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Abstract

A convenient pre-activation DMF-modulating glycosylation method
is developed. The method employs DMF as a modulator to convert the
highly reactive oxocarbenium ion to less reactive glycosyl imidate;
subsequent coupling of the imidate with an acceptor leads to the
formation of glycosylation product. In addition, there is a
quantity-selectivity relationship between the amount of DMF modulator
and the degree of a-selectivity in glycosylation. High to excellent 1,2-cis
and 1,2-trans a-selectivities are achieved by this simple method without
invoking any atypical protecting functions.

Regarding the reaction.mechanism, VT-NMR study is performed,
which clearly identifies, the —a-glycosyl ‘imidate by detection of
characteristic signals deriving from the 1midate function. In addition,
glycosyl formate deriving from the side reaction of the glycosyl donor is
also observed on some occasions..Based on such evidence, a possible
mechanism is proposed. The interception of oxocarbenium ions with
DMF generates a mixture of a/B-glycosyl iminium ions. Empirically, the
B-iminium intermediate is more reactive than the a one and is able to
react predominantly with the alcohol acceptor through a Sy2-like pathway

leading to 1,2-cis a-glycosidic bond formation.
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Abbreviations

Ac
Ac,O
All
AgOTf
Bn

Bu

Bz
DMF
DMA
Et
Fmoc
Fuc
Gal
Glc
HMPA

Man

MS
NIS
Nu
Ph
Phth
Rha

Acetyl

Acetic anhydride
Allyl

Silver trifluoromethanesulfonate

Benzyl

Butyl

Benzoyl
N,N-dimethylformamide
N;N-dimethylacetamide
Ethyl
Fluorenylmethyloxycarbonyl
Fucose

Galactose

Glucose

Hexamethyl phosphoramide
Mannose

Methyl

Molecular sieve
N-iodosuccinimide
Nucleophile

Phenyl

Phthalate

Rhamnose



TMSOTTf Trimethylsilyl

trifluoromethanesulfonate

T1,0 Trifluoromethanesulfonic
anhydride

TsOH p-toluenesulfonic acid

TEA Triethylamine

TES Triethylsilane

TFA Trifluoroacetic acid

THF Tetrahydrofuran

2-Nap 2-naphthylmethyl
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1. Introduction of a-stereoselective O-glycosylation
1.1 Oligosaccharides

Glycoconjugates are ubiquitous components of all living organisms.
They play an important role in different biological activities, for
examples, viral infection, cellular trafficking, cell proliferation,
differentiation, cell apoptosis and immune response etc.' Most of these

activities are closely associated with carbohydrate-protein interactions

(Figure 1.).
g S —
SR o S N 2
L )) N ;3 R U
*JU& . e _.'qj’
-~ At ‘ _‘!..'H*“"”
'H‘&.Hz"t ~ - L B \

Figure 1. Participation of cell.surface carbohydrates in recognition events

with another cell (A), toxins (B), viruses (C), antibodies (D) and bacteria

(E)

Some cancer diseases, one of the leading causes of mortality in many
countries are closely associated with glycoconjugates. Scientists have
found that particular oligosaccharide conjugates are over-expressed by
cancer cell, such as Globo-H in breast cancer,”’ Gb; in Burkitt
lymphoma,® GM, in lung cancer,” etc. Accordingly, development of
synthetic carbohydrate vaccines to cure the cancer disease draws
particular interest of scientists. Moreover, other applications of
oligosaccharide conjugates include the preparation of bioconjugated

hybrid materials, which is used for neutralization of antibody to alleviate

1



the immune response in organ transplant rejection.’

In order to study the biological function of the natural
oligosaccharides, researchers needs sufficient quantity of biological
relevant oligosaccharide structures in high purity and homogeneity.
However, extraction of glycoconjugates from natural resources is
inefficient and tedious, and they are unable to fulfill the above
requirements; as such, chemical synthesis of oligosaccharides provides

access to meet these demands.

The chemistry in oligosaccharide synthesis involved protecting group
manipulation and glycosidic bond formations. Protecting group
manipulation is always « time-consuming and tedious, but the
regioselectivity and stereoselectivity in . glycosidic bond formations
remain challenging. = For  example, any.  pair of six-carbon
monosaccharides can be coupling in 11 different ways (Figure 2.).
Regioselective glycosylation. of a-particular hydroxyl functions can be
achieved by one-pot regioselective protection strategy.” However,
selective formation of a- and B-glycosidic bonds is the main theme in

glycosylation studies.

In recent decades, advances in synthetic methodologies have been
achieved in construction of complex oligosaccharides. A number of
synthetic strategies have emergred, which include the advances in
traditional solution-phase glycosylations, and solid-phase synthesis.
Among these advancements, we herein discuss three classes
glycosylation chemistries that are widely used in contemporary

carbohydrate chemistry. Some of them are elaborated to one-pot

2



oligosaccharide synthesis that significantly streamlines the traditional

coupling processes.

oH OH
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Figure 2. Possible linkages between two identical monosaccharides

1.2 Glycosylation strategies

The three classes of glycosylation chemistry to achieve the
glycosylation coupling of saccharide units are the orthogonal,
chemoselective and pre-activated iterative glycosylations. They have both
advantages and disadvantages. Followings outline the key features of

these strategies.



1.2.1 Orthogonal glycosylations

The difference in reactivity between glycosyl substrates was obtained
by using various types of anomeric leaving groups. As such, by varying
the promoter, a glycosyl donor e.g. bromide, trichloroacetimidate or
thioglycosides, can be selectively activated by judicious use of
appropriate promoters, which can then be coupled with a glycosyl
acceptor and the anomeric function at the acceptor remains untouched.
The advantage of an orthogonal strategy is that this strategy allows the
condensation of building blocks, independent of their relative reactivity.
However, the excessive synthetic work required to obtain building blocks
with orthogonal anomeric functions complicates the scheme and therefore

decreases the overall efficiency (Figure 3).

NO
o 0
PEOTS—= S Y

—~O0 —~0
PgO/NX ' HO =\ Y
promoters for X

Pg = hydroxyl protecting group; Xand'Y_are orthogonal anomeric leaving functions

Figure 3. Concept of orthogonal glycosylation strategy

1.2.2 Chemoselective glycosylation strategy

In the chemoselective strategy, different protecting groups are
employed to create a reactivity profile for glycosyl substrates. In general,
the anomeric leaving groups become more nucleophilic by
electron-donating protecting functions (an armed condition) and less
nucleophilic by electron-withdrawing groups (a disarmed condition).
Highly nucleophilic leaving group is more reactive toward electrophilic

activation, while weakly nucleophilic leaving group is less reactive
4



toward electrophilic activation (Figure 4). Hans Paulsen firstly
documented the viability of this so-called armed-disarmed concept® and
later realized by Fraser-Reid et al.” Further studies by Ley and Wong
translate this qualitative concept into quantitative reactivity-based
glycosylations.'*Besides protective groups manipulations at the multiple
hydroxyl functions, other variables such as the nature of the anomeric
leaving groups or the effect of the solvent on the donors’ reactivity can
be also exploited to facilitate efficient oligosaccharide one-pot synthesis.

Comparison with the orthogonal glycosylations, an apparent
advantage of chemoselective glycosylations is that only one type of
anomeric leaving group is required. However, such an advantage is
partly compromised by the requirement to creating a reactivity
difference for the glycosyl substrates concerned, which, as a

consequence, invokes additional synthetic steps.

PgO ==X  +  HO &=\ —X
OP92
(reactive) (less reactive)

No

e 0
Pg10 O —\_X
promoters for X OPg,

Pg4 and Pgs represent hydroxyl protecting groups of
different electronic feature

X= anomeric leaving group

Figure 4. Concept of chemoselective glycosylation strategy

1.2.3 Pre-activated Iterative Glycosylations
The most straightforward way to assemble an oligosaccharide would
be to use the same set of anomeric function, and be independent of the

substituent pattern of the coupling partners. The pre-activation strategy
5



is certain to be a good choice.

This strategy combines the advantage of both reactivity-based
(activation under only one set of glycosylation condition) and
orthogonal strategy (independent of reactivity).

In the absence of acceptor, the glycosyl donors is pre-activated,
which generates a reactive intermediate. After addition of acceptor to
the pre-activated donor, a disaccharide is formed which can be activated
in the same way. The process can be repeated several times in the same

flask until the desired oligosaccharide is obtained (Figure 5).

No
Ho/‘,\yx
——~0 activator 0 92 —-O0 —O0
92

Pg4 and Pg, represent hydroxyl protecting groups of
different electronic feature

X="anomeric leaving group

Figure 5. Concept of pre-activation strategy

However, some requisites need to be fulfilled to have an efficient
reaction'' : (i) the promoter utilized should be stoichiometric in
activation of a wide range of glycosyl donors in order to prevent further
activation of the following building blocks; (ii) the intermediate
generated after pre-activation must be sufficiently stable until the
addition of acceptor but reactive enough for a high-yielding coupling;
(111) side products formed during the reaction should not interfere with
the glycosylation process.

In 2003, Van der Marel and co-workers reported a new glycosylation

6



procedure in which the Ph,SO/Tf,O-mediated dehydrative condensation
of 1-hydroxyl donors with thioglycosides affords in good yield the
thiodisaccharides, which in turn can be activated by the same activator
system to furnish trisaccharides (Scheme 1). The a-Gal epitope and a
hyaluronan trisaccharide were efficiently assembled in a one-pot

12
procedure.

(RO) s OH —o0 T RO 5T 0N
HO =\ SR oS (OR),  (OR),
(OR)n (OR),

Scheme 1. Sequential One-Pot Glycosylations using 1-Hydroxyl and

1-Thiodonors

Pre-activation of thioglycosides was first reported by Crich et al."”> '

They try to get highly reactive a-mannosyl triflate by pre-activating
thioglycosides. The o-mannosyl triflate could undergo Sn2-type
substitution, leading to the formation of the challenging (3-mannosidic
bond. In 2004, for the first time Huang and co-workers established the
concept of iterative one-pot synthesis of oligosaccharides based on the
pre-activation strategy."” p-TolSCl-AgOTf was used as a promoter in the
iterative one-pot synthesis of trisaccharide (Scheme 2).

Pre-activation of disarmed galactoside using a stoichiometric amount
of p-TolSOTT (formed in situ from p-TolSCI and AgOTf) was followed
by addition of the more armed glucosamine. After the reaction was
completed, the intermediate disaccharide was pre-activated using the
same activator. Subsequent addition of the mannoside led to the

formation of trisaccharide in 54% yield.
7



OBn
BnO— OH

0
HO
STol BnO 0
B Phth (0.9 ToISCI “Bno (1.1)
TolSCI 09 (0.9)
0BzOBz OPentyl OBzOBz OBn
0 | | 9 o
BzO STol BzO O
OBz (1) | 5 min | 15 min [15 min| 5min | 5min |15 min | oBENO S
-60°C RT -60°C RT BnO
AgOTF (3) BnO 0

BnO

54% OPentyl

Scheme 2 One-pot synthesis of trisaccharide. The values given in

parentheses denote the number of equivalents of each reagent.

Compare with the traditional reactivity-based strategy, this approach
is a significantly improved strategy. This approach has also been applied
to the assembly of chitotetroses'®, Globo-H'’ and hyaluronic acid
oligosaccharides'®; the results are satisfactory.

Though the above: glycosylation chemistries are effective for
1,2-trans B-glycosidic™- bond = formation, .in many cases, poor
a-stereoselectivity of glycosidic—-bond formation hampers the
efficiency of the glycosylation method. In general, neighboring group
participation by C-2 esters will often give 1,2-trans f-glycosides,
while there is no general solution for 1,2-cis a-glycosidic bond
formations. In the past, some elegant approaches address this synthetic
problem. We are going to introduce some of the representation works in

this regard (Figure 6).



1.3 The method of 1,2-cis O-Glycosylation

Addatives
—O
RO Q® /S
PO OR ) \
: k
.0 1,2-cis glycoside ©
H 0.

H R

neighboring group participation Solvent ef fect

o

S|~

Tl

Protecting group

Figure 6. Factors influencing the stereoselectivity of glycosylation

1.3.1 Lemieux’s in situzanomerization strategy
In 1975, Lemieux first introduced ‘the concept of in situ
anomerization, so-called “halide ion-catalyzed glycosylation reactions”
(Scheme 3). It was documented that a rapid equilibrium could be
established between relatively stable a-glycosyl halides and the more
reactive B-glycosyl halides by tetrabutyl ammonium bromide (BuyNBr).
The energy barrier for the attack of glycosyl acceptor with B-glycosyl
halide to give cis-glycoside 1is lower than the corresponding
trans-formation of o-glycosyl halides into ¢rans-glycosides. The
formation of cis-glycosides is preferred. To date, this method provides
by far better a a-selectivity in glycosylations for D-glucose, D-galactose,
and L-fucose substrates. It has proven to be applicable for the synthesis
of complex oligosaccharides especially. '
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—~0 BusNBr =0 ROH =0
BnO/\/ﬂ BnO~s—%=-Br BnO~~
BnO Br BnO BnO OR
o-anomer

Scheme 3 Lemieux in sifu anomerization for 1,2-cis-glycoside formation

1.3.2 a-selective glycosylation by neighboring group participation

The formation of 1,2-cis-glycosides can be also controlled by the
certain participating groups. Boons and co-workers have developed a
novel general method for the formation of 1,2-cis glycosides by utilizing
the (15)-phenyl-2-(phenylsulfanylethyl group at the C-2 position™. The
participating group of the chiral auxiliary gives a quasi-stable anomeric
sulfonium ion formed as a trans-decalin ring system due to steric and
electronic factors. Thus, acceptors could only. attack the sulfonium ion

intermediate from the bottom face to give a-glycosides (Scheme 4).

NO
RO\ LG
O

Pht-

B ——

Nu
S-configuration
NO
S RO/\/ﬁ
A H. Onu*

Ph

+
RO Q
promoters \e
° )
a4
Nu

RO" “Nu* RO

o@ ‘/ﬁ
Ph ohi ,@R'

HO-R' Nu

Scheme 4 Concept of the glycosylation with C-2-S-auxiliary glycosyl
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donor

1.3.3 Solvent influence in a-selective glycosylation

Another important factor which influences the stereoselectivity of
glycosylations is the type of solvent used. If the formation of
a-glycosides is desired, the ether type solvents such as diethyl ether
(Et,0), THF and 1,4-dioxane are the suitable choice (Scheme 5).>' The
solvent molecules coordinate with oxocarbenium ions to preferentially
occupy at the B-face. Therefore, the attack of the acceptor is restricted to
the a-face, leading toward axial glycosidic bond formation. Nitroethane

was also employed as a suitable:solvent for 1,2-cis glycosylation. *

® Et,O
) 2 O/~ o)
3 Wo —_—
R O
o)
/C)/
H

Scheme 5 Ether-type solvents induce a-selective glycosylation

1.3.4 a-selective O-glycosylation by additives
Moreover, additives also significantly influence the stereoselectivity.
Bogusiak et al. reported the selective 1,2-cis glycofuranoside synthesis is
improved by the addition of a catalytic amount of hexamethyl

phosphoramide (HMPA) as an additive.”

Few years later, Crich and his coworker have shown that the
challenging a-sialylation can be performed by using diphenyl sulfoxide
(Ph,SO) and trifluoromethanesulfonic anhydride (Tf,0).** The excess

amount of diphenyl sulfoxide is shown to play an important role in
11



couplings and to suppress the formation of elimination product (Scheme
6). They demonstrated that the diphenyl sulfoxide is not only a promoter
in glycosylation but it also traps the first-formed oxocarbenium ions.
They also investigated the use of a series of sulfoxides in place of

diphenyl sulfoxide (Table 1).

AcO OAc SPh OTf
Ph,SO, Tf,0 %a’ o _% 0L _-CO,Me
Ac,N--"75Q7 ~COMe Ac,N COMe =—= ACZN\W—O_H
AcO  Oac AcO AcO
Ph,SO - Ph _

|
o’S\Ph CO,Me Ph Ph,O = (I)
P— ’ +
_ ! ot
; peNAZ507CoMe T poniLre7 oS,
AcO AcO

A 12=15:1 &

R-OH

K CO,Me OR
- R
AczNw N * ANCLZQ7 COMe
AcO a-sialoside AcO B-sialoside

Scheme 7 Glycosylation of‘a phenyl-thiosialoside donor with diphenyl
sulfoxide (Ph,0) and triflic anhydride (T1,0).

Table 1. The effective of additives and sulfoxides

AcO  OAc SPh 1. activator (3 equiv), AcQ  OAc CO,Me
TTBP (2 equiv), Tf,0 (1.1 equiv)
Ac,N-: 0] CO,Me : : Ac,N.: O O
AcO  CAc 2. isopropanol (2 equiv) AcO GgAc
Solvent % yield”
Entry Activator .
(temp) (o:p)
Q
1 8. CH,Cly(-60) 82%
Ph Ph

12



(2.2:1)

0 89%
2 /g\ CHQClz/CH3CN1 . 1(-78)
Ph™>Ph (1.8:1)
3 2 CH;CH,CN(-78 77% (2:1
Ph/S\Ph 3 2 (' ) 0( . )
75%
4 (4-NO,-Ph)PhSO CH,Cl,(-78)
(2.7:1)
5 (4-OMe-Ph)PhSO CH,Cl,(-78) 50% (2:1)
Q
S

6 O / CH,Cl,(-78) 50% (6:1)

“Isolated yields. ” Determined by. "H NMR on the crude reaction mixture.

In 2007, Boons: et al. presented an excellent o-selective
glycosylation of 2-azido-2-deoxy-glucosyl trichloroacetimidates, when
performed at a relatively ‘high.reaction-temperature in the presence of
PhSEt or thiophene.> With NMR and computational studies,
B-anomeric sulfonium intermediate formed due to steric hindrance. As a

result, the acceptor will come from a-side (Scheme 8).

Ph
o) i o o o)
ROWLG activator RO{A PhSEt ROE St ROE
R'—OH

Scheme 8. Boons’s method the glycosylation of 2-azido-2-deoxy

glucosides using sulfonium ions.

1.3.5 a-Selective O-glycosylation by amide-type molecules

Koto first published the stereoselctive oa-glucosylation in the

13



presence of a quaternary mixture of 4-nitobenzenesulfonyl chloride,
silver trifluoromethanesulfonate, N,N-dimethylacetamide, and
triethylamine (Table 2).*° They proposed a plausible pathway that the
alcohol may react with the hypothetical intermediate of B-iminium ion to
form the corresponding a-glucoside. The intermediate a-iminium ion is
more stable than intermediate B-iminium ion thermodynamically, but
intermediate B-iminium ion is more reactive to form the a-glucoside. But

they didn’t show any physical data to support their hypothesis.

Table 2. a-glucosylation by using DMA (DMF) as an additive
Acceptor (1.0 eq.)

0 N@SO Cl
OBn 2 > (2.5eq:) OBn

AgOTf (2.5°eq.), NEt; (2.5 eq.) 0 0]
BnO Q 3 B
%R0 OH R0 ovﬁ

OBn CH,Cl,, additive BnO OMe
(1.3 eq.)
Acceptors 1, OBn Bno ,OH
O
gﬁ ﬁﬂ Bnogﬁ gﬁ
BnO BnOOMe
v
Entry Acceptor additives Yield o/} ratio
1 | DMF?* 58% 77:23
2 I DMF (2.5) 92% 88:12
3 I DMA (2.5) 86% 93:7
4 | DMA (5.0) 73% 86:14
5 II DMA (2.5) 85% 89:11
6 111 DMA (2.5) 87% 90:10
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7 v DMA (2.5) 91% 47:53
8 v DMA (5.0) 88% 73:27
9 v DMA (10.0) 54% 72:28

“ As a solvent.

In 2003, Nishida and his coworker reported a practical glycosylation
by one-pot method using Appel agents in N,N-dimethylformamide.”’
The role of DMF is demonstrated according to the evident '"H NMR
spectra. The signals indicated that the a-glycosyl bromide by using
Appel agent could be transformed to a-glycosyl iminium species when
the solvent is DMF. (Scheme'9) Though Lemieux and co-workers'”
reported a similar solvent effect; they didn’t indicate the occurrence of

such DMF-glycosyl adducts.

H,0 HBr

><

CBr,+PPh;  P(=O)Ph,

o] N / o] DMF o] Br o]
RON\OH RO ——— RO a RO\ Br
OBn DMF

|
BnOBr BnO LY

O
Rovﬁ
BnO

OR'
Scheme 9 Overview of One-pot a-glycosylation Using Appel agents in
DMF

Two years later, they still speculate not only B-glycosyl bromide but

also B-glycosyl imidate could be the species to induce the

15



stereoselectivity.” Compare to o-glycosyl imidate, the B-glycosyl
imidate is more reactive and it may not be accessible by NMR at the
room temperature due to the rapid equilibration. Furthermore, at the
lower temperature DMF will be frozen. Nowadays, there is no mean to

identify the real species in this reaction.
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2 Motivation

1,2-cis-glycosidic bonds are widely occurred in numerous natural
oligosaccharides, glycosides, and glycoconjugates, which are widely
distributed in living tissues. These compounds are also found in the
human milk, in blood group compounds, in bacterial lipopolysaccharide
antigens, and many other sources. Such as Lewis (Le) antigens,
O-linked glycoproteins, a-Gal Ceramide (KRN7000), polysulfated
glycosaminoglycans, globotriaosylceramide (Gbs) and N-linked
glycoproteins. But there is no general solution for 1,2-cis a-glycosidic
bond formations by chemical preparation.

Based on the literatures described before, DMF has been used for the
stereoselective glycosylation several times. But the exact role of DMF is
still out there. To date,.the reported examples only use glycosyl halides
as donors. Could we apply it to other glycosyl donor, for example
common-used thioglycoside?. According.to the literature survey, DMF
can participate the glycosylation to form more stable intermediate,
Could we apply it to pre-activation strategy and elevate it to iterative
glycosylation? We herein reported the investigation and findings based

on the above context and initial finding in our laboratory.
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3 Results and discussion

Based on the preliminary studies of glycosyl chlorides, we observed
that residual DMF in the glycosylation mixture promoted 1,2-cis
a-glycosidic bond formation. Along this line, we hypothesize that this
a-glycosylation should also be applicable to thioglycosyl donors, which
as a stable glycosyl donor, open access to elucidation of the reaction
mechanism. To the best of our knowledge, such investigations have not

been reported.

3.1 Optimize the conditions for DMF-modulating glycoslations
In this thesis, we investigated two DMF-modulating glycosylation

procedures, and they were.depicted in Schemes.9a and 9b.

a) Procedure A
DMF (x equiv)
NIS, TMSOTT,

Thioglyqosyl donor . Acceptor glycosylation products
(1.5 equiv) (1.0 equiv) CH,Cly, T°C

b) Pre-activation procedure B
NIS, Acceptor 3
TMSOTf (1.0 equiv)

Thioglycosyl donor 4 DMF ‘ ‘ glycosylation products
15 i (x equiv) o o
(1.5 equiv) CH,Clp, T°C  CH,Cl,, T°C

Scheme 10. (a) DMF-modulating glycosylation procedure (procedure A).
(b) DMF-modulating glycosylation procedure (procedure B).

In procedure A, as adapted from standard glycosylation protocol, a

mixture of thioglycosyl donor, glycosyl acceptor and DMF is treated with
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N-1odosuccinimide (NIS) and trimethylsilyl triflate (TMSOTY) (Scheme
10a).”” In procedure B, the thioglycosyl donor is firstly pre-activated with
NIS and TMSOTf in the presence of DMF. Upon completion of
activation, glycosyl acceptor is added and, it reacts with a presumably
glycosyl imidate to furnish desired glycosylation product (Scheme 10b).
At the outset, the procedure A was applied to couple commercially
available galactosyl acceptor 3 with a perbenzyl thiogalactoside 1. After
some experimentations, one molar equivalent of TMSOTf (with respect
to glycosyl donor) was required for effective activation of the donor
(Scheme 11). A larger amount of TMSOTTf may be probably attributed
due to a mild Lewis basicity. nature of DMF. Nevertheless, the DMF
modulator exhibits an .o-directing effect -in glycosylations using
thioglyosyl donors, which is'in line with our previous findings in glycosyl

chlorides.*®

OBn.OBn
O OH %
OBnOBn NIS (1.2), BnO
TMSOTf (X equiv) BnO
BnO STol + O (O] o
OBn 0 CHyCl,, -10°C o%\
(1.2 equiv) (1.0 equiﬁ %O
X=0.5,70%
X=1.0,82%

Scheme 11. The influence of the equivalent of TMSOTT.

In addition, we observed a quantity-selectivity dependent relationship

between the stoichiometric amount of DMF addition and the degree of
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glycosylation selectivity. Explicitly speaking, when the amount of DMF
increased from zero to 1.5 equiv, the o/B-anomer-ratio of the
glycosylation product 4 increased from 1/1 to 3/1 (Table 3, entries 1-4).
However, this moderate selectivity is still inadequate for synthetic
application, but further increase in amount of DMF addition (>1.5 equiv.)
aiming at selectivity improvement was prohibited due to the formation of
a side-product, namely the formyl transfer product 6.° Our rationale for
this moderate a-selectivity in glycosylation is that the arming benzyl
groups of donor 1 may promote the departure of DMF from glycosyl
imidate; as a consequence, the oa-directing effect of DMF was
attenuated.”*"!

Based on such a notion, a conformational restrain benzylidene
thiogalactoside 2 is used in"place of 1.**) However, replacing the donor
alone did not bring ‘about satisfactory improvement, and a 6/1
o/B-anomer ratio of glycosylation produet'S was obtained (Table 3,
entry 5). Nonetheless, adopting the pre-activation procedure B in
conjunction with an increase in DMF addition (from 1.5 to 6.0 equiv) did
improve the o/B-anomer ratio of 5§ to 19/1 (Table 3, entries 6—8). One
may question about whether the ethereal type solvent (as mentioned in
the introduction section) could result in similar a-directing effect as
implicated in previous cases.”'’” Thus, glycosylation of 3 with 2 was
repeated in tetrahydrofuran (THF), 1/3 CH,Cly/Et,O and 1/2
toluene/dioxane mixture using procedure A. In these experiments, the
procedure B is not applicable because this procedure does not work in the

absence of DMF. Donor 2 was poorly soluble in pure diethyl ether so
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that a 1/3 CH,Cl,/ether mixture was employed. The 1/2 toluene/dioxane
mixture was found aggregating at —10°C so that the glycosylation in 1/2
toluene/dioxane mixture was conducted at 0°C. No significant selectivity
was observed for glycosylations irrespective of the type of ethereal
solvent (Table 3, entry 5 vs 9-12).

In the past, dimethylacetamide (DMA) was used as an additive to
promote the a-selectivity of glycosylation.”® We were curious to examine
if DMA could substitute for DMF in our procedure. Thus, glycosylation
of 3 with 2 following the procedure B, was repeated with DMA addition,

but the observed selectivity was not attractive (Table 3, entry 13).

Table 3. Investigation of DMF-modulating glycosylation procedures A
and B with galactosyl acceptor 3.

Thioglycoside donors 1 and 2 Galactosyl acceptor 3
gh
BnO _OBn o)
BnO STol o)
OBn BnO STol o)

0
1 2 OBn 3\(/

Glycosylation products 4, 5 and side product 6
O
Ph :/
BnO _OBn 0
8Y >( 0
BnO o
o o
@)
5

f 6
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Donor DMF T Time Product, yield%,

Entry (equiv) (equiv)  (°C)  (h) a/p
1 1(1.2)" 0 25 05 4,90, 1/1
2 1) 0.8 10 1.0 4,70, 3/2
3 1.2 0.8 0 1.0 4,77,3/2
4 1(1.2)" 1.5 0 1.0 4, 80, 3/1
5 205" 1.5 10 20 5,82, 6/1
6 215" 1.5 10 20 5, 80, 8/1
7 2(1.5)¢ 3.0 1002, 2.0 5,87, 15/1
g8  2(1.5" 6.0 10 20 5,87, 19/1
9 2 (1.5)" 0 10 03 5,90, 1/1
10 2(1.5" 0' 10702 5,85, 1.5/1
11 215" ot 10 05 5,83, 1/1.5
12 215" ot 0 4.0 5,40, 1/1.5
13 215" el 10 3.0 5, 80, 4/1

[a] a/p ratios were determined by HPLC (conditions given in SI). [b] Procedure A
was used. [c] Procedure B was applied. [d] 1/3 CH,Cly/Et,0 mixture was used as
solvent. [e] THF was used as solvent. [f] 1:2 Toluene/dioxane was used as solvent. [g]
6 equiv of DMA was added.?
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3.2 Test the scope of pre-activated DMF-mediated glycoslation

After confirming the effectiveness of the pre-activated
DMF-modulating glycosylation (procedure B), this study next
investigated its scope of application. In this regard, aglycon acceptors
10-13, and O-glycoside acceptors 14—-17 were coupled with thioglycosyl
donors 2 (Figure 7, Table 4). For comparison the effectiveness of this
method to conventional method as well as provision of reference data for
HPLC analysis, all glycosylations were performed with and without

addition of DMF.
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a) Donors: 2

b) Acceptors: 10-17

HO™ ¢ NHFmoc
/Y\O HoNCI
07L co All

12 HO

13
Bn BnO ,OH OMe
&ﬁ éﬁ g& Ho@&#
X°

16 R = (CH,)Cl

17

c) Glycosylation products: 18-29

iy TR )
18-25 MO 3 Cl
0, °7L
B ggw h
nO - OR
n NHFmoc
e CQAll
20
OBn

BnO
Bno/ﬁﬁ BnoﬁS'

Figure 7. (a) Thioglycosyl donors: 2. (b) Acceptors: 10-17; (c)

24 R = (CH,)sCl 25

Glycosylation products: 18-25.

Generally, reaction rates were lower in the presence of DMF than
with its absence; nonetheless, the time required for completion of
DMF-modulating glycosylation remained acceptable (2 to 6 h).
Regarding the stereochemical control, DMF exerted a powerful
o-directing effect on all glycosylations. In some cases, the selectivity was

dramatically reversed (Table 4, entries 2, 4, 5, 11, and 12).

24



Table 4. Results of glycosylation of acceptors 10—17 using glycosylation

procedure B.

Ph Ph
$ NIS, R-OH 1Q-17 $
@) Qo ‘TMSOTf ’(1 equiv) 5 @)
0] 0]
BnO STol + DMF BnO OR
OBn . OBn
) (6 equiv) |CH,CIy, -10°C | -10to 0°C

Entry D® AP 7(°C) Time (h) Product, yield% OL/B[b]

18-25 with DMF  no DMF“

1 2 10 -10 2 18 83, 12/1 80, 1/1
2 2 11 -10 2 19 76, 8/1 85, 2/5
3 2 12 -10 6 20 45, 19/1 50,15/1
4 2 13 0 2 21 79, 8/1 73, 2/5
5 2 14 -10 5.5 22 75, 12/1 80, 2/3
6 2 15 0 6 23 80, 49/1 50, 2/1
7 2 16 -10 2 24 82, 12/1 80, 3/2
8 2 17 0 4 25 60, 25/1 63, 5/1

[a] D referred to donor and A referred to acceptor. [b] o/B-Anomer ratios were
determined by HPLC (settings were given in experimental). [c] Routine glycosylation
(without DMF addition) was applied.
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3.2.1 Application of DMF-modulating glycosylation to other
thioglycoside donors

Encouraged by the results of DMF-modulating glycosylations, we
moved on to investigate the application of our method to prepare
1,2-cis-O-linkage with other thioglyucoside donors. As such, we decided
to choose some thiofucoside 7, thiorhamnoside 8 and
thioglucopyranoside 9 to evaluate their performance in glycosylations of
acceptors 14, 15 and 17 (Figure 8). For comparison, conventional
glycosylations in the absence of DMF modulator were also carried out in

parallel.

a) Thioglycosyl donors: 7, 8,9
STol
OBn

STol
PQZ?)Bn Bnow Bﬁoéo
OBn o nO STol
BnO o OBn
7 8 X 9
b) Acceptors: 14-17 o OBn OMe
0 HO O Q
B TS wey
BnO BnO 0
OMe OMe
14 15 X 17
c¢) Glycosylation products: 26-29 OMe
o o on o@z
(0] € 0
W;M)\Bn Bno@i XO
BnOPBN  BnOOBn o o
26 )< 2

7
OBn OBn
0 0
Bgﬁﬁﬁ 0Bn BBQ& OMe
BnO o BnO3 @(37'
o)
BnO o
28 BnO ome 29 XO

Figure 8. The pairs of thioglycosyl donor, acceptors and their
corresponding glycosylation product.
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Table 5. Results of glycosylation using glycosylation procedure B

NIS, R-OH 14-17
TMSOTf ‘ (1 equiv)

7.8.9 + DMF 26-29

(1.5 equiv)

(6 equiv) | CH,CI,, -10°C | -10-0°C

1-1.5 h, Time (h)

Time Product, yield%, o/

Entry D A T(CO
(h)  Product withDMF  no DMF

1 7 14 10 45 26 75, 5/1 77, 1/1
2 8 17 -10 4 27 70, 49/1 80, 5/1
3 9 15 0 6 284 76,49/1M  60,2/3
4 9 17 0 5 29%¢! 75, 9/1% 70, 2/5

[IThe glycosylation was performed under ultra-sonification.

3.3 Application of DMF-modulating glycosylation to thioglycoside
acceptors

A unique feature of the DMF-modulating glycosylation is the
entrapment of oxocarbenium ions as glycosyl imidates. This feature
provides an opportunity for development of a new pre-activated
glycosylation procedure. In a typical oligosaccharide synthesis,
introduction of different anomeric functions to glycosyl donor and
acceptor is required such that the activation of the former does not affect
the later. Though the reactivities of glycosyl donor and acceptor can also
be tuned to create reactivity disparity that allowing their coupling by

reactivity-based glycosylation, this strategy requires a long protecting
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10b, 11a, 31 .
b 12,31 The merit of a

group manipulation for building block preparation.
pre-activated glycosylation is to allow coupling of glycosyl substrates
with the same anomeric function rendering the use of different anomeric
function or the tuning of chemical reactivity, unnecessary. Such an
approach not only shortens the synthetic steps in oligosaccharide
synthesis, but it also paves the way to iterative one-pot glycosylation
method.'"® To the best of our knowledge, there is no pre-activation
procedure that endows with o-directing capability.”” To demonstrate the
applicability of the DMF-modulating procedure, thioglycoside acceptors
3040 were glycosylated with thioglycoside donors 2, 7, 8, and 9
following procedure B (Figure 9).  Preparations and references of
thioglycosyl acceptors 30-40 were given in experimental section. Table 6
summarizes the yields and o/f-anomer ratios of corresponding
glycosylation products 41-55.

A known side-reaction in_glycosylations of thioglycosides is the
transfer of the thio-acetal function from acceptor to donor.>* Gratifyingly,
such transfer reaction did not occur in the DMF-modulating procedure
perhaps due to masking of the reactive oxocarbenium ion by DMF
molecule. The glycosylations in this study proceeded smoothly and the
corresponding a-anomers were furnished in 45 to 85% yields with high to
excellent a-selectivities. However, the reaction yields were on average
lower than those produced from glycosylations of O-glycosides. We
attributed this to the activation of thioglycoside product by residual NIS

and/or some side reactions stemming from the imidate intermediates. To

re-validate the a-directing effect of DMF, the glycosylation of 36 with 2
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was repeated by using a lesser amount of DMF (1.5 equiv) and the
o/B-anomer ratio of glycosylation product 47 decreased sharply to 4/1

(data not shown).

a) Thioglycosyl acceptors 30-40

BnO OH HO OBn BnO ,OBn OH
AcO
BnO STol BnO SToI BnO STol AcO STol
OBn NHTroc
30 33
OH STol
BnO
BzO/éS/STOI Bnoﬁswﬂg%ﬁsnﬂ HO@#
OBn (@] (0]
34 h X 37

BnO OH
%& o
BnO 5 BrO SToI NAPO SToI HO STol

40 ©OBn

b) Glycosylation products 41-55

OBn BnO ,OBn

nO
go 41-55 Lﬁ“ o} le}
= _BnO SToI BnO STol BnO STol

oy}

o) OBn o
BnO 42 43
BnO OR ﬁ?{ s OBn
(6] 2
. o Bnd's SToI S0 STol Br?% 2 sTol
AcO OBn
AC(;&S/STd 2% OBn
NHTroc o 47 on
44
STol  BnO %, &o o

OBn o ol
5@? BnO&&/O 0 o Q
Bno BNO STol - napoO STol ° STol
s A0 29 OBn o~ ° OBn
)< 50 OBn g,
OBn

B OBn BnO
ne g STol _Boo\ OBn
O BnO BnO o) STol
STol Er0 OBn Bno/éﬁ
0 O BnO Q
BnO STol (@]
R/ oen OBnOOBn SNe
Bno0Bn 52 54 55 X

Figure 9. (a) Thioglycosyl acceptors 30—40; (b) Glycosylation products:
41-55.



Table 6. Results of glycosylation of thioglycosyl acceptors 30—40 using
glycosylation procedure B

O

NIS, \
, 789 TMSOTF MO 4SOT‘:' . o
(1.5 equiv) ‘ ‘ 30-40 (1 equiv) PGO’%
. 0
SN sTol
DMF ‘CHZCIZ, 10°C ‘-10-0 oC
(6 equiv) 1-1.5h, Time (h) 41-55
o-anomer

Entry  Donor  Acceptor  T'(C) Time (h) .00 1 gl

1 2 30 -10 3 41 (60), 36/1
2 2 31 0 6 42 (55), 6/1
3 2 32 0 3 43 (55), 11/1
4 2 33 -10 3 44 (45), 11/1
5 2 34 -10 3 45 (85), 49/1
6 2 35 -10 2 46 (65), 12/1
7 2 36 0 4 47 (70), 49/1[31]
8 2 37 0 2 48 (50), 13/1
9 2 38 -10 3 49 (75), 19/1
10 2 39 0 4 50 (85), 49/1
11 7 40 -10 3 51 (56), 49/1
12 7 32 -10 6 52 (61), 49/1
13 8 35 -10 3 53 (55), 6/1
14 9 36 0 5 54 (50), 49/1"

15 9 37 0 3 55 (55), 8/11
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[a] Glycosylation procedure B was applied and the yield (%) referred to isolated
oa-anomer. [b] o/p Ratios of glycosylation products were determined by HPLC
analysis (HPLC conditions was given in experimental). [c] The glycosylation was

performed under ultrasonification.

3.4 Mechanistic investigations

3.4.1 Isolate the hydrolysis product of glycosyl imidate

DMF, OB OB
Bno 0" NiS  Bno /" EtN, BnO Bno O8N
0 TMSOTS o M workup & 0
BnO STol BnO OJ\\N"/ BnO +  BnO OH
OBn BnO | BnOO(C=O)H OBn
1
o—formate glycosyl
(ca5%) 56 hemiacetal
Ph
%0 oM Ph Ph
o NIS, EtsN, So So
o TMSOTf X workup o} o}
BnO STol — BnO Q 0
Can A o/k BnO + BnO OH
) BnO O(C=O)H OBn
a=formate glycosyl
(ca 10%) hemiacetal

57

Scheme 12 Isolatethe hydrolysis product of glycosyl imidate.

Previous 'H NMR spectroscopy was employed to detect the glycosyl
imidates under different reaction context.”* We reasoned that the glycosyl
imidates if formed should undergo hydrolysis in work-up to give the
glycosyl formates; and isolation of such formate products would indicate
the existence of imidates. Thus, thiogalactosides 1 and 2 were activated in
the presence of DMF, and the reaction was subsequently quenched by
triethylamine (TEA) without the addition of acceptor. Upon standard
workup, a-glycosyl formates (56, 57) could be isolated in 5 and 10%
respectively along with ca 80% of glycosyl hemiacetals, which were
presumably the hydrolyzed products of glycosyl formates. Both glycosyl

formates 56 and 57 were unstable, which accounted for the poor isolated
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yields (Scheme 12). Chemical identities of 56 and 57 were evidenced by
(1) the chemical shifts of anomeric protons (6.40 ppm for 56, 6.47 ppm
for 57); (2) *J coupling constants of anomeric protons (3.4 Hz for 56, 3.6
Hz for 57); and (3) the characteristic chemical shifts of formate protons at
8.14 ppm for both 56 and 57. However, we were not able to obtain the
corresponding B-glycosyl formate, which might be attributed to its poor
stability for standard isolation.

Try to prove the presence of [B-glycosyl imidate, we turned to

real-time monitoring of the activation process by 'H NMR spectroscopy.

3.4.2 Real-time variable temperature NMR study

Since glycosyl imidate formation is the key step in DMF-modulating
glycosylation, the detection of glycosyl imidate-is crucial to support the
proposed mechanism. “In this “regard, we prepared a simpler
4,6-0O-benzylidene-2,3-di-O-methyl thiogalactoside 58, which was
activated with NIS and TMSOTT{ promoters in CDCl; and followed by the
glycosylation of acceptor 59 using procedure B (Figure 10a). 'H-, °C-,
and HSQC-NMR spectroscopy of the reaction mixture were taken at 0, 90,
and 180 min time points. Figures 9b-d showed selected regions of
corresponding 'H NMR spectra. Comparing the spectra of the
pre-activated reaction mixture at 0 min and the TMSOTTf activated
mixture at 90 min (Figure 10b and 10c), a new set of 'H NMR signals
are clearly identified, including an anomeric proton at 6.39 ppm (*J = 3
Hz, 60-H"), a benzylidene proton at 5.60 ppm (60-H"), an imidoyl proton
at 8.90 ppm (60-H®), and N,N-dimethyl protons at 3.40, and 3.32 ppm
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(60-H%). These signals are generated from the presumably a-glycosyl

34a a,c,d

imidate 60.”" The relative downfield positions of 60-H™™" indicate their
close proximity to an electron-deficient center. Following the addition of
acceptor 59, the signals stemming from imidate 60 vanished, and another
two sets of signals emerged. One set includes an anomeric proton at 5.13
ppm (J = 3 Hz, 61-H*) and a benzylidene proton at 5.59 ppm (61-H")
corresponding to the expected a-glycoside 61. Another set (indicated by
asterisks in Figure 10d) was originated from a a-N-galactosyl
succinimide, which is a common side-product produced in NIS promoted
glycosylation.”’

As the real-time NMR study provided evidence for the presence of
the a-glycosyl imidate, it 1s-reasonable to propose the formation of
o/B-glycosyl imidates in ‘DMF-modulating  glycosylations. And the
B-glycosyl imidate, due'to a more reactive nature, reacts preferentially

with the acceptor to give the a-glycosylating product. At this time, we are

not able to detect the presence of -imidate.
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Figure 10. (a) Glycosylation of 58 with 59 following procedure B. (b) 'H
NMR spectrum taken just prior to TMSOTS addition (0 min). (¢) 'H
NMR spectrum taken at 90 min following TMSOTT addition (90 min). (d)

'H NMR spectrum taken at 90 min after addition of 59.
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3.4.3 Temperature profile using VI-NMR

Due to the life time of the B-glycosyl imidate is short via NMR
analysis, we try to trap it under a lower reaction temperature. In addition,
a variable NMR study may also study the stability of a-glycosyl imidate
intermediate. Because of the melting point and boiling point of CDCl;
and DMF, the range of temperature allowed in these experiments is
ranged from —50 to 50 °C.

From —50 to 40 °C, there is no significant signal appeared. We didn’t
observe the signals of P-glycosyl imidate. Furthermore, among this
temperature range the signals of o-glycosyl imidate still appeared, it
indicate the high stability of it.c.At 50.°C; it became difficult to lock the

NMR signals for further analysis.
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Figure 11. Temperature profile diagram by using VT-NMR from -50°C
to 50°C

3.4.4 DMF-d; substitution experiment

In order to obtain more information about the reaction mechanism,
we also did the DMF-d; exchange experiment. In the presence of DMF,
the donor of thioglycoside was pre-activated in CDCl; at -10°C by
NIS/TMSOTf promoters. After 30 minutes, we added DMF-d; and
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examined the 'H spectra at 0 and 30 minute.

From spectra, we observed the signals of glycosyl imidate decreased
when the DMF-d; was added. This is estminated by comparing the ratio
of anomeric proton (non-exchangeable) to the formamide proton
(exchangneable), the ratios of H-1/formamide-H decreased from 1/1 to
1/0.2 (Figure 12). This information indicate that the o-glycosyl imidate
have an equilibrium with DMF. Or B-glycosyl imidate react with DMF-d;
first, then a-glycosyl imidate become B-glycosyl imidate by equilibrium.

It remains too early to exclude the possibility of other mechanism.”

For elucidation, further experimental investigations are in progress.
< <
0 Ny

(@]
@) DMF-d, (0]
MeO H2 MeO H2
MeOO MeO

O
_N+CH3 _N+CD3
Hb \CH3 Db \CD3
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Figure 12. DMF-d; substitution experiment. (a) 'H NMR spectrum taken

just prior to DMF-d; addition. (b) '"H NMR spectrum taken at 0 min after

addition of DMF-d;. (c) "H NMR spectrum taken at 30 min after addition
of DMF-d,.
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3.5 Plausible mechanism of DMF-modulated pre-activated

glycosylation

thioglycosyl donor
J activation

. + DMF

0]

oxocarbenium
ion pair
sugar-OH
stereorandom
+ glycosylation
Y
E’ o
RO~ -
O-sugar'
o/B-glycosylation product

Scheme 13. Proposed mechanism-of DMF modulating glycosylation.

On the basis of above experiment, ‘we hypothesized that the
activation of thioglycoside generates-an oxocarbenium ion pair, which
after trapped by a nucleophilic DMF, gives rise to an equilibrium
mixture of a-/B-glycosyl imidates. Assuming that the B-imidate is more
reactive than its a-counterpart; subsequent coupling of the B-imidate
with an acceptor produces the desired a-anomer as a major product
(Scheme 13). Since DMF plays as a modulating function in the reaction,

we coined this new glycosylation strategy as a DMF-modulating

glycosylation strategy.
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4 Conclusions

In summary, a novel DMF-modulating glycosylation strategy is
developed, which achieves excellent a-selectivity in glycosylation by
simple addition of DMF. Further elaboration leads to the development
of a practical pre-activated o-selective glycosylation strategy.
Considering the availability of DMF, we anticipate that the synthesis
concept mentioned above will find broad application in oligosaccharide
synthesis. This work is accepted for publication in Angewandte Chime

international edition 2011.
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S Experimental
5.1 General experiment procedure:

Reagent-grade chemicals were purchased from commercial vendors
and used without further purification. Dichloromethane (CH,Cl,) was
dried by Asianwong solvent purification system (AWS-1000).
N,N-Dimethylformamide (DMF) was stocked with flame-dried molecular
sieves (MS) under N, Progress of reactions was monitored by thin-layer
chromatography on silica gel 60 F-254 plate and visualized under UV
illumination and/or by staining with acidic ceric ammonium molybdate or
p-anisaldehyde. HPLC analysis was performed over Mightysil column
(S1-60 250-4.6) and eluted with 'EtOAc/hexane/CH,Cl, mixture at a 0.8
mL min"' flow rate by the gradient pump (L-2130) and UV detector
(L-2400) from Hitachi. Silica gel (Geduran Si-60, 0.063-0.200 mm) for
chromatography was obtained from Merck. NMR spectra were recorded
at 300 MHz and 75 MHz spectrometers in Briiker console or 500 MHz
and 125 MHz in Varian console as specified. Sonification was provided
by standard bench top ultra-sonicator (Branson 2210R-MT). Real time
NMR study of glycosylation of acceptor 59 with donor 58 was performed
with 500 MHz in Varian console. The chemical shifts were calibrated
against the residual proton signal and C signals of deuterated
chloroform. Coupling constants in Hz was calculated from chemical
shifts of '"H NMR spectra. Acceptors 3, 10, 11, and 13 are commercially
available, glycosyl donors 1, 2.°° 7, 8,*7 9.°° and glycosyl acceptors
12, 14,7 15,717, 30,731, 32, 33, 35, 36, 37,” and 40’ are

prepared on the base of literature procedures.

41



5.2 General pre-activated DMF-modulating glycosylation procedure
(procedure B).

Mixture of 2,3-di-O-benzyl-4,6-O-benzylidene -thiogalactopyranoside
2* (166 mg, 0.3 mmol, 1.5 equiv) and flame-dried molecular sieve
(AW300) was suspended in dried CH,Cl, (4.0 mL) such that the final
concentration of 2 was 75 mM. Then, DMF (93 uL, 1.2 mmol, 6.0 mol
equiv) was added to the mixture. The resulting mixture was stirred at RT
for 10 min and at -10 °C cooling bath for an additional 10 min.
Subsequently, N-iodosuccinimide (NIS) (77 mg, 0.34 mmol, 1.5 equiv)
and trimethylsilyltriflate (TMSOTY) (54 pL, 0.3 mmol, 1.5 equiv) were
added, and the reaction-progress was monitored by TLC with either
EtOAc/hexane or EtOAc/hexane/CH,Cl, mixture as the developing
solvent. Upon completion of activation of glycosyl donor (2, 7, 8, 9 and
58), acceptor (3, 10—17) or thioglycoside acceptor (30—40) (1.0 equiv)
was added to the reaction mixture. Exact amounts of glycosyl donor (2, 7,
8, and 9), acceptor (3, 10—17, and 30—40), promoting reagents (NIS and
TMSOTY), temperature for coupling reaction, time for coupling reaction
and glycosylation yield were summarized in Tables S1 and S2.
Ultra-sound irradiation was applied to glycosylations with perbenzyl
thioglucoside 9 (Ultra-sonication was generated from Branson
2210R-MT sonicator). The progress of glycosylation was monitored by
TLC (judged by disappearance of the glycosyl imidate). Upon completion
of reaction, satd. NaHCO; (ca 1 mL) and small lumps of Na,S,0; (ca

0.5 g) were added to the mixture, followed by vigorous stirring until the
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fading away of the deep red coloration of the reaction mixture. The
resulting mixture was dried (over MgSQ,), filtered, and concentrated for
flash chromatography purification over silica gel to furnish the
glycosylation product (5, 18—29, 41-55 and 61). A small portion of the
crude reaction mixture was eluted over a short pad of silica gel to obtain

crude o/ mixture for HPLC analysis of a/B-anomer ratio.
5.3 Procedures and experimental data.

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-1,2,3,4-
di-O-isopropylidene-o-D-galactopyranose 5. Galactosyl acceptor 3
(52 mg, 0.2 mmol) was reacted ‘with thiogalactosyl donor 2 (166.3 mg,
0.3 mmol) according .to . general pre-activated DMF-modulating
glycosylation procedure..Compound 5 (125 mg, 87%) as a white glassy
material was obtained by column chromatography purification (Elution:
Hexane/EtOAc/CH,Cl, 3/1/1):For a-anomeér of 5, [a]’""p=+29.1 (c= 1.2,
CHCl;) 'H NMR (300 MHz, CDClLy): § 7.53-7.24 (m, 2H, ArH),
7.51-7.23 (m, 13H, ArH), 5.50 (d, J = 6 Hz, 1H, H-1), 5.47 (s, 1H,
benzylidene-CH), 5.05 (d, J = 3.3 Hz, 1H, H-1"), 4.82 (dd, J = 6, 12 Hz,
2H), 4.72 (dd, J= 6, 12 Hz, 2H), 4.58 (dd, /=3, 7 Hz, 1H), 4.31-4.27 (m,
2H), 4.20-4.18 (m, 2H), 4.10-3.69 (m, 4H), 3.78-3.69 (m, 3H), 1.52 (s,
3H, CH;), 1.44 (s, 3H, CH;), 1.26 (s, 3H, CH3), 1.24 (s, 3H, CHs); °C
NMR (75 MHz, CDCl;): 6 138.6, 138.5, 137.7, 128.7, 128.1, 127.9, 127.6,
127.5, 127.40, 127.36, 126.2, 109.1 (isopropylidene-C), 108.4
(isopropylidene-C), 100.9 (benzylidene-C), 98.0 (C-1), 96.1 (C-1°), 75.7,
75.3, 74.5, 73.0, 71.8, 70.9, 70.4, 70.3, 69.3, 66.8, 66.4, 62.4, 25.9, 25.8,
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24.8, 24 4.

6-chlorohexyl 2,3,4-tri-O-benzyl--D-galactopyranoside 16.

éph Ph
HO(CH,)sCl, 56
o7 NIS, TMSOTF, -60°C, %O
o CH,CI,/CH;CN/EtCN 0
BnO STol BnO O(CH,)eCl
OBn OBn
16a 16b
BH3, TMSOTH, Bno ,©H
THF, RT 0
BnO O(CH,)Cl

OBn
16

Scheme 14. Preperation of 6-chlorohexyl
2,3,4-tri-O-benzyl-B-D-galactopyranoside 16

Known 16a (1 g, 1.8;mml),*> 6-chlorohexanol 59 (0.35 mL, 2.7 mmol)
and activated molecular sieve (10 g) were suspended in 1/2/1
CH,Cl,/CH;CN/EtCN solvent mixture (150 mL) and stirred at 60 °C
for 30 min. NIS (0.44 g, 1.95 mmol) and TMSOTT (68 uL, 0.38 mmol)
were added and the mixture was stirred for additional 180 minat 60 °C
under N, before quenched with TEA (ca 0.2 mL). Satd. NaHCO; (1 mL)
and few pieces of solid Na,S,0; were added, followed by vigorous
stirring at RT. The mixture was filtered over celite and the filtrate was
concentrated for column chromatography (Elution:
Hexane/CH,Cl,/EtOAc 3/1/1) to give target galactoside 16b (0.52 g,
50%). The galactoside 16b (0.52 g, 50%) was then treated with 1 M
BH;. THF (3.72 mL, 3.7 mmol) and TMSOTf (25 pL, 0.14 mmol),
followed by stirring at RT for 2 h. The reaction was quenched with

triethylamine (TEA) and methanol (MeOH) mixture. The resulting
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mixture was concentrated for column chromatography purification
(Elution: Hexane/CH,CI,/EtOAc 3/1/1 to 2/1/1) to give target acceptor 16
as an oily substance (0.24 g, 45%). For compound 16, 'H NMR (300
MHz, CDCl5): 6 7.35-7.23 (m, 15 H, ArH), 4.97-4.91 (m, 2H), 4.82-4.71
(m, 3H), 4.65 (d, /=12 Hz, 1H), 4.35 (d, /= 7.5 Hz, 1H, H-1), 4.00-3.92
(m, 1H), 3.89-3.75 (m, 3H), 3.72-3.47 (m, 5H), 3.36 (t, J = 6 Hz, 1H),
1.76-1.63 (m, 4H, CH, x 2), 1.25 (s, CH, x 2); °C NMR (75 MHz,
CDCly): 0 138.7, 138.4, 138.2, 128.6, 128.4, 128.2, 127.9, 127.88, 127.5,
127.62, 127.55, 126.50, 104.0 (C-1), 82.2, 79.6, 75.1, 74.5, 74.1, 73.3,
72.9, 69.8, 61.9 (CH,0) , 45.0 (CH,Cl), 32.4, 29.5, 26.6, 25 4.
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Table 7. Experimental details for glycosylation of acceptor 3, 10—17 with
donors 2, 7, 8 and 9.

NIS, R-OH 3,10-17
TMSOTf (1 equiv)

o) ‘ —O
OGP-\—~\_STol * DMF 0GP\, oR
(G equiv) | ch,cl,, CH,Cly,

2 8 9 -10 oC -10-0 oC 18-29
(1 equw) 1-1.5h, Time (h)
a) Donors: 2,7,8,9 STol

STol
LA w0 LY
Bn OOBn

b) Acceptors: 3, 10-17

OBn
0
Bﬁg&sm
OB
9 n

O HO
Cl NHFmoc
L\ﬂ /ﬁ HONS HO. A
)< 10 11 12
OBn BnO OH o
HO o) 0 HO
BnO OBn O(CHz)gCI 0O 0
BnOOMe OBn X
14 15 16 17
Entr  Donor (mg, Acceptor (mg, Tim 7 (°C)  Glycosylation product
y mmol) mmol) e (h) Yield (mg, a/pt!
)
1 2 (166, 0.3) 10 (26, 0.2) 2 -10 18 (92.5,83) 12/1
2 2 (166, 0.3) 11 (38, 0.2) 2 -10 19 (95.6,76) 8/1
3 2 (166, 0.3) 12 (74,0.2) 6 -10 20 (71.7,45) 19/1
4 2 (166, 0.3) 13 (81,0.2) 2 0 21(128,79)  8/1
5 2 (166, 0.3) 14 (93, 0.2) 55  -10 22 (129,75) 1211
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6  2(166,03) 15(93,0.2) 6 0 23 (141,80)  49/1

7 2(166,0.3) 16 (71,0.2) 2 -10 24 (144,82)  12/1

8 2(166,0.3)  17(43,0.2) 4 0 25(77,60)  25/1

9 7(190,0.36) 14 (111,024) 4.5  -10 26 (159,75)  5/1

10 8(144,036) 17(52,024) 4 -10 27(76,70)  49/1
11 9(194,03) 15(93,0.2) 6 0 28 (144,76)  49/1™
12 9(194,03) 17(44,02) 5 0 29 (111,75)  9/1™

[Ratios were determined by Hitachi HPLC system (Mightysil column (Si-60
250-4.6); Elution: EtOAc/hexane/CH,Cl, mixture at 0.8 mL min! flow rate; HPLC
pump (L-2130) and UV detector (L=2400) were employed. (™ Ultra-sonification was
applied.

1,2-isopropylidene-(2,3-di-O-benzyl-4,6-O-benzylidene-D-galacto-

pyranosyl)-rac-glycerol ‘18. Preparation of 18 was referred to general
pre-activated DMF-modulating glycosylation procedure and the exact
amounts of reagents used were given (Table S1, entry 1). Compound 18
as a white glassy material was obtained by column chromatography
purification (Elution: Hexane/EtOAc/CH,Cl, 5/1/1). For a-anomer of 18,
R; 0.3 (Hexane/EtOAc/CH,CL, 2/1/1); [a]’"’p= +18.5 (c= 0.44, CHCl))
'H NMR (300 MHz, CDCly): & 7.54-7.53 (m, 2H, ArH), 7.42-7.25 (m,
13H, ArH), 5.48 (s, 1H, benzylidene-CH), 5.08 (d, /= 3.6 Hz, 1H, H-1),
4.88-4.71 (m, 3H), 4.66 (dd, J = 2.7, 12 Hz, 1H), 4.37-4.28 (m, 1H), 4.22
(d, J=3Hz, 1H), 4.18 (d, J = 2.4 Hz, 1H), 4.09-3.95 (m, 4H), 3.78-3.62
(m, 3H), 3.59-3.43 (m, 1H), 1.39 (d, J = 3.9 Hz, 3H, CH;), 1.35 (d, J =
1.8 Hz, 3H, CH;); °C NMR (75 MHz, CDCl;): § 138.8, 138.72, 138.65,
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137.8, 128.8, 128.28, 128.26, 128.1, 127.9, 127.8, 127.6, 127.52, 127.48,
126.3, 109.4 (isopropylidene-C), 101.0 (benzylidene-CH), 98.7 (C-1),
75.9,75.7,75.6,75.53, 74.7, 74.6, 74.4, 73.6, 73.4, 72.1, 72.0, 69.6, 69.4,
69.3, 68.7, 66.8, 66.6, 62.7, 62.6, 26.9 (CHj;), 26.7 (CH3), 25.5 (CHs),
25.4 (CH3); HRMS (MALDI-TOF): caled for Cs3H3305Na [M + Na]’
requires 585.2464, found m/z 585.2425.

10-chlorodecanyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galacto-
pyranoside 19. Preparation of 19 was referred to general pre-activated
DMF-modulating glycosylation procedure and the exact amounts of
reagents used were given (Table ST, ‘entry 2). Compound 19 as a white
glassy material was obtained by rcolumn chromatography purification
(Elution: Hexane/EtOA¢/CH,Cly 7/0.5/2). For o-anomer of 19, Ry 0.4
(Hexane/EtOAc/CH,CL, “7/0.5/2); [a]’»= +15.4 (c= 0.9, CHCLy) 'H
NMR (300 MHz, CDCl;): ‘0 7.53-7.50 (m,2H, ArH), 7.42-7.25 (m, 13H,
ArH), 5.47 (s, 1H, benzylidene-H),4.90 (d, J= 3.3 Hz, 1H, H-1), 4.86 (d,
J=10.2 Hz, 1H), 4.82 (d, /= 10.2 Hz, 1H), 4.75-4.64. (m, 2H), 4.20 (dd,
J =12, 12.3 Hz, 1H), 4.19 (d, J = 3 Hz, 1H), 4.08-3.97 (m, 3H),
3.66-3.58 (m, 2H), 3.5 (t, J = 6.6 Hz, 2H, CH,), 3.44(m, 1H), 1.8-1.7 (m,
2H, CH,), 1.6-1.5 (m, 2H, CH,), 1.44-1.37 (m, 2H, CH,), 1.28 (broad,
10H, CH, x 5); >C NMR (75 MHz, CDCl;): °C NMR (75 MHz, CDCl;)
0 138.9, 138.8, 137.8, 128.8, 128.2, 128.0, 127.8, 127.57, 127.52, 127 4,
126.33, 101.1 (benzylidene-CH), 98.0 (C-1), 76.1, 75.8, 74.8, 73.4, 72.1,
69.4, 68.4, 62.6 (CH,0), 45.1 (CH,Cl), 32.6 (CH,), 29.4 (CH,), 29.3
(CH,), 28.8 (CH,), 26.8 (CH,), 26.1 (CH,). For B-anomer of 19, R; 0.3

(Hexane/EtOAC/CH,CL, 7/0.5/2); 'H NMR (300 MHz, CDCL): &
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7.58-7.55 (m, 2H, ArH), 7.40-7.25 (m, 13H, ArH), 5.5 (s, 1H,
benzylidene-H), 4.95 (d, J=11.1 Hz, 1H), 4.82-4.77 (m, 3H), 4.38 (d, J =
9.6 Hz, 1H, H-1), 4.36 (d, J = 12.3 Hz, 1H), 4.11 (d, J = 3.6 Hz, 1H),
4.03-3.95 (m, 2H), 3.84 (dd, J = 7.8, 9.6, 1H), 3.58-3.46 (m, 4H), 3.3 (s,
1H), 1.76 (m, 2H, CH,), 1.7-1.6 (m, 2H, CH,), 1.47-1.35 (m, 4H, CH,),
1.28 (m, 8H, CH,); °C NMR (75 MHz, CDCLy): 6 138.8, 138.4, 137.8,
128.8, 128.3, 128.2, 128.04, 127.98, 127.7, 127.6, 127.45, 126.46, 103.6
(benzylidene-CH), 101.3 (C-1), 79.2, 78.4, 75.2, 74.0, 72.0, 69.9, 69.2,
66.3 (CH;0), 45.1 (CH,Cl), 32.6 (CH,), 29.7 (CH,), 29.42 (CH,), 29.39
(CH,), 29.36 (CH,), 28.8 (CH,), 26.8 (CH,), 26.1 (CH,); HRMS (FAB):
calcd for C;;H4ClOgNa [M. + Na]'l requires 645.2959, found m/z
645.2947.

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl  N-(fluoren-
9-ylmethoxycarbonyl)-L-serine allyl ester 20. Preparation of 20 was
referred to general pre-activated' " DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S1,
entry 3). Compound 20 as a white powder was obtained by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 6/1/2). For
o-anomer of 20, Ry 0.4 (Hexane/EtOAc/CH,Cl, 4/1/1); [oc]37‘9D: +64.8
(c=0.36, CHCl;) 'H NMR (300 MHz, CDCl3): & 7.83 (d, J= 7.5 Hz, 2H,
ArH), 7.59 (d, J = 7.2 Hz, 2H, ArH), 7.54-7.52 (m, 2H, ArH) 7.42-7.25
(m, 19H, ArH), 6.14 (d, J = 8.4 Hz, 1H, NH), 5.85 (m, 1H, =CH), 5.47 (s,
1H, benzylidene-CH), 5.29 (d, J = 17.4 Hz, 1H, =CH), 5.19 (d, J = 10.5
Hz, 1H, =CH), 4.86-4.71 (m, 4H), 4.65-4.58 (m, 2H), 4.55-4.32 (m, 4H),

4.22-4.18 (m, 4H ), 4.08 (dd, J = 3.6, 10.2 Hz, 1H), 3.94-3.90 (m, 2H),
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3.84 (dd, J=2.7,11.1 Hz, 1H), 3.66 (s, 1H); °C NMR (75 MHz, CDCl,):
8 169.9 (C=0), 156.0 (C=0), 143.7, 141.26, 141.23, 138.6, 138.5, 137.7,
131.4, 128.8, 128.3, 128.3, 128.1, 127.8, 127.7, 127.6, 127.09, 127.04,
126.2, 125.1, 125.0, 120.0 (=CH), 118.7 (=CH), 100.9 (benzylidene-CH),
100.3 (C-1), 75.6, 75.3, 74.3, 73.6, 72.0, 70.6, 69.2, 67.2, 66.2, 63.3, 54.7,
47.0; HRMS (MALDI-TOF): calcd for C4gH4NO(Na [M + Na]" requires
820.3098, found m/z 820.3092.

Cholesteryl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranoside
21. Preparation of 21 was referred to general pre-activated
DMF-modulating glycosylation « ptocedure and the exact amounts of
reagents used were given (Table S1;entry 4). Compound 21 as a white
powder was obtained by column chromatography purification (Elution:
Hexane/EtOAc/CH,Cl, ©16/0.3/4). For a-anomer of 21, Ry 0.5
(Hexane/EtOAc/CH,CL, 8/1/1); [a]’"’p=_475.2 (c= 0.79, CHCl)) 'H
NMR (300 MHz, CDCl;): 6 7.53-7.50 (m, 2H, ArH), 7.42-7.25 (m, 13H,
ArH), 5.47 (s, 1H, benzylidene-CH), 5.32 (d, J = 5.1 Hz, 1H, =CH), 5.00
(d, J=3.3 Hz, 1H, H-1), 4.86 (d, J = 5.1 Hz, 1H), 4.82 (d, J = 5.4 Hz,
1H), 4.70-4.60 (m, 2H), 4.22-4.19 (m, 2H), 4.10-3.90 (m, 3H), 3.7 (s,
1H ), 3.50 (m, 1H), 2.41 (bt, J=12. 5 Hz, 1H), 2.25 (dt, J=4.5, 13.2 Hz,
1H), 2.0-1.8 (m, 5H), 1.56-0.85 (m, 33H), 0.68 (s, 3H, CH;); "C NMR
(75 MHz, CDCl;): o 140.9, 139.0, 138.7, 137.9, 128.8, 128.25, 128.22,
128.0, 127.9, 127.5, 127.4, 126.3, 121.7, 101.0 (benzylidene-CH), 95.9
(C-1),76.9,76.3,75.5,74.8, 73.4, 72.1, 69.5, 62.6, 56.7, 56.1, 50.0, 42.3,
39.9, 39.7, 39.5, 37.0, 36.8, 36.2, 35.8,31.89, 31.85, 28.2, 27.0, 27.5 24.3,

23.8, 22.8, 22.5, 21.0, 194, 18.7, 11.8; HRMS (FAB): calcd for
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Cs4H7,0¢Na [M + Na]" requires 839.5227, found m/z 839.5236.

Methyl
2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-2,3,4-tr
i-O-benzyl-a-D-glucopyranoside 22. Preparation of 22 was referred to
general pre-activated DMF-modulating glycosylation procedure and the
exact amounts of reagents used were given (Table S1, entry 5).
Compound 22 was obtained as a white amorphous solid by column
chromatography purification (Elution: Hexane/EtOAc¢/CH,Cl, 5.5/1/1.5).
For a-anomer of 22, Ry 0.4 (Hexane/EtOAc/CH,Cl, 4/1/1); '"H NMR
(300 MHz, CDCl;): 6 7.51-7.48 (m, 2H, ArH), 7.36-7.17 (m, 28H,
ArH), 5.43 (s, 1H, benzylidene-CH), 5.04 (d, J =3.3 Hz, 1H), 497 (d, J =
11.1 Hz, 1H), 4.88 (d,J = 11.4"Hz, 1H), 481 (d, J = 2.7 Hz, 1H),
4.77-4.73 (m, 3H), 4.68-4.65 (m, 2H), 4.59-4.50 (m, 3H), 4.1-4.0 (m, 3H),
3.97-3.90 (m, 2H), 3.85-3.67 (m, 4H), 3.57 (t, J = 9.6 Hz, 1H), 3.46-3.41
(m, 2H), 3.3 (s, 3H, OCHs); “C NMR (75 MHz, CDCl;) 0 138.77,
138.73, 138.6, 138.5 138.1, 137.8, 128.8, 128.34, 128.28, 128.21, 128.18,
128.0, 127.9, 127.77, 127.69, 127.51, 127.46, 127.41, 127.3, 126.29,
101.0 (benzylidene-CH), 98.3 (C-1), 97.8 (C-17), 82.0, 80.1, 77.9, 75.61,
75.57, 74.86, 74.75, 73.27, 72.78, 71.8, 70.1, 69.3, 66.4, 62.5, 54.9;
HRMS (FAB): calcd for CssHsgO;;Na [M + Na]" requires 917.3877,
found m/z 917.3892.

Methyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—>4)-2,3,6-tr
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i-O-benzyl-a-D-glucopyranoside 23. Preparation of 23 was referred to
general pre-activated DMF-modulating glycosylation procedure and the
exact amounts of reagents used were given (Table S1, entry 6).
Compound 23 was obtained as a white amorphous solid by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 6/1/1.5).
For a-anomer of 23, R; 0.35 (Hexane/EtOAc/CH,Cl, 4/1/1); '"H NMR
(300 MHz, CDCl;): 6 7.50-7.47 (m, 2H, ArH), 7.38-7.20 (m, 28H,
ArH), 5.80 (d, J = 3.3 Hz, 1H, H-1), 5.37 (s, 1H, benzylidene-CH), 4.96
(d, J=11.7 Hz, 1H), 4.84-4.79 (m, 2H), 4.70-4.66 (m, 3H), 4.57 (d, J =
3.6 Hz, 1H), 4.55-4.50 (m, 4H), 4.10-3.83 (m, 7H), 3.71 (dd, /=39, 11.1
Hz, 1H), 3.62 (d, J = 5.4 Hz, 1H),3.59-3.53 (m, 2H), 3.45 (s, 1H), 3.39 (s,
3H, OCHs); °C NMR (75:MHz, CDCls): 0 138.9, 138.7, 138.3, 138.0,
137.9, 137.79, 128.75, 128.3; 128.3, 128.15,128.11, 128.0, 127.8, 127.7,
127.6, 127.53, 127.49, 1273, 127.0, .126.6, 126.2, 100.7
(benzylidene-CH), 97.8 (C<1);.97.6 (C-1"),81.8, 80.3, 76.3, 74.8, 74.3,
74.2, 74.0, 73.4, 72.3, 71.7, 69.5, 69.3, 69.1, 62.9, 55.1; HRMS (FAB):
calcd for CssHsgO(Na [M + Na]" requires 917.3877, found m/z 917.3869.

6-chlorohexyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-
(1-6)-2,3,4-tri-O-benzyl-B-D-galactopyranoside 24. Preparation of 24
was referred to general pre-activated DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S1,
entry 7). Compound 24 was obtained as a white glassy solid by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 7/1/2). For
a-anomer of 24, Ry 0.35 (Hexane/EtOAc/CH,Cl, 5/1/1); [a]’"*p= +73.3

(c= 1, CHCl;) '"H NMR (300 MHz, CDCLy): & 7.53-7.50 (m, 2H, ArH),
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7.40-7.20 (m, 28H, ArH), 5.47 (s, 1H, benzylidene-CH), 4.90-4.80 (m,
6H), 4.76-4.66 (m, 3H), 4.64 (d, J=4.5 Hz, 1H), 4.60 (d, /= 4.2 Hz, 1H),
431 (d, J = 7.5 Hz, 1H, H-1), 4.23-4.16 (m, 2H), 4.1-3.9 (m, 3H),
3.87-3.75 (m, 4H), 3.6- 3.5 (m, 3H), 3.5-3.4 (m, 4H ), 1.78-1.69 (m, 2H,
CH,), 1.66-1.55 (m, 2H, CH,), 1.50-1.33 (m, 4, CH,); °C NMR (75 MHz,
CDCl;): 0 138.6, 138.46, 138.39, 138.32, 137.8, 128.8, 128.3, 128.2,
128.1, 128.0, 127.96, 127.86, 127.6, 127.5, 126.3, 103.8 (C-1), 101.0
(benzylidene-CH), 98.2 (C-1’), 82.1, 79.4, 75.9, 75.2, 75.1, 74.5, 74.2,
73.8, 73.6, 73.15, 73.14, 71.7, 69.50, 69.45 67.3, 62.5 (OCH,), 45.0
(CH,Cl), 32.4 (CHp), 29.5 (CH,), 26.6 (CH,), 25.5 (CH,); HRMS (ESI):
calcd for CgHg;ClO;Na [M. + Na]" requires 1021.4270, found m/z
1021.4264.

Methyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—4)-2,3-O-i
sopropylidene-a-L-rhamnopyraneoside 25. Preparation of 25 was
referred to general pre-activated DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S1,
entry 8). Compound 25 was obtained as a white amorphous substance by
column chromatography purification (Elution: Hexane/EtOAc/CH,Cl,
8/1/2). For a-anomer of 25, Ry 0.25 (Hexane/EtOAc/CH,Cl, 5/1/1);
[a]’p= +62.8 (c= 0.79, CHCL;) 'H NMR (300 MHz, CDCL): &
7.54-7.50 (m, 2H, ArH), 7.42-7.25 (m, 13H, ArH), 5.48 (s, 1H,
benzylidene-CH), 5.1 (d, J = 3.6 Hz, 1H, H-1"), 4.87 (d, J = 12 Hz, 1H),
4.85 (s, 1H, H-1), 4.76-4.69 (m, 3H), 4.23 (d, /= 3.3 Hz, 1H), 4.19 (dd, J

= 1.2, 12.3 Hz, 1H), 4.14-3.99 (m, 6H), 3.7 (m, 1H), 3.4 (m, 1H), 3.3 (s,
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3H, OCH,), 1.5 (s, 3H, CH;), 1.3 (m, 6H, CH; x 2); °C NMR (75 MHz,
CDCls): 0 138.7, 138.3, 137.9, 128.8, 128.3, 128.1, 127.7, 127.6, 126.3,
109.0 (isopropylidene-C), 101.0 (benzylidene-CH), 99.0 (C-1°), 97.7
(C-1),79.5,76.2,75.3, 74.6, 74.4, 71.8, 69.4, 65.1, 62.5, 54.6, 28.1 (CH;),
26.4 (CH3), 17.2 (CH;3); HRMS (FAB): calcd for C3,;H4400Na [M + Na]"
requires 671.2832, found m/z 617.2842.

Methyl 2,3,4-tri-O-benzyl-L-fucopyranosyl-(1—6)-2,3,4-tri-O-benzyl-
a-D-glucopyranoside 26. Preparation of 26 was referred to the general
pre-activated braking glycosylation and the exact amounts of reagents
used were given (Table S1, entry 9). Compound 26 was obtained as a
white glassy powder by column chromatography purification (Elution:
Hexane/EtOAc 4.5/1). For a=anomer of 26, R; 0.4 (Hexane/EtOAc 3/1);
'H NMR (300 MHz, CDCly): ¢ 7:39-7.15-(m, 30H, ArH), 4.99 (d, J=4.5
Hz, 1H), 4.95 (d, /= 3.6 Hz, 1H), 4.89 (d,J=13.3 Hz, 1H), 4.85-4.62 (m,
10H), 4.58 (d, J = 3.3 Hz, 1H), 4.06-3.94 (m, 3H), 3.89 (q, J = 6.6, 12.9
Hz, 1H), 3.82 (d, J = 10.8 Hz, 1H), 3.75 (dd, J = 3.9, 10.2 Hz, 1H),
3.68-3.56 (m, 3H), 3.51 (dd, J = 3.6, 9.6 Hz, 1H), 3.31 (s, 3H, OCH,),
1.10 (d, J = 6.3 Hz, 3H); °C NMR (75 MHz, CDCl;): ¢ 138.7, 138.65,
138.5, 138.3, 138.2, 128.35, 128.33, 128.30, 128.27, 128.10, 128.09,
127.95, 127.92, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 97.9 (C-1’, C-1),
82.0, 79.9, 79.1, 77.6, 76.1, 75.7, 74.9, 74.7, 73.2, 73.1, 72.8, 70.0, 66.3,
66.2, 55.0, 16.5; HRMS (MALDI-TOF): calcd for CssHgO0Na [M +
Na]" requires 903.40842, found m/z 903.4140.
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Methyl
2,3-O-isopropylidene-4-O-benzyl-L-rhamnopyranosyl-a-(1—4)-2,3-O
-isopropylidene-a-L-rhamnopyranoside 27. Preparation of 27 was
referred to the general pre-activated DMF-modulating glycosylation and
the exact amounts of reagents used were given (Table S1, entry 10).
Compound 27 was obtained as a yellowish glassy solid by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 0.5/5/1).
For a-anomer of 27, Ry 0.45 (Hexane/EtOAc/CH,Cl, 7/1/2); [(x]37'9D=
-133.2 (c= 0.52, CHCl;) '"H NMR (300 MHz, CDCl;): § 7.38-7.25 (m,
5H, ArH), 5.59 (s, 1H, H-1"), 4.9 (d, J = 11.7 Hz, 1H), 4.86 (s, 1H, H-1),
4.64 (d, J=11.4 Hz, 1H), 4.254.14 (m; 3H), 4.08 (d, J = 5.4 Hz, 1H),
3.74-3.54 (m, 3H), 3.36 (d,J=0.6/Hz, 3H, OCH;), 3.24 (dd, J=7.5,9.9
Hz, 1H), 1.54 (s, 3H, CH3),"1.51 (s, 3H, CH;), 1.38 (s, 3H, CH;), 1.32 (s,
3H, CHs), 1.27 (m, 6H, CH; x.2); C NMR (75 MHz, CDCl;): 6 138.2,
128.3, 128.1, 127.7, 109.4;:109.0, 97.9 (C-1), 95.5 (C-1°), 80.8, 78.5,
78.5, 76.41, 76.35, 76.0, 73.2, 64.9,°63.8, 54.8, 28.0, 27.9, 26.3, 17.9,
17.5; HRMS (MALDI-TOF): calcd for CosH3309Na [M + Na]" requires
517.24135, found m/z 517.2429.

Methyl 2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl-(1—4)-2,3,6-tri-O-
benzyl-o.-D-glucopyranoside 28.** Preparation of 28 was referred to the
general pre-activated DMF-modulating glycosylation and the exact
amounts of reagents used were given (Table S1, entry 11). Compound 28
was obtained as a yellowish amorphous solid by column chromatography
purification (Elution: Hexane/EtOAc/CH,Cl, 7/1/1). For a-anomer of 28,

R 0.3 (Hexane/EtOAc/CH,Cl, 5/1/1); 'H NMR (300 MHz, CDCls):
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7.28-7.19 (m, 33H, ArH), 7.10-7.07 (m, 2H, ArH), 5.72 (d, J = 3.6 Hz,
1H), 5.05 (d, J= 11.4 Hz, 1H), 4.88 (d, J = 10.8 Hz, 1H), 4.82-4.76 (m,
3H), 4.07 (d, J = 12.3 Hz, 1H), 4.62-4.48 (m, 7H), 4.40 (d, J = 10.8 Hz,
1H), 4.25 (d, J = 12.3 Hz, 1H), 4.13-4.03 (m, 2H), 3.94-3.80 (m, 3H),
3.72-3.58 (m, 4H), 3.35-3.46 (m, 2H), 3.37 (m, 4H); °C NMR (75 MHz,
CDCly): 6 138.8, 138.6, 138.4, 138.0, 137.8, 137.76, 128.4, 128.28,
128.24, 128.19, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.47, 127.3,
127.1, 127.06, 126.7, 97.7 (C-17), 96.5 (C-1), 82.0, 80.1, 79.3, 75.5, 74.8,
74.4,73.4,73.2,73.0,71.9, 70.8, 69.4, 68.8, 67.9, 55.1.°"

Methyl
2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl-(1—4)-2,3-O-isopropylide
ne-o-L-rhamnopyranoside.29. Preparation-of 29 was referred to the
general pre-activated DMF-modulating glycosylation procedure and the
exact amounts of reagents used were given (Table SI, entry 12).
Compound 29 was obtained as a milky white glassy substance by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 5/1/1). For
o-anomer of 29, R; 0.3 (Hexane/EtOAc/CH,Cl, 5/1/1); "H NMR (300
MHz, CDCl;): 6 7.36-7.23 (m, 18H, ArH), 7.18-7.15 (m, 2H, ArH),
4.98-4.95 (m, 2H), 4.88-4.78 (m, 4H), 4.73-4.60 (m, 2H), 4.52 (d, J="7.5
Hz, 1H), 4.48 (d, J = 9 Hz, 1H), 4.12-4.04 (m, 3H), 3.98 (t, J = 9.3 Hz,
1H), 3.82-3.70 (m, 3H), 3.65-3.58 (m, 2H), 3.34 (q, J = 10.8, 17.1 Hz,
1H), 3.33 (s, 3H, OCH,), 1.43 (s, 3H, CH;), 1.31 (d, /= 6.3 Hz, 3H, CH;),
1.25 (s, 3H, CHs); ”C NMR (75 MHz, CDCly): § 138.7, 138.3, 137.9,
137.8, 128.39, 128.38, 128.34, 128.30, 128.24, 127.92, 127.89, 127.8,

127.65, 127.63, 127.5, 108.9 (isopropylidene-C), 98.3 (Jou = 168 Hz,
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C-1°), 97.7 (Jcu = 166 Hz, C-1), 82.2, 80.7, 79.7, 77.74, 77.75, 75.8, 75.5,
75.1, 74.2, 73.5, 70.2 67.9, 64.7, 54.6, 28.1, 26.3, 17.4; HRMS
(MALDI-TOF): calcd for C4Hs5,0;0Na [M + Na]" requires 763.34527,
found m/z 763.3478.

p-tolyl 4-O-benzyl-2,3-di-O-benzoyl-thio-B-D-glucopyranoside 34.

OH
O Tf),, RT Q
BQ&/STOI Cu(OTh),, BROS STol
OBz OBz
34a 34

Scheme 15. Preperation of p-tolyl
4-0-benzyl-2,3-di-O-benzoyl-thio-B-p-glucopyranoside 34.%

Thioglucopyranoside 34a" (2 g, 3.43 mmol) was then treated with
BH; (1 M in THF) (17 mL) and Cu(OTf), (186 mg, 0.51 mmol) at RT
under N,. Upon completion  of teductive ring opening, the reaction
mixture was cooled to 0 °C and neutralized with NEt;, excess BH; was
quenched with MeOH at 0 °C. The resulting mixture was concentrated
and purified by column chromatography (Elution: hexane/EtOAc/CH,Cl,
6/1/1 to 2/1/1) to afford thioglucopyranoside 34 as a white amorphous
solid (1.72 g, 86% from 34a). For 34, [a]’”p=+56.5 (c= 0.48, CHCL;) 'H
NMR (300 MHz, CDCls): 6 8.00-7.93 (m, 4H, ArH), 7.57-7.50 (m, 2H,
ArH), 7.43-7.36 (m, 6H, ArH), 7.21-7.16 (m, 7H, ArH), 5.78 (t, J = 10
Hz, 1H), 5.38 (t, /=10 Hz, 1H), 4.94 (d, /= 10 Hz, 1H, H-1), 4.62 (s, 2H,
CH,), 4.02 (d, J= 18 Hz, 1H), 3.94 (t, /= 10 Hz, 1H), 3.86-3.82 (m, 2H),
3.65 (m, 1H), 2.36 (s, 3H, CH;), 2.19 (bs, 1H, OH); °C NMR (75 MHz,
CDCls): 6 165.6 (C=0), 165.3 (C=0), 138.5, 137.0, 133.3, 133.2, 133.1,

129.8, 129.7, 129.6, 129.3, 129.2, 128.3, 128.15, 128.11, 127.9, 86.3
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(C-1), 79.5, 75,2, 74.8, 70.8, 61.6, 21.1 (CH;); HRMS (ESI): caled for
CesH7oNaO,,S [M + Na]™ 1109.4480, found m/z 1109.4454.

p-tolyl 2,3,4-tri-O-benzyl-B-D-galactopyranosyl-(1—4)-2,3,6-tri-O-
benzyl-thio-B-D-glucopyranoside 38.

Ph
Fo o
ogS/ OBn BH3 THF, BnO OBn
0 o TMSOTf, RT é&/ &
0
BnO B(r?O/éS/ STol BnO BnO STol
OBn OBn OBn OBn

38a 38
Scheme 16. Preparation of p-tolyl
2,3,4-tri-O-benzyl-B-p=galactopyranosyl-(1—>4)-2,3,6-tri-O-
benzyl-thio+B-D-glucopyranoside 38.

Known 38a® (1.5 g, 1.52 mmol) was treated with 1 M BH;.THF (6.1
mL, 6.1 mmol) under N,, followed by the addition of TMSOTT (41 pL,
0.23 mmol). The mixture was stirred at RT for 2 h before quenching with
triethylamine (TEA) (0.1 mL) and MeOH (2 mL) at 0 °C. The reaction
crude was then concentrated for column chromatography (Elution:
Hexane/EtOAc/CH,Cl, 1/3/1) to furnish 38 as a glassy material (0.94 g,
63%). For 38, R; 0.4 (Hexane/EtOAc/CH,Cl, 2/1/1); [a]’""p= -0.85 (c=
3.32, CHCl;) 'H NMR (300 MHz, CDCl;): & 7.47 (d, J = 8.1 Hz, 2H,
ArH), 7.41-7.25 (m, 27H, ArH), 7.19-7.12 (m, 4H, ArH), 7.00 (d, J="7.8
Hz, 2H, ArH), 5.08 (d, J = 10.5 Hz, 1H, ArH), 4.95 (d, J= 11.7 Hz, 1H),
4.84-4.68 (m, 7H), 4.61-4.50 (m, 3H), 4.42-4.38 (m, 2H), 3.92 (t, J =
9.6Hz, 1H), 3.84-3.75 (m, 3H), 3.61 (t, J = 8.7 Hz, 1H), 3.56-3.50 (m,
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1H), 3.44-3.31 (m, 4H), 3.17 (dd, J = 5.4, 6.6Hz, 1H), 2.26 (s, 3H, CH;);
C NMR (75 MHz, CDCl;): 6 138.98, 138.96, 138.9, 138.8, 138.6, 138.0,
133.0, 130.1, 130.0, 129.3, 128.8, 128.72, 128.66, 128.64, 128.61, 128.59,
128.51, 128.48, 128.4, 128.2, 128.1, 128.00, 127.98, 127.9, 127.83,
127.78, 103.2 (C-1"), 88.1 (C-1), 85.3, 82.9, 80.6, 80.3, 79.7, 77.0, 76.2,
75.9, 75.6, 75.4, 74.8, 74.1, 73.5, 73.3, 68.6, 62.1, 21.5 (CH3); ESI: calcd
for C¢;HeuNaO,,S [M + Na]" 1011.4, found m/z 1011.6.

4,6-O-benzylidene-3-O-(2-naphthyl)-thio-B-D-galactopyranoside 39.

Ph Ph
$o 1. Bu,SnO, $O
O Toluene, reflux O
0 2. NapBr, CsF O
HO STol NapO STol
OH OH
39a 39

Scheme 17. Preparation of

4,6-0-benzylidene-3-0O-(2-naphthyl)-thio-3-b-galactopyranoside 39.

A suspension of known 39a* (1 g, 2.67 mmol) and dibutyl tin oxide
(Bu,Sn0O) (1 g, 4.0 mmol) in toluene (25 mL) was heated to reflux (ca
135 °C) under Dean-Stark condensation for 15 h. After then, the mixture
was concentrated by removal of toluene (to 15 mL), followed by stirring
at RT. Subsequently, 2-naphthalene bromide (2-NapBr) (0.89 g, 4 mmol)
and CH;CN (10 mL) were added to the residue. The mixture was stirred
at 70 °C for 6 h, followed by addition of 2 N NaOH,q) (1 mL) and CH,Cl,
(20 mL). The resulting emulsion was filtered through celite and the
filtrate was concentrated for column chromatography purification

(Elution: Hexane/CH,Cl,/EtOAc 4/3/1) to give 39 as a white amorphous
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powder (0.95 g, 71% from re-precipitation in hexane/EtOAc). For
acceptor 39, R; 0.4 (Hexane/EtOAc/CH,Cl, 2/1/1); [a]"p= +6.7 (c=
1.73, CHCl;) '"H NMR (300 MHz, CDCl;): & 7.83-7.73 (m, 4H, ArH),
7.58 (d, J= 8.1 Hz, 1H, ArH), 7.50-7.44 (m, 3H, ArH), 7.42-7.33 (m, 5H,
ArH), 7.06 (d, J = 8.1 Hz, 1H, ArH), 5.39 (s, 1H, benzylidene-CH), 4.88
(s, 2H), 4.45 (d, J=9.6 Hz, 1H, H-1), 4.32 (bt, /= 12.3 Hz, 1H), 4.12 (d,
J=3Hz, 1H), 3.95-3.87 (m, 2H), 3.54 (dd, J = 3.3, 9.3 Hz, 1H), 3.39 (s,
1H), 2.49 (d, J = 1.8 Hz, 1H, OH), 2.34 (s, 3H, CH;); °C NMR (75 MHz,
CDCls): 0 138.4, 137.8, 135.5, 134.4, 133.1, 133.0, 129.7, 129.0, 128.2,
128.0, 127.8, 127.7, 126.7, 126.6, 126.4, 126.1, 126.0, 125.7, 101.1
(benzylidene-CH), 87.0 (C-1),:80.0, 734, 71.8, 70.0, 69.3, 67.1, 21.2
(CHs;); ESI: calcd for C3;H3pNaOsS [M + Na]''537.2, found m/z 537.1.
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Table 8. Experimental details for glycosylation of thioglycosyl acceptors

30—40 using procedure B

(0]
Ho/m—STd
NISTTMSOTF 30,40 (1 equiv)
2 DMF ‘ | =2
OGP-< STol + . OGP~
(6 equiv) %

2 7, 8, or9 1 h, CH20|2 Time (h), O\ (o)
(1.5 equiv) -10°C 10 or 0 °C 41-55 \”

Thioglycoside acceptors 30-40

BnO ,OH HO OBn BnO OBn OH OH
o) o) o) o) 0
Bnogﬁ/STol Bno&/STol BnOgS/SToI A&%oé&sm B%(Z)o&&sm
OBn OBn OH NHTroc OBz
30 31 32 33 34
STol
OH
BnO H g \
BnO STol RO STol O 0 BnO Br?oégpsw
OBn OBn BnO OB
n
35 < ] 38
Ph Ph

o 0]
o o
NapO STol HO STol

Entr Donor (mg, Acceptor (mg, Time T¢0) Glycosylation product
y mmol) mmol) (h) Yield (mg, %), a/pe!
2 (166.3,
1 30(111.2,0.2) 3 -10 41 (118.3, 60) 36/1
0.3)
2 (166.3,
2 31(111.2,0.2) 6 0 42 (108.5, 55) 6/1
0.3)
3 2(166.3, 32(111.2,0.2) 3 0 43 (108.5, 55) 11/1
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0.3)

2 (166.3,

4 33(108.6,02) 3 -10 44 (87.1, 45) 11/1
0.3)
2 (166.3,

5 34(116.8,02) 3 -10 45 (172.2, 85) 49/1
0.3)
2 (166.3,

6 35(111.2,02) 2 -10 46 (127.9, 65) 12/1
0.3)
2 (166.3,

7 36 (111.2,02) 4 0 47 (138.1, 70) 49/1
0.3)
2 (166.3,

8 37 (62,0.2) 2 0 48 (73.6, 50) 13/1
0.3)
2 (166.3,

9 38 (197.7,02) — 3 -10 49 (212.8, 75) 19/1
0.3)
2 (166.3,

10 39 (102.8,02) - 4 0 50 (160.2, 85) 49/1
0.3)

11 7(100,0.2) 40 (70, 0.15) 3 -10 51 (64, 56) 49/1

12 7(700,13) 32(560, 1.0) 6 -10 52 (518, 61) 49/1

13 8(96,0.24) 35(55.6,0.2) 3 -10 53 (91.5, 55) 6/1
9 (155,

14 36 (91, 0.2) 5 0 54 (107.8,50)  49/1
0.24)
9 (155,

15 37 (62, 0.2) 3 0 55 (91.5, 55) 8/1t"!
0.24)

[lo/B Ratios were determined by Hitachi HPLC system (Mightysil column (Si-60
250-4.6); Elution: EtOAc/hexane/CH,Cl, mixture at 0.8 mL min"' flow rate; HPLC
pump (L-2130) and UV detector (L-2400) were employed. "!Ultra-sonification was
applied (Branson 2210R-MT).
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p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-
2,3,4-tri-O-benzyl-thio--D-galactopyranoside 41. Preparation of 41
was referred to general pre-activated DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S2,
entry 1). Compound 41 was obtained as a white glassy material by
column chromatography purification (Elution: Hexane/EtOAc/CH,Cl,
7/1/2). For a-anomer of 41, R; 0.4 (Hexane/EtOAc/CH,Cl, 5/1/2);

[0] 7%= +42.6 (c= 1.04, CHCl;) 'H NMR (300 MHz, CDCL): &

7.51-7.47 (m, 2H, ArH), 7.42-7.22 (m, 30H, ArH), 7.57-7.50 (m, 2H,
ArH), 6.98 (d, J = 7.8 Hz, 2H, ArH), 5.42 (s, 1H, benzylidene-CH), 4.93
(d, J = 12.0 Hz, 1H), 4.84'(d, J = 12.Hz, 1H), 4.80-4.68 (m, 8H),
4.64-4.56 (m, 2H), 4.15 (dd, /= 1.2,-12.5 Hz; 1H), 4.08-4.01 (m, 2H),
3.95 (d, J = 3.3 Hz, 1H), 3.92 (d, J = 2.7 Hz,1H), 3.89-3.76 (m, 3H),
3.68(s, 1H), 3.64 (t, J = 3.9 Hz, 1H), 3.59 (dd, J = 2.7, 9.3 Hz, 1H), 3.33
(dd, J=3.9, 10.2 Hz, 1H), 2:25(s,-3H,.€H;); °C NMR (75 MHz, CDCl;):
0 139.2, 139.0, 138.9, 138.7, 138.6, 138.4, 137.2, 131.3, 131.1, 130.1,
129.3, 128.96, 128.84, 128.80, 128.78, 128.74, 128.54, 128.49, 128.3,
128.2, 128.1, 128.0, 127.9, 126.78, 101.4 (benzylidene-CH), 98.5 (C-1"),
87.4 (C-1), 84.6, 77.8, 77.6, 76.8, 76.2, 75.8, 74.8, 74.7, 74.42, 74.38,
73.5, 72.2, 70.0, 68.2, 62.9, 21.6 (CH;); HRMS (FAB): calcd for
C1Hs,0190SNa [M + Na]" requires 1009.3961, found m/z 1009.3956.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—4)-
2,3,6-tri-O-benzyl-thio--D-galactopyranoside 42. Preparation of 42

was referred to general pre-activated DMF-modulating glycosylation
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procedure and the exact amounts of reagents used were given (Table S2,
entry 2). Compound 42 was obtained as a white glassy solid by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 7/1/2). For
a-anomer of 42, R; 0.5 (Hexane/EtOAc/CH,Cl, 5/1/2); [a]’’p= +50.7

(c= 1.32, CHCl;) 'H NMR (300 MHz, CDCL3): & 7.60 (d, J = 8.1 Hz, 2H,

ArH), 7.50-7.17 (m, 30H, ArH), 7.06 (d, J = 8.1 Hz, 2H, ArH), 5.34 (s,
1H, benzylidene-CH), 5.18 (d, J=3.3 Hz, 1H, H-1"), 5.05 (d, /J=11.7 Hz,
1H), 4.76-4.72 (m, 5H), 4.65 (d, J= 5.7 Hz, 1H), 4.54 (d, /= 9.6 Hz, 1H,
H-1), 4.35-4.25 (m, 3H), 4.21-4.15 (m, 2H), 4.10-3.98 (m, 4H), 3.80 (t, J
=9.3 Hz, 1H), 3.66-3.49 (m, 5H), 3.40 (dd, J= 1.2, 12.6 Hz, 1H), 2.17 (s,
3H, CH;); °C NMR (75 MHz, €DCl3):6°139.4, 139.3, 138.7, 138.54,
138.46, 138.3, 137.4, 132.5, 130.5,-130.1,.129.3, 128.9, 128.80, 128.77,
128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 1279, 127.8, 127.4, 126.8,
101.2 (benzylidene-CH),100.6 (C-1"), 87.5 (C-1), 83.3, 76.4, 76.1, 75.7,
74.9, 74.5, 73.7, 73.3, 72.5,:71.3,.69.8,67.6, 63.0, 21.5 (CH;); HRMS
(FAB): calcd for C4;Hg,010SNa [M + Na]" requires 1009.3961, found m/z
1009.3981.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—2)-
3,4,6-tri-O-benzyl-thio-B-D-galactopyranoside 43. Preparation of 43
was referred to general pre-activated DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S2,
entry 3). Compound 43 was obtained as a white amorphous solid by
column chromatography purification (Elution: Hexane/EtOAc/CH,Cl,
6/1/2). For a-anomer of 43, R; 0.4 (Hexane/EtOAc/CH,Cl, 5/1/2);
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[a]’p= +61.9 (c= 0.43, CHCL;) 'H NMR (300 MHz, CDCL): &
7.47-7.19 (m, 30H, ArH), 7.06-7.03 (m, 2H, ArH), 6.96 (d, J = 7.8 Hz,
2H, ArH), 5.89 (d, J = 3.6 Hz, 1H, H-1"), 5.19 (s, 1H, benzylidene-CH),
4.90 (dd, J = 1.5, 11.4 Hz, 1H), 4.83-4.77 (m, 3H), 4.73-4.62 (m, 3H),
4.51-4.41 (m, 2H), 4.30 (t, J = 9.3 Hz, 1H), 4.24 (d, J = 10.2, 1H),
4.11-4.06 (m, 2H), 3.97 (s, 1H), 3.88 (dd, J = 3.6, 10.2, 1H), 3.80 (dd, J =
0.9, 12.3, 1H), 3.70-3.63 (m, 5H), 3.01 (dd, J = 1.2, 12.3 Hz, 1H), 2.28 (s,
1H, CHs); °C NMR (75 MHz, CDCly): § 139.5, 139.2, 138.8, 138.4,
138.2, 137.9, 137.6, 132.0, 130.3, 130.1, 129.2, 129.0, 128.9, 128.8,
128.7, 128.6, 128.54, 128.50, 128.46, 128.4, 128.2, 128.02, 127.96, 126.8,
101.3 (benzylidene-CH), 97.2.(C=17), 88:3 (C-1), 84.2, 77.9, 77.5, 77.3,
77.1, 76.1, 76.0, 75.2, 75.1; 74.2,.73.9,73.4,72.8, 72.5, 71.4, 69.5, 69.0,
62.5, 21.6 (CH;); HRMS (FAB): caled for CeHg010SNa [M + Na]"
requires 1009.3961, found m/z:1009.3961.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-
3,4-di-O-acetyl-2-deoxy-2-trichloroethoxycarbamyl-thio-B-D-glucopy
ranoside 44. Preparation of 44 was referred to pre-activated
DMF-modulating glycosylation procedure and the exact amounts of
reagents used were given (Table S2, entry 4). Compound 44 was obtained
as a white glassy material by column chromatography purification
(Elution: Hexane/EtOAc/CH,Cl, 3/1/1). For a-anomer of 44, R; 0.3
(Hexane/EtOAc/CH,CL, 3/1/1); [a]’"’p= +44.4 (c= 0.76, CHCl)) 'H
NMR (300 MHz, CDClLy): 6 7.49-7.46 (m, 2H, ArH), 7.42-7.25 (m,
15H, ArH), 7.11 (d, J = 8.1 Hz, 2H, ArH), 5.77 (d, J = 9.3 Hz, 1H, NH),

5.44 (s, 1H, benzylidene-CH), 5.18 (t, /= 7.8 Hz, 1H), 4.92-4.88 (m, 2H),
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4.78-4.55 (m, 7H), 4.15-3.94 (m, 5H), 3.89-3.67 (m, 4H), 3.58 (s, 1H),
2.35 (s, 1H, CH;), 2.04 (s, 3H, CH3), 1.93 (s, 3H, CH3); °C NMR (75
MHz, CDCl;) ¢ 170.92 (C=0), 170.85 (C=0), 154.6 (C=0), 138.9, 138.7,
138.6, 138.1, 133.6, 130.1, 129.4, 129.3, 128.9, 128.8, 128.6, 128.4,
128.1, 126.7, 101.4 (benzylidene-CH), 100.3 (C-1°), 95.9 (CCly), 87.2
(C-1), 76.0, 75.1, 74.9, 74.7, 74.5, 74.0, 72.4, 69.7, 64.3, 63.8, 55.2, 21.6
(CH3), 21.4 (CHj3), 21.3 (CH;); HRMS (FAB): calcd for
C47HsoCIsNO;3SNa [M + Na]" requires 996.1966, found m/z 996.1953.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)
-4-O-benzyl-2,3-di-O-benzoyl-thio-B-D-glucopyranoside 45.
Preparation of 45 was referred to general pre-activated DMF-modulating
glycosylation procedure~and the exact-amounts of reagents used were
given (Table S2, entry 5). Compound 45 was obtained as a white glassy
material by  column “. chromatography. purification (Elution:
Hexane/EtOAc/CH,Cl, 6/1/3). " 'For = a-anomer of 45, Ry 04
(Hexane/EtOAc/CH,CL, 6/1/3); [a]’"’p= +78.7 (c= 0.85, CHCl;) 'H
NMR (300 MHz, CDCls): 6 7.96 (d, J = 7.2 Hz, 2H, ArH), 7.79 (d, J =
7.5, 2H, ArH), 7.57-7.53 (m, 2H, ArH), 7.51-7.45 (m, 2H, ArH),
7.43-7.21 (m, 19H, ArH), 7.10-7.04 (m, 7H, ArH), 5.69 (t, J = 9.3, 1H),
5.48 (s, 1H, benzylidene-CH), 5.33 (t, J = 9.6 Hz, 2H), 5.17 (d, J = 3.3
Hz, 1H, H-1), 4.87-4.73 (m, 4H), 4.65 (d, J = 11.7 Hz, 1H), 4.49 (s, 2H),
4.22 (d, J=12.3, 1H), 4.11-4.07 (m, 2H), 4.01-3.83 (m, 5H), 3.79-3.74
(m, 1H), 3.65 (s, 1H), 2.23 (s, 1H, CH3); >C NMR (75 MHz, CDCly): ¢
166.1 (C=0), 165.7 (C=0), 139.2, 139.0, 138.7, 138.4, 137.8, 133.6,

133.5, 130.32, 130.25, 129.84, 129.76, 129.4, 128.93, 128.78, 128.7,
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128.6, 128.5, 128.4, 128.2, 128.1, 128.04, 128.00, 126.8, 101.5
(benzylidene-CH), 98.5 (C-1°), 86.2 (C-1), 80.0, 77.9, 77.5, 77.1, 76.8,
76.5, 76.4, 76.0, 75.1, 74.0, 72.4, 71.3, 69.9, 66.1, 63.1, 21.6 (CHj;);
HRMS (FAB): calcd for C4;Hsg01,SNa [M + Na]" requires 1037.3547,
found, m/z 1037.3541.

p-tolyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-2,3,4-tr
i-O-benzyl-thio-B-D-glucopyranoside 46. Preparation of 46 was referred
to general pre-activated DMF-modulating glycosylation procedure and
the exact amounts of reagents wused were given (Table S2, entry 6).
Compound 46 was obtained as a white amorphous solid by column
chromatography purification (Elution: Hexane/EtOAc/CH,Cl, 6/1/3) and
both a/pB-anomers were 1solated for NMR: characterization. For a-anomer
of 46, R; 0.5 (Hexane/EtOAc/CH,Cl, 6/1/3; [a]’ b= +63.1 (c= 0.85,
CHCl;) '"H NMR (300 MHz, CDCL):'8 7.53 (dd, J = 2.4, 7.8, 2H, ArH),
7.42-7.20 (m, 30H, ArH), 7.07 (d, J = 7.8 Hz, 2H, ArH), 5.43 (s, 1H,
benzlidene-CH), 5.04 (d, J= 3.3, 1H, H-1"), 4.91-4.72 (m, 8H), 4.65 (dd,
J=2.1,99 Hz, 2H), 4.56 (d, J=11.4, 1H), 4.15 (d, J = 12.6, 1H), 4.07
(dd, J =3.3, 9.9 Hz, 1H), 4.03 (d, J = 3.3, 1H), 3.96 (dd, J = 3.3, 10.2,
1H), 3.85-3.77 (m, 2H), 3.74-3.70 (m, 1H), 3.67 (d, J =9, 1H), 3.63 (s,
1H), 3.60-3.55 (m, 2H), 3.32 (t, J = 9 Hz, 1H), 2.26 (s, 3H, CH;); °C
NMR (75 MHz, CDCly): 6 139.2, 138.9, 138.6, 138.4, 138.3, 137.8, 131.9,
130.8, 130.2, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2,
128.14, 128.11, 128.08, 128.03, 127.95, 127.88, 126.8, 101.4
(benzylidene-CH), 98.6 (C-1°), 87.7 (C-1), 87.1, 81.3, 79.0, 78.4, 77.9,
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77.5,77.1,76.2, 76.1, 75.9, 75.3, 75.1, 73.5, 72.5, 69.9, 67.1, 62.9, 21.5
(CH;). For B-anomer of 46, R; 0.3 (Hexane/EtOAc/CH,CL, 6/1/3); 'H
NMR (300 MHz, CDCls): 6 7.58-7.55 (m, 2H, ArH), 7.46-7.15 (m, 30H,
ArH), 7.00 (d, J = 7.8 Hz, 2H, ArH), 5.49 (s, 1H, benzylidene-CH),
4.95-4.86 (m, 3H), 4.82-4.69 (m, 6H), 4.65-4.57 (m, 2H), 4.41 (d,J="7.8
Hz, 1H, H-1"), 4.29-4.20 (m, 2H), 4.08 (d, /= 3.3 Hz, 1H), 3.97 (d, J =
11.1, 1H), 3.90-3.76 (m, 2H), 3.69 (t, J = 8.4 Hz, 1H), 3.62-3.48 (m, 3H),
3.42 (t, J = 9.3 Hz, 1H), 3.20 (s, 1H), 2.20 (s, 3H, CH;); °C NMR (75
MHz, CDCl5): 6 139.3, 138.88, 138.86, 138.7, 138.5, 138.3, 137.9, 132.5,
130.4, 130.2, 129.4, 128.9, 128.84, 128.80, 128.64, 128.60, 128.5, 128.3,
128.2, 128.14, 128.09, 127.8, °127.0, 104.1 (C-1°), 101.8
(benzylidene-CH), 88.0 (C-1),-87.1,/81.1, 79.7, 79.3, 78.8, 78.4, 76.1,
75.8, 75.7, 75.3, 74.4, 72.5,769.6, 68.6,66.9,21.5 (CH;); HRMS (FAB):
calcd for C4;Hg010S Na [M + Na]™ requires 1009.3961, found m/z
1009.3964.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—4)-
2,3,6-tri-O-benzyl-thio-B-D-glucopyranoside 47. Preparation of 47 was
referred to general pre-activated DMF-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S2,
entry 7). Compound 47 was obtained as a milk white glassy material by
column chromatography purification (Elution: Hexane/EtOAc/CH,Cl,
7/1/2). For a-anomer of 47, R;0.3 (Hexane/EtOAc/CH,Cl, 7/1/2); 'H
NMR (300 MHz, CDCl;): 6 7.49-7.47 (m, 4H, ArH), 7.33-7.14 (m, 28H,
ArH), 7.03 (d, J= 7.8 Hz, 2H, ArH), 5.77 (d, J= 3.3 Hz, 1H, H-1"), 5.38

(s, 1H, benzylidene-CH), 4.92-4.81 (m, 3H), 4.78-4.74 (m, 1H), 4.68 (s,
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2H), 4.63-4.48 (m, 5H), 4.09 (d, J = 5.4 Hz, 1H), 4.04 (d, J = 8.1, 2H),
3.97-3.93 (m, 2H), 3.81-3.67 (m, 4H), 3.58-3.48 (m, 3H), 2.29 (s, 3H,
CHs); "C NMR (75 MHz, CDCl3): § 139.0, 138.7, 138.6, 138.27, 138.25,
133.2, 130.1, 129.9, 129.2, 128.82, 128.78, 128.71, 128.6, 128.5, 128.3,
128.1, 128.0, 127.9, 127.8, 127.6, 126.9, 126.7, 101.2 (benzylidene-CH),
98.4 (C-1’), 87.9 (C-1), 87.2,81.4,79.2,77.9,77.5,77.1, 76.8, 75.7, 75.0,
74.7, 74.6, 74.0, 72.5, 72.0, 69.8, 69.6, 63.4, 21.6 (CH;); HRMS (FAB):
calcd for CgHgO10SNa [M + Na]™ requires 1009.3961, found m/z
1009.4016.

p-tolyl
2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—4)-2,
3-isopropylidene-thio-o-L-rhamnopyranoside " 48. Preparation of 48
was referred to general pre-activated DMFE-modulating glycosylation
procedure and the exact amounts of reagents used were given (Table S2,
entry 8). Compound 48 was obtained as a pale yellowish glassy material
by column chromatography purification (Elution: Hexane/EtOAc/CH,Cl,
7/1/2) and both a/B-anomers were isolated for NMR characterization. For
a-anomer of 48, R 0.4 (Hexane/EtOAc/CH,Cl, 6/1/2); [a]’’p= -34.1
(c=0.34, CHCl;) 'H NMR (300 MHz, CDCl;): & 7.54-7.52 (m, 2H, ArH),
7.43-7.24 (m, 15H, ArH), 7.12 (d, J = 7.8 Hz, 2H, ArH), 5.67 (s, 1H,
H-1), 5.48 (s, 1H, benzylidene-CH), 5.08 (d, /=3 Hz, 1H, H-1’), 4.91 (d,
J=11.4 Hz, 1H), 4.82-4.70 (m, 3H), 4.31-4.00 (m, 9H), 3.51 (dd, J="7.8,
9.9 Hz, 1H), 2.33 (s, 3H, CH;), 1.50 (s, 3H, CH;), 1.32 (s, 1H, CH;), 1.25
(d, J= 6.3, 3H, CH3); >C NMR (75 MHz, CDCly): § 139.2, 138.6, 138.4,

138.3, 132.9, 130.3, 129.94, 129.3, 128.8, 128.6, 128.2, 128.0, 126.8,
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109.6 (isopropylidene-C), 101.5 (benzylidene-CH), 99.6 (C-1°), 84.4
(C-1),80.4,77.9,77.5,77.3,77.2,77.1,75.6, 75.2, 74.9, 72.3, 69.9, 67.2,
63.0, 28.6, 27.1, 21.6 (CH;), 17.6. For B-anomer of 48, R; 0.3
(Hexane/EtOAc/CH,CL, 6/1/2); 'TH NMR (300 MHz, CDCly): § 7.54 (m,
2H, ArH), 7.46-7.29 (m, 15H, ArH), 7.13 (d, J = 7.8 Hz, 2H, ArH), 5.64
(s, 1H, H-1), 5.48 (s, 1H, benzylidene-CH), 4.95-4.86 (m, 2H), 4.81-4.71
(m, 3H), 4.31-4.21 (m, 3H), 4.18-4.08 (m, 2H), 4.01-3.97 (m, 1H),
3.82-3.73 (m, 2H), 3.59 (dd, J = 3.6, 9.6 Hz, 1H), 3.28 (s, 1H), 2.33 (s,
3H, CHs), 1.48 (s, 3H, CHs), 1.33-1.30 (m, 6H, CH; x 2); °C NMR (75
MHz, CDCls): ¢ 139.5, 139.0, 138.5, 138.4, 133.1, 130.3, 130.1, 129.5,
128.80, 128.75, 128.7, 128.6; 128.2,.128.1, 128.0, 127.0, 109.8
(isopropylidene-C), 101.9.(benzylidene-C), 101.8 (C-1"), 84.6 (C-1), 79.7,
79.4,79.0, 78.3, 77.0, 75.8,774.6, 72.7,69.7, 66.8, 66.7, 28.4 (CH;), 26.9
(CH;), 21.6 (CH3), 18.2 (CH3); HRMS (FAB): calcd for C4,3Hs309SNa [M
+ Na]" requires 763.2917, found m/z 763.291.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—6)-
2,3,4-tri-O-benzyl-D-galactopyranosyl-(1—54)-2,3,6-tri-O-benzyl-thio-
B-D-glucopyranoside 49. Preparation of 49 was referred to general
pre-activated DMF-modulating glycosylation procedure and the exact
amounts of reagents used were given (Table S2, entry 9). Compound 49
was obtained as a white glassy solid by column chromatography
purification (Elution: Hexane/EtOAc/CH,Cl, 9/1/3). For a-anomer of 49,
R;0.4 (Hexane/EtOAc/CH,CL, 8/1/3); [a]’p= +33.6 (c= 0.54, CHCL)
'H NMR (300 MHz, CDClL;): 8 7.51-7.11 (m, 47H, ArH), 7.00 (d, J =

7.8Hz, 2H, ArH), 5.35 (s, 1H, benzylidene-CH), 5.04 (d, J = 9.9 Hz, 1H),
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4.95 (d, J = 11.4 Hz, 1H), 4.87-4.43 (m, 18H), 4.12-3.73 (m, 12H), 3.60
(t, J=9.0 Hz, 1H), 3.53-3.34 (m, 6H), 2.27 (s, 3H, CH3); °C NMR (75
MHz, CDCl5): 0 139.3, 139.2, 139.1, 138.93, 138.90, 138.7, 138.3, 138.2,
133.2, 130.1, 130.1, 129.3, 129.2, 128.9, 128.8, 128.76, 128.70, 128.64,
128.55, 128.53, 128.4, 128.3, 128.1, 128.04, 127.99, 127.9, 127.8, 126.8,
102.9 (C-1°), 101.4 (benzylidene-CH), 98.9 (C-1>), 88.2 (C-1), 85.5,
83.0, 80.9, 80.5, 79.8, 76.9, 76.6, 76.2, 76.0, 75.8, 75.7, 75.0, 74.8, 74.3,
74.2, 73.7, 73.5, 73.2, 72.2, 69.8, 68.8, 67.0, 62.9, 21.6 (CH;3); HRMS
(FAB): calcd for CggHogpO;5SNa [M + Na]" requires 1441.5898, found m/z
1441.5893.

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1—2)
-4,6-O-benzylidene-3-O-(2-naphthyl)-thio-B-D-galactopyranoside 50.
Preparation of 50 was referred to ‘general pre-activated DMF-modulating
glycosylation procedure and the exact amounts of reagents used were
given (Table S2, entry 10). Compound 50 was obtained as white
amorphous solid by column chromatography purification (Elution:
Hexane/EtOAc/CH,Cl, 5/1/1 to 2/1/1). For a-anomer of 50, R 0.5
(Hexane/EtOAc/CH,CL, 2/1/1); [a]’’p= +69.5 (c= 0.38, CHCl;) 'H
NMR (300 MHz, CDCl;): 6 7.83-7.67 (m, 4H, ArH), 7.51-7.25 (m, 25H,
ArH), 6.99 (d, J = 7.8 Hz, 2H, ArH), 5.92 (d, J = 3.6 Hz, 1H, H-1), 5.48
(s, 1H, benzylidene-CH), 5.07 (s, 1H), 4.94 (d, J = 11.4 Hz, 1H),
4.81-4.73 (m, 4H), 4.65 (d, J = 12.3 Hz, 1H), 4.49 (d, J = 11.1 Hz, 1H),
4.36-4.29 (m, 2H), 4.23 (t, /= 9.0 Hz, 1H), 4.08 (dd, /= 3.3, 9.5 Hz, 1H),
4.00-3.91 (m, 3H), 3.81-3.73 (m, 3H), 3.43 (s, 1H), 2.99 (dd, J=1.2, 12.3

Hz, 1H), 2.30 (s, 1H, CH;); °C NMR (75 MHz, CDCl;): § 139.5, 138.9,
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138.40, 138.35, 138.0, 135.6, 133.6, 133.4, 133.3, 130.2, 129.6, 129.2,
128.9, 128.8, 128.69, 128.66, 128.5, 128.2, 128.1, 128.0, 127.5, 127.1,
127.0, 126.8, 126.7, 126.6, 101.7 (benzylidene-CH),
101.1(benzylidene-CH), 97.2 (C-1’), 87.0 (C-1), 81.2, 77.9, 77.7, 77.1,
76.22, 76.17, 75.1, 74.2, 72.9, 72.4, 71.5, 70.4, 69.9, 69.7, 62.8, 21.7
(CH3); HRMS (FAB): calcd for CsgHsSO;oNa [M + Na]™ requires
967.3486, found m/z 967.3478.

p-tolyl

2,3,4-tri-O-benzyl-L-fucopyranosyl-a-(1—3)-2-O-benzyl-4,6-O-benzyl
idene-thio-B-D-galactopyranoside 51. Preparation of 51 was referred to
pre-activated DMF-modulating glycosylation' procedure and the exact
amounts of reagents used were given (Table S2, entry 11). Compound 51
was obtained as a glassy material by column chromatography purification
(Elution: Hexane/EtOAc. 4/1). For a<anomer of 51, Ry 0.2
(Hexane/EtOAc/CH,CL, 3/1); [a]?p="-56.7 (c= 0.08, CHCl;) 'H NMR
(300 MHz, CDCl;): 6 7.60 (d, J = 8.1 Hz, 2H, ArH), 7.47-7.16 (m, 26H,
ArH), 7.01 (d, J= 8.1 Hz, 1H), 5.47 (s, 1H, benzylidene-CH), 5.09 (d, J =
10.2 Hz, 3H), 4.95-4.92 (m, 2H), 4.84 (d, /= 12.3 Hz, 1H), 4.74-4.57 (m,
5H), 4.45 (d, J = 10.2 Hz, 1H), 4.39-4.34 (m, 2H), 4.10-3.96 (m, 4H),
3.77 (t, J=9.3 Hz, 3H), 3.66 (dd, J = 3.0, 9.0 Hz, 1H), 3.56 (s, 1H), 3.48
(s, 1H), 2.33 (s, 3H, CHs), 0.98 (d, J = 6.6Hz, 3H, CH;); °C NMR (75
MHz, CDCl,): 6 139.40, 139.38, 139.1, 139.0, 138.5, 138.0, 134.0, 130.0,
129.5, 129.1, 128.8, 128.72, 128.66, 128.61, 128.60, 128.58, 128.5,
128.41, 128.36, 128.0, 127.9, 127.8, 127.75, 127.7, 127.0, 101.7
(benzylidene-CH), 101.4 (C-1), 87.0 (C-1), 85.3, 79.4, 78.2, 76.6, 76.4,
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75.8, 75.3, 74.7, 73.5, 73.3, 70.0, 69.9, 67.5, 21.7 (CH;), 17.3 (CHj3);
HRMS (ESI): caled for Cs3HssOoSNa [M + Na]™ requires 903.3543,
found 903.3527.

p-tolyl
2,3,4-tri-O-benzyl-L-fucopyranosyl-a-(1—2)-3,4,6-tri-O-benzyl-thio-3
-D-galactopyranoside 52. Preparation of 52 was referred to pre-activated
DMF-modulating glycosylation procedure and the exact amounts of
reagents used were given (Table S2, entry 12). Compound 52 was
obtained as a white solid material by column chromatography purification
(Elution: Hexane/EtOAc 5/1).. ! For.a-anomer of 52, Ry 04
(Hexane/EtOAc 4/1); [a]’"’p= -114.5+(¢= 0.71, CHCL;) '"H NMR (300
MHz, CDCL): ¢ 7.38-7.32:(m, 28H, ArH), 7.17-7.08 (m, 3H, ArH),
7.06-6.99 (m, 4H, ArH),5.85 (d,J=3.3 Hz, 1H, H-1°),492 (d, J=11.7
Hz, 1H), 4.81-4.70 (m, 5H), 4.65-4.59 (m, 2H), 4.55-4.44 (m, 4H),
4.40-4.32 (m, 3H), 4.07-3.97 (m, 3H), 3.76 (dd, J= 2.4, 9.0 Hz, 1H), 3.71
(s, 1H), 3.62-3.59 (m, 3H), 2.28 (s, 3H, CH;), 1.13 (d, J = 6.6 Hz, 3H,
CHs); °C NMR (75 MHz, CDCl5): § 139.3, 139.1, 138.9, 138.8, 138.2,
137.4, 131.9, 131.1, 130.0, 128.8, 128.8, 128.7, 128.6, 128.4, 128.2,
128.1, 127.9, 127.8, 127.7, 127.6, 126.7, 98.2 (C-1°), 87.8 (C-1), 86.3,
80.0, 78.2, 75.9, 75.1, 74.8, 74.0, 73.4, 73.2, 72.3, 72.1, 71.1, 69.3, 67.8,
21.5 (CH3), 17.0 (CH3).; HRMS (ESI): caled for C4;Hg4O9SNa [M + Na]*
requires 995.4169, found m/z 995.4163.
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p-tolyl
4-O-benzyl-2,3-O-isopropylidene-L-rhamnopyranosyl-(1—6)-2,3,4-tri
-O-benzyl-thio-B-D-glucopyranoside 53. Preparation of 53 was referred
to pre-activated DMF-modulating glycosylation procedure and the exact
amounts of reagents used were given (Table S2, entry 13). Compound 53
was obtained as a white amorphous material by column chromatography
purification (Elution: Hexane/EtOAc/CH,Cl, 5/0.5/1). For a-anomer of
53, R;0.4 (Hexane/EtOAc/CH,CL, 7/1/2); [a]’"*p= -18.4 (c= 0.35, CHCl;)
'H NMR (300 MHz, CDCl3): & 7.46-7.24 (m, 22H, ArH), 7.09-7.07 (d, J
= 7.8 Hz, 2H, ArH), 4.94-4.82 (m, 6H), 4.74-4.63 (m, 2H), 4.60-4.56 (m,
1H), 4.27 (t, J = 6.6 Hz, 1H), 4.09.(d, J =5.7 Hz, 1H), 3.94 (d, J = 10.5
Hz, 1H), 3.78-3.67 (m, 2H), 3.56-3.42 (m, 4H), 3.22 (dd, J = 7.2, 9.6 Hz,
1H), 2.26 (s, 3H, CH;), 1.52(s, 3H, CH3), 1.38 (s, 3H, CH;), 1.26 (s, 3H,
CHs); PC NMR (75 MHz, CDCL): § 138.9, 138.8, 138.5, 138.3, 133.2,
130.1, 130.0, 129.98, 128.95,128.9, 128.7,128.5, 128.40, 128.36, 128.2,
128.0, 109.7 (isopropylidene-C), 97.6 (C-17), 87.9 (C-1), 87.3, 81.5, 81.3,
79.2,78.7,78.1, 76.4, 76.3, 75.9, 75.5, 73.4, 66.7, 65.0, 28.5 (CHs;), 26.9
(CH3), 21.5 (CH;), 183 (CH;3); HRMS (MALDI-TOF): calcd for
CsoHssO9SNa [M + Na]" requires 855.3543, found m/z 855.3577.

p-tolyl 2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl-(1—4)-2,3,6-tri-O-
benzyl-thio-B-D-glucopyranoside 54. Preparation of 54 was referred to
pre-activated DMF-modulating glycosylation procedure (B) and the exact
amounts of reagents used were given (Table S2, entry 14). Compound 54
was obtained as a white glassy material by column chromatography

purification (Elution: Hexane/Et,O/CH,Cl, 7/1/2). For a.-anomer of 54, R
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0.4 (Hexane/Et,0/CH,Cl, 7/1/2); "H NMR (300 MHz, CDCl;): & 7.50 (d,
J = 8.1 Hz, 2H, ArH), 7.30-7.23 (m, 27H, ArH), 7.19-7.08 (m, 8H), 7.04
(d, J =7.8 Hz, 2H), 5.64 (d, J = 3.6 Hz, 1H, H-1"), 4.89-4.76 (m, 5H),
4.63-4.51 (m, 6H), 4.47-4.40 (m, 1H), 4.29 (d, /= 12.0 Hz, 1H), 4.09 (t, J
=9.0 Hz, 1H), 3.94-3.83 (m, 2H), 3.81-3.75 (m, 2H), 3.66 (d, J = 9.0 Hz,
1H), 3.61-3.47 (m, 4H), 3.41 (dd, /= 1.2, 10.4 Hz, 1H), 2.31 (s, 1H, CH3);
C NMR (75 MHz, CDCl5): 6 139.1, 139.0, 138.9, 138.8, 138.33, 138.30,
138.21, 133.27, 130.2, 129.9, 128.84, 128.79, 128.77, 128.75, 128.7,
128.5, 128.3, 128.23, 128.15, 128.1, 128.0, 127.91, 127.86, 127.6, 126.9,
97.5 (C-1"), 87.8 (C-1), 87.3, 82.5, 81.3, 79.7, 79.1, 78.1, 76.0, 75.7, 75.4,
74.8,73.92, 73.85, 73.7, 72.9, 71.4, 69.5,:68.6, 21.6 (CH;); HRMS (ESI):
calcd for CgH70010SNa. [M. + Na]" requites 1101.4587, found m/z
1101.4582.

p-tolyl
2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl-(1—4)-2,3-O-isopropylide
ne-thio-o-L-rhamnopyranoside 55. Preparation of 55 was referred to
pre-activated DMF-modulating glycosylation procedure (B) and the exact
amounts of reagents used were given (Table S2, entry 15). Compound 55
was obtained as a white glassy material by column chromatography
purification (Elution: Hexane/Et,O/CH,Cl, 6/1/1). For a-anomer of 55, R;
0.3 (Hexane/EtOAc/CH,Cl, 6/1/1); [a]’ b= -56.2 (c= 0.23, CHCL})'H
NMR (300 MHz, CDCl;): 6 7.35-7.24 (m, 21H, ArH), 7.19-7.10 (m, 4H,
ArH), 5.64 (s, 1H, H-17), 5.00-4.69 (m, 6H), 4.64-4.47 (m, 3H), 4.28-4.14
(m, 3H), 4.10-3.98 (m, 2H), 3.83-3.76 (m, 2H), 3.66-3.58 (m, 2H),

3.43-3.37 (m, 1H), 2.33 (s, 3H, CH), 1.43 (s, 3H), 1.24 (d, J = 6.6 Hz,
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6H, CH;); °C NMR (75 MHz, CDCL;): 6 139.2, 138.8, 138.4, 138.3,
132.9, 130.3, 130.1, 128.91, 128.88, 128.86, 128.8, 128.7, 128.43, 128.41,
128.3, 128.1, 128.0, 109.6 (isopropylidene-C), 98.9 (C-1°), 84.5 (C-1),
82.7, 81.7, 80.3, 78.3, 76.1, 75.6, 74.7, 74.0, 70.8, 68.4, 66.9, 28.6
(CH3), 27.0 (CH3), 21.6 (CH3), 17.8 (CH3); HRMS (MALDI-TOF): calcd
for CsoHs¢09SNa [M + Na]" requires 855.3543, found m/z 855.3570.

p-tolyl
4,6-O-benzylidene-2,3-di-O-methyl-thio-3-D-galactopyranoside 58

Ph Ph

<o Mel, NaH, DME, %O
O 0°C-RT o
HO O STol MeO STol
OH OMe
58a 58

Scheme 18. Preparation of p-tolyl
4,6-0O-benzylidene-2,3-di-O-methyl-thio-3-p-galactopyranoside 58

Known 58a* (1.5 g, 4 mmol) was dissolved in DMF (13 mL), and
stirred at ice bath under N,. To the DMF solution was added iodomethane
(0.65 mL, 10.4 mml) and 60% NaH in oil mist (0.5 g, 20 mmol). The
mixture was stirred from 0 °C to RT for 3 h, followed by quenching with
satd. NH4Cl1 (20 mL). Product in the mixture was extracted with CH,Cl,
(20 mL x 2), and the CH,Cl, solution was then washed with 1 N HCl,q),

brine, dried (MgSO,) and concentrated for chromatography purification

379 _
D=

to obtain 58 as a glassy material (1.1 g, 65%). For compound 58, [a]
-15.2 (c= 0.94, CHCl;) 'H NMR (300 MHz, CDCl5): 6 7.60 (d, J = 8.1
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Hz, 2H, ArH), 7.49-7.46 (m, 2H, ArH), 7.37-7.35 (m, 3H, ArH), 7.05 (d,
J=8.1 Hz, 2H, ArH), 5.12 (s, 1H, benzylidene-CH), 4.45 (d, J = 9.3 Hz,
1H, H-1), 4.38 (dd, J= 1.5, 11 Hz, 1H), 4.29 (d, J = 3 Hz, 1H), 4.02 (d, J
= 1.5, 11 Hz, 1H), 3.55 (s, 3H, CH3), 3.53(s, 3H, CH;), 3.46-3.42 (m,
2H), 3.31 (dd, J = 3.3, 6 Hz, 1H), 2.32 (s, 3H, CH;); °C NMR (75 MHz,
CDCl;): ¢ 138.75, 138.72, 133.7, 129.5, 129.1, 128.4, 128.2, 126.7, 101.5
(benzylidene-CH), 86.4 (C-1), 83.5, 76.8, 73.0, 69.7, 69.5, 60.9 (OCHs),
57.7 (OCHj3), 21.2 (CH3). ESI: calcd for C,,H,sNaOsS [M + Na]" 425.1,
found m/z 425.0.

6-chlorohexyl 4,6-O-benzylidene-2,3-di-O-methyl-D-galacto
pyranoside 61
Ph Ph
DMF (6 equiv),
o IS, IMSOTT | HOGHaC! | = o
o} 59 o}
0 | | 0
MeO STol MeO O(CH,)sCl
OMe ‘CHZCIZ, ‘ CH,Cly, OMe
58 -10°C, 1.5/h! =10°C, 4 h 61

65%, o/ 10:1

Scheme 19. Preparation of 6-chlorohexyl
4,6-0O-benzylidene-2,3-di-O-methyl-p-galacto pyranoside 61

61 (54 mg, 65%, o/p=10/1) was prepared from coupling of
6-chlorohexanol 59 (26 uL mg) and thiogalactopyranoside 61 (121 mg,
0.3 mmol) according to general pre-activated DMF-modulating
glycosylation procedure. Purification of 61 was achieved by column

chromatography (Elution: Hexane/EtOAc 2/1/1). For a-anomer of 61,

[0] "= +124.1 (c= 0.26, CHCl}) 'H NMR (300 MHz, CDCly):
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o0 7.54-7.51 (m, 2H, ArH), 7.38-7.31 (m, 3H, ArH), 5.56 (s, 1H,
benzylidene-CH), 5.10 (d, J= 3.3 Hz, 1H, H-1), 4.36 (dd, /= 0.9, 3.6 Hz,
1H), 4.26 (dd, J = 1.5, 12.6 Hz, 5H), 4.09 (dd, J = 1.8, 12.6Hz, 3H), 3.80
(dd, J = 3.3, 10.2Hz, 2H), 3.74-3.66 (m, 3H), 3.56-3.52 (m, 9H), 1.79
(quintet, J = 6.6 Hz, 2H, CH>), 1.72-1.62 (m, 2H, CH,), 1.53-1.33 (m, 4H,
CH, x 2); C NMR (75 MHz, CDCLy): é >C NMR (75 MHz, CDCLy): ¢
138.2, 129.4, 128.6, 126.9, 101.7 (benzylidene-CH), 97.7 (C-1), 77.8,
77.6,74.1, 70.0, 68.6, 63.1, 59.3, 58.1, 45.5, 32.9, 29.7 (CH,), 27.1 (CH,),
25.9 (CH,); HRMS (MALDI-TOF): calcd for C,;H3,ClOgNa [M + Na]"
requires 437.1701, found m/z 437.1704.
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HSQC NMR taken at 0 min
(refer to Fig. 9b)
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HSQC NMR taken at 90 min
(refer to Fig.9¢)
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Dimethylformamide: An Unusual Glycosylation Modulator**
Shao-Ru Lu, Yen-Hsun Lai, Jiun-Han Chen, Chih-Yueh Liu, and Kwok-Kong Tony Mong*

Dedicated to Professor Chi-Huey Wong

The key steps in oligosaccharide synthesis are protecting-
group manipulation and stereoselective glycosylation."! Var-
ious strategies have emerged to expedite glycosylation, and
some of these strategies have been elaborated for automated
solid-phase synthesis®®! and one-pot cascade glycosylation.”!
Most glycosylation strategies rely on traditional methods for
stereochemical control over glycosidic-bond formation.
Although such tactics work well for the formation of 1,2-
trans B-glycosidic bonds,™ there is no straightforward solution
for the formation of a 1,2-cis a-glycosidic bond."'™*! Existing
methods often require extensive optimization of the reaction
conditions, including the selection of an ethereal solvent,® a
transition-metal-complex promoting system,” a remote par-
ticipating group,® a silylidene protecting group,” and a chiral
or achiral accessory group at the C2 position,""" or the
installation of a fluoride substituent at the C2 position.'*]
However, most of these methods require additional steps.for
the installation of a specific functionality and are therefore
less convenient for routine synthesis. Herein, we teport a
simple and general a-glycosylation method in. which-N,N-
dimethylformamide (DMF) is used as a modulating molecule
to direct the stereochemical course of glycosylation: Further
elaboration of this approach led to a practical o-selective
procedure based on preactivation that is useful for the
glycosylaton of both O-glycoside and thioglycoside acceptors:

In a previous study of the chlorination of glycosyl
hemiacetals, we observed that residual DMF in" the.glyco-
sylation mixture promoted the formation of 1,2-cis" a-glyco=
sidic bonds."! A search of the literature revealed that DMF
has been utilized as a glycosylation solvent!® and as a
component in the Vilsmeier-Haack reaction for glycosyla-
tions."”! Koto et al. reported the use of DMF as an additive to
effect a-glycosylation; however, this protocol suffered from
undesired glycosyl formate formation.'’¥ Lemieux and
Driguez employed DMF (20-30 vol %) as one component
of a mixed solvent system in particular glycosylations;
however, such reactions required 4 days to reach completion,
and the role of DMF was not stated."® We hypothesized that
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the activation of a thioglycoside generates an oxocarbenium
ion pair, which upon trapping by nucleophilic DMF gives rise
to an equilibrium mixture of o-/f-glycosyl imidates. Assuming
that the f§ imidate is more reactive than its o counterpart;
subsequent coupling of the f3imidate with an acceptor
produces the desired o anomer as the major product
(Scheme 1). Since DMF has a modulating function in the
reaction, we coined the term DMF-modulated glycosylation
strategy for this approach.

thioglycosyl donor

‘ activation
P ) 0o
X —~ RO~ —~ RO~ O N~
RO t) //LG_ e Y

oxocarbenium a-glycosyl o\n H

B-glycosyl imidate H

ion pair imidate N*
V2R
sugarjOHE sugar—OH

S stereoselective

. stereoranqom coupling

glycosylation of acceptor

¥

o ~—0
7 4|8 RO
O—sugar' O-sugar'

a/B-glycosylation product a-glycosylation product

Scheme 1. Proposed mechanism of the DMF-modulated glycosylation.

Initially, we examined two DMF-modulated procedures
(Scheme 2a,b). In procedure A, adapted from a standard
glycosylation protocol, a mixture of a thioglycosyl donor, a
glycosyl acceptor, and DMF is treated with N-iodosuccin-
imide (NIS) and trimethylsilyl triflate (TMSOTf) (Sche-
me 2a)."”! In procedure B, the thioglycosyl donor is first
preactivated with NIS and TMSOTT in the presence of DMF.
Following activation, the glycosyl acceptor is added and reacts
with the glycosyl imidate to furnish the desired glycosylation
product (Scheme 2b).

At the outset, we followed procedure A to couple the
commercially available galactosyl acceptor 3 with the per-
benzyl thiogalactoside 1.*”! After some experimentation, we
found that one molar equivalent of TMSOTT (with respect to
the glycosyl donor) was required for effective activation of the
donor, probably owing to the mild Lewis basicity of DMF.
DMF exhibited an a-directing effect in glycosylation reac-
tions: a result which is in line with our previous findings."> We
observed a quantity-selectivity dependence between the
stoichiometric amount of DMF added and the degree of
glycosylation selectivity. Explicitly, when the amount of DMF
was increased from 0 to 1.5 equivalents, the a/f3-anomer ratio
of the glycosylation product 4 increased from 1:1 to 3:1
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a) Procedure A NIS, TMSOTY,

DMF product 4 (from 1)
+ ( or

X equiv)

acceptor 3
T (1.0 equiv)

thioglycosyl donor 1
or 2 (1.5 equiv)

CH,Cl,, T °C product 5 (from 2)
b) Preactivation procedure B
NIS, acceptor 3
TMSOTF (1.0 equiv)
thioglycosyl donor2 | DMF | ‘
(1.5 equiv) (x equiv) product 5
CH,Clp, T °C

Thioglycosyl donors 1 and 2 and acceptor 3
OB
BnO n QO
0 o
BnO STol o
OBn nO STol

2 OBn
Glycosylation products 4 and 5 and side product 6
o)
BnO_-OBn 04[4
0 H
& 8{ Hlo
BnO 7’ o
%0
o \f
e

Scheme 2. a) First DMF-modulated glycosylation procedure (proce-
dure A). b) Second DMF-modulated glycosylation procedure (proce-
dure B). Bn=benzyl, Tol =p-tolyl.

4G
.

(Table 1, entries 1-4). However, such moderate: selectivity
remains inadequate for synthetic utility; a further increase.in
the amount of DMF added (> 1.5 equiv) did not improve-the
selectivity owing to the formation of a ‘formyl-transfer
product 6.7 We reasoned that the arming benzyl groups of
donor 1 may promote the departure of DMF from the
glycosyl imidate; consequently, the a-directing effect of DMF
was attenuated.”!! Therefore, a conformationally restrained
benzylidene thiogalactoside 2 was used in place of 1.”

about significant improvement: glycosylation product 5 was
obtained with a 6:1 o/f-anomer ratio (Table 1, entry5).
Nevertheless, when the preactivation procedure B was
adopted in conjunction with an increase in the amount of
DMF added (from 1.5 to 6.0 equivalents), the a/f-anomer
ratio of 5 was increased to 19:1 (Table 1, entries 6-8). To
investigate whether an ethereal solvent could reproduce the
a-directing effect, as implicated in previous studies,® we
repeated the glycosylation of 3 with 2 in pure THF, CH,Cl,/
Et,0 (1:3), and toluene/dioxane (1:2) by procedure A, as
procedure B does not work in the absence of DMF.*? No
significant selectivity was observed in these glycosylation
reactions, irrespective of the type of ethereal solvent used
(Table 1, entries 9-12). In the past, dimethylacetamide
(DMA) has been used as an additive to promote a selectivity
in glycosylation reactions.!'’"! We were curious whether DMA
could replace DMF in our procedure and repeated the
glycosylation of 3 with 2 according to procedure B with the
addition of DMA ; however, the observed selectivity was not
attractive (Table 1, entry 13).

After confirming the effectiveness of the preactivation
glycosylation procedure B, we next investigated its scope of
application. Thus, aglycone acceptors 10-13 and O-glycoside
acceptors 14-17 were coupled with thioglycosyl donors 2,7, 8,
and 9 (Scheme 3, Table 2).! For comparison, these glyco-
sylation reactions were performed with and without the
addition.of DMF. Generally, reaction rates were lower in the
presence of DMF than in its absence; nonetheless, the time
required for the completion of DMF-modulated glycosylation
remained acceptable (2-6 h). Regarding stereochemical con-
trol, DMEF- exerted a powerful o-directing effect on all
glycosylations.“In some cases, the selectivity was reversed
dramatically by the addition of DMF (Table 2, entries 2, 4, 5,

Table 2: Glycosylation of acceptors 10-17 by glycosylation procedure B.

NIS, R-OH 10-17
However, the replacement of the donor alone did not bring ‘TMSOTf ‘ (1 equiv)
PEONTA - DM PGOV&MOR
STol
Table 1: Investigation of DMF-modulated glycosylation procedures A 2,7,8,9 (6 equiv) | CH,Cly, -10 °C | ~10-0°C 18-29
. (1.5 equiv) 1-15h, t[h]
and B with galactosyl acceptor 3.
Entry Donor DMF T T Product, Entry DM AR T t Product Yield [%], o/p®!
(equiv) [equiv] °q [h] yield [%], a/B® °C  [h] with without
1 1(1.2)" 0 -25 0.5 4,90, 1:1 DMF DMF®
2 1(1.2) 0.8 -10 1.0 4,70,3:2 1 2 10 -10 2 18 83,12:1 80, 1:1
3 1(1.2) 0.8 0 1.0 4,77,3:2 2 2 1M -0 2 19 76,8:1  85,2:5
4 1(1.2)" 1.5 0 1.0 4, 80, 3:1 3 2 12 -10 6 20 45,19:1 50, 15:1
5 2 (1.5)" 1.5 -10 2.0 5, 82, 6:1 4 2 13 0 2 21 79, 8:1 73,2:5
6 2 (1.5)4 1.5 -10 2.0 5, 80, 8:1 5 2 14 10 55 22 75,12:1 80, 2:3
7 2 (1.5)d 3.0 -10 2.0 5, 87,15:1 6 2 15 0 6 23 80,49:1 50, 2:1
8 2 (1.5)¢ 6.0 -10 2.0 5,87,19:1 7 2 16 -10 2 24 82,12:1 80, 3:2
9 2 (1.5)" o -10 0.3 5,90, 1:1 8 2 17 0 4 25 60, 25:1 63, 5:1
10 2 (1.5)8 o -10 0.2 5, 85, 1.5:1 9 7 14 10 45 26 75, 5:1 77,1:1
11 2 (1.5)" o -10 0.5 5, 83, 1:1.5 10 8 17 -0 4 27 70,49:1 80, 5:1
12 2 (1.5)" o 0 4.0 5,40, 1:1.5 M 9 15 0 6 281 76,49:1 60, 2:3
13 2 (1.5)d el -10 3.0 5, 80, 4:1 12 9 17 0 5 291 75, 9:1 70, 2:5

[a] The a/f ratio was determined by HPLC (conditions given in the
Supporting Information). [b] Procedure A was used. [c] Procedure B was
applied. [d] A 1:3 CH,Cl,/Et,O mixture was used as the solvent. [e] THF
was used as the solvent. [f] A 1:2 toluene/dioxane mixture was used as
the solvent. [g] DMA (6 equiv) was added.!'’
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[a] D is the donor; A is the acceptor. [b] The a/f-anomer ratio was
determined by HPLC (settings are given in the Supporting Information).
[c] A routine glycosylation (without the addition of DMF) was carried out.
[d] The glycosylation was performed with ultrasonification.? PG = pro-
tecting group.
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Scheme 3. Structures of a) thioglycosyl donors 7-9; b)racceptors-10=
17; ¢) glycosylation products 18-29. All =allyl, Fmoc = 9-fluorenyl-
methoxycarbonyl.

11, and 12). More importantly, this effect was not restricted to
galactosyl donors, but also occurred with L-thiofuceside 7, L-
thiorhamnoside 8, and D-thioglucoside 9 (Table 2, entries 9—
12). However, the stereoelectronic features of a particular
donor does affect the reaction efficiency. Therefore, some
optimization of the reaction conditions is required. For
example, the glycosylations of 15 and 17 with thioglucoside
donor 9 were conducted with ultrasound irradiation to
shorten the reaction time (Table 2, entries 11 and 12).1

A unique feature of the DMF-modulated glycosylation is
the entrapment of oxocarbenium ions as glycosyl imidates.
This feature provides an opportunity for the development of a
new glycosylation procedure with preactivation. In a typical
oligosaccharide synthesis, the introduction of different
anomeric functional groups in the glycosyl donor and
acceptor is required so that the activation of the former
does not affect the later. Although the reactivities of the
glycosyl donor and acceptor can also be tuned to create
reactivity disparity that enables their coupling by reactivity-
based glycosylation, this strategy requires extensive protect-
ing-group manipulation for building-block preparation.2!
The merit of a glycosylation involving preactivation is that it
enables the coupling of glycosyl substrates with the same
anomeric functionality and thus renders the use of different
anomeric functionalities or the tuning of chemical reactivity
unnecessary. Such an approach not only shortens the synthetic

Angew. Chem. Int. Ed. 201, 50, 7315—7320
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route in oligosaccharide synthesis, but it also paves the way to
an iterative one-pot glycosylation method.® To the best of our
knowledge, there is no previously reported preactivation
procedure that causes an a-directing effect.” To demonstrate
the applicability of the DMF-modulated procedure, thiogly-
coside acceptors 30-40 were glycosylated with thioglycoside
donors 2,7, 8, and 9 according to procedure B (Scheme 4).%")
Table 3 summarizes the yields and a/fB-anomer ratios of the
corresponding glycosylation products 41-55.

A known side reaction in glycosylations of thioglycosides
is the transfer of the thioacetal functionality from the
acceptor to the donor.”® Gratifyingly, such a transfer reaction
did not occur in the DMF-modulated procedure, perhaps as a
result of masking of the reactive oxocarbenium ion by a DMF
molecule. The glycosylations in this study proceeded
smoothly, and the corresponding o anomers were furnished
in 45-85 % yield with high to excellent a selectivity. However,
the reaction yields were on average lower than those observed
for the glycosylation of O-glycosides. We attributed the lower

a) Thioglycosyl acceptors 30—40

BnO OH HO ,OBn BnO OBn
&wsm Bno%sm B"O%sm AZ93 STol
NHTroc
STol
&w ﬁv\/ @7
ngo/_&wsm Ba sTol 850 STl S
34 37
BnO Bio STO' NAPO%&STOI Ho&&sm
40 OBn
b) Glycosylation products 41-55
Ph
o M-85 BnO & BnO OBn
1 o R= BnO&@/STOI Bnogwsm BnO&&STol
BnO 3
BnOOR

BnO
Acoﬁ\ysn | %stm Bé‘noﬁ&sm Bnoﬁw\/STo\
NHTroc
o
SToI NAPO%@STOI

STol  BnO “lq_,

5;@\7 BnO BnO

48 X Ph 49

BnO ,OBn STol
o O
\%S/STOI 0OBn
STol BnO
OBn
O BnOOBn
@Qiosn K
BnOOB” 51 BroOBN 52 53
Bro OBn
n
BpoO. Q BEO o} STol
Bno OBn nO
BnOg o B0 % “7Q
B STol o &

54 OBn 55 X

Scheme 4. Structures of a) thioglycosyl acceptors 30-40; b) glycosyla-
tion products 41-55. Bz=benzoyl, NAP = 2-naphthylmethyl, Troc =tri-
chloroethoxycarbonyl.
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Table 3: Glycosylation of thioglycosyl acceptors 3040 by glycosylation
procedure B.

o
2,7,8,9 w\/?éOTf HO%STOI )
(15eqiv) | | 30-40 1 equi) PGO‘B\\OE
y ‘ o ‘ o O_t&'SToI
DMF CH,Clp, =10 °C | -10-0°C

(6 equiv) 1-15h, t[h] 41-55
Entry Donor Acceptor T[°C] t[h] o anomer (yield [%])," a/p®
1 2 30 -10 3 41 (60), 36:1

2 2 31 0 6 42 (55), 6:1

3 2 32 0o 3 43 (55), 111

4 2 33 -10 3 44 (45), 11:1

5 2 34 -10 3 45 (85), 49:1

6 2 35 -10 2 46 (65), 12:1

7 2 36 0 4 47 (70), 49:1%
8 2 37 0o 2 48 (50), 13:1

9 2 38 -10 3 49 (75), 19:1
10 2 39 0 4 50 (85), 49:1
11 7 40 -10 3 51 (56), 49:1
12 7 32 -10 6 52 (61), 49:1
13 8 35 -10 3 53 (55), 6:1
14 9 36 0 5 54 (50), 49:11
15 9 37 0 3 5 (55), 8:1¢

[a] The yield of the isolated o anomer is given. [b] The a/p ratio of the
glycosylation product was determined by HPLC analysis (HPLC con-
ditions are given in the Supporting Information). [c] The glycosylation
was performed with ultrasonification.?!

yields to the activation of the thioglycoside product by
residual NIS and/or side reactions stemming from the imidate
intermediates. To revalidate the a-directing effect of DME,
the glycosylation of 36 with 2 was repeated with a smaller
amount of DMF (1.5 equiv); under these conditions, the a/fB-
anomer ratio of glycosylation product 47 decreased sharply to
4:1 (results not shown).*)

Encouraged by the aforementioned results;' we extended
the applicability of the DMF-modulated glycosylation to 2-
amino-2-deoxyglycosyl donors. Thus, 2-azido-2-deoxythio=
galactosides 56 and 57 were coupled with acceptors 3, 58,
and 59 by glycosylation procedure B (Scheme 5).°” The a-
directing effect of DMF was observed in all reactions
examined, but the reaction time was generally longer than
that required for non-amino glycosyl donors. The glycosyla-
tion of serine acceptor 59 with §7 was repeated in the absence
of DMF, under which conditions 62 was produced witha 1:1 o/
B-anomer ratio (results not shown). This comparison distin-
guishes the intrinsic selectivity of the serine acceptor from the
o-directing effect of DMF. However, glycosylation with 2-
azido-2-deoxythioglucosides has not met with success so far;
further optimization of the reaction conditions is required.

Since the formation of a glycosyl imidate is the key step in
DMF-modulated glycosylation, the detection of the glycosyl
imidate is crucial for validation of the proposed mechanism
(see Scheme 1). In this regard, we prepared a simpler 4,6-O-
benzylidene-2,3-di-O-methylthiogalactoside 63, which was
activated with NIS and TMSOT( in CDCI; and then used
for the glycosylation of acceptor 58 by procedure B (Fig-
ure 12).”"" 'H, *C, and HSQC NMR spectroscopy of the
reaction mixture was carried out at 0, 90, and 180 min time
points. Figure 1b-d shows selected regions of the correspond-
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a) ph Ph
DMF (6 equiv),
o] NIS, TMSOTF
Og& | ‘ Bnogﬁ] ﬁ/
BnO STol
N3 ‘ CH,Cly, ‘ CH,Cly,
56 (1.5 equiv) -10°C,15h'0°C,5h
66% ap 101
b) DMF (6 equiv), HO(CHz)Cl Ph
NIS, TMSOT! 58 o
| 0
56 (1.5 equiv) CH,CI ‘CH Cl Bno
216°C 15n10°6 3h 61 NO(CH)CI
65%, o only
©) DMF (6 NHFmoc
equiv),
oAc  NIS, TMSOT HO\)\cone 8o LOAC
BnO | | o
o}
BnO STol | BnO [ NHFmoo
N CH,Cl, ‘ CH,Cly, %
¥ -10°C,15h| 0°C~RT, 24h COo,Me

57 (1.5 equiv) 62

80%, o/p 7:1

Scheme 5. Glycosylation of acceptors 3, 58, and 59 with 2-azido-2-
deoxythiogalactosides 56 and 57 by glycosylation procedure B.

ing '"HNMR spectra. Comparison of the spectra of the
preactivated reaction mixture at 0 min and the TMSOT!-
activated mixture at 90 min (Figure 1b,c) showed the appear-
ance of a new set of clearly identifiable '"H NMR signals,
including those for an anomeric proton at 6 =6.39 ppm (J =
3 Hz, 64<H?), a benzylidene proton at 6 =5.60 ppm (64-H"),
an imidoyl proton at 6 =8.90 ppm (64-H°), and N,N-dimethyl
protons at 0 =3.40 and 3.32 ppm (64-HY). These signals are
presumably generated from the a-glycosyl imidate
641103531321 The relative downfield positions of 64-H**¢
indicate the close proximity of these hydrogen atoms to an
electron-deficient center. Following the addition of acceptor
58, the signals stemming from imidate 64 vanished, and
another two sets of signals emerged. One set includes the
signals for an anomeric proton at ¢ =5.13 ppm (*J =3 Hz, 65-
H?) and a benzylidene proton at 6 =5.59 ppm (65-H"); these
signals correspond to the expected a-glycoside 65. Another
set (indicated by asterisks in Figure 1d) originated from an a-
N-galactosyl succinimide: a common side product in NIS-
promoted glycosylation reactions.!

As the real-time NMR spectroscopic study provided
evidence for the presence of the a-glycosyl imidate, it is
reasonable to propose the formation of a-/3-glycosyl imidates
in DMF-modulated glycosylations. The p-glycosyl imidate,
owing to its more reactive nature, reacts preferentially with
the acceptor to give the a-glycosylation product. Until now,
we have not been able to detect the presence of the 3 imidate;
therefore, it is too early to exclude the possibility of the other
mechanism outlined in Scheme 1.3 Further experimental
investigations toward the elucidation of the reaction mech-
anism are in progress.

In summary, we have described a new DMF-modulated
glycosylation strategy which enables excellent a selectivity in
glycosylation reactions through the simple addition of DMF.
Further elaboration led to the development of a useful a-
selective glcyosylation procedure involving preactivation.
Considering the availability of DMF, we anticipate that the

Angew. Chem. Int. Ed. 201, 50, 7315—7320
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synthetic concept described herein will find broad application
in oligosaccharide synthesis.
(16]
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