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Student: Shu-Wei Chang Advisor: Henryk Witek

M. S. Program, Department of Applied Chemistry

National Chiao Tung University

Abstract

For describing excited statesand open-shell ' systems, multireference
perturbation theory (MRPT) is the most reliable-and computationally feasible among
accurate electron-correlation methods. However, the MRPT methods are subject to a
serious problem, known as the intruder state problem. The intruder states shall cause
discontinuities in the potential energy surface of a system leading to non-physical
results. The use of shift techniquesin the MRPT may efficiently eliminate intruder
states. Nevertheless, the chemical properties of the system studied using MRPT can
change strongly depending on the parameter employed in the shift techniques. We
therefore undertook an investigation for available shift techniques (e.g., real shift,
imaginary shift, and intruder state avoidance techniques) to find appropriate values

of these shift parameters. In this Thesis, 65 potential energy curves of low-lying
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electronic states of 15 diatomic molecules were studied using different MRPT
methods combined with various shift techniques. The potential energy curves and
their spectroscopic constants were critically evaluated for various values of the shift
parameter, and compared with experiment. Finally, we used statistical analysis to
determine the optimal value of the shift parameter in each shift technique. The
research results show that the shift techniques can efficiently eliminate the intruder
states and at same time they also reduce the error in spectroscopic parameters of the

studied system when an optimal value of shift parameter is used.
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Chapter 1

Introduction

Theoretical calculations and quantum chemistry are getting more and more
important in recent years because scientists can employ computational techniques to
predict, explain, and rationalize many chemical properties of molecules such as
equilibrium structures, dipole moments, excitation energies, infrared spectra, Raman
spectra, reaction mechanisms, etc. Especially thanks to the fast development of
computing technology and.enhancement of the speed of the central processing units
(CPU), we are able to deal with the constantly growing computational cost. On the
other hand, personal computers .are much cheaper and faster than supercomputers ten
years ago. It is easy to get a personal.computer and employ it in theoretical
calculations helping one’s research.

In quantum chemistry, the Schrodinger equation is a complicated problem that
cannot be solved exactly because of existence of electron-electron interactions in a
many-electron system. Hartree-Fock (HF) theory was developed to solve the
Schrodinger equation approximately. Afterward many electron-correlation methods
have been developed based on the Hartree-Fock (HF) equations. Thus the
Hartree-Fock (HF) method certainly became a keystone of quantum chemistry. The

popular electron-correlation methods include multiconfiguration self-consistent field



(MCSCF), configuration interaction (CI), coupled-cluster (CC), Mgller-Plesset
perturbation theory (MPPT), multireference perturbation theories (MRPT), etc. These
methods take into account electron correlation to overcome the defect of the HF
method and to improve the accuracy. Unfortunately, computational costs of both the
CI methods and the CC methods are indeed expensive even though these methods are
regarded as very accurate methods. Another popular class of methods is called density
functional theory (DFT), in which electronic energy of a system can be expressed in
terms of a functional of the electron density. An advantage of DFT is much lower
computational cost.

Many chemical problems often involve excited states, multiplet electronic
structures and quasi-degenerate systems. However, the HF method and MPPT method
are based on a single Slater determinant and therefore are not adequate to describe
such open-shell systems. In-DFT, there is no systematic' way to deal with the excited
states and the spin multiplet systems. Scientists devoted substantial effort developing
accurate methods for solving these problems. One of possible reliable and
computationally feasible ways to describe this kind of systems is a combination of the
multiconfiguration self-consistent field (MCSCF) method together with an
appropriate electron-correlation technique such as multireference configuration
interaction (MRCI) method, multireference coupled-cluster (MRCC) method, or
multireference perturbation theory (MRPT). The MCSCF wavefunctions are used as
reference states in MRCI, MRCC and MRPT. Here, a limitation is that both MRCI

and MRCC can only be applied for small molecules (<10 atoms) and only the MRPT



methods are applicable for larger systems (about 20 atoms).

Based on Rayleigh-Schrodinger perturbation theory (RSPT), the popular MRPT
methods include complete active space perturbation theory (CASPT2)"?
multireference Mgller-Plesset perturbation theory (MRMP)’, multiconfigurational
quasidegenerate perturbation theory (MCQDPT)* and n-electron valence state

perturbation theory (NEVPT2). Most of these methods may suffer from the problem

of intruder states.

0.3
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Figure 1.1 CASPT2/MOLCAS potential energy curves computed with two values
of the imaginary shift parameter ¢ for the A 'TI excited state of CO.

Figure 1.1 shows the potential energy curves of the excited 'IT state of CO obtained
from the CASPT?2 calculations. The black curve, obtained with the standard CASPT?2

method, has a problem with a strong intruder state around 1.2 A and with weak



intruder states around 1.8 and 2.3 A. It is clear that the intruder states constitute a
serious problem, which distorts the shape of the curve around its minimum causing
loosing significant information. Fortunately, introducing shift techniques in
perturbation theory calculations can efficiently remove the intruder states. The
perturbation theory shift techniques are available in a few flavors: real shift techniqueﬁ,
imaginary shift technique’, intruder state avoidance (ISA) techniqueg, etc. After
applying an intruder state removal technique, the potential energy curve in Figure 1.1
(red curve) became continuous and well-behaving. Recently certain undesired
properties of the shift techniques have been discovered. It was found that it is possible
to obtain almost arbitrary resultsin the calculations by using improper shift parameter
value because the chemical properties of molecules turned out to depend strongly on
the shift parameter.9 For example, a possibility of a wrong prediction of the ground
state for the scandium dimer was recently communicated . due to improper choice of
the shift parameter. o

Since there is no standard way to select the proper value of the shift parameter,
our investigations presented in the body of this Thesis center on the determination of
an appropriate determinant applicable for determination of an appropriate value of the
shift parameter. We therefore studied the behavior of three types of shift techniques
(e.g., real shift, imaginary shift and ISA shift) implemented in three standard chemical
programs by performing perturbation theory calculations combined with shift

techniques for a set of simple molecules and comparing the resulting spectroscopic

constants with experiment. Potential energy curves of 65 low-lying electronic states



of 15 diatomic molecules consisting of the first- or second-periodic elements were
studied using different MRPT methods. Subsequently, the resulting spectroscopic
constants such as the equilibrium distance, the vibrational frequency and the
dissociation energy were calculated for every choice of the shift parameter. The
analysis of these results helped us to propose an optimal value of the shift parameter
for each of the studied shift techniques. This appropriate choice can reduce the error
and eliminate large deviations of spectroscopic constants caused by intruder states or
improper selection of the value of the shift parameter.

The detailed introduction about- MCSCF,  MRPT, intruder states and shift
techniques is given in Chapter 2. Our reseéarch approaches and the usage of the
chemical programs are shown.in Chapter 3. The results and'discussion of analysis of
each shift technique are presented in Chapter 4. The conclusions of this These is
shown in Chapter 5. An additional project is present in-Appendix A, in which we
have used DFT/B3LYP to simulate the. IR-spectra of p-nitroaniline (PNA). The

prediction is successful owing to employing an explicitly solvated model of PNA.



Chapter 2

Computational Theory

2.1 The Variational Method

The time-independent Schrédinger equation

Ay =E¥ 2.1.1)
where H is the Hamiltonian operator, ¥ is an eigenfunction of ﬁ, and E is the
corresponding eigenvalue, can be conveniently expressed using the bracket notation.

The bra vector (¥| and the ket vector |W¥) are defined in the bracket notation as

|P) =¥ (2.1.2)
Using this notation, the Schrodinger equation in Eq. (2.1.1) can be rewritten as

H|¥)=E|¥) (2.1.3)
The expectation value of the Hamiltonian and the overlap integral is expressed as

(P|H|P) = [ Hwd

(P|¥)=1 2.1.4)

In practice, however, it is very complicated to find W. One follows then an indirect



approach in order to find a good approximation to W following so called variational

12,13

principle ~ . The variational method is an important way to approximate the exact

A

energy of the Schrodinger equation. Assuming that the Hamiltonian operator H
possess a set of eigenfunctions |(pi> and eigenenergies €, and denoting the ground

state energy as €,, we have
I:I|(pi>Egi|(pi> (2.1.5)

An arbitrary function |®) that obeys the same boundary conditions as the

eigenfunctions |(pi> can be expanded. in a complete set of the orthonormal functions
|9:)
@) =2 c.le) (2.1.6)

Substituting Eq. (2.1.6) into the Schrddinger equation and multiplying by (®| on the

left side one obtains

(®|H|®) = 22 ceele]e)
] i
= Zchcieiji
] i
=Yl (2.1.7)

where we assumed that the eigenfunctions |@,) are orthonormal,
<(pj|(pi>:5ji . Since €, is the eigenenergy of the ground state, for all the other

eigenenergies € =¢,. Equation (2.1.7) can be then written as

(¢|ﬁ|¢>=2|ci|2£iZZ|01|2£0 (2.1.8)



% 2
Because <‘1>|‘1>>=ZZCJ-015JFZ|CJ , substituting (®|P) into right side of

i

Eq. (2.1.8) and rearranging the equation gives

(o]f|)

>g, (2.1.9)
(D] D)

The arbitrary function |<I>> is called a trial function and the ratio in Eq. (2.1.9) called
Rayleigh quotient, expresses the energy of the trial function. Consequently, this ratio
shows that the energy of the trial function is always higher than the ground state
energy. In order to approach the exact energy, the variational method minimizes the
energy via applying appropriate. trial function or varying parameters of the trial

function.

2.2 The Rayleigh-Schrodinger Perturbation Theory
Perturbation theory provides another route to approach the exact solution'*"?.
We can achieve high accuracy of the energy and the wavefunction by including high

order corrections. The main idea in perturbation theory is to divide the Hamiltonian

operator into the unperturbed operator A° and the perturbation operator V

A=0°+AV 2.2.1)
The time-independent Schrédinger equation Eq. (2.1.3) can be written as

(A°+AV)|w,)=E,|¥,) 2.2.2)



We expand the exact eigenfunctions and the eigenvalues as a Taylor series in A

[P,) =[PO)+ AP 07 [P+

n n

E,=EP+AEV +VEP + .. (2.2.3)

We refer to |‘P;°)> and E” as the zeroth-order wavefunction and the zeroth-order
energy, to |‘Pfj”> and E" as the first-order wavefunction and first-order energy, and
so on. Substitution of the wavefunction and the energy as expressed by Eq. (2.2.3)

into Eq. (2.2.2) gives

(A +AV) (2 ) A B+ A PN+ ) =
(EV BT BT ) (R0 ANV w4 ) 24)

n n

Collecting terms of Eq. (2.2.4) involving the same power of A, we get

20 - IA{O|‘PS’)>=E?)|‘P$)> (2.2.5)

AL R W0) 4 9|0 = EO ) 4 B

Po) (2.2.6)

A2 s RO |PO) 4V W0) = B @) 4 EO

POV+ED [PV (2.2.7)

and so on. To simplify the derivation, we can choose the condition <‘P;°) |\Pn> =1

which is referred to as the intermediate normalization. Multiplying <‘Pfl°) on left side

of wavefunction of Eq. (2.2.3), we have

<\P(0)

)= (0 ) 2 () 2 () =1

Since A is a variable, we get the orthogonality condition <‘Pfj°) |an> =0 . Multiplying



<‘P;°)| on left side of each equation in Eq. (2.2.5), Eq. (2.2.6) and Eq. (2.2.7) and

using the intermediate normalization, we have

E© :<‘P‘°) ae lp(0)> (2.2.8)
EV :(‘Pfj’) {/|\p;0)> (2.2.9)
E®? :<‘Pfj” \7|\p<nl>> (2.2.10)

The first-order correction energy E!" is the integral of the perturbation operator \%
over the unperturbed wavefunction. We need to correct the energy further because the
unperturbed wavefunction is not the exact wavefunction. For finding the second-order
correction energy E*, we need toknow the first-order correction wavefunction. The
first-order correction wavefunction can be expanded as a linear combination of

zero-order correction wavefunctions

(w0 = > | wOMW ) 2.2.11)

n
m#n

Using Eq. (2.2.11), the second-order correction energy Eq. (2.2.10) can be written as

EP =Y <\P‘°)

m#n

\%

1P(0)><\P(0)

) (2.2.12)
Substituting Eq. (2.2.11) into Eq. (2.2.6) and then multiplying by <‘Pf§) | on the left

side, we obtain

<T(()) Ion

111(1)> +<1P(0) |</|1P(0)> — <1P(0) |E(0)

111(1)> +<1P(0) |E(1)

ng))>

E© <\P(0) |\P(1)> +<1P(0) \A/'

lP“”) =E© <‘P(°) |‘P(”> (2.2.13)
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Rearrangement of Eq. (2.2.13) gives

PO gl
(P [)) = % 2.2.14)

Substituting Eq. (2.2.14) into Eq. (2.2.11), we get the first-order correction

wavefunction

POy g
) =;wmﬁ)> (2.2.15)

Substituting Eq. (2.2.14) into the (W% |W") of Eq. (22.12), we get the

n

second-order correction energy
(0) |x7|gs® (00X,
o Z(l{ln V) (v
n T E(O)_E(O)

m#n

R4

(oo
- m#n Eg)) _ES)

(2.2.16)

The second-order correction energy in Eq.(2.2.16) is given in terms of the
unperturbed wavefunctions and energies. It also shows that the main effect of the
perturbation comes from the eigenfunctions |‘P(n?)> , whose energies are located near
the energy of the eigenfunction |‘Pfjo)> because the correction energy is inversely
proportional to the zeroth-order energy difference between eigenfunctions |‘Pf1°)>
and |‘P£:)> . This form of the perturbation theory is referred to as the
Rayleigh-Schrodinger perturbation theory (RSPT); it is widely applied in the

quantum chemistry.

11



2.3 The Hartree-Fock Method

Assuming that electrons move independently in an average field, the
many-electron wavefunction can be written as a product of spin orbitals x(x) for

each electron, where x represents collectively the space and spin coordinates.

W=y, (1)X,(2)..xx (N) (23.1)

To satisfy the Pauli exclusion principle, the wavefunction must be antisymmetric with
respect to interchange of two electrons. This can be achieved if the wavefunction is

written as a normalized Slater determinant | ¥, ) M2

Xl(l) Xz(l) XN(I)
(2 ,(2) (2
I‘PSD>=ﬁXE)X5() x()
Xl(N) Xz(N) XN(N)
1
= mdetlx1 ()%, (2).xx (N)] (2.3.2)

The Born-Oppenheimer approximation describes the motion of N, electrons in the
field of fixed locations of N  nuclei. The main justification for the
Born-Oppenheimer approximation is the observation that the electrons move much
faster than the nuclei. The motion of electrons can be decoupled from nuclei to obtain

the electronic Hamiltonian operator ﬁe 14
N

R N, 1_, 0 7. N N1 NN
A D) oD e 233

i= A=l Ty i=l i i  A=1B>A I

12



A

The electronic Hamiltonian operator H_ is composed of one-electron operatorsh, |

€

A

two-electron operators g and the nuclear repulsion operator V|
H, Z h, +Z Z g+ V.,
i=l j>i
where
1 - Z
h; =-— Viz - Z_A
2 A=l Tig
1
&=

T

M=Z

il (2.3.4)
I

1 B>A

>
1]

Appling the normalized ~Slater -determinant |‘PSD> . the energy of electronic

Hamiltonian operator ﬁe is'given by

E= <lPSD|ItIe|‘PSD>

SDIZh +Zzgu + Vo | ¥ep) (2.3.5)

i=l j>i

At this point, the Slater determinant |‘PSD> can be expressed conveniently by an

A

antisymmetrizer operator A acting on the product of spin orbitals

W) =| Aty (1% (2)..2x (N))
A = ;i(—l)p" f)
\/ﬁ n=1 !

- ﬁ(l_zzﬁﬁzzzﬁﬂ --) (23.6)

i

A

where A can generate N! possible permutations of electron coordinates by

13



permutation operators such as f’ij (interchanges two electron coordinates), lsijk
(interchanges three electron coordinates), etc., and p, 1is the number of

transpositions. For instance

|Ax, (12 (2)7: (3))

A

:ﬁ(l_lsu_lsw P +P123+P132)X1(1)X2(2)X3(3)
= =l (0% @101 (0%, (2)%,)-
X3(1)X2(2)X1(3)_X1(1)X3(2)X2 (3)"‘

X (D% (2)%3) +2, (1) 25 (2)x, (3)] (2.3.7)

For one-electron operator and two-electron operator, we use the antisymmetrizer
operator expression of the~Slater determinant to simplify the derivation of the

Hartree-Fock equations

<1PSD|Zh +zzgu|\PSD>

i=l j>i

= (Ax, ()%, (2) .25 (N) \Zh +ZZgu\Ax1 )% (2)--%x (N))

i=l jp>i

= (6 (D% (2)--%x (N) |Zh+ZZgU\AAxl )%s (2).- 25 (N))

—\/_(Ocl )%z (2)--xn (N) 2 b+

iign\z&xl (1% (2)- (N))]

14



= N(m(1)x2(2)...xN(N)thi\Axl(l)xz(z)...xN (N))+

<x1<1>x2<2)...xN<N>|ZEZ“gU\Axl<l>x2<2)...xN(N>>] (23.8)

i=l j>i
For each one-electron operator, only a matrix element without any permutation of
electron coordinates survives. The other matrix elements vanish because of
orthonormality of the remaining permuted spin orbitals. Choosing the one-electron

operator for coordinate of electron 1 as an example, we have

(0 (1% (2)- 2 (N[, | A, (1) (2) -4 (N))

= (ot (D], [ W)X, (2)]% (2))< (0 (N) |2 (N)) =
O (D05 (DY (2)]% (2)) (e (N) |3 (N)) ..

= (ot (D] [ (1))

=h,(1) (2.3.9)

For each two-electron operator, only two types of matrix elements survive. One is the
term without any permutation, and in the other two electron coordinates are
interchanged. Choosing the two-electron operator for coordinates of electron 1 and

electron 2 as an example, we have

(0 (D% (2)--20 (N 212 | Ay (121 (2)-20 (N))

= (0 (D% (2) -2 (N)] 2,2 (1= B, )2 (DX, (2) -2 (N))

15



= (X (D% (2) -2 (N)[ 2y [ 2, (1) %, (2) %5 (N)) =
(0 (D%, (2) -2 (N) |21 |2, (D2, (2) 2 (N))

= (% (D% (2)| 20 % (D)%, (2)) =06 (D%, (2)] 20 1%, (DX, (2))

=1,-K, (2.3.10)

The J,, matrix element is called the Coulomb integral ant the K, matrix element is
called the exchange integral. Nuclear repulsion operator integrates to a constant

because it is independent of the electron coordinates.-We can simply write

<lPSD |\7nn |lIISD>

= Vnn <\PSD |1PSD>

- (2.3.11)

As mentioned above, the energy Eq. (2.3.5) can be written as

E= Zh (1)+ZZ (3,

i=l j>i

230, -K,)+ Y, (2.3.12)

i=l j=1

= Z(Xl (i)|hi|X1

l\)l'—‘

.

To derive the Hartree-Fock equations, we minimize the energy by using the Lagrange
method of undetermined multipliers.15 Constructing the Lagrange function L, we

define

16



L=B-3 > &, [t (0], (1))~ 3;] 23.13)

where €; is a Lagrange multiplier. Setting the variation of the energy to zero, we

have

SL =8B~ >, [(8%, ()], () + (x: ()| 8%, (1)) ] =0

where

N,

SE = S [(8x, (i) o (1)) + (s (i) | 83, (1)) +

i=1

T2l lor Wled 0 )+

i=l j=1

(. (8%, Gl G0N +0u @ x; ()] g5 |9 (D, (3) +
(6 D, ()| 4 @) 8%, () — (8 ()2 (3)] &5 2; (D s () —
(o (D)o, ()& | x; (D) (D) =0 () x; (3)] & |8, (D) () —

(D) x; (3| &5 [, () S (3)) ] (2.3.14)

The summation of both first and second terms in square brackets of OE for alli and j
is identical. The first and third terms in square brackets of OE are complex
conjugated with regard to each other. We can recognize similar pattern also in other

terms and obtain

Mz

oL = Z(SXi(i)|hi|Xi >+Z

i=1

({8 (1) ()] g [ (1), (3)) -

I
—_

—

[
LR
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(8, (1), ()5 %, D ()~ (O ()] x; (7)) ]+

complex conjugate =0 (2.3.15)

At this point, we define two operators for convenience

T, @) =0 ()| [ G ()

K, (1) (1)) = (x; ()| &5 (D))o (G)) (2.3.16)

Where J,(i) is known as the Coulomb operator and K, (i) is known as the
exchange operator. Both descriptions of two operators treat an affected electron as a
mean field formed from other electrons. Substituting Eqg. (2.3.16) into Eq. (2.3.15),

we have

oL = Z“<8xi<i>|{hi|xi (@) 203, () =K, D]l () -

NC
Zleij X (1))} + complex conjugate = 0 (2.3.17)
p

Since (&, (1)| is arbitrary, the terms in the braces must be zero for all i
N, N,
{hi +2.[1,0)-K, (i)]}lxi (1)) =g | (1))
=1 j=1

f % (i) :Z‘C‘U'Xi (1)) (2.3.18)

The Fock operator f; is defined as the quantity in the braces in Eq. (2.3.18). We can
diagonalize the matrix of the Lagrange multipliers e, by an appropriate unitary

transformation

f % (1)) =& [ % (i) (2.3.19)
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The equations (2.3.19) are referred to as the Hartree-Fock (HF) equations. In HF
equations, the definitions of the Coulomb operator J, (i) and the exchange operator
K, (i) depend on the spin orbitals of all electrons. Hence we need to employ the
self-consistent field (SCF) method to solve the HF equations iteratively until the total
energy and wavefunction are converged, and get the HF energy. That is to say that the
minimized energy and optimized wavefunction are determined when their differences

from the previous iteration are both under acceptable thresholds respectively.

2.4 Configuration State Function
The Hartree-Fock method. treats the interactions between electrons only in an
average way. It neglects the instantaneous Coulombic interactions between electrons.

The difference of exact nonrelativistic energy E_ . and Hartree-Fock energy E, . is

on

usually called the correlation energy E...'

E_ =E_-E,. (2.4.1)

Considering that the Hartree-Fock wavefunction, constructed as a single Slater
determinant, does not properly describe the character of the exact wavefunction, we
can account for the electron correlation by constructing a wavefunction including
many determinants, or equivalently, many configuration state functions (CSF). The
configuration state functions consist of all spin symmetry-adapted singly excited
determinants @' , doubly excited determinants & , triply excited determinants

o™ etc.

abe ?
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r s

(DHF (Da q)ab

Figure 2.1 Excited determinants formed from a HF determinant."

The configuration interaction (CI) method uses following CI wavefunctions and,
employs variational method to optimize the CI wavefunctions and the energy. The CI
wavefunction W, is constructed as a linear combination of the CSFs

_ I o IS gy IS ISt Ay ISt
lIICI - CHFq)HF + anq)a +Z Cab¢ab + Z Cabcq)abc +..
a,r a<b a<b<c
r<s r<s<t

where C!, C», C=! etc. are CI coefficients and

1
@, = ﬁdetlxlxz--.xaxbmxn

o
@ = I~ det| %X XKoo

s 1
o :ﬁdet|x1x2...xrxs...xn| (2.4.2)

and so on.
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Including all possible CSFs in the CI calculations results in so-called full CI (FCI)
method, which reproduces the exact solutions when used with an infinite basis set and
small basis sets. Unfortunately, we cannot use infinite basis sets. On the other hand,
the number of CSFs in the FCI calculations is too large even for very small molecules.

Suppose we have M spatial wavefunctions, from which we can construct 2M spin

2M
orbitals, and N electrons. The total number of the CSFs is ( N j Taking into

account only CSFs with proper spin multiplicity (2S+1), the number of CSFs is

expressed by Weyl’s formula'® as

M+1 M+1
2S+1 |

1 (2.4.3)
M+1 EN—S 5N+S+1

where S is the spin angular momentum. For instance, the calculation for H,O with a
small basis set, 6-31(d) containing 19 basis set functions'and 10 electrons. The total
number of singlet CSFs is 3.0:x 107, which is extremely large. Thus we need to deal
with a matrix with size 3.0 x 10’ by 3.0 x 107, Por this reason, the FCI calculation is

not feasible for general systems.

2.5 The Multiconfiguration Self-Consistent Field Method
The multiconfiguration self-consistent field (MCSCF) method is particularly

important for excited states calculations, quasi-degenerate systems, and biradical

structures. The MCSCF wavefunction is constructed as a linear combination of CSFs

containing not only the CI coefficients, but also the coefficients of molecular orbitals.
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Simultaneous optimization of both the CI coefficients and the molecular orbital
coefficients leads to demanding computations but we can get good results by
choosing only a few chemically important CSFs. The MCSCF method is an
approximation of the CI method. A common strategy is the complete active space
self-consistent field (CASSCF) method'”. The concept of complete active space (CAS)
is based on division of the orbitals into inactive orbitals, active orbitals and virtual
orbitals (see Figure 2.2). Characteristics of the three classes of orbitals are as follows:

e The inactive orbitals are always doubly occupied.

e The active orbitals allowall possible occupations (0, 1, or 2).

e The virtual orbitals are always empty.

Virtual orbitals

Active orbitals Consider all excitations

Inactive orbitals

FETT | ]

Figure 2.2 Illustration of complete active space.

The electrons except the electrons within inactive orbitals are called active electrons.
The CSF basis is constructed by forming all possible distributions of active electrons

among active orbitals. This ansatz allows for serious reduction of the computing time.
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2.6 The Multireference Perturbation Theory

In applications of the Rayleigh-Schrodinger perturbation theory, one needs to
define zeroth-order Hamiltonian and the remaining perturbation operator. For
instance, the single reference Mgller-Plesset perturbation theory adopts the zero-order

A

Hamiltonian H° and perturbed operator V as

=H,-H'= ZZ——ZZ[J (i)-K,@)] (2.6.1)

11J>11J =l =l

The perturbation V is the difference of between the two-electron potential in the
original electronic Hamiltonian and-in the Fock operator. For multiconfigurational
systems, the multireference perturbation theories (MRPT) adopt slightly more
complicated form of the zero-order Hamiltonian. / The use of the CASSCF
wavefunction as the zero-order wavefunction combined with perturbation theory is
referred to as the complete active space perturbation theory (CASPT2) developed by

Roos et al. The second-order perturbation theory correction to energy is given by

o V|k)
=3 ‘E(" E(J (2.6.2)

k

where o indicates the CASSCF reference state and k indicates a singly or doubly
excited intermediate state. Other popular variants of perturbation theories are the
multireference ~ Mgller-Plesset  perturbation  theory (MRMP) and the

multiconfigurational quasidegenerate perturbation theory (MCQDPT) developed by
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Hirao and Nakano. In fact, the MRMP and MCQDPT are the same in case of single
state calculation. The MRPT methods mentioned above could occur divergences due
to the intruder states. Recently, n-electron valence state perturbation theory
(NEVPT?2), one of the MRPT methods, was developed by Angeli et al., and is
characterized by absence of intruder states.

In order to reduce the systematic error in CASPT2, two modifications of the
zero-order Hamiltonian were proposed. One is adding a correction function such as
gl, g2 or g3 to the zero-order Hamiltonian'®. The other is introducing the IPEA-shift"’
in the definition of the zero-order Hamiltonian.»Because of the success of the
IPEA-shift applicable to CASPT?2 calculations; the default value (0.25 a.u.) of the
IPEA-shift has been employed in the MOLCAS chemical program. In this study, we

also investigated the CASPT2 with the gl correction and CASPT2 with IPEA-shift.

2.7 Intruder States and Shift Techniques

Intruder states appear in the MRPT calculations when the difference between the
zero-order energy of the reference state and of an excited intermediate state in the
Eq. (2.6.2) is small (E{” = E{”’). Consequently, the second-order correction energy
E? may become extremely large, approaching +oo or —oo in the limit of a perfect
degeneracy. The occurrence of the intruder state result in overcorrection,
discontinuity of potential energy surface and irrational chemical information.

Such problems can be solved by including more appropriate orbitals in the active
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space, as usually a poor choice of CSFs describing the electronic structure is the origin
of the intruder state problem. However, in most situations such calculations are not
feasible. A convenient way to avoid intruder states is using shift techniques that
introduce a shift parameter ¢ in the denominator of the Eq. (2.6.2) to prevent it from
vanishing

S )

L= (2.7.1)

The following shift techniques were developed by using different definition of the
shift parameter. The level shift technique using real value as the shift parameter is
called here as the real shift technique. The imaginary level shift technique uses an
imaginary shift parameter ic. The intruder state avoidance (ISA) technique employed
in MCQDPT and MRMP methods defines the shift parameter as

b

= (27.2)
EY -E{”

9

where b is a small constant at our disposal. Although shift techniques can eliminate
intruder states effectively, these modifications may sometimes lead to wrong

information without any chemical or physical meaning.
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Chapter 3

Computational Details

The potential energy curves of 15 diatomic molecules have been determined
with Dunning’s augmented correlation-consistent polarized valence triple zeta
(aug-cc-pVTZ) basis sets. The total number of low-lying electronic states considered
in the Thesis is 65. The selected molecules consisted of first or second row elements.
The list of low-lying electronic states for ‘each selected molecule and their
experimental spectroscopic.constants are given in Table 1 and Table 2, respectively.

The CASSCEF calculations are the first step. in the multireference perturbation
treatment. For molecules with more than one electronic state, we adopted here the
state-averaged CASSCF approach. Otherwise; the state-specific CASSCF approach is
used for single state calculation. Both state-averaged and state-specific CASSCF
calculations were performed with MOLPRO (version 2009) program.zo’21 A
computational strategy employing full valence space including all valence orbitals
and valence electrons was adopted for the studied here molecules. To provide
appropriate CASSCF wavefunctions for the subsequent MRPT calculations, it is
important to take care of the potential energy curves of the studied low-lying

electronic states for each molecule. We look particular care for every potential energy

curves to assume continuity and well-behaving character of the curves through the
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full range of the standard distances.

All the MRPT methods employed the same reference wavefunctions defined as
the CASSCF wavefunctions. We attempted to uniformly take this CASSCF
wavefunctions into GAMESS (2009) and MOLCAS (version 7.4) programs.
However, the GAMESS program has a distinct definition of the atomic orbitals from
the other programs. The atomic orbital ¥ consists of the radial part R (r) and

the angular part Y," (8, ¢)

Y ..=NR (1)Y"(0,0)

nlm

where N is normalized constant."The angular part can.be described as two following
types of functions; the Cartesian type is used in the GAMESS program while the
spherical harmonic type is-used in the other programs. The coefficients of these two
types of orbitals can be converted to-each other as shown in Table 3. Accordingly,
the CASSCF wavefunctions-obtained from the MOLPRO can be applied to the other
programs.

Three different shift techniques applicable to multireference perturbation
theories were studied in present Thesis. The real shift technique was used for
CASPT2 implemented in MOLPRO program. We refer to these calculations as
CASPT2/MOLPRO. We investigated the shift parameter from 0.0 to 1.0 a.u. The ISA
technique was used together with MCQDPT and MRMP, both implemented in
GAMESS program. The range of the shift parameter was from 0.0 to 0.5 a.u. Because
MRMP is a special case of MCQDPT, we refer to both of these calculations as

MCQDPT/GAMESS. The imaginary shift technique was used together with CASPT2
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implemented in MOLCAS program. The range of the employed shift parameter was
from 0.0 to 1.5 a.u. We refer to these calculations as CASPT2/MOLCAS. A related
CASPT2/MOLCAS calculation using additional 0.25 a.u. IPEA shift are referred to as
IPEA-CASPT2/MOLCAS. Finally, the last studied method was CASPT2 with the g1
correction referred to as G1-CASPT2/MOLCAS.

The maximal value of the studied shift parameter was chosen as a very large
number, which is typically much larger than usual choice done in quantum chemical
calculations. The reason for such a choice comes from the fact that we wanted to
cover a large range of shift parameters. The /spectroscopic constants (e.g., the
equilibrium distance, the  ‘vibrational frequency and .the dissociation energy)
determined for each value-of shift parameter for each potential curve were critically

evaluated by using statistical methods.
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Chapter 4

Results and Discussion

4.1 Potential Energy Curves

Potential energy curves of diatomic molecules provide the simplest way to test
various quantum chemical techniques. In this project we determine equilibrium
constants R., vibrational frequencies @, and dissociation energies D. in order to
evaluate the accuracy of various multireferénce perturbation theories using the shift
techniques. The calculated spectroscopic constants can be critically assessed by
comparison with accurate experimental data derived from vibrational spectroscopy.
For theoretical calculations; it is convenient to use only.one variable, the distance
between two atoms, to simplify the complicated chemical problems and compare with
experiment.

The potential energy curves of the 65 low-lying electronic states of 15 molecules
are constructed by performing over 150 single point calculations for each curve. The
set of interatomic distances was chosen to cover the full range from the dissociation
limit (around 8 A) to short distances (around 0.6 A) for each studied state. The points
around the minimum of the curves are chosen very densely with the interval of 0.005
A. This allows us to compute accurately the spectroscopic constants around

equilibrium in the MRPT calculations.

29



Before constructing the potential energy curves of the MRPT methods, we need
to obtain appropriate CASSCF wavefunctions for each diatomic molecule. However,
there is a problem that the CASSCF wavefunctions do not reproduce completely the
same results in the different programs due to difference of code implementation. An
idea of our project is to transfer the CASSCF wavefunctions from the MOLPRO
program to the GAMESS and MOLCAS programs. We demonstrate that this idea is
feasible because the reference energies of various MRPT methods are exactly the
same. Choosing the MOLRPO program has an advantage for the state-averaged
CASSCEF calculations. This program can simultaneously optimize several electronic
states in the CASSCF calculations containing different symmetries or spin
multiplicities.” Therefore,~we . .can obtain a set-of the CASSCF wavefunctions to
satisfy the studied states of each diatomic molecule. The use of the CASSCF
wavefunctions gives us a uniform way to investigate the potential energy curves of

the MRPT methods.

4.2 Intruder States

Intruder states occur in the MRPT calculations because of the appearance of very
small denominators in the second-order energy correction. Figure 4.1 shows the
potential energy curves of the °I1 state and 'IT state of CO. The potential energy curve
of the °II state of CO is not affected by intruder states. The curve of the ' state of CO

is affected by intruder states, which cause a discontinuity at approximately 1.29 A
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appearing around the minimum of the curve, analogous to the black line in Figure 1.1
in Chapter 1. As the result, we cannot compute spectroscopic constants for this curve.
Summarizing, the presence of the intruder states leads to a discontinuity in the
potential energy surface, which completely distorts the information normally

available for the MRPT methods.
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Figure 4.1 MCQDPT/GAMESS potential energy curves with various values of
shift parameter o for the excited °I1 state (a) and 'TI (b) state of CO.

4.3 Effect of Using Intruder State Removal Techniques:
General Observations
Intruder state removal techniques are the most efficient way to eliminate the

intruder states and produce a smooth potential energy curves. These techniques
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introduce a shift parameter ¢ in the denominator of Eq. (2.6.2) to prevent the
appearance of infinities in the second-order energy correction. The process of the
intruder states elimination is shown in Figure 4.1b. The shifted potential energy curve
is still slightly distorted when a small shift parameter (¢ = 0.0001 a.u.) is used. Using
a larger value of the shift parameter (¢ = 0.0050 a.u.) is enough to remove the intruder
state completely. However, using even larger a value of the shift parameter (¢ =
0.0100 a.u.) removes the discontinuity equally well, but simultaneously affects the
shape of the potential energy curve. On the other hand, a potential energy curve not
affected by the intruder states (see Figure 4.1a) does also change its shape and is
affected by the choice of the shift parameter. Itis clear that the shift techniques can

have the substantial influence on. the determination of various chemical properties.

4.4 Effect of Using Intruder State Removal Techniques:
Details

To investigate how the shift parameter affects the chemical properties of the
diatomic molecules, we constructed the potential energy curves of the 65 low-lying
electronic states using different MRPT methods. Subsequently, we computed the
resulting spectroscopic constants with various values of the shift parameter. The
spectroscopic constants are shown in Figures 6.1-6.65. Figure 4.2 gives as an example
the results for the 'TI state of CO obtained with different methods as a function of the

shift parameter.
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Figure 4.2 Spectroscopic- constants for the A 'TI state-of CO obtained using
different methods with various values of the shift parameter G.

In this figure, the left column corresponds.to-Re, the middle column, to ®., and the
right column, to D.. The maximal shift parameter 6, is 1.0 a.u. for the real shift
parameter, 0.5 a.u. for the ISA shift parameter, and 1.5 a.u. for the imaginary shift
parameter. Some of the plots display yellow boxes for small values of the shift
parameter. Such a region indicates an unusually large change of a given spectroscopic
constant. The main reason for such a behavior is that the potential energy curve is
strongly distorted by intruder states and small values of the shift parameter cannot
eliminate such a strong distortion.

The behavior of the spectroscopic constants for various values of the shift
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parameter shows some regular patterns. In the CASPT2/MOLPRO method, a larger
value (0.3 a.u.) of the real shift parameter is required to eliminate intruder states
because the potential energy curves are often distorted by very strong intruder states
around the curve minima or at the long interatomic distances. In the
MCQDPT/GAMESS method, the intruder states could be completely removed even
by small value (0.001 a.u.) of the ISA shift parameter. However, the changes of
spectroscopic constants show large dependence on the value of ¢ for small values of
the shift parameter (see Figure 4.2). In the CASPT2/MOLCAS methods, the behavior
of the spectroscopic constants with varying values of the imaginary shift parameter is
similar in most cases. Sometimes, employing either the IPEA shift or the gl
correction in the zero-order Hamiltonian can remove the problem of the intruder
state even if these two modifications were not developed as a remedy for intruder

states elimination.

4.5 Statistical Analysis for Intruder State Removal

Techniques

4.5.1 Distribution of Changes in Spectroscopic Constants
The statistical analysis was performed to investigate the changes in the
spectroscopic constants induced by variation of the intruder state removal parameter.

The changes of spectroscopic constants (AR., A®., and AD.) were defined in the
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following way. The minimal and maximal values of R, in the CASPT2/MOLPRO
calculations shown in Figure 4.2 are 1.225 and 1.250 A respectively. The change of
R. between the minimal and maximal values is 0.025 A. We refer to this change of R
as AR.. Analogously, the change of ®. referred to as Aw. is 200 cm' and the change
of D, referred to as AD. is 0.13 eV. We analyzed statistically the distributions of AR.,
A, and AD, in Figures 6.1-6.65. The results of these distributions are shown in
Figures 6.66, Figure 6.68, and Figure 6.70. For example, Figure 6.66 presents the
distributions of AR.in the form of five histograms correspond to five methods. In
every histogram, each column corresponds to-a number of states characterized by the
same AR..

The Figures 6.67, 6.69 and 6.71 give similar analysis for observing the effect of
the small values of the shift parameter upon the distributions. We analyzed the AR.,
A, and AD. ignoring the values of spectroscopic constants which are located in the
yellow boxes in Figures 6.1-6.65. For instance; the maximal value of AD. observed
from CASPT2/MOLPRO shown in Figure 4.2 changes from 3.05 to 3.00 eV after
ignoring in the yellow box region.

We can observe the effect of small values of the shift parameter on AR, through
comparing the distributions shown in Figures 6.66 and 6.67. The similar effect is
also provided from the distributions of A®. shown in Figures 6.68 and 6.69, and AD.
shown in Figures 6.70 and 6.71. The CASPT2/MOLPRO, MCQDPT/GAMESS, and
CASPT2/MOLCAS methods show significant reduction of large deviations

achievable by ignoring the yellow box regions. Namely, using larger values of the
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shift parameter in these methods can reduce the changes of spectroscopic constants
induced by the intruder states. On the other side, the IPEA-CASPT2/MOLCAS and
G1-CASPT2/MOLCAS methods cannot produce the improved results in that
approach. The modified CASPT2/MOLCAS calculations with too large value of the

shift parameter can actually lead to larger changes of the spectroscopic constants.

4.5.2 Mean Absolute Deviations from Experiments for
Spectroscopic Constants

The critical evaluations of shift techniques applicable to perturbation theory
were investigated by means of absolute deviations of the spectroscopic constants for
experiment. We computed the absolute deviations between the computed results
(Figures 6.1-6.65) and the experimental data (Table 2). The mean absolute deviations
of R, 0. and D, were presented in Figures.6.72-6.86. Some of the experiment data are
not available so the total number of experimental data for R, @, and D, is 55, 54, and
55, respectively. Figure 6.72 shows the mean absolute deviations of R. for the
CASPT2/MOLCAS calculations. The number in blue denotes the total number of
physically valid results. For small shifts, some of the potential energy curves severely
plagued with the intruder states prohibiting one from computing the spectroscopic
constants.

For the CASPT2/MOLPRO method, the mean absolute deviations of

spectroscopic constants decrease with varying the shift values for R and ., and
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remain constant for D, (see Figures 6.72, 6.77, and 6.82). For the
MCQDPT/GAMESS method, the mean absolute deviations of spectroscopic
constants (see Figures 6.78, 6.73, and 6.83) are reduced significantly for large values
of the shift parameter (>0.002 a.u.). The IPEA-CASPT2/MOLCAS,
CASPT2/MOLCAS, and GI1-CASPT2/MOLCAS methods display the similar
tendency of the mean absolute deviations for each spectroscopic constant. The mean
absolute deviations begin to increase for R, and @, if the large values of the shift
parameter (> 0.6 a.u.) were employed, and decrease for D. (see Figures 6.74-6.76,

6.79-6.81, and 6.84-6.86).

4.5.3 Optimal Values of Shift Techniques

To find the optimal value of the shift parameter for each method, we computed
the combined error for all the spectroscopic-constants. The combined error of each
method is shown in Figure 4.3. The definition of the combined error is a summation
of each mean absolute deviation divided by the accuracy units. The accuracy units
are chosen as 0.001 A for R, 1 cm™ for o, and 0.01 eV for D.. For example, the
CASPT2/MOLPRO calculations with ¢ = 0.0 (see Figures 6.72, 6.77, and 6.82), the
mean absolute deviations of the spectroscopic constants are 0.0107 A for R., 42.6

cm”™ for ., and 0.2268 eV for D.; therefore, the combined error is

0.0107 42.6 0.2268
+——+ =

combined error = =76
0.001 1 0.01
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Figure 4.3 Combined errors with various-values of the shift parameter for different
methods.

The optimal value was determined by evaluating of the combined error for each
shift technique. In the CASPT2/MQLPRO calculations, the optimal value of the real
shift parameter is 1.0 a.u., which shows that the larger shift parameters can reduce the
deviations of the spectroscopic constants. We also suggest that the value of the shift
parameter should be larger than 0.4 a.u. for eliminating the intruder states. In the
MCQDPT/GAMESS calculations, we propose the optimal value of the ISA shift
parameter is 0.3 a.u. using the analogous analysis. In the IPEA-CASPT2/MOLCAS,
CASPT2/MOLCAS and G1-CASPT2/MOLCAS methods, we uniformly propose the
optimal value of the imaginary parameter is 0.6 a.u. due to the similar behavior of

these methods. Using larger values of the shift parameter shall increase the combined
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error for all the CASPT2/MOLCAS methods. Comparing with the
CASPT2/MOLCAS  method, the combined errors of the modified
CASPT2/MOLCAS methods already show a good improvement and present almost
a constant within the small values of the shift parameter.

The shift techniques cannot only eliminate the intruder states but also reduce
the systematic error. We give two following views. First, the variational method in
quantum chemistry always shows an overestimation of the exact energy; however,
the second-order perturbation theory generally gives us an underestimated energy
owing to the over correction energies. Second, if the infinite large value of the shift
parameter is used in the MRPT calculations, the correction energies are almost zero.
The MRPT calculations shall. present as the CASSCF level. Therefore, employing
the shift techniques suitably can balance this over corrections of the second-order
perturbation treatment and close to the exact energy. In the past, the customary value
of the shift parameter used in MRPT calculations has generally not been larger than
0.4 a.u. for the real shift parameterzz’23 , 0.05 a.u. for ISA shift parameter“’24, and 0.3

a.u. for imaginary shift p:eurameterzs’26

. However, our present study reports that the
optimal value of each shift parameter is indeed larger than the customary values. On

the other hand, employing too small values of the shift parameter probably raise the

risk of large error in the MRPT calculations.
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Chapter 5

Conclusions

The shift techniques applicable to the MRPT methods have been critically
evaluated by a statistical approach. The spectroscopic constants of 65 studied states
were investigated and compared with the experiment. We therefore propose that the
optimal value of the shift parameter is 1.0 a.u. for the real shift technique, 0.3 a.u.
for the ISA shift technique, and 0.6 _a.u. for/the imaginary shift technique in present
Thesis. The research results indicate that the employment-of the optimal value can
diminish the systematic ‘error of the second-order perturbation theory as well as
eliminate intruder states. dn this study, the idea of transferring the CASSCF
wavefunctions between different programs-—was successfully implemented. The
approach could help us to study the different multireference methods in a uniform
way. We could further investigate the behavior of shift techniques applicable to
MRPT methods through comparing with other multireference methods such as
MRCI, NEVPT2 and so on. Because of the fast development of computer resources,
MRPT methods can overcome higher computational demands, which may help to
expand their applications field in the future. The shift techniques certainly play an

important role for the multireference perturbation theory in this context.
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Chapter 6

Auxiliary materials
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Figure 6.1 Spectroscopic constants for the X 'E* state of BH obtained using
different methods with various values of the shift parameter c.
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Figure 6.2 Spectroscopic .constants for .the a "Il state of BH obtained using
different methods with various values-of the shift parameter c.
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Figure 6.3 Spectroscopic constants for the A 'II state of BH obtained using
different methods with various values of the shift parameter c.

42



BH, b’T

R (A) o cm”) D (V)

1.240 2500 2.50
z
23
1.230 - 2400 2404 2
e~
\ 33
— 3

1.220 2300 2.30

1.200 2800 4.10
o
\ P /“' 5
1.190 4 \ 2700 K 4.00 4 / c=
2m
<$7]
2931 »

1.180 2600 3.90 -
1.230 2600 2.50

(ST0=vddD
TLASVD
SVOTON

12204 2500 2404
I
1210 2400 230
1230 2600 2350
5,2
28
12204 2500 4 2.40 4 125
giz
1210 2400 230
1230 2600
2,504 ~
2
~90
12204 25004 i~
2.40 4 T8
%
1210 2400
T T T
O 0 O 0

Figure 6.4 Spectroscopic .constants for .the b°%  state of BH obtained using
different methods with various values-of the shift parameter c.

)
CH, XTI . ,
R(A) ®(cm™) D (eV)
1.126 2840 3.46
\ ’\‘%
>
1.124 4 28204 3.44 4 2c
e~
SZ
‘.”_\ o
1122 2800 3.42
3556
Q
z
1114 2880 a2
\ / 3.54 4 / oz
2m
Ju
T
11124 2860 352
L2 2920 364
898
29004 3.62 Tes
11104 —’\ 5%
. 0>
@2 w
2880 3.60
1114
2900 5 =
3.56 4 523
11124 igs
2880 4 B
3.54 =
1.110
1114 2920 3.62
25
1A
11124 2900 3.60 4 oz
=30
~ a
1.110 2880 358
T T T
0 0 O 0 O nax
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different methods with various values-of the shift parameter c.
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Figure 6.8 Spectroscopic .constants for the X 'L~ state of NH obtained using
different methods with various values-of the shift parameter c.
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Figure 6.9 Spectroscopic constants for the a'A state of NH obtained using
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Figure 6.10 Spectroscopic. constants for the b 'S’ state of NH obtained using
different methods with various values-of the shift parameter c.

3
NH, Al ,
(A) oem”) D (eV)
1.038 3320 210
=2
.
»Q
1.036 33004 2,05 \ s
/ o]
E:
=]
1034 3280 200
1034 220
3320
o
z
EES
10324 2.154 e
3300 20
T
1030 210
1030 220
3360 -
898
1.028 2.15 ff@g
33404 eisE3
9 »n
1026 210
10309 220
3360 5n g
2154 roE
- o &30
1.028 23>
33404 8a
2.10
1032
2254
33404 o3
~N 4
10304 Qkg
33204 2204 A
1.028
T T T
0 max 0 Onax 0 Ornax

Figure 6.11 Spectroscopic constants for the A °IT state of NH obtained using
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Figure 6.12 Spectroscopic constants for the X *I1 state of OH obtained using
different methods with various values-of the shift parameter c.
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Figure 6.13 Spectroscopic constants for the A X" state of OH obtained using
different methods with various values of the shift parameter c.
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Figure 6.14 Spectroscopic constants for the X 'L* state of HF obtained using
different methods with various values-of the shift parameter c.
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Figure 6.15 Spectroscopic constants for the X 'EZ* state of BF obtained using
different methods with various values of the shift parameter c.
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Figure 6.16 Spectroscopic comstants for the A 'TI ‘state of BF obtained using
different methods with various values-of the shift parameter c.
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Figure 6.17 Spectroscopic constants for the a’Il state of BF obtained using
different methods with various values of the shift parameter c.
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Figure 6.18 Spectroscopic constants for the A *I1 state of CN obtained using
different methods with various values-of the shift parameter c.
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Figure 6.19 Spectroscopic constants for the X 'E* state of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.20 Spectroscopic constants for the D'A state of CO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.21 Spectroscopic constants for the A 'TI state of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.22 Spectroscopic. constants- for the I'T §tate of CO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.23 Spectroscopic constants for the a'*X’ state of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.24 Spectroscopic. constants  for the d’A state of CO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.25 Spectroscopic constants for the @ I state of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.26 Spectroscopic constants for the € °Y" Cstate of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.27 Spectroscopic constants for the °IT (1) state of CO obtained using
different methods with various values of the shift parameter c.
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Figure 6.28 Spectroscopic constants for the X *II state of FO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.29 Spectroscopic constants for the X °II state of NO obtained using
different methods with various values of the shift parameter c.
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Figure 6.30 Spectroscopic constants for the B *II state of NO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.31 Spectroscopic constants for the *& (1) state of NO obtained using
different methods with various values of the shift parameter c.
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Figure 6.32 Spectroscopic constants for-the a "TI state of NO obtained using
different methods with various values of the shift parameter c.
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Figure 6.33 Spectroscopic constants for the b ‘Y™ state of NO obtained using
different methods with various values of the shift parameter c.
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Figure 6.34 Spectroscopic constants for the B'*A state of NO obtained using
different methods with various values-of the shift parameter c.
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Figure 6.35 Spectroscopic constants for the X 32; state of B, obtained using

different methods with various values of the shift parameter c.
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Figure 6.36 Spectroscopic constants for the X 12;’ state of C, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.37 Spectroscopic constants for the ‘Ag (1) state of C, obtained using

different methods with various values of the shift parameter c.
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Figure 6.38 Spectroscopic' constants for._the 12; (2) state of C, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.39 Spectroscopic constants for the a°IT, state of C, obtained using
different methods with various values of the shift parameter c.
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Figure 6.40 Spectroscopic constants for the b 32; state of C, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.41 Spectroscopic constants for the A 'T1, state of C, obtained using
different methods with various values of the shift parameter c.
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Figure 6.42 Spectroscopic constants- for the c¢’r’ state of C, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.43 Spectroscopic constants for the d °II ., state of C, obtained using

different methods with various values of the shift parameter c.
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Figure 6.44 Spectroscopic constants for the e 3Hg state of C, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.45 Spectroscopic constants for the C 1Hg state of C, obtained using

different methods with various values of the shift parameter c.
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Figure 6.46 Spectroscopic constants for the X 12;’ state of N, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.47 Spectroscopic constants for the A X’ state of N, obtained using
different methods with various values of the shift parameter c.
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Figure 6.48 Spectroscopic constants-for the W *A = state of N, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.49 Spectroscopic constants for the B 3Hg state of N, obtained using

different methods with various values of the shift parameter c.
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Figure 6.50 Spectroscopic constants for the B'’r " state of N, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.51 Spectroscopic constants for the a''y; state of N obtained using
different methods with various values of the shift parameter c.
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Figure 6.52 Spectroscopic constants for the w 'A = state of N, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.53 Spectroscopic constants for the a lHg state of N, obtained using

different methods with various values of the shift parameter c.
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Figure 6.54 Spectroscopic constants-for the C °I1, state of N, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.55 Spectroscopic constants for the X 32; state of O, obtained using

different methods with various values of the shift parameter c.
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Figure 6.56 Spectroscopic constants for the a'A . Obtained using different

methods with various-values of the shift parameter c.
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Figure 6.57 Spectroscopic constants for the b IZ; state of O, obtained using

different methods with various values of the shift parameter c.
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Figure 6.58 Spectroscopic constants for the ¢ 'y, state of O, obtained using
different methods with various values of the shift parameter c.
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Figure 6.59 Spectroscopic constants for the A'’A, state of O, obtained using
different methods with various values of the shift parameter c.
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Figure 6.60 Spectroscopic constants for the A °*r’ state of O, obtained using
different methods with various values-of the shift parameter c.
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Figure 6.61 Spectroscopic constants for the X IZ; state of F, obtained using

different methods with various values of the shift parameter c.
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Figure 6.62 Spectroscopic' constants for_the IZ; (1) state of F, obtained using

different methods with various values-of the shift parameter c.
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Figure 6.63 Spectroscopic constants for the ‘Hg (1) state of F, obtained using

different methods with various values of the shift parameter c.
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Figure 6.64 Spectroscopic constants—for the 'IT (1) state of F, obtained using
different methods with various values of the shift parameter c.
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Figure 6.65 Spectroscopic constants for the *I1, (1) state of F, obtained using
different methods with various values of the shift parameter c.
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Figure 6.66 Distribution of changes-in R. induced by changing the intruder state
removal parameter within whole studied shift values.
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Figure 6.67 Distribution of changes in R. induced by changing the intruder state
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65.
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Figure 6.68 Distribution of changes in @. induced by changing the intruder state
removal parameter within ‘whole studied range of the shift values.
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Figure 6.69 Distribution of changes in @, induced by changing the intruder state
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65.
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Figure 6.70 Distribution of changes-in D. induced by changing the intruder state
removal parameter within whole studied range of the shift values.
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Figure 6.71 Distribution of changes in D. induced by changing the intruder state
removal parameter ignoring the region of yellow boxes in Figures 6.1-6.65.
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Figure 6.72 Mean absolute deviation from the experiment for R, obtained with
CASPT2/MOLPRO method.
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Figure 6.73 Mean absolute deviation from the experiment for R. obtained with
MCQDPT/GAMESS method.
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Figure 6.74 Mean absolute deviation from the experiment for R, obtained with
IPEA-CASPT2/MOLCAS method.
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Figure 6.75 Mean absolute deviation from the experiment for R. obtained with
CASPT2/MOLCAS method.
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Figure 6.76 Mean absolute deviation from the experiment for R, obtained with
G1-CASPT2/MOLCAS method.
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Figure 6.77 Mean absolute deviation from the experiment for ®. obtained with
CASPT2/MOLPRO method.
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Figure 6.78 Mean absolute deviation from the experiment for ®. obtained with
MCQDPT/GAMESS method.
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Figure 6.79 Mean absolute deviation from the experiment for ®. obtained with
IPEA-CASPT2/MOLCAS method.
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Figure 6.80 Mean absolute deviation from the experiment for ®. obtained with
CASPT2/MOLCAS method.
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Figure 6.81 Mean absolute deviation from the experiment for ®. obtained with
G1CASPT2/MOLCAS method.
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Mean absolute deviation from experiment for equilibrium dissociation energies [in eV]
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Figure 6.82 Mean absolute deviation from- the experiment for D. obtained with
CASPT2/MOLPRO method.
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Figure 6.83 Mean absolute deviation from the experiment for D. obtained with
MCQDPT/GAMESS method.
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Figure 6.84 Mean absolute deviation from-the experiment for D. obtained with
IPEA-CASPT2/MOLCAS method.
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Figure 6.85 Mean absolute deviation from the experiment for D. obtained with
CASPT2/MOLCAS method.
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Figure 6.86 Mean absolute deviation from- the experiment for D. obtained with
G1-CASPT2/MOLCAS method.
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Table 1 The low-lying electronic states included in the MRPT calculations and numbers of available experimental data for diatomic
molecules.

Number of experimental data

System  Number of states ~ States o, R, D,
BH 4 X't a’ll AT b’ 2 4 2
CH 3 XTI a's A’A 3 3 3
NH 4 X2 a'A b'TT AT 4 4 4
OH 2 X AL 2 2 2
HF 1 X'zt 1 1 1
BF 3 X'Tt Al a’ll 3 3 3
CN 1 A1 1 1 1
Co 9 X'TH AT I's DA 2% d°A a’ll e’2 °m () 8 8 8
NO 6 X B’ *¢ (1) a' Tl b ‘T B A 5 3 5
FO 1 XTI 1 1 1
B, 1 X%, 1 1 1
C, 10 X'TE'A, (1) 'ER(2) adm, b, A, o’ dUMI, e°TI, CTI, 8 8 8
N, 9 X'EH Azt B, WA, BY, B''L; a''t; a'll, w'A, C°I, 9 8 9
0, 6 X%, a'A, b'E! ¢'z7 ATA, ALY 6 6 6
F, 5 X'z e (1) ', (1) 'm, (1) I, (1) 1 1 1
Total 65 55 54 55




Table 2 Experimental data of the low-lying states for diatomic molecules.

Experimental data

System State
o, [em'* R, [A]' D, [eV]°
BH X'z 2367 1.232 3.524
a Il 1.201
A'Tl 2251 1.219 0.655
b °% 1.227
CH X 11 2859 1.120 3.647
a ‘Y 3145 1.085 2.923
A A 2931 1.102 2.032
NH X %" 3282 1.036 3.671
a'A 3188 1.034 4.497
b 'L 3352 1.036 4.618
ATl 3231 1.037 2.359
OH X 11 3738 0.970 4.621
ALt 3179 1.012 2.527
HF X'zt 4138 0.917 6.110
BF X'zt 1402 1.263 7.957
A'Tl 1324 1.308 4.344
a Tl 1265 1.304 1.614
CN A Tl 1813 1.233 6.549
Co X 'zt 2170 1.128 11.244
A'TI 1518 1.235 3.176
I 'Y 1092 1.391 3.175
D'A 1094 1.399 3.070
a x’ 1229 1.352 4.322
d A 1172 1.370 3.666
a Tl 1743 1.206 5.208
e °Y 1118 1.384 3.280
T (1) S L L
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Table 2 (continued)

Experimental data

System State
o, [em'* R, [A]* D, [eV]’
NO X 11 1904 1.151 6.605
B ’II 1037 1.417 3.296
@ (1) L€ ¢ L€
a ‘Il 1017 ¢ 1.839
b ‘T 1206 ¢ 2.536
B'’A 1217 1.302 1.504
FO X 1 1029 1.326 1.670
B, X%, 1051 1.59 3.102
C, X'y 1855 1.243 6.354
lAg (1) C c c
'TF(2) ¢ ¢
a ’TI, 1641 1.312 6.265
b %, 1470 1.369 5.556
ATl 1608 1.318 5.313
¢ %t 1962 1.230 4703
d I, 1788 1.266 3.871
e I, 1107 1.535 2.556
C'm, 1809 1.255 2.106
N X'z 2359 1.098 9.906
A’x? 1461 1.287 3.681
B I, 1733 1.213 4.898
WA, 1501 ¢ 4.874
B %: 1517 1.278 5.265
a' 'so 1530 1.276 6.223
a ', 1694 1.220 6.083
w A, 1559 1.268 5.734
C’Mi 2047 1.149 1.238
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Table 2 (continued)

Experimental data

System State
o, [em'* R, [A]' D, [eV]°
0, X%, 1580 1.208 5213
a 'A, 1484 1216 4.232
b 'sh 1433 1.227 3.577
¢ %o 794 1.517 1.115
A"A, 850 1.48 0.912
A’xL: 799 1.522 0.825
F, X% 917 1.412 1.661
'z (1)
I, (1)
m, (1) ¢ ¢ ¢
@) ¢ ¢ ¢

* Experimental value, Ref, 27.

b Experimental value, Ref. 28.

¢ No experimental data available.

88



Table 3 Conversion of coefficients from spherical harmonic type to Cartesian type.

Orbital type Cartesian type” Spherical harmonic typeb
S S S
P P P
Py Py
P, P,
D D X - % D, + % D,,
V3
Dy2 -—-D,-—D,,
2
D 22 D 0
D Xy D—z
sz D+1
D yz D—l
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Table 3 (continued)

Orbital type Cartesian type” Spherical harmonic typeb
F E. _£F+1_£F+3
22" 22
Fy3 ——\/5 F, ——\/g F,
22 T 22
F., - 3 F, + 3 F,
210 7 2V2
E. _iFO +£F+2
pNCRR)
ny2 - \/g F,+ > E,
210 7 2V2
Fyzz a E= ﬁ E,
252
szz \/g 1::+l
6
Fyz2 gF—I
nyz F72

—_ 2 -
Cartesian Gaussian type functions g = Nx™y"™z"e™™ with n=n,+ ny +n,

+D(n+2
w atomic orbitals. The correspondence of each

can be combined to
orbital is as follows: n = 0 for S-type, n = 1 for P-type, n = 2 for D-type, etc.
Spherical Gaussian type functions g = = Nr" e (Y™ +£Y"™) present 2l + 1 real

atomic orbitals formed from the linear combinations of spherical harmonic
functions. The correspondence of each orbital as follow: 1 =0 for S-type, 1 = 1 for

P-type, 1 =2 for D-type, etc.
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Appendix A

Theoretical Study of p-Nitroaniline
for the Infrared Spectra of Ground
State and the Lowest Triplet State

A.1 Introduction

In Appendix A, the main objective is to provide a theoretical interpretation of the
experimentally observed infrared spectra (IR) of p-nitroaniline (PNA), dissolved in
CD3CN. We are mainly interested in.two electronic states of PNA, its singlet ground
state, Sp and the lowest excited triplet state, T;. A Simulation of IR spectrum in a
liquid solution requires a time-dependent investigation of dynamics of an ensemble of
PNA/CD3;CN molecules at some finite temperature. Namely, obtaining the IR
spectrum consists of running a molecular dynamics trajectory for such an ensemble
followed by a Fourier transformation of the resulting dipole moment autocorrelation
function. Unfortunately, the development of computational methods does not provide
us with a technique, which is feasible and applicable for our systems, in particular for

excited states. For this reason, we employed traditional, time-independent methods to
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interpret the IR spectra of the PNA. Here, we used DFT calculation with the B3LYP

exchange correlation functional*>*!

to optimize structures of the PNA and to
simulate the IR spectra in a harmonic approximation.

We attempted to provide the IR spectra from gas-phase calculations for PNA and
from analogous polarizable continuum model (PCM) calculations® but the results
were unsatisfactory. Fortunately, we found a different line of approach, which is using

explicitly solvated models™ to acquire a good agreement with the experimental

results for Sp and T; of PNA.

A.2 Computational Details

Usually, IR spectra ‘of molecules in liquid phase is interpreted by use of the
calculation of a bare, gas-phase molecule, assuming that there is no sharp difference
between the gas-phase and solvated system.spectra. Here, we investigated the singlet
ground state of PNA and compared the result with accurate experimental data. After
finding a molecular model that was able to reproduce the observed ground-state
spectrum of PNA in a satisfactory manner, we have proceeded to interpretation of the
triplet-state IR spectrum of PNA.

All the calculations, including geometry optimization, frequency calculations
with IR intensity determination, and the PCM calculation with dielectric constant
(here £¢=37.5 for CD;CN) were performed using the DFT/B3LYP/cc-pVTZ

computational strategy as implemented in the Gaussian 09 program. It was found that
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slight elongation of the optimized C—NH; bond in the explicitly solvated model leads
to substantial improvement in the simulated spectra. The remaining geometrical
parameters were reoptimized with keeping the C—NH, bond distance constant. The
following calculations of vibrational frequencies and IR intensities were fund almost
sensitive to this procedure. The simulated IR spectra were plotted by MOLDEN
program with a half-width of 8 cm™". Due to the lack of harmonicity, we uniformly

scaled the vibrational frequencies by a constant factor of 0.972.

A.3 Results and Discussion

A.3.1 Failure of Simulated Gas-phase and PCM IR Spectra for
Singlet Ground State of PNA

The So experimental IR spectrum of PNA-dissolved in CD3;CN (see Figure A.1a)
shows four major bands, located around 1320, 1500, 1600, and 1630 cm™. According
to theoretical calculations, these bands are dominated by the symmetric NO, stretch,
antisymmetric NO, stretch, and two combinations of the NH, scissoring motion with
the phenyl ring stretch, respectively. The most characteristic of these peaks is the
symmetric NO; stretch with a doublet of peaks centered around 1320 cm™.

The simulated gas-phase B3LYP IR spectrum of So PNA (see Figure A.1b) is in
apparent contrast with the experimental results. First of all, the spectral window

between 1250 and 1350 cm™ displays two, well-separated strong bands with reversed
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intensity pattern. Other major bands between 1450 and 1650 cm™ are distinct from

the experiment.

(a) Exp.
(b) PNA/B3LYP
E
]
% | (c) PNA/B3LYP/PCM
2
S
B
= | (d) PNA+2ACN/B3LYP
E
Z
=

() PNA+2ACN/B3LYP (*)

(f) PNA+6ACN/B3LYP

1700 1600 1500 1400 1300 1200
Wavenumber (cm™)

Figure A.1 Experimental and computational IR spectra for singlet ground state of
PNA. The asterisk symbol indicates the spectra obtained from the PNA+2ACN with
the elongation of C—NH, model.

These unsatisfactory results are probably attributed to ignoring the solvation of PNA
by CD3;CN. We have taken into account the solvent effects by combing polarizable

continuum model (PCM) with DFT calculation. The simulated B3LYP/PCM IR
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spectrum (see Figure A.lc) does not give any improvement over the gas-phase
calculations because of the two following reasons. One is that the resulting spectrum
still displays only a single peak corresponding to the doublet at 1320 cm™'. The other
is that the intensities of observable bands between 1400 and 1650 cm™ are relatively

weak and mismatch the experiment.

A.3.2 Simulated IR Spectra of Sy PNA Using Explicitly Solvated
Models

Fortunately, there is a'way_to_consider the solvent effect by employing an
explicitly solvated model of PNA, in which two CD3CN molecules (see Figure A.2b)
are hydrogen-bonded to the NH, group: The resulting spectrum (see Figure A.1d)
displays very good agreement with the experimental data except for the missing hump
in the 1320 cm™ band. We have considered.a-multitude of various explicitly solvated
models containing one to six CD3CN molecules (see Figure A.2c) attached either to
the NH; group, the NO; group, or aligned along the ring. It has been found that all the
resulting spectra are quite similar with a strong single band between 1300 and
1400 cm™ and reasonable agreement with experiment in the 1600—1700 cm™ region.
For explicitly solvated models with four or more solvent molecules, two split bands

around 1500 cm™ does not model the experimentally observed pattern.
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Figure A.2 Schematic geometries of the explicitly solvated models.

A.3.3 Slight Elongation of the Explicitly Solvated Models for

Improving Simulated IR Spectrum of S, PNA

In this study, we observe that some of the explicitly solvated models with only

one CD3;CN attached to the NH; group (see Figure A.2a), show a doublet of bands at

around 1320 cm™'. However, the equilibrium geometries of this model are not quite
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different from the other explicitly solvated models. We observed that one missing
peak of doublet of bands is mainly concerned about the vibrational motion of the
NH, group. We have anticipated the small variations of the equilibrium geometry
with the NH, group can have quite substantial influence on the simulated spectra.
Investigating various out-of-plane NH, group motions and elongation/contraction of
the C-NH,, we have found a dramatic change in the spectrum with the variation of the
C-NH, distance. Slight elongation (0.012 A) of the C—NH, bond from its equilibrium
length (1.352 A) produces a hump on the single band at 1300 cm™ and gives a perfect
agreement between this simulated spectrum (see Figure A.le) and the experimental
result. The largest change.in the elongated PNA vibrational frequencies in this
simulated IR spectrum is only .15 cm .

We also investigated simulated <~ and experimental IR spectra of
isotope-substituted PNA (PNA-""NH, and PNA-""NO5), which provided additional
verification. In the experimental spectra.of-the PNA-"NH, (see Figure A.3c), the
isotope effect caused a reparation of the doublet of bands at around 1320 cm™ into
two peaks with a distinct spacing and similar intensities. Our simulated spectrum of
the PNA-""NH,+2ACN model (see dotted line, Figure A.3d) shows only a single peak
at this region but the other strong peak is recovered after elongating the bond length in
the same way as described above (see solid line, Figure A.3d). On the other side, the
experimental spectrum of the PNA-"NO, (see dotted line, Figure A.3e) shows a
red-shifted, single band at 1300 cm™! and three weak bands between 1420 and 1520

cm™'. Both the simulated spectra of the PNA-""NO,+2ACN model (see solid line,

97



Figure A.3e) with and without elongation of C-NH, can predict the isotope

substitution correctly.

(@Exp.P8NA | 1 PNA+2ACN & (b)
— PNA+2ACN (¥) i

E | @BprNatNg, [ ] PNA-UNH#2ACN | @
ﬁ — PNA-"NH,#2ACN(*)
z
8
g
B
(&)Exp.PNA-NO, | | |- PNA-'"NO,+2ACN ®

— PNA-"NO,+2ACN (¥)

1700 1600 1500 1400 1300 1200 1700 1600 1500 1400 1300 1200

Wavenumber (cm™)

Figure A.3 Experimental and computational IR spectra for singlet ground state of
PNA and isotope-substituted PNA. The.IR-spectra obtained from PNA+2ACN
(dotted line) and PNA+2ACN with the 'elongation of C—NH; (solid line) models.

As mentioned above, the IR spectra of the explicitly solvated PNA model give
good agreement with the experiment of PNA and its isotopomers. The applied
elongation is small when compared with a typical error (0.01 A) of DFT calculation.
In addition, the bond lengths of the C—NH, in the explicitly solvated models are able
to vary from 1.343 to 1.375 A depending on the number and location of the solvent
molecules. It is reasonable that the elongated length of the C—-NH, bond (1.364 A)

falls in this range. Taking into account anharmonicity, we can expect that the averaged
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distance in a real system is usually slightly larger than the equilibrium distance in
theoretical calculation. Employing the slight bond elongation proves to be useful for

describing IR spectrum of the real systems.

A.3.4 Simulated Spectrum for the Lowest Triplet Excited State of
PNA

The use of the explicitly solvated models with elongation of C—-NH; model has
been successful for simulating the IR spectrum of the So PNA. We are able to employ
the resulting model also for interpretation in/the lowest triplet of PNA. It is important
to note that the experimental spectrum of T PNA (see Figure A.4a) was produced by
compensating the depletion regions in the difference spectra by using the Sy signal.
Three obvious bands in the T; spectrum are located ‘at around 1250, 1480, and
1610 cm™. Our simulated spectrum of the explicitly solvated model (see Figure A.4e)
can reproduce three similar bands at 1232, 1453, and 1625 cm_l, respectively.
According to the theoretical calculations, the characteristics of these three bands is as
follow. The band at 1232 cm™ corresponds predominantly to the antisymmetric NO,
stretch. The band at 1453 cm™ has quite complicated character and is a mixture of the
in-plane C—H wagging and the C-NH, and C-NO; stretches. The band at 1625 cm™
originates from a mixture of the NH, scissoring motion and phenyl ring stretch; the
analogous band appears in the IR spectrum of the Sy PNA at 1650 cm™. In addition,

the simulated spectrum displays good agreement with experiment in the region
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around 1300 cm™'. These bands resemble analogous bands in the S, spectrum. We
also reported the T, spectra of the isotope-substituted PNA shown in Figure A.5 for
explaining the isotope effect of these bands. However, the unequivocal confirmation
of the presence of these signals depends on the validity of the compensation

procedure as this region is strongly influenced by the signals from the singlet of PNA.

(a) Exp.

I N

(b) PNA/B3LYP

N

(c) PNA/B3LYP/PCM

N A A

(d) PNA+2ACN/B3LYP

N AN

() PNA+2ACN/B3LYP (*)

w

(f) PNA+6ACN/B3LYP

JU\J\JA_/\

1700 1600 1500 1400 1300 1200

Wavenumber (cm™)

IR Normalized Intensity (Arb. unit)

Figure A.4 Experimental and computational IR spectra for the lowest excited triplet
state of PNA. The asterisk symbol indicates the spectra obtained from the
PNA+2ACN with the elongation of C—NH; model.
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Figure A.5 Experimental and computational IR spectra for the lowest triplet state of
PNA and isotope-substituted PNA. The IR spectra obtained from PNA+2ACN
(dotted line) and PNA+2ACN with the elongation of C—-NH; (solid line) models.

A.4 Conclusion

Since the gas-phase and PCM model calculations were not adequate to describe
simulated IR spectra of PNA, we employed explicitly solvated models representing
the system in liquid phase. The explicitly solvated models displayed remarkable
success in reproducing the spectra of both singlet and triplet PNA. It was shown that
the non-equilibrium geometry plays a significant role in the simulated accurate
spectra. On the other side, employing too many explicit solvent molecules makes the

system huge and distorts the geometry of the molecule to a degree, which probably

101



cannot represent the studied system. The result shows that attaching a few solvents

to a molecule is enough to obtain a satisfactory result. Consequently, the use of the

explicitly solvated models provides a more intuitive approach for taking into account

the solvent effect, and predicts the IR spectra of the PNA correctly.

References

[1]

(2]
[3]
[4]
[5]

[6]
[7]

(8]

K. Andersson, P. Ax Malmgvist, B. O. Roos, A. J.-Sadlej and K. Wolinski,
Journal of Physical'Chemistry 1990, 94, 5483-5488.

P. Celani and H. J. Werner, The Journal of Chemical Physics 2000, 112, 5546.
K. Hirao, Chemical Physics'Letters 1992, 196, 397-403.

H. Nakano, The Journal of Chemical Physics 1993, 99, 7983.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J. P. Malrieu, The
Journal of Chemical Physics 2001, 114, 10252.

B. O. Roos and K. Andersson, Chemical Physics Letters 1995, 245, 215-223.
N. Forsberg and P. A. Malmqvist, Chemical Physics Letters 1997, 274,
196-204.

H. A. Witek, Y. K. Choe, J. P. Finley and K. Hirao, Journal of Computational

Chemistry 2002, 23, 957-965.

102



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Camacho, H. A. Witek and S. Yamamoto, Journal of Computational
Chemistry 2009, 30, 468-478.

J. M. Matxain, E. Rezabal, X. Lopez, J. M. Ugalde and L. Gagliardi, The
Journal of Chemical Physics 2008, 128, 194315.

C. Camacho, R. Cimiraglia and H. A. Witek, Physical Chemistry Chemical
Physics 2010, 12, 5058-5060.

A. Szabo and N. S. Ostulund, Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory 1996.

L. N. Levine, Quantum Chemistry, 2008.

E Jensen, Introduction to Computational Chemistry, 2006.

P. Atkins and R. Friedman, Molecular Quantum Mechanics, 2005.

R. Pauncz, The Symmetric Group in Quantum Chemistry, 1995.

B. O. Roos, P. R. Taylor and P. E M. Siegbahn, Chemical Physics 1980, 48,
157-173.

K. Andersson, Theoretical Chemistry Accounts: Theory, Computation, and
Modeling (Theoretica Chimica Acta) 1995, 91, 31-46.

G. Ghigo, B. O. Roos and P. A. Malmqvist, Chemical Physics Letters 2004, 396,
142-149.

H. J. Werner and P. J. Knowles, The Journal of Chemical Physics 1985, 82,
5053.

P. J. Knowles and H. J. Werner, Chemical Physics Letters 1985, 115, 259-267.
B. O. Roos, K. Andersson, M. P. Fulscher, L. Serrano-Andres, K. Pierloot, M.

Merchan and V. Molina, Journal of Molecular Structure: THEOCHEM 1996,

103



[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

388, 257-276.

M. Schreiber and L. Gonzalez, Chemical Physics Letters 2007, 435, 136-141.
S. Shirai, S. Iwata, T. Tani and S. Inagaki, The Journal of Physical Chemistry A
2011, 115, 7687-7699.

S. Perun, A. L. Sobolewski and W. Domcke, Journal of the American Chemical
Society 2005, 127, 6257-6265.

W. Zou and W. Liu, The Journal of Chemical Physics 2006, 124, 154312.

I. K.P. Huber and G. Herzberg (data prepared by J.W. Gallagher and R.D.
Johnson in "Constants of Diatomic Molecules" in NIST Chemistry WebBook,
NIST Standard Reference Database Number 69, .Eds. P.J. Linstrom and W.G.
Mallard, National Institute of -Standards and Technology, Gaithersburg MD,

20899, hitp.//webbook.nist.gov, (retrieved August 24, 2011 ).

B. d. Darwent, Bond Dissociation Energy in Simple Molecules, 1970.

A. D. Becke, Chem. Phys 1993, 98, 5648-5652:

C. Lee, W. Yang and R. G. Parr, Physical Review B 1988, 37, 785.

B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chemical Physics Letters 1989,
157, 200-206.

J. Tomasi, B. Mennucci and R. Cammi, Chemical reviews 2005, 105,
2999-3094.

S. Shigeto, H. Hiramatsu and H. Hamaguchi, The Journal of Physical

Chemistry A 2006, 110, 3738-3743.

104



