-lying electronic states of 15 molecules 

are constructed by performing over 150 single point calculations for each curve. The 

set of interatomic distances was chosen to cover the full range from the dissociation 

limit (around 8 Å) to short distances (around 0.6 Å) for each studied state. The points 

around the minimum of the curves are chosen very densely with the interval of 0.005 

Å. This allows us to compute accurately the spectroscopic constants around 

equilibrium in the MRPT calculations. 
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Before constructing the potential energy curves of the MRPT methods, we need 

to obtain appropriate CASSCF wavefunctions for each diatomic molecule. However, 

there is a problem that the CASSCF wavefunctions do not reproduce completely the 

same results in the different programs due to difference of code implementation. An 

idea of our project is to transfer the CASSCF wavefunctions from the MOLPRO 

program to the GAMESS and MOLCAS programs. We demonstrate that this idea is 

feasible because the reference energies of various MRPT methods are exactly the 

same. Choosing the MOLRPO program has an advantage for the state-averaged 

CASSCF calculations. This program can simultaneously optimize several electronic 

states in the CASSCF calculations containing different symmetries or spin 

multiplicities., Therefore, we can obtain a set of the CASSCF wavefunctions to 

satisfy the studied states of each diatomic molecule. The use of the CASSCF 

wavefunctions gives us a uniform way to investigate the potential energy curves of 

the MRPT methods. 

 

 

4.2 Intruder States 

Intruder states occur in the MRPT calculations because of the appearance of very 

small denominators in the second-order energy correction. Figure 4.1 shows the 

potential energy curves of the 5Π state and 1Π state of CO. The potential energy curve 

of the 5Π state of CO is not affected by intruder states. The curve of the 1Π state of CO 

is affected by intruder states, which cause a discontinuity at approximately 1.29 Å 
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appearing around the minimum of the curve, analogous to the black line in Figure 1.1 

in Chapter 1. As the result, we cannot compute spectroscopic constants for this curve. 

Summarizing, the presence of the intruder states leads to a discontinuity in the 

potential energy surface, which completely distorts the information normally 

available for the MRPT methods. 

 

Figure 4.1  MCQDPT/GAMESS potential energy curves with various values of 
shift parameter σ for the excited 5Π state (a) and 1Π (b) state of CO. 

 

 

4.3 Effect of Using Intruder State Removal Techniques: 

General Observations 

Intruder state removal techniques are the most efficient way to eliminate the 

intruder states and produce a smooth potential energy curves. These techniques 
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introduce a shift parameter σ in the denominator of Eq. (2.6.2) to prevent the 

appearance of infinities in the second-order energy correction. The process of the 

intruder states elimination is shown in Figure 4.1b. The shifted potential energy curve 

is still slightly distorted when a small shift parameter (σ = 0.0001 a.u.) is used. Using 

a larger value of the shift parameter (σ = 0.0050 a.u.) is enough to remove the intruder 

state completely. However, using even larger a value of the shift parameter (σ = 

0.0100 a.u.) removes the discontinuity equally well, but simultaneously affects the 

shape of the potential energy curve. On the other hand, a potential energy curve not 

affected by the intruder states (see Figure 4.1a) does also change its shape and is 

affected by the choice of the shift parameter. It is clear that the shift techniques can 

have the substantial influence on the determination of various chemical properties. 

 

 

4.4 Effect of Using Intruder State Removal Techniques: 

Details 

To investigate how the shift parameter affects the chemical properties of the 

diatomic molecules, we constructed the potential energy curves of the 65 low-lying 

electronic states using different MRPT methods. Subsequently, we computed the 

resulting spectroscopic constants with various values of the shift parameter. The 

spectroscopic constants are shown in Figures 6.1-6.65. Figure 4.2 gives as an example 

the results for the 1Π state of CO obtained with different methods as a function of the 

shift parameter. 
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Figure 4.2  Spectroscopic constants for the 1A Π  state of CO obtained using 
different methods with various values of the shift parameter σ. 

 

In this figure, the left column corresponds to Re, the middle column, to ωe, and the 

right column, to De. The maximal shift parameter σmax is 1.0 a.u. for the real shift 

parameter, 0.5 a.u. for the ISA shift parameter, and 1.5 a.u. for the imaginary shift 

parameter. Some of the plots display yellow boxes for small values of the shift 

parameter. Such a region indicates an unusually large change of a given spectroscopic 

constant. The main reason for such a behavior is that the potential energy curve is 

strongly distorted by intruder states and small values of the shift parameter cannot 

eliminate such a strong distortion. 

The behavior of the spectroscopic constants for various values of the shift 
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parameter shows some regular patterns. In the CASPT2/MOLPRO method, a larger 

value (0.3 a.u.) of the real shift parameter is required to eliminate intruder states 

because the potential energy curves are often distorted by very strong intruder states 

around the curve minima or at the long interatomic distances. In the 

MCQDPT/GAMESS method, the intruder states could be completely removed even 

by small value (0.001 a.u.) of the ISA shift parameter. However, the changes of 

spectroscopic constants show large dependence on the value of σ for small values of 

the shift parameter (see Figure 4.2). In the CASPT2/MOLCAS methods, the behavior 

of the spectroscopic constants with varying values of the imaginary shift parameter is 

similar in most cases. Sometimes, employing either the IPEA shift or the g1 

correction in the zero-order Hamiltonian can remove the problem of the intruder 

state even if these two modifications were not developed as a remedy for intruder 

states elimination. 

 

 

4.5 Statistical Analysis for Intruder State Removal 

Techniques 

 

4.5.1 Distribution of Changes in Spectroscopic Constants 

The statistical analysis was performed to investigate the changes in the 

spectroscopic constants induced by variation of the intruder state removal parameter. 

The changes of spectroscopic constants (∆Re, ∆ωe, and ∆De) were defined in the 
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following way. The minimal and maximal values of Re in the CASPT2/MOLPRO 

calculations shown in Figure 4.2 are 1.225 and 1.250 Å respectively. The change of 

Re between the minimal and maximal values is 0.025 Å. We refer to this change of Re 

as ∆Re. Analogously, the change of ωe referred to as ∆ωe is 200 cm−1
 and the change 

of De referred to as ∆De is 0.13 eV. We analyzed statistically the distributions of ∆Re, 

∆ωe, and ∆De in Figures 6.1-6.65. The results of these distributions are shown in 

Figures 6.66, Figure 6.68, and Figure 6.70. For example, Figure 6.66 presents the 

distributions of ∆Re in the form of five histograms correspond to five methods. In 

every histogram, each column corresponds to a number of states characterized by the 

same ∆Re. 

The Figures 6.67, 6.69 and 6.71 give similar analysis for observing the effect of 

the small values of the shift parameter upon the distributions. We analyzed the ∆Re, 

∆ωe and ∆De ignoring the values of spectroscopic constants which are located in the 

yellow boxes in Figures 6.1-6.65. For instance, the maximal value of ∆De observed 

from CASPT2/MOLPRO shown in Figure 4.2 changes from 3.05 to 3.00 eV after 

ignoring in the yellow box region. 

We can observe the effect of small values of the shift parameter on ∆Re through 

comparing the distributions shown in Figures 6.66 and 6.67. The similar effect is 

also provided from the distributions of ∆ωe shown in Figures 6.68 and 6.69, and ∆De 

shown in Figures 6.70 and 6.71. The CASPT2/MOLPRO, MCQDPT/GAMESS, and 

CASPT2/MOLCAS methods show significant reduction of large deviations 

achievable by ignoring the yellow box regions. Namely, using larger values of the 
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shift parameter in these methods can reduce the changes of spectroscopic constants 

induced by the intruder states. On the other side, the IPEA-CASPT2/MOLCAS and 

G1-CASPT2/MOLCAS methods cannot produce the improved results in that 

approach. The modified CASPT2/MOLCAS calculations with too large value of the 

shift parameter can actually lead to larger changes of the spectroscopic constants. 

 

 

4.5.2 Mean Absolute Deviations from Experiments for 

Spectroscopic Constants 

The critical evaluations of shift techniques applicable to perturbation theory 

were investigated by means of absolute deviations of the spectroscopic constants for 

experiment. We computed the absolute deviations between the computed results 

(Figures 6.1-6.65) and the experimental data (Table 2). The mean absolute deviations 

of Re, ωe and De were presented in Figures 6.72-6.86. Some of the experiment data are 

not available so the total number of experimental data for Re, ωe, and De is 55, 54, and 

55, respectively. Figure 6.72 shows the mean absolute deviations of Re for the 

CASPT2/MOLCAS calculations. The number in blue denotes the total number of 

physically valid results. For small shifts, some of the potential energy curves severely 

plagued with the intruder states prohibiting one from computing the spectroscopic 

constants. 

For the CASPT2/MOLPRO method, the mean absolute deviations of 

spectroscopic constants decrease with varying the shift values for Re and ωe, and 
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remain constant for De (see Figures 6.72, 6.77, and 6.82). For the 

MCQDPT/GAMESS method, the mean absolute deviations of spectroscopic 

constants (see Figures 6.78, 6.73, and 6.83) are reduced significantly for large values 

of the shift parameter (>0.002 a.u.). The IPEA-CASPT2/MOLCAS, 

CASPT2/MOLCAS, and G1-CASPT2/MOLCAS methods display the similar 

tendency of the mean absolute deviations for each spectroscopic constant. The mean 

absolute deviations begin to increase for Re, and ωe if the large values of the shift 

parameter (> 0.6 a.u.) were employed, and decrease for De (see Figures 6.74-6.76, 

6.79-6.81, and 6.84-6.86). 

 

 

4.5.3 Optimal Values of Shift Techniques 

To find the optimal value of the shift parameter for each method, we computed 

the combined error for all the spectroscopic constants. The combined error of each 

method is shown in Figure 4.3. The definition of the combined error is a summation 

of each mean absolute deviation divided by the accuracy units. The accuracy units 

are chosen as 0.001 Å for Re, 1 cm−1 for ωe, and 0.01 eV for De. For example, the 

CASPT2/MOLPRO calculations with σ = 0.0 (see Figures 6.72, 6.77, and 6.82), the 

mean absolute deviations of the spectroscopic constants are 0.0107 Å for Re, 42.6 

cm−1 for ωe, and 0.2268 eV for De; therefore, the combined error is 

0.0107 42.6 0.2268
combined error 76

0.001 1 0.01
= + + ≃   
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Figure 4.3  Combined errors with various values of the shift parameter for different 
methods. 

 

The optimal value was determined by evaluating of the combined error for each 

shift technique. In the CASPT2/MOLPRO calculations, the optimal value of the real 

shift parameter is 1.0 a.u., which shows that the larger shift parameters can reduce the 

deviations of the spectroscopic constants. We also suggest that the value of the shift 

parameter should be larger than 0.4 a.u. for eliminating the intruder states. In the 

MCQDPT/GAMESS calculations, we propose the optimal value of the ISA shift 

parameter is 0.3 a.u. using the analogous analysis. In the IPEA-CASPT2/MOLCAS, 

CASPT2/MOLCAS and G1-CASPT2/MOLCAS methods, we uniformly propose the 

optimal value of the imaginary parameter is 0.6 a.u. due to the similar behavior of 

these methods. Using larger values of the shift parameter shall increase the combined 
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error for all the CASPT2/MOLCAS methods. Comparing with the 

CASPT2/MOLCAS method, the combined errors of the modified 

CASPT2/MOLCAS methods already show a good improvement and present almost 

a constant within the small values of the shift parameter. 

The shift techniques cannot only eliminate the intruder states but also reduce 

the systematic error. We give two following views. First, the variational method in 

quantum chemistry always shows an overestimation of the exact energy; however, 

the second-order perturbation theory generally gives us an underestimated energy 

owing to the over correction energies. Second, if the infinite large value of the shift 

parameter is used in the MRPT calculations, the correction energies are almost zero. 

The MRPT calculations shall present as the CASSCF level. Therefore, employing 

the shift techniques suitably can balance this over corrections of the second-order 

perturbation treatment and close to the exact energy. In the past, the customary value 

of the shift parameter used in MRPT calculations has generally not been larger than 

0.4 a.u. for the real shift parameter22,23, 0.05 a.u. for ISA shift parameter11,24, and 0.3 

a.u. for imaginary shift parameter25,26. However, our present study reports that the 

optimal value of each shift parameter is indeed larger than the customary values. On 

the other hand, employing too small values of the shift parameter probably raise the 

risk of large error in the MRPT calculations. 
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Chapter 5 
 
 
Conclusions 
 

The shift techniques applicable to the MRPT methods have been critically 

evaluated by a statistical approach. The spectroscopic constants of 65 studied states 

were investigated and compared with the experiment. We therefore propose that the 

optimal value of the shift parameter is 1.0 a.u. for the real shift technique, 0.3 a.u. 

for the ISA shift technique, and 0.6 a.u. for the imaginary shift technique in present 

Thesis. The research results indicate that the employment of the optimal value can 

diminish the systematic error of the second-order perturbation theory as well as 

eliminate intruder states. In this study, the idea of transferring the CASSCF 

wavefunctions between different programs was successfully implemented. The 

approach could help us to study the different multireference methods in a uniform 

way. We could further investigate the behavior of shift techniques applicable to 

MRPT methods through comparing with other multireference methods such as 

MRCI, NEVPT2 and so on. Because of the fast development of computer resources, 

MRPT methods can overcome higher computational demands, which may help to 

expand their applications field in the future. The shift techniques certainly play an 

important role for the multireference perturbation theory in this context. 
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Chapter 6 
 
 
Auxiliary materials 
 

 

 

Figure 6.1  Spectroscopic constants for the 1X +Σ  state of BH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.2  Spectroscopic constants for the 3a Π  state of BH obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.3  Spectroscopic constants for the 1A Π  state of BH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.4  Spectroscopic constants for the 3b −Σ  state of BH obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.5  Spectroscopic constants for the 2X Π  state of CH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.6  Spectroscopic constants for the 
4a −Σ  state of CH obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.7  Spectroscopic constants for the 2A ∆  state of CH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.8  Spectroscopic constants for the 3X −Σ  state of NH obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.9  Spectroscopic constants for the 1a ∆  state of NH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.10  Spectroscopic constants for the 1b +Σ  state of NH obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.11  Spectroscopic constants for the 3A Π  state of NH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.12  Spectroscopic constants for the 2X Π  state of OH obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.13  Spectroscopic constants for the 2A +Σ  state of OH obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.14  Spectroscopic constants for the 1X +Σ  state of HF obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.15  Spectroscopic constants for the 1X +Σ  state of BF obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.16  Spectroscopic constants for the 1A Π  state of BF obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.17  Spectroscopic constants for the 3a Π  state of BF obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.18  Spectroscopic constants for the 2A Π  state of CN obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.19  Spectroscopic constants for the 1X +Σ  state of CO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.20  Spectroscopic constants for the 1D ∆  state of CO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.21  Spectroscopic constants for the 1A Π  state of CO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.22  Spectroscopic constants for the 
1I −Σ  state of CO obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.23  Spectroscopic constants for the 3a' +Σ  state of CO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.24  Spectroscopic constants for the 3d ∆  state of CO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.25  Spectroscopic constants for the 
3a Π  state of CO obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.26  Spectroscopic constants for the 3e −Σ  state of CO obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.27  Spectroscopic constants for the ( )5  1Π  state of CO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.28  Spectroscopic constants for the 2X Π  state of FO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.29  Spectroscopic constants for the 2X Π  state of NO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.30  Spectroscopic constants for the 2B Π  state of NO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.31  Spectroscopic constants for the ( )2  1Φ  state of NO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.32  Spectroscopic constants for the 4a Π  state of NO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.33  Spectroscopic constants for the 4b −Σ  state of NO obtained using 
different methods with various values of the shift parameter σ. 
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Figure 6.34  Spectroscopic constants for the 2B' ∆  state of NO obtained using 
different methods with various values of the shift parameter σ. 

 

Figure 6.35  Spectroscopic constants for the 3
gX −Σ  state of B2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.36  Spectroscopic constants for the 1
gX +Σ  state of C2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.37  Spectroscopic constants for the ( )1
g  1∆  state of C2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.38  Spectroscopic constants for the ( )1
g  2+Σ  state of C2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.39  Spectroscopic constants for the 3
ua Π  state of C2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.40  Spectroscopic constants for the 3
gb −Σ  state of C2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.41  Spectroscopic constants for the 1
uA Π  state of C2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.42  Spectroscopic constants for the 3
uc +Σ  state of C2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.43  Spectroscopic constants for the 3
gd Π  state of C2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.44  Spectroscopic constants for the 3
ge Π  state of C2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.45  Spectroscopic constants for the 1
gC Π  state of C2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.46  Spectroscopic constants for the 1
gX +Σ  state of N2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.47  Spectroscopic constants for the 3
uA +Σ  state of N2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.48  Spectroscopic constants for the 3
uW ∆  state of N2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.49  Spectroscopic constants for the 3
gB Π  state of N2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.50  Spectroscopic constants for the 3
uB' −Σ  state of N2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.51  Spectroscopic constants for the 1
ua' −Σ  state of N2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.52  Spectroscopic constants for the 1
uw ∆  state of N2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.53  Spectroscopic constants for the 1
ga Π  state of N2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.54  Spectroscopic constants for the 3
uC Π  state of N2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.55  Spectroscopic constants for the 3
gX −Σ  state of O2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.56  Spectroscopic constants for the 1
ga ∆  obtained using different 

methods with various values of the shift parameter σ. 

 

Figure 6.57  Spectroscopic constants for the 1
gb +Σ  state of O2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.58  Spectroscopic constants for the 1
uc −Σ  state of O2 obtained using 

different methods with various values of the shift parameter σ. 

  

Figure 6.59  Spectroscopic constants for the 3
uA' ∆  state of O2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.60  Spectroscopic constants for the 3
uA +Σ  state of O2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.61  Spectroscopic constants for the 1
gX +Σ  state of F2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.62  Spectroscopic constants for the ( )1
g  1−Σ  state of F2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.63  Spectroscopic constants for the ( )1
g  1Π  state of F2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.64  Spectroscopic constants for the ( )1
u  1Π  state of F2 obtained using 

different methods with various values of the shift parameter σ. 

 

Figure 6.65  Spectroscopic constants for the ( )3
u  1Π  state of F2 obtained using 

different methods with various values of the shift parameter σ. 
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Figure 6.66  Distribution of changes in Re induced by changing the intruder state 
removal parameter within whole studied shift values. 

 

Figure 6.67  Distribution of changes in Re induced by changing the intruder state 
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65. 
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Figure 6.68  Distribution of changes in ωe induced by changing the intruder state 
removal parameter within whole studied range of the shift values. 

 

Figure 6.69  Distribution of changes in ωe induced by changing the intruder state 
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65. 
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Figure 6.70  Distribution of changes in De induced by changing the intruder state 
removal parameter within whole studied range of the shift values. 

 

Figure 6.71  Distribution of changes in De induced by changing the intruder state 
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65. 
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Figure 6.72  Mean absolute deviation from the experiment for Re obtained with 
CASPT2/MOLPRO method. 

 
Figure 6.73  Mean absolute deviation from the experiment for Re obtained with 
MCQDPT/GAMESS method. 
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Figure 6.74  Mean absolute deviation from the experiment for Re obtained with 
IPEA-CASPT2/MOLCAS method. 

 
Figure 6.75  Mean absolute deviation from the experiment for Re obtained with 
CASPT2/MOLCAS method. 
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Figure 6.76  Mean absolute deviation from the experiment for Re obtained with 
G1-CASPT2/MOLCAS method. 

 
Figure 6.77  Mean absolute deviation from the experiment for ωe obtained with 
CASPT2/MOLPRO method. 
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Figure 6.78  Mean absolute deviation from the experiment for ωe obtained with 
MCQDPT/GAMESS method. 

 
Figure 6.79  Mean absolute deviation from the experiment for ωe obtained with 
IPEA-CASPT2/MOLCAS method. 



 

81 

 

 
Figure 6.80  Mean absolute deviation from the experiment for ωe obtained with 
CASPT2/MOLCAS method. 

 
Figure 6.81  Mean absolute deviation from the experiment for ωe obtained with 
G1CASPT2/MOLCAS method. 
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Figure 6.82  Mean absolute deviation from the experiment for De obtained with 
CASPT2/MOLPRO method. 

 
Figure 6.83  Mean absolute deviation from the experiment for De obtained with 
MCQDPT/GAMESS method. 
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Figure 6.84  Mean absolute deviation from the experiment for De obtained with 
IPEA-CASPT2/MOLCAS method. 

 
Figure 6.85  Mean absolute deviation from the experiment for De obtained with 
CASPT2/MOLCAS method. 
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Figure 6.86  Mean absolute deviation from the experiment for De obtained with 
G1-CASPT2/MOLCAS method.          



 

 

Table 1  The low-lying electronic states included in the MRPT calculations and numbers of available experimental data for diatomic 
molecules. 
      

System Number of states States 
Number of experimental data 

eω  eR  eD  

BH     4 1X +Σ   3a Π   
1A Π   3b −Σ  2 4 2 

CH     3 2X Π   4a −Σ   
2A ∆  3 3 3 

NH     4 3X −Σ   1a ∆   
1b +Σ   

3A Π  4 4 4 

OH     2 2X Π   2A +Σ  2 2 2 
HF     1 1X +Σ  1 1 1 

BF     3 1X +Σ   1A Π   3a Π  3 3 3 
CN     1 2A Π  1 1 1 
CO     9 1X +Σ   1A Π   1I −Σ   1D ∆   3a' +Σ   

3d ∆   
3a Π   

3e −Σ   ( )5  1Π  8 8 8 
NO     6 2X Π   2B Π   ( )2  1Φ   

4a Π  
4b −Σ   

2B' ∆  5 3 5 

FO     1 2X Π  1 1 1 
B2     1 3

gX −Σ  1 1 1 

C2   10 1
gX +Σ   ( )1

g  1∆   ( )1
g  2+Σ   3

ua Π   
3

gb −Σ   1
uA Π   

3
uc +Σ   

3
gd Π   3

ge Π   1
gC Π  8 8 8 

N2     9 1
gX +Σ

  
3

uA +Σ   3
gB Π
  

3
uW ∆   3

uB' −Σ   3
uB' −Σ   1

ua' −Σ   1
ga Π   1

uw ∆   3
uC Π  9 8 9 

O2     6 3
gX −Σ
  

1
ga ∆
  

1
gb +Σ   1

uc −Σ   3
uA' ∆   3

uA +Σ  6 6 6 
F2     5 1

gX +Σ   ( )1
g  1−Σ   ( )1

g  1Π   ( )1
u  1Π   ( )3

u  1Π  1 1 1 

Total   65  55 54 55 
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Table 2  Experimental data of the low-lying states for diatomic molecules. 
   

System State 
Experimental data 

eω  [cm-1]a eR  [Å]a eD  [eV]b 

BH 1X +Σ  2367 1.232 3.524 

 3a  Π  …c 1.201 … c 

 1A Π  2251 1.219 0.655 

 3b  −Σ  … c 1.227 … c 

CH 2X Π  2859 1.120 3.647 

 4a  −Σ  3145 1.085 2.923 

 2A ∆  2931 1.102 2.032 

NH 3X −Σ  3282 1.036 3.671 

 1a  ∆  3188 1.034 4.497 

 1b  +Σ  3352 1.036 4.618 

 3A Π  3231 1.037 2.359 

OH 2X Π  3738 0.970 4.621 

 2A +Σ  3179 1.012 2.527 

HF 1X +Σ  4138 0.917 6.110 

BF 1X +Σ  1402 1.263 7.957 

 1A Π  1324 1.308 4.344 

 3a  Π  1265 1.304 1.614 

CN 2A Π  1813 1.233 6.549 

CO 1X +Σ  2170 1.128 11.244   

 1A Π  1518 1.235 3.176 

 1I   −Σ  1092 1.391 3.175 

 1D ∆  1094 1.399 3.070 

 3a'  +Σ  1229 1.352 4.322 

 3d  ∆  1172 1.370 3.666 

 3a  Π  1743 1.206 5.208 

 3e  −Σ  1118 1.384 3.280 

 ( )5     1Π  … c … c … c 
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Table 2  (continued) 

  

   

System State 
Experimental data 

eω  [cm-1]a eR  [Å]a eD  [eV]b 

NO 2X Π  1904 1.151 6.605 

 2B Π  1037 1.417 3.296 

 ( )2     1Φ  … c … c … c 

 4a  Π  1017 … c 1.839 

 4b  −Σ  1206 … c 2.536 

 2B' ∆  1217 1.302 1.504 

FO 2X Π  1029 1.326 1.670 

B2 3
gX −Σ  1051 1.59 3.102 

C2 1
gX +Σ  1855 1.243 6.354 

 ( )1
g     1∆  … c … c … c 

 ( )1
g     2+Σ  … c … c … c 

 3
ua  Π  1641 1.312 6.265 

 3
gb  −Σ  1470 1.369 5.556 

 1
uA Π  1608 1.318 5.313 

 3
uc  +Σ  1962 1.230 4.703 

 3
gd  Π  1788 1.266 3.871 

 3
ge  Π  1107 1.535 2.556 

 1
gC Π  1809 1.255 2.106 

N2 1
gX +Σ  2359 1.098 9.906 

 3
uA +Σ  1461 1.287 3.681 

 3
gB Π  1733 1.213 4.898 

 3
uW ∆  1501 … c 4.874 

 3
uB' −Σ  1517 1.278 5.265 

 1
ua'  −Σ  1530 1.276 6.223 

 1
ga  Π  1694 1.220 6.083 

 1
uw ∆  1559 1.268 5.734 

 3
uC Π  2047 1.149 1.238 
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Table 2  (continued) 

a    Experimental value, Ref. 27. 

b    Experimental value, Ref. 28. 

c    No experimental data available. 

  

   

System State 
Experimental data 

eω  [cm-1]a eR  [Å]a eD  [eV]b 

O2 3
gX −Σ  1580 1.208 5.213 

 1
ga  ∆  1484 1.216 4.232 

 1
gb  +Σ  1433 1.227 3.577 

 1
uc  −Σ  794 1.517 1.115 

 3
uA' ∆  850 1.48 0.912 

 3
uA +Σ  799 1.522 0.825 

F2 1
gX +Σ  917 1.412 1.661 

 ( )1
g     1−Σ  … c … c … c 

 ( )1
g     1Π  … c … c … c 

 ( )1
u     1Π  … c … c … c 

 ( )3
u     1Π  … c … c … c 
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Table 3  Conversion of coefficients from spherical harmonic type to Cartesian type. 
   

Orbital type Cartesian typea Spherical harmonic typeb 

S S S 

P xP  xP
 

 yP  
yP
 

 zP  zP
 

D 2x
D  

0 2

1 3
D D

2 2 +− +
 

 2y
D  

0 2

1 3
D D

2 2 +− −
 

 2z
D  

0D
 

 xyD  
2D−
 

 xzD  1D+
 

 yzD  
1D−
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Table 3  (continued) 
   

Orbital type Cartesian typea Spherical harmonic typeb 

F 3x
F  

1 3

3 5
F F

2 2 2 2
+ +− −

 

 3y
F  

1 3

3 5
F F

2 2 2 2
− −− −

 

 3z
F  

0F
 

 2x y
F  

1 3

3 3
F F

2 10 2 2
− −− +

 

 2x z
F  

0 2

3 3
F F

22 5
+− +

 

 2xy
F  

1 3

3 3
F F

2 10 2 2
+ +− +

 

 2y z
F  

0 2

3 3
F F

22 5
+− −

 

 2x z
F  

+1

6
F

5  

 2yz
F  

1

6
F

5 −

 

 xyzF  
2F−

 

   

a   Cartesian Gaussian type functions 
2

yx z
nn n r

ijkg Nx y z e−α=  with n = nx + ny + nz 

can be combined to 
(n 1)(n 2)

2
+ +

 atomic orbitals. The correspondence of each 

orbital is as follows: n = 0 for S-type, n = 1 for P-type, n = 2 for D-type, etc. 

b  Spherical Gaussian type functions 
2n 1 r m m

nlm l lg Nr e (Y Y )− −α ∗= ±  present 2l + 1 real 

atomic orbitals formed from the linear combinations of spherical harmonic 

functions. The correspondence of each orbital as follow: l = 0 for S-type, l = 1 for 

P-type, l = 2 for D-type, etc. 
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Appendix A  

 

 

Theoretical Study of p-Nitroaniline 

for the Infrared Spectra of Ground 

State and the Lowest Triplet State 

 

 

A.1 Introduction 

In Appendix A, the main objective is to provide a theoretical interpretation of the 

experimentally observed infrared spectra (IR) of p-nitroaniline (PNA), dissolved in 

CD3CN. We are mainly interested in two electronic states of PNA, its singlet ground 

state, S0 and the lowest excited triplet state, T1. A Simulation of IR spectrum in a 

liquid solution requires a time-dependent investigation of dynamics of an ensemble of 

PNA/CD3CN molecules at some finite temperature. Namely, obtaining the IR 

spectrum consists of running a molecular dynamics trajectory for such an ensemble 

followed by a Fourier transformation of the resulting dipole moment autocorrelation 

function. Unfortunately, the development of computational methods does not provide 

us with a technique, which is feasible and applicable for our systems, in particular for 

excited states. For this reason, we employed traditional, time-independent methods to 
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interpret the IR spectra of the PNA. Here, we used DFT calculation with the B3LYP 

exchange correlation functional29,30,31 to optimize structures of the PNA and to 

simulate the IR spectra in a harmonic approximation. 

We attempted to provide the IR spectra from gas-phase calculations for PNA and 

from analogous polarizable continuum model (PCM) calculations32 but the results 

were unsatisfactory. Fortunately, we found a different line of approach, which is using 

explicitly solvated models33 to acquire a good agreement with the experimental 

results for S0 and T1 of PNA. 

 

 

A.2 Computational Details 

Usually, IR spectra of molecules in liquid phase is interpreted by use of the 

calculation of a bare, gas-phase molecule, assuming that there is no sharp difference 

between the gas-phase and solvated system spectra. Here, we investigated the singlet 

ground state of PNA and compared the result with accurate experimental data. After 

finding a molecular model that was able to reproduce the observed ground-state 

spectrum of PNA in a satisfactory manner, we have proceeded to interpretation of the 

triplet-state IR spectrum of PNA. 

All the calculations, including geometry optimization, frequency calculations 

with IR intensity determination, and the PCM calculation with dielectric constant 

(here ε = 37.5 for CD3CN) were performed using the DFT/B3LYP/cc-pVTZ 

computational strategy as implemented in the Gaussian 09 program. It was found that 
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slight elongation of the optimized C–NH2 bond in the explicitly solvated model leads 

to substantial improvement in the simulated spectra. The remaining geometrical 

parameters were reoptimized with keeping the C–NH2 bond distance constant. The 

following calculations of vibrational frequencies and IR intensities were fund almost 

sensitive to this procedure. The simulated IR spectra were plotted by MOLDEN 

program with a half-width of 8 cm−1. Due to the lack of harmonicity, we uniformly 

scaled the vibrational frequencies by a constant factor of 0.972. 

 

 

A.3 Results and Discussion 

 

A.3.1 Failure of Simulated Gas-phase and PCM IR Spectra for 

Singlet Ground State of PNA 

The S0 experimental IR spectrum of PNA dissolved in CD3CN (see Figure A.1a) 

shows four major bands, located around 1320, 1500, 1600, and 1630 cm−1. According 

to theoretical calculations, these bands are dominated by the symmetric NO2 stretch, 

antisymmetric NO2 stretch, and two combinations of the NH2 scissoring motion with 

the phenyl ring stretch, respectively. The most characteristic of these peaks is the 

symmetric NO2 stretch with a doublet of peaks centered around 1320 cm−1. 

The simulated gas-phase B3LYP IR spectrum of S0 PNA (see Figure A.1b) is in 

apparent contrast with the experimental results. First of all, the spectral window 

between 1250 and 1350 cm−1 displays two, well-separated strong bands with reversed 
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intensity pattern. Other major bands between 1450 and 1650 cm−1 are distinct from 

the experiment. 

 
Figure A.1  Experimental and computational IR spectra for singlet ground state of 
PNA. The asterisk symbol indicates the spectra obtained from the PNA+2ACN with 
the elongation of C−NH2 model. 

 

These unsatisfactory results are probably attributed to ignoring the solvation of PNA 

by CD3CN. We have taken into account the solvent effects by combing polarizable 

continuum model (PCM) with DFT calculation. The simulated B3LYP/PCM IR 
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spectrum (see Figure A.1c) does not give any improvement over the gas-phase 

calculations because of the two following reasons. One is that the resulting spectrum 

still displays only a single peak corresponding to the doublet at 1320 cm−1. The other 

is that the intensities of observable bands between 1400 and 1650 cm−1 are relatively 

weak and mismatch the experiment. 

 

 

A.3.2 Simulated IR Spectra of S0 PNA Using Explicitly Solvated 

Models 

Fortunately, there is a way to consider the solvent effect by employing an 

explicitly solvated model of PNA, in which two CD3CN molecules (see Figure A.2b) 

are hydrogen-bonded to the NH2 group. The resulting spectrum (see Figure A.1d) 

displays very good agreement with the experimental data except for the missing hump 

in the 1320 cm−1 band. We have considered a multitude of various explicitly solvated 

models containing one to six CD3CN molecules (see Figure A.2c) attached either to 

the NH2 group, the NO2 group, or aligned along the ring. It has been found that all the 

resulting spectra are quite similar with a strong single band between 1300 and 

1400 cm−1 and reasonable agreement with experiment in the 1600–1700 cm−1 region. 

For explicitly solvated models with four or more solvent molecules, two split bands 

around 1500 cm−1 does not model the experimentally observed pattern. 
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(a)  PNA+ACN 

 

(b)  PNA+2ACN 

 

(c)  PNA+6ACN 

 

 

Figure A.2  Schematic geometries of the explicitly solvated models. 

 

 

A.3.3 Slight Elongation of the Explicitly Solvated Models for 

Improving Simulated IR Spectrum of S0 PNA 

In this study, we observe that some of the explicitly solvated models with only 

one CD3CN attached to the NH2 group (see Figure A.2a), show a doublet of bands at 

around 1320 cm−1. However, the equilibrium geometries of this model are not quite 
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different from the other explicitly solvated models. We observed that one missing 

peak of doublet of bands is mainly concerned about the vibrational motion of the 

NH2 group. We have anticipated the small variations of the equilibrium geometry 

with the NH2 group can have quite substantial influence on the simulated spectra. 

Investigating various out-of-plane NH2 group motions and elongation/contraction of 

the C–NH2, we have found a dramatic change in the spectrum with the variation of the 

C–NH2 distance. Slight elongation (0.012 Å) of the C–NH2 bond from its equilibrium 

length (1.352 Å) produces a hump on the single band at 1300 cm−1 and gives a perfect 

agreement between this simulated spectrum (see Figure A.1e) and the experimental 

result. The largest change in the elongated PNA vibrational frequencies in this 

simulated IR spectrum is only 15 cm−1. 

We also investigated simulated and experimental IR spectra of 

isotope-substituted PNA (PNA-15NH2 and PNA-15NO2), which provided additional 

verification. In the experimental spectra of the PNA-15NH2 (see Figure A.3c), the 

isotope effect caused a reparation of the doublet of bands at around 1320 cm−1 into 

two peaks with a distinct spacing and similar intensities. Our simulated spectrum of 

the PNA-15NH2+2ACN model (see dotted line, Figure A.3d) shows only a single peak 

at this region but the other strong peak is recovered after elongating the bond length in 

the same way as described above (see solid line, Figure A.3d). On the other side, the 

experimental spectrum of the PNA-15NO2 (see dotted line, Figure A.3e) shows a 

red-shifted, single band at 1300 cm−1 and three weak bands between 1420 and 1520 

cm−1. Both the simulated spectra of the PNA-15NO2+2ACN model (see solid line, 
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Figure A.3e) with and without elongation of C–NH2 can predict the isotope 

substitution correctly. 

 
Figure A.3  Experimental and computational IR spectra for singlet ground state of 
PNA and isotope-substituted PNA. The IR spectra obtained from PNA+2ACN 
(dotted line) and PNA+2ACN with the elongation of C−NH2 (solid line) models. 

 

As mentioned above, the IR spectra of the explicitly solvated PNA model give 

good agreement with the experiment of PNA and its isotopomers. The applied 

elongation is small when compared with a typical error (0.01 Å) of DFT calculation. 

In addition, the bond lengths of the C–NH2 in the explicitly solvated models are able 

to vary from 1.343 to 1.375 Å depending on the number and location of the solvent 

molecules. It is reasonable that the elongated length of the C–NH2 bond (1.364 Å) 

falls in this range. Taking into account anharmonicity, we can expect that the averaged 
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distance in a real system is usually slightly larger than the equilibrium distance in 

theoretical calculation. Employing the slight bond elongation proves to be useful for 

describing IR spectrum of the real systems. 

 

 

A.3.4 Simulated Spectrum for the Lowest Triplet Excited State of 

PNA 

The use of the explicitly solvated models with elongation of C–NH2 model has 

been successful for simulating the IR spectrum of the S0 PNA. We are able to employ 

the resulting model also for interpretation in the lowest triplet of PNA. It is important 

to note that the experimental spectrum of T1 PNA (see Figure A.4a) was produced by 

compensating the depletion regions in the difference spectra by using the S0 signal. 

Three obvious bands in the T1 spectrum are located at around 1250, 1480, and 

1610 cm−1. Our simulated spectrum of the explicitly solvated model (see Figure A.4e) 

can reproduce three similar bands at 1232, 1453, and 1625 cm−1, respectively. 

According to the theoretical calculations, the characteristics of these three bands is as 

follow. The band at 1232 cm−1 corresponds predominantly to the antisymmetric NO2 

stretch. The band at 1453 cm−1 has quite complicated character and is a mixture of the 

in-plane C–H wagging and the C–NH2 and C–NO2 stretches. The band at 1625 cm−1 

originates from a mixture of the NH2 scissoring motion and phenyl ring stretch; the 

analogous band appears in the IR spectrum of the S0 PNA at 1650 cm−1. In addition, 

the simulated spectrum displays good agreement with experiment in the region 
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around 1300 cm−1. These bands resemble analogous bands in the S0 spectrum. We 

also reported the T1 spectra of the isotope-substituted PNA shown in Figure A.5 for 

explaining the isotope effect of these bands. However, the unequivocal confirmation 

of the presence of these signals depends on the validity of the compensation 

procedure as this region is strongly influenced by the signals from the singlet of PNA. 

 

 
Figure A.4  Experimental and computational IR spectra for the lowest excited triplet 
state of PNA. The asterisk symbol indicates the spectra obtained from the 
PNA+2ACN with the elongation of C−NH2 model. 
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Figure A.5  Experimental and computational IR spectra for the lowest triplet state of 
PNA and isotope-substituted PNA. The IR spectra obtained from PNA+2ACN 
(dotted line) and PNA+2ACN with the elongation of C−NH2 (solid line) models. 

 

 

A.4 Conclusion 

Since the gas-phase and PCM model calculations were not adequate to describe 

simulated IR spectra of PNA, we employed explicitly solvated models representing 

the system in liquid phase. The explicitly solvated models displayed remarkable 

success in reproducing the spectra of both singlet and triplet PNA. It was shown that 

the non-equilibrium geometry plays a significant role in the simulated accurate 

spectra. On the other side, employing too many explicit solvent molecules makes the 

system huge and distorts the geometry of the molecule to a degree, which probably 
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cannot represent the studied system. The result shows that attaching a few solvents 

to a molecule is enough to obtain a satisfactory result. Consequently, the use of the 

explicitly solvated models provides a more intuitive approach for taking into account 

the solvent effect, and predicts the IR spectra of the PNA correctly. 
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