[gjzl S 7 Amﬁk =
4 P
e

PLS-based EMD &% 3Ry g * 2. B %

Development of PLS-based EMD for face recognition

Flr & A 102 &+ 1 %



PLS-based EMD i 3Ry & * 2. B2
Development of PLS-based EMD for face recognition

Forod L RE A Student : Sheng-Yuan Su

hERR B Advisor : Tzu-Chien Hsiao

i%lﬁ&’_/ﬁﬂi‘%
WL o2

A Thesis
Submitted to Institute of Biomedical Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

January 2013

Hsinchu, Taiwan, Republic of China

o oEa 102 & 10



PLS-based EMD % 5 3Ry%as i * 2 B 3

FrAlERER R B

AN IR L Bl g Ea- BERRY Bz L EX T H ﬂf{
4R s R % ST R 2 S AR B 2 0 BB e 4 o AiB 2

> )]?c% HE O FEFERGFEEE XTGBT M FEERE A
A3 H) A I o bl XU i o Fh AT B A S S R
Friee £ 0 &0 P-I0 T 44 R RV A R A < ehfFj o 54et Eigenface
BOTAPLS %% o g8 i 2 MG IE Y £ 04 A R AR
B RAREE R f SRR ERE

Fr4tt FER AL B2 G F SR RS B¢ L EMD L A# RN
4E%ﬁﬁ£ﬂiﬁ”pi§%%?7Hﬂﬁﬁﬁ%%?ﬁﬂﬁMD_i@“%ﬁMﬁv
R ERI AR AT I Ry o R Ei0 TPLS #
o N AR AT 0 X B R kB8 4] BEMD - i ep R AT 0 P i
= AL A E g o

R ORE EFERF i 7 Yale 2 PIE £ % SRR R o X
Eigenface 2 Tri-PLS % = j% Gt fic o B % B “rk 11 e i PLS-EMD £yt
digarpta gk A0 Bt * PIE database ivimf pr o Eigenface 2 Tri-PLS
¢ [eave-one-out cross-validation 7#a 3 X 7 3 20%% 40% > @ PLS-EMD s
P T E T 90% > hegt 4 L R 1 PLS-EMD fp i3t — 45 chypak S 2 o HB



G A R RAER R R W Ay 4 o ¥ fh L e - #2231 BEMD

=3

%

Tt i B 5% B or Ardk 0 en x| h A2 repeated random sub-sampling

Ny

7
validation # leave-one-out cross-validation #i®fF - gk F B4 A
BEMD i%;2 o @ f3t 8 275 + > %14 PIE database ¥z » BEMD f4F _i% 1t i%

T T E R G R 9 504); o PLSEMD Gt iER T g R 97

P

By od B ArH 3 E ki L B



Development of PLS-based EMD for face recognition

student: Sheng-Yuan Su Advisor: Tzu-Chien Hsiao
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Abstract

Face recognition is an important application in the field of pattern recognition.
Researchers devote themselves to enhance the reliability of the face recognition
system in the past thirty years-and many of the related algorithms emerge as the times
require. As one of the major challenges in face recognition mentioned in literatures,
some recognition algorithms  will probably misclassify faces when different
illumination conditions are present among face images. As one kind of feature
extraction methods, feature-based methods extract features to distinguish different
faces by solving eigenvalue problem; however this kind of method such as Eigenface
and Tri-PLS suffers from the problem mentioned above. The feature-based methods
take the whole regions of face image into consideration, and therefore the recognition
rate will degrade significantly when the different illumination conditions are present
in face images.

Some algorithms have been proposed to deal with this problem in the past. As
one kind of solutions, EMD-based methods have received significantly attention in
recent years. Researchers adopted different interpolation methods to implement
BEMD, and then applied the proposed methods to preprocess face images in order to
enhance the recognition accuracy. In this study, a different approach which replaces
the interpolation process of BEMD by selecting templates is proposed. The templates
of the face database are obtained by Tri-PLS.



Yale and PIE databases are applied to evaluate the recognition rate of the
proposed method. The compared methods include Eigenface and Tri-PLS. Simulation
results show that the recognition rate of the proposed method (i.e. PLS-EMD) is better
than that of the two methods. The recognition rate of Eigenface and Tri-PLS evaluated
by leave-one-out cross-validation are only about 20 and 40 percent respectively, and
that of PLS-EMD is about 90 percent. The great disparity between the two recognition
rates indicates that PLS-EMD has a reliable recognition ability to resist different
illumination variations between images compared to other general methods.

Another comparison between BEMD and PLS-EMD is also given. The
recognition results evaluated by sub-sampling validation and Leave-one-out
cross-validation also shown that PLS-EMD has better recognition rate than that of
BEMD. As for computing performance, the average computation time per image of
PIE database computed by BEMD which adopts specific stop criteria is about 50
seconds; however, it only takes about 7 seconds for PLS-EMD under the same
condition. It is obvious that the computing performance of PLS-EMD is better than
that of BEMD.
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l. Introduction

1.1 Background

As one of most successful and famous application of image analysis, face
recognition has received significant attention in the past several years. It plays an
important role in the areas of smart cards [1], information security [2], law
enforcement [3], surveillance [4], etc. Literature has shown that the recognition
accuracy will probably drop significantly in a natural or uncontrolled environment [1].
For the purpose of enhancing the recognition accuracy in real applications, the
environmental conditions are usually well-controlled, i.e. neutral face expression,
small variation of lighting condition, processed image background, and a certain range
of head pose variation [1]. One of the major challenges of face recognition is indicated,
that is the illumination variation problem [5]. It is believed that variations caused by
lighting in face images are even larger than differences among distinct individuals [5].
Therefore, the variations of lighting conditions among different face images will lead
to great influence on the recognition accuracy. Some potential methods which are

introduced in the section 1.1.1 have been proposed to deal with this problem.

1.1.1 Approaches to illumination variation problem
Those approaches for solving illumination problem can be classified into three
categories [6] as follows.
() Face and illumination modeling:
The main concept of this category is to build illumination or face model to
deal with the illumination variation problem. The Illumination Cone
method [7] which attempts to synthesize the face images under different
poses and illumination conditions by reconstructing the shape and albedo of
the face from a small number of training images. Lambertian surface [8]
shows that the set of images under different lighting conditions can be
simply characterized as a nine dimensional subspace in the space of all
possible images. Three-dimensional morphable model [9] attempts to

construct a general 3D human face model in order to fit different

1



(b)

(©)

illumination and pose conditions.

Illumination invariant feature extraction:

Those methods in this category are mainly to extract the illumination
insensitive facial features to perform further recognition. The representative
methods include edge map, image intensity derivatives and Gabor-like
filtering image [5]. Recently, quotient-image-based methods are reported to
be a simple and efficient solution to illumination variations. Quotient Image
(QI) [10] is defined as image ratio between a test image and linear
combinations of three unknown independent illumination images. It only
depends on the relative surface texture information and is illumination
insensitive. Quotient Illumination Relighting (QIR) [11], Self-Quotient
Image (SQI) [12] and Morphological Quotient Image (MQI) [13] are all
derived from the idea of QI. As another recent work, Logarithmic Total
Variation (LTV) [14] decomposes the image into two parts, one with
small-scale features and the other one with large-scale features. Only
small-scale features will be used for recognition.

Preprocessing and normalization:

In this approach, the face images with different illumination conditions are
preprocessed in order to obtain the normal lighting images. Further
recognition will be performed based on the normalized images. The most
commonly used methods include histogram equalization [15] and discrete
cosine transform (DCT) based methods [16-19]. In the implementation of
DCT, low-frequency discrete cosine transform coefficients are discarded to
eliminate effects of illumination variations since illumination variations
mainly lie in the low-frequency band. This method does not require

multiple images to be trained.



1.1.2 EMD-based approaches

As one kind of illumination invariant feature extraction methods mentioned
above, the Empirical mode decomposition (EMD) based methods have received
significant attention in recent years. EMD was originally proposed by Huang et al. in
1998 [20] and was originally applied to analyze 1D signal. This method has been
investigated how to apply to image analysis in recent years. Researchers have tried to
apply EMD-based method to deal with the illumination problem. For example,
Bhagavatula et al. [21] utilized EMD to decompose the face images in variant
illumination conditions into different components and found that the illumination
trend is presented in the last components. This observation gave them a thought for
robust face recognition under variant illumination conditions by removing the
components which contain the illumination effects. As a two-dimensional version of
EMD, BEMD was proposed by Nunes: et al. in 2003 [22] and applied to image
analysis directly. Shao et al. [23] utilized BEMD to extract a series of normalization
images from one subject, then canonical correlation analysis (CCA) is adopted to
generate more discrimative features; Zhang et al. [24] proposed an improved BEMD
to get bi-dimensional intrinsic mode functions (BIMF), then Riesz transform is
subsequently applied to these obtained 2D analytic signals, i.e. BIMFs to get the
corresponding monogenic signals. Finally, phase congruency (PC) [25] was calculated
to get facial features under variant illumination conditions.

As mentioned above, EMD-based methods have received significant attention in
recent years, especially in the face recognition field. Researchers have noticed the
ability of EMD-based methods to deal with the illumination problem. Therefore, it is

valuable to investigate the properties and the characteristics of EMD-based methods.



1.2 Motivation

As mentioned in above studies, the methods derived from EMD are different.
What are the differences among these methods? How to apply them to solve the
illumination problem? A further thought is that is it possible to propose a modified

version of EMD-based methods to apply to the illumination problem?

1.3 Literature study

EMD was originally developed for analyzing one-dimensional non-stationary and
nonlinear signals (Huang et al. 1998). Due to its adaptability, effectiveness and the
fact that it can decompose signal to multi-scale components, this decomposition
technique is widely used and has been investigated how to extend to 2D version to
analyze two-dimensional (2D) data/images. The thinking of developing 2D EMD was
originated from Linderhed [26]. He successfully used EMD to encode and decode the
audio signal and gave a thought that image compression can be realized by a 2D
version of EMD in the same way. This thought inspires the researchers to develop a
two-dimensional EMD. Nunes et al. proposed a typical 2D EMD method in 2003,
which is known as BEMD. He is the first one who proposed a 2D framework of EMD.
The extrema detection method - of BEMD' adopts neighboring window or
morphological operation, and the interpolation method for constructing 2D envelope
(i.e. surface) adopts radial basis function (RBF). Researchers subsequently followed
this framework to investigate how to improve BEMD mainly by proposing different
interpolation methods. For instance, Damerval et al. [27] replaced the interpolation
method RBF with Delaunay triangulation and fixed number of iterations to obtain
BIMFs; Linderhed [28] used thin-plate spline which is an alternate choice of RBF as
the interpolation method; Xu et al. [29] provided another interpolation approach by
using a mesh fitting method based on finite elements; Bhuiyan et al. [30] used order
statistic filter to obtain upper and lower surfaces rather than using interpolation
method. Except the 2D implementation, 1D EMD has also been applied to decompose
images to obtain BIMFs [31]. In this technique, each row and/or each column of the

2D data is processed by 1D EMD, which makes it a faster process. However, it has



been found that this 1D implementation results in poorer BIMF components compared
to the standard 2D procedure since the former ignores the correlation among the rows
and/or columns of a 2D image.

In recent years, EMD has been further developed to process the multidimensional
data by multi-dimensional ensemble EMD method, designated as MEEMD [32]. The
decomposition is based on ensemble empirical mode decomposition (EEMD) to slice
an image in each and every dimension involved. This method bypasses major
obstacles and difficulties in traditional BEMD, such as how to define the 2D extrema
and the mode-mixing problem. Another advantage of MEEMD s that it can be
applied to decompose spatially three or more dimensional fields without any barrier.
Such extension would not be feasible for the traditional two-dimensional approaches.
This method represents a new milestone in the progress of EMD.

The different decomposition methods mentioned above are given in table 1.

Table 1. Comparisons of different decomposition methods

Year Authors scheme Envel ']:_l::::“lﬂmg
1998 Huang et al. ID Cubic spline

2003 Nunes ef al. 2D REF

2004 Liveral. 1D Based on EMD

2005 Damerval er al. 2D Delaunay triangulation
2007 Xuer al. 2D Finite element

2008 Bhuivan et al. 2D Order statistic tilter
2009 Wu et al. 1D Based on EEMD




1.4 Objective

The interpolation method of the typical BEMD is implemented in a
self-organization scheme. It means the interpolating values only depend on the values
of local extrema without any corresponding class information of this decomposed face
image participating in the interpolation process. It gives us an idea that maybe we can
construct the upper and lower surfaces by adding corresponding class information of
the decomposed face image into the interpolation process. This different interpolation
approach can be seen as a cross-correlation scheme. It has a cross relationship
between the intrinsic values of this decomposed face image (X) and the corresponding
class information (). Is it possible to implement the interpolation process by this
different approach? Does this different scheme have better recognition accuracy or

performance than the typical BEMD on the illumination variation issue?

1.5 Contribution

The contribution of this research iIs to propose and implement cross-correlation
scheme of 2D-EMD which is different from traditional approach by self-organization
scheme. Due to the cross-correlation property, PLS-EMD approach is possibly helpful
to enhance recognition accuracy of face recognition under different illumination

conditions.

1.6 Thesis organization

This thesis can be mainly divided into six chapters. The related works are given in
chapter Il and the proposed PLS-EMD method will be introduced in the end of this
chapter. Chapter Il displays the simulation results and compares some representative
methods with the proposed method under different illumination conditions. The
performance issue, the advanced comparisons and the validation of PLS-EMD will be
discussed in chapter 1V. Conclusion and future works are given in the last chapter of

this thesis.



I1. Material and methods

2.1 Empirical mode decomposition

Empirical mode decomposition (EMD) was originally developed for analysis of
one-dimensional non-stationary and nonlinear signals (Huang et al. 1998). It
decomposes a signal into a finite sum of intrinsic mode functions (IMF) that generally
allow well-behaved Hilbert transforms. This makes it possible to construct a
time—frequency representation, called the Hilbert spectrum, using instantaneous
frequency. EMD combined with Hilbert spectrum, called the Hilbert-Huang
Transform (HHT), has many advantages over the traditional time—frequency analysis
techniques in the adaptability, the capability of decomposing nonlinear and unstable
signals. In recent years, HHT has been applied with great success in various

application areas.

2.1.1 Intrinsic mode function
Ideally, the IMFs of a signal obtained by EMD are expected to have the following

properties [20, 30].

(i) In the whole data set of an IMF, the number of local extrema and the number of
zero crossings must be equal or differ by at most one.

(i) There should be only one mode of oscillation, that is, only one local maximum or
local minimum, between two successive zero crossings.

(iii) At any point, the mean value of the upper and lower envelopes, defined by the
local maxima and minima points, is zero or nearly zero.

(iv) The IMFs are locally orthogonal among each other.



2.1.2 Sifting process

The overall sifting process can be viewed in figure 1.

=1 local extrema hiy=r
detection of h

!

construct upper and

lower envelopes

mean envelope m
calculation

l h= hi’l -m [ E;\d |

N N
e Ish, anIMF? =

[ residual r =7-h Wr—vi

»><_residual check

Figure 1. Sifting process of EMD

The sifting process can be illustrated as follow:

Define X(t) as an one-dimensional signal.
(i) Initialize: r=X(t), hp =r, i=1
(it) Find the local extrema of h;.; (local maxima and minima, respectively) by sliding
window (local derivative is an alternate way to find local extrema [34]).
(iii) Interpolate all the local maxima and minima respectively to generate upper
envelope u(t) and lower envelope I(t) by cubic spline.

(iv) Compute mean envelope m by the equation: m=(u(t) +1(t) )/ 2.



(v) Calculate the difference between h;_; and current mean envelope m.
> hi = hi-l —-m

T _ 2
(vi) Compute standard deviation: SD = 2[%]
t=0 i-1

*Note: SD has alternate definitions in other studies [35].

(vii) If SD is greater than the predefined threshold value, which is usually a small
nearly zero value, then set iteration index i = i+1 and repeat the sifting process

from step (ii).
Otherwise, if SD is less than the predefined threshold, then regard h; as an IMF
and set intermediate residual r = r —h;. Finally, check r to insure enough
extrema points. If there are enough extrema points, then set h;; = r and repeat

sifting process from step (ii). Otherwise, terminate the sifting process.



An example of sifting result can be viewed in figure 2.
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Figure 2. Example of sifting result ( Revised from Huang et al. 1998, “The empirical

mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series

analysis” [20])
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From the figure, we can find that the IMF1 corresponds to the highest local
frequency of oscillation of original signal; IMF2 corresponds to the second highest
local frequency of oscillation and so on. The last component of the sifting result, i.e.
residual corresponds to the trend of the data. By summing up all the components, we

obtain

X(t):Zn:CiJrr (1)

That is, we can decompose a signal by EMD to find its different frequency
components. This method is totally adaptively and can be applied to nonlinear and

non-stationary signal compared with traditional Fourier transform.

2.1.3 Completeness and orthogonality
The property “completeness”, which is established by equation (1), represents
that an original data can be reconstructed by summing up all the IMFs and the residual.

To further check the orthogonality of IMFs, an equation is given first:

n+l

X©=2.C1 Cpu=r @

in which residual is regarded as an extra component C,.;. An overall index of
orthogonality (10) [20] is defined as:

T (4l ntl Cj (t)ck (t)
0= ;(; kzl:xz—(t)] i

The orthogonality actually depends on the decomposition methods; however,

a lower value of 10 is preferred.

11



2.2 Bi-dimensional Empirical mode decomposition

Bi-dimensional Empirical mode decomposition (BEMD) is a two-dimensional
extension of EMD and it has been applied in various real-world problems, e.g.
medical image analysis, pattern analysis, and texture analysis. The typical BEMD was
firstly proposed by Nunes in 2003 [22]. Researchers followed the framework of this
typical BEMD to develop their own BEMD. They mainly focused on the modification
or replacement of the interpolation method from the typical BEMD to enhance the
performance or get better sifting results. A brief introduction of typical BEMD will be
given from section 2.2.1 to section 2.2.4 and the interpolation method will be

introduced in section 2.2.5.

2.2.1 Bi-dimensional intrinsic mode function

The definitions and the properties of BIMFs are slightly different from IMFs. It is
sufficient for BIMFs to follow only the final two (iii and iv) properties mentioned in
section 2.1.1.. In fact, due to the properties of an image and the BEMD process, it is
impossible for a BIMF to satisfy the first two properties (i and ii), since the maxima
and minima points are defined in a 2D scenario for an image. This viewpoint can be

referred to this literature [30].

2.2.2 Sifting process
The sifting process of BEMD can be viewed in figure 3. It is obvious that the
sifting process is nearly the same as EMD except extrema detection by neighboring

window or morphological operators and surface construction by RBF.
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Figure 3. Sifting process of BEMD

The sifting process can be illustrated as follow:

Define X as an image data

(i) Initialize: r=X, hy=r, i=1

(i) Find the local extrema of hi; (local maxima and minima, respectively) by
neighboring window.

(iii) Interpolate values between all the local maxima and minima respectively to
generate upper surface u and lower envelope | by RBF.

(iv) Compute the mean surface m by the equation: m=(u+1)/2.

(v) Calculate the difference between hi.; and current mean surface m.
2> hi=his-m

13



M N
(vi) Compute standard deviation: SD = ZZ[

x=1 y=

I (%, y) = hi (%, Y)|2 }
2 (x, v

where (X, y) is the position of h and (M, N) is the total number of rows and
columns of the decomposed image.
*Note: SD has alternate definitions in other studies [22, 34].

(vii) If SD is greater than a predefined threshold value, which is usually a small
nearly zero value, then set iteration index i =i +1 and repeat the sifting process
from step (ii);

Otherwise, if SD is less than the predefined threshold, then regard h; as an
BIMF and set intermediate residual r = r — h;. Finally, check r to ensure
enough extrema points. If there are enough extrema points, then set hi.; = r
and repeat sifting process. from step (ii); Otherwise, terminate the sifting

process.

It should be noted that different equations of SD affect the number of required sifting
iterations to obtain a BIMF. As another stop criterion, fixed number of iterations is an

alternate way to obtain BIMFs [27].

2.2.3 Completeness and orthogonality

The sifting results of BEMD also satisfy the completeness condition:

X:_Zn:Ci+r (4)

in which X is an image data, C; is the corresponding i™ BIMF, n is the total

number of BIMFs and r represents residual.

14



Equation (4) indicates that an original image can be reconstructed by summing
up all the BIMFs and the residual. To further check the orthogonality of BIMFs, an
equation is given first:

n+l

X(t)= iZ:l:Ci , Cn+l =r (5)

in which residual is regarded as an additional component C,+1. The overall index of

orthogonality (10) for examining the sifting results is defined as:

M N [ n+l n+l Cj (X, y)Ck (X, y)
10 = ZZ(ZZ X? j ©

x=1 y=1\_j=1 k=1

A low value of 10 is preferred for the local orthogonality among the components.

2.2.4 Extrema detection

In order to detect the distribution of extrema of an image, neighboring window is
applied to compare each pixel location of an image with its neighbors (4, 6 or 8
connectivity). If its pixel value is strictly greater/lower than its neighbors, than it is a
local maxima/minima point.

Another extrema detection method which is based on morphological operators is
a useful operator provided by mathematical morphology [36]. This function finds
regions of uniform pixel value whose neighboring regions all have smaller or larger

values.
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2.2.5 Surface interpolation

The typical BEMD adopts radial basis function (RBF) to perform surface
construction. RBF-based interpolation methods are examples of global interpolation
methods for scattered data points. They impose fewer restrictions on the geometry of
the interpolation centers and are suited to problems where the interpolation centers do
not form a regular grid as in the case of local maxima or minima maps of images or
textures. However, a minimum number of interpolation centers with which an RBF
interpolator can work may pose some limitations on its usefulness.

The scattered data interpolation can be implemented by the following formula:

f(X)ZZW,-(Iﬁ(IIX—O,- D+p,(x) xeR%w eR ()

Where,

X is the position of sifting components h

o; are RBF centers,

N is total number of RBF centers,

| || denotes Euclidean distance,

¢ is a real-valued function called basis function,
w; are coefficients of RBF, and

p, (x) is a low-degree polynomial, typically linear or quadratic.

Some examples of ¢ are given in Table 2.
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Table 2. Choices of ¢ for various RBFs.

RBFs Choices of o
Linear olr)=r
Cubic splines o(r) =rd
Thin-plate splines o(r) = r? log(r)
. . . oA N Na
Hardy's multiquadrics o(r) = Vr= +c*
Inverse multiquadrics o(r) = ——
Vri+c?
Exponential splines o(r) =e™°"
Gaussian splines olr) =e— "
Compactly supported splines ofr)=(1—r)m®

%c is a constant that governs the shape/spread of

the basis function

Bm is a function of spatial dimension

The sifting results, computation cost and the accuracy of different basis functions
were studied and compared by Bhuiyan et al. [34]. It has been observed that
RBF-cubic, RBF-thin-plate spline, RBF-inverse multiquadric, and RBF-Gaussian

interpolators provide better results than the others.
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2.3 Partial Least Square

Partial Least Square (PLS) is a method for prediction or feature extraction by
finding latent vectors from modeling the relations between independent variables (X)
and dependent variables (Y). Traditionally, this modeling of Y by means of X is done
using multiple linear regression (MLR), which works well as long as the X-variables
are fairly few and fairly uncorrelated, i.e., X has full rank. With modern measuring
instrumentation, including spectrometers, chromatographs and sensor batteries, the
X-variables tend to be many and also strongly correlated. Therefore, MLR shows its
limitation under the situations mentioned above. PLS receives significant attention
recently by the fact that it can analyze data with strongly collinear (correlated), noisy,
and numerous X-variables, and also simultaneously model several response variables,
Y.

Unlike traditional regression methods which directly find maximum covariance
between X and Y, it firstly projects X (n.x m) and.Y (n x d) (where n denotes the
sample number and m, d denote the feature dimension of X and Y, respectively) onto
their own new spaces, and then the latent variable (T) is used to model their
covariance structure.

Consider the general form of PLS algorithm to model the relation between the

two blocks of variables:

X =TP™+E

T T (8)
Y = UQ"+F = TCQ+F

where X (n x m) and Y (n x d) are the matrices of zero-mean independent and
dependent variables, respectively. T and U are (n x a) matrices of the a extracted
latent vectors (components, score vectors). P (m x a) and Q (d x a) represent
matrices of loadings. E (n x m)and F (n x d) are the matrices of residuals. C (p x p)

is a diagonal matrix with regression coefficient.
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2.3.1 PLS1 algorithm

PLS algorithm can be roughly divided into two categories: PLS1 (Y is one
dimension) and PLS2 (Y is multi-dimension). The introduction will focus on PLS1
due to the fact that the dependent variables of different samples will only have one
dimension in the subsequent application of this thesis.

PLS1 is a special case of PLS2, where Y is a vector in PLS1 and a matrix in

PLS2. The algorithm is as follows (training phase):

1. set desired number of principal components > a =...
set iteration number i =1
center Xandy = X =X-Xy=y-§y

Xy
2. W, =———
X"y
3.t =Xw,
;
_tiTy

6. X=X~-tp/, y=y~-th
7. if i=aor X ~null matrix ory ~0
= terminate the algorithm.
else
= 1 =1+1, repeat from step 2.

Interpretation of PLS1 algorithm:

Step2: we seek the direction in the space of X, which yields the maximum
covariance between X and y. This direction is given by a unit vector w;,
and is such that large variations in x-values are accompanied by large

variations in the corresponding y-values.
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Step3: The score vector t; is formed as a linear combination of the rows of X with
weight w; .

Step4: The regression coefficient p; is obtained from simple linear regressions of the
columns of X on t;.

Step5: Regression coefficient b; is calculated by ordinary linear regression of y on t;.

Step6: X =X —t,p/, y=y—-tb represents the residuals after regressing X on t;,
and the residuals after regressing y on t;, respectively.

After the first run through Steps 2-6, the procedure is repeated using the residuals X;

and y,. The algorithm then finds the best linear combination of the rows of X, for the

purpose of predicting y,, thus picking up any further structure in the connection

between X and y not accounted for by t;. This is repeated on and on, such that each

run of the algorithm in principle reveals more and more information about the

connection between X and y.

2.3.2 Prediction (testing) phase of PLS1

Now a new testing sample x .., (m % 1) is about to be predicted, and doas follows :

pre

1. Initialize iteration number i =1, and X =X X

pred ~ “‘mean

2. t. =xw, (w, is obtained from training phase)
3. Xy =X — 1 piT
4. stopif i = a; else repeat from step 2.
Now we have form a score vectorsett =[t; t, ...t, ], and the predicted y ., is

ypred = ymean + tb (9)
in which b=[b, b, ... b,] is obtained from training phase

2.4 Tri-linear Partial Least Square

Tri-linear Partial Least Square (Tri-PLS) is an extension of PLS to analyze
three-way data by a folding scheme, whereas PLS applies an unfolding scheme to
analyze three-way data. Three-way data can occur when the variables are
characterized by a matrix instead of a vector. When applying unfolding scheme, the

three-way data (cube of the calibration matrices) are unfolded to give a matrix that
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contains each sample in one row. This is done by concatenating all rows of matrix of
one.

Applying Tri-PLS to analyze data is mostly when the data is organized as the
form of three-way. For example, an image database is the form of three-way data,
since an image corresponds to a matrix and all the images in the database can be seen
as a cube of matrices, which is a three-way data. It is not necessary to use PLS to
analyze three-way data, since PLS needs to unfold all the rows or columns of one
sample to a vector for all the samples and combines all the vectors in one matrix,
whereas Tri-PLS can handle the cube of matrices directly. Therefore, it is intuitive to
use Tri-PLS to handle the three-way data and the advantages of Tri-PLS compared
with PLS are mentioned in [37].

2.4.1 Tri-PLS1 algorithm

Tri-PLS algorithm can be divided into two categories as the same as PLS:
Tri-PLS1 (Y is one dimension).and Tri-PLS2 (Y is multi-dimension). The introduction
will focus on Tri-PLS1 due to the fact that Y will only be one column in the
subsequent application of this thesis.

Tri-PLS1 is a special case of Tri-PLS2, where Y is a vector in Tri-PLS1 and a
matrix in Tri-PLS2. The algorithm of Tri-PLS1 is given as follows (training phase):

set iteration number i =1, and initialize T = null matrix

center Xandy= X =X-Xy=y-y

1. Caluculate the matrix Z = X'y

2. Determine w’ and w" bySVD = (w’,w") = SVD(2)

3. Caluculate the combined weight ve ctor using Kronecker product = w, =w* @ w’
4.Calculate latent vectort = t=Xw,

5.addtinto T asacolumnvector = T =[T t]

5.RegressyonT = b=(T'T)'T'y

6. Calculate the residul of X andy = X=X -tw' y=y-Tb

7.i=1i+1 Continue from step Luntil proper description of y
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2.4.2 Prediction (testing) phase of Tri-PLS1

Now a new testing sample X ., is about to be predicted, and do as follows :
X

pred ~ /“mean

1. Initialize iteration number i=1,and X = X
2.t=XW (W =[w, w, w, ... w,]is obtained from training phase)
3. Ypea =th  (bis obtained from training phase)

2.5 PLS templates

In this study, a different approach which replaces the interpolation process of
BEMD by selecting PLS templates is proposed. The templates are obtained by the

calibration process of Tri-PLS on some well-known face databases.

2.5.1 Linkage between Tri-PLS and BEMD
The linkage between Tri-PLS and BEMD is shown in figure 4.

Tri-PLS template 1 " template 2 template a
) — -~ —

X, =t b B, o v HE

LGP e |+ E

1 2 2

BEMD

J

k k. k

4 \ N
SN Nt 4N
n-l.) ‘i i n

fei /v-]

"
o
=
m
[y

. BIMF 2 + ..+ BIMF n + residual

Figure 4. Linkage between Tri-PLS and BEMD
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The lower part of figure 4 represents the decomposition result of one image in
the database by the sifting process of BEMD. As introduced in section 2.2.3, the
sifting result of BEMD follows the characteristic “completeness”, i.e. an image can be
represented as the summation of BIMFs and the residual. Each BIMF can be
represented mathematically as the rectangle parts displayed in the lower part of figure
4. Traditionally, the sifting process of BEMD for obtaining each BIMF is to iteratively
compute the mean surface m of the sifting component by some interpolation methods
such as RBF, Delaunay triangulation and finite elements. Instead of constructing
surfaces by the methods mentioned above, a new thought of surface construction is
derived from Tri-PLS. The calibration results of Tri-PLS in the upper part of figure 4
is shown that each image X; (i=1,2,...,n) in the database can be represented as the

summation of partial regression quantity t!w, (i=1,2,...,n; a is the number of latent

vector) and the final regression error. Ex. It should be noticed that the size of the

loading weights w; (j=1,2,...,a) are identical to that of the images in the database and
each score t!(i=1,2,...,n) is a scalar. For example, if the images in the database are of

the size 128x128, then all the w; (j=1,2,...,a) are of the same size 128x128. We can
find that the loading weights of each X; are identical in first iteration (i.e. w;) and are
identical in second iteration (i.e. wy), and-so on. The loading weights w; (j=1,2,...,a)
can be seen as the common quantities of all images in the database described by the
calibration process of Tri-PLS. In addition to the common quantities, the differences

of the images can be discriminated by multiplying the scores t, (i=1,2,...,n;

k=1,2,...,a) by the common quantity wy. We can therefore serve the common
quantities w; (j=1,2,...,a) as the templates of the selected face database and then apply
these templates into the sifting process of BEMD to replace previous interpolation
process.

How to select the templates in each sifting iteration of BEMD and how to adjust
the templates in order to preserve the characteristic of the sifting process will be

introduced in the following sections.
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2.5.2 Surface construction by selecting PLS templates

A new approach of surface construction by selecting PLS templates is proposed.
The modified sifting process, which is shown in figure 5, starts from detecting local
extrema (local maxima and local minima, respectively) of the current sifting
components h; and then compare h; with PLS templates wy, Wo, ... , W,. Two templates
selected from these candidates will be served as the upper and the lower surfaces
respectively (the detailed selecting process will be introduced in section 2.5.3). A
further modification for the two selected templates will be performed in order to fit
the local maxima and minima of h;, respectively (the detailed adjusting process will be
introduced in section 2.5.4). The mean surface is determined by calculating the mean
of the two modified templates w; and w;. Once the mean surface is obtained, we can
further obtain a new sifting component h;j+; by the equation h;s; = hj — m. Check
whether h;.1 is BIMF or not and then repeat the sifting process just the same as that of
BEMD.

Tri-PLS BEMD
iy Fan v Far AR image X
R AR AP SIS AT ‘Ef. s
L =
=i+l [ ilentif kot h=i
identily kocal ol
extramaof b,
compare h with templates h |
wl.l Wz_, e I"'"r.'. ".i"— ------ ‘-"“
# *a
’ »
'_F s Constraching by
! 1 interpolatign
select template w, w, as | L ethod
) ne LA
upper and lower surfaces kY i
M

i

adjust template w, w, and m
calculate mean surface

=2 m = (W +w 2

résidual r=r=h

Figure 5. Surfaces construction by PLS templates
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2.5.3 Selecting template from candidate

In order to select templates as upper and lower surfaces, the method proposed
here is to decide which templates w; has maximal correlation with the sifting
component h. For instance, after determining the local maxima and minima of the
sifting component h, the process compares local maxima and minima respectively

with the intensity values of corresponding positions of all templates and then selects

one template which has maximal correlation coefficient with h.

template w,

sifting
component h \
template w,

desired template w
:: ) the one which has
maximal correlation

coefficient with h

decision rule

Max{corr(h, w)}

ternplate w, /

Figure 6. Template selecting
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2.5.4 Adjusting the selected template
Selecting templates is the first step to construct the upper and lower surfaces;
however, adequate modification is necessary for the selected template to be applied to

the sifting process.

sifting
component h

vectory

linearregression 3 b,  modified template

—> y=xb+b, —> w,,=wh+h

selected template w

vectorx

Figure 7. Adjusting templates by linear regression

For the purpose of preserving the sifting property of EMD-based methods, we
have to consider the local extrema of the sifting component in each sifting iteration.
Linear regression is adopted here to build a minimal sum of square error relation
between the local extrema of the sifting component and the intensity values of
corresponding positions of the selected template. The modification procedure is show
in figure 7.

After applying linear regression, we obtain the regression coefficients b and error
term by. The modified template can be obtained by multiplying b by the selected
template and adding the error term by. The modified template is now regarded as the

constructed surface.
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I11. Simulation result

3.1 Recognition procedure

In this section, the self-organization scheme method BEMD and the proposed
cross-correlation scheme method, namely PLS-based EMD (PLS-EMD) are compared.
This compared method BEMD s a typical type of BEMD which is proposed by Nunes
in 2003. The adopted interpolation method is thin-plate spline which is a specious
case of RBF. As shown in figure 8, a testing image is firstly preprocessed by BEMD
or PLS-EMD, after the preprocessing stage, the features of this preprocessed image
are extracted in the feature extraction stage and finally a classifier is applied to
determine which class this testing image belongs to. The selected feature extraction
method is PCA and the classifier is KNN. It should be noted that instead of using all
the preprocessing results to extract features, the first mode (i.e. 1 BIMF) of BEMD
and PLS-EMD are applied to extract. features since the high spatial frequency
component is believed more robust to illumination changes [38].

In order to examine whether the proposed method is an effective method to
enhance recognition accuracy under different illumination conditions, two databases
(i.e. Yale and PIE) are used in the simulation process. In addition to BEMD and
PLS-EMD, two famous methods Eigenface and Tri-PLS are further taken into
comparison. Eigenface and Tri-PLS both extract global features of face images and

therefore they are believed more sensitive to illumination changes.

. 1 mode

feature
images < R » classification
- N g extraction

1" mode

Figure 8. Recognition procedure of BEMD and PLS-EMD
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3.2 Evaluation methods and databases

In the evaluation stage, repeated random sub-sampling validation and
Leave-one-out cross-validation (LOOCV) were used to evaluate the performance of
Eigenface, Tri-PLS, BEMD and PLS-EMD under different illumination conditions.

The databases used in the simulation process are Yale database and PIE database.

3.2.1 Repeated random sub-sampling validation

In repeated random sub-sampling validation [39], a subject of training samples
for each class is randomly selected, and the remaining samples are as testing samples.
For each of the random sub-sampling procedure, it is repeated 30 times to take an

average recognition rates for every database.

3.2.2 Leave-one-out cross-validation

Due to the fact that some sample might not be selected as testing sample in the
above repeated random sub-sampling validation, further complete verification
LOOCV is introduced. Considering a dataset with n samples, at each of the LOOCV
procedure, one sample is selected as the testing sample, and the remaining n-1
samples are as training samples, thus n-times iteration of LOOCYV is executed. In
LOOCV scheme, all the samples will be considered as testing samples and every
sample will not be training and testing sample simultaneously in each LOOCV

procedure
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3.3 Yale database

Yale database is a well-known database in the field of face recognition. It is
designed by the team of Yale University. The variations in Yale database are
composed of illumination, expression and eyewear. There are 15 classes of different
people with 11 images per person (i.e., 165 images in total). Each image is resized to
73x96 pixel in the simulation process. An example of Yale database is given in figure
9.

@eed3°W@
o Aol

4
.
- - '

Figure 9. Example of Yale database

3.3.1 Preprocessing result of PLS-based EMD

The preprocessing results of PLS-EMD are given in figure 10. The 4 original
images mainly differ from the illumination conditions. The light orientation of first
image is from left side of the face and therefore the shadow is presented on the right
side of background; the light orientation of second image is opposite to first image,
therefore, the shadow is presented on the left side of background. An interesting
observation is that the illumination effects of the 4 original images are presented in the
residual respectively. That is the dark and bright regions in the original images’
background are presented in the corresponding areas of the residual. A further
observation is that each 1% BIMF is like a processed image by removing the

illumination effects from original images. The illumination effects of the original
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images can be seen as the low frequency part of spatial frequency. Therefore the
illumination effects will be extracted in the residual due to the sifting property of
EMD-based method.

original image BIMF 1 BIMF 2 BIMF 3 residual

ﬂ

Figure 10. Preprocessing results of PLS-EMD — Yale database
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3.3.2 Sub-sampling validation result of Yale database

In this experiment, the size of the training sample for each class is chosen to be 1,
3 and 5; in other words, there are 15, 45 and 75 training samples out of 165 samples.
The recognition results of different methods are displayed in figure 11. The
recognition rates of Eigenface and Tri-PLS are related to the number of selected
principal components, therefore the horizontal axis is the number of selected principal
components and the vertical axis is the corresponding recognition rate; however, the
recognition rates of BEMD and PLS-EMD are independent to the principal
components, thus the recognition rates of the two are just plotted on the graph by
arrows. The number of templates of PLS-EMD applied in the simulation process is 30.
The adopted standard deviation for both BEMD and PLS-EMD are defined as

follows:

SD = Z!\(A=1Z;l=l‘hj+l(xl y) y_ hj (X’ Y)‘Z
Ziﬂzlzszl‘hj (x; y)‘z

And the threshold is 0.01 and 0.1 respectively.

The results show that BEMD and PLS-EMD outperform than Eigenface and
Tri-PLS in the three cases of different number of training samples. The possible
reasons of this observation might due to the fact that frequency-based methods are
more robust to illumination changes, while Eigenface and Tri-PLS do not belong to
this category. Eigenface and Tri-PLS take the whole region of an image into account
and therefore the two methods are sensitive to illumination changes. Another
observation is that the cross-correlation scheme PLS-EMD outperforms than the
self-organization scheme BEMD in most cases except for the first case which the
recognition rate of BEMD is 0.61 and that of PLS-EMD is 0.60.
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(a)

BEMD:

Tri-PLS:
Eigenface:

(b) PLS-EMD:
BEMD:

Tri-PLS:

(c)
BEMD:
Tri-PLS:

Figure 11. Results of sub-sampling validation — Yale database
(a) 1 training image and 10 testing images per class
(b) 3 training images and 8 testing images per class
(c) 5 training images and 6 testing images per class
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0.60
0.58
0.52
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3.3.3 LOOCV result of Yale database

In LOOCYV procedure, the parameter setting of each method is identical to that of
sub-sampling validation results mentioned above. The recognition accuracy of
PLS-EMD outperform than the other three methods.

PLS-EMD: 0.81
BEMD: 0.75
Tri-PLS: 0.73

Eigenface: 0.69

Figure 12. Results of LOOCV - Yale database

33



3.4 PIE database

PIE database is another well-known database in the field of face recognition. It is
designed by the team of Carnegie Mellon University. PIE database contains 41368
images of 68 people, with each person under 13 different poses, 43 different
illumination conditions, and 4 different expressions. In this experiment, we choose a
subset with only the frontal view (set c27) under different illumination conditions with
total images of 1428. All the selected images are cropped and resized to 32x32 pixel.

An example of PIE database is given in figure 13.

Figure 13. Example of PIE database

3.4.1 Preprocessing result of PLS-based EMD

The preprocessing results of PLS-EMD are given in figure 14. The 4 original
images mainly differ from the illumination conditions. The light orientation of first
image is from right side of the face and therefore the shadow is presented on the left
face; the light orientation of second image is opposite to first image, and therefore the
shadow is presented on the right side of the face. An observation which is similar to
that of the preprocessing results of Yale database is that the illumination effects of the
4 original images are presented in the residual respectively. That is the dark and bright
regions of the face are presented in the corresponding areas of the residual. A further
observation is that 1* BIMF is like a processed image by removing the illumination

effects from original images. The illumination effects of the

34



original images can be seen as the low frequency part of spatial frequency. Therefore
the illumination effects will be extracted in the residual due to the sifting property of
EMD-based method.

Originalimage BIMF 1 BIMF 2 BIMF 3 residual

|

P
.l
L
E

Figure 14. Preprocessing results of PLS-EMD — PIE database
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3.4.2 Sub-sampling validation result of PIE database

In this experiment, the size of the training sample for each class is chosen to be 4,
8 and 12; in other words, there are 272, 544 and 816 training samples out of 1428
samples. The recognition results are compared in figure 15. The number of templates
of PLS-EMD is still 30. The adopted SD type is identical to the simulation process of
Yale database and the threshold of BEMD and PLS-EMD are 0.01 and 0.1

respectively.

(a)

PLS-EMD:
BEMD:
Tri-PLS:
Eigenface:

(b)

PLS-EMD:
BEMD:
Tri-PLS:
Eigenface:

(c)
PLS-EMD:
BEMD:
Tri-PLS:
Eigenface:

Figure 15. Results of sub-sampling validation — PIE database
(a) 4 training images and 17 testing images per class
(b) 8 training images and 13 testing images per class
(c) 12 training images and 9 testing images per class
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It is obvious that BEMD and PLS-EMD outperform than Eigenface and Tri-PLS
in all the cases of different training samples. There is a significant gap in the
recognition rate between the two groups since PIE database has large illumination
variations among different face images and Eigenface and Tri-PLS suffer from the
severe illumination effects. The frequency-based methods (BEMD and PLS-EMD) are
insensitive to large illumination variations and therefore are more robust to the
illumination effects. Another observation is that the cross-correlation scheme
PLS-EMD outperforms than the self-organization scheme BEMD in most cases

except for the first case which the recognition rate of BEMD and PLS-EMD are equal.

3.4.3 LOOCYV result of PIE database

In LOOCYV procedure, the parameter settings of each method are identical to that
of sub-sampling validation results mentioned above. The recognition accuracy of
PLS-EMD outperform than the other three methods.
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Figure 16. Results of LOOCV - PIE database
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V. Discussion

In this chapter, the performance issue of PLS-EMD and the validation of BIMFs
obtained by PLS-EMD are discussed. The global mean of BIMF is regarded as the
validation index to examine whether the obtained BIMFs satisfy the original
characteristics. As for the performance issue, the number of iterations needed for
BIMFs under different stop criteria and the computation time are considered as the
performance index. The following discussion will focus on the comparison of
EMD-based methods between self-organization scheme (typical BEMD) and

cross-correlation scheme (PLS-EMD).

4.1 Computing performance of sifting process

Different types of SD will lead to different sifting results and thus the different
number of iterations needed for BIMFs. To compare the performance of PLS-EMD
with BEMD, two types of SD are adopted in the simulation process. The definitions

are given as follows:

v 8l y) =y ()|
SD1= = ’
%2 Iy (x,y)|

22 =y ()
ZLZL‘“J (X, y)‘z

SD2 =

The corresponding simulation results under SD1 and SD2 are given in Table 3, 4

and Table 5, 6 respectively.
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Table 3. Average number of iterations for BIMFs under SD1
(The threshold values of BEMD and PLS-EMD are 0.1 and 500 respectively.)

15t BIMF 2" BIMF 34 BIMF
Yale PIE Yale PIE Yale PIE
BEMD 275841573 573142053 2083:7.10 627846032 1563:8.00 35.11416.14

PLS-EMD 2.99+1.33 3.34#122 957:11.67 16.06:14.97 1250+12.86 20.82+16.83

Table 4. Average computation time per image (second / image) under SD1
(The threshold values of BEMD and PLS-EMD are 0.1 and 500 respectively.)

Yale PIE
BEMD 1.86+1.00 53.88+19.18

PLS-EMD 0.70:0.04 7.06+0.10

We can observe from Table 3 that the average number of iterations needed for
BIMFs of PLS-EMD is fewer than that of BEMD. This result shows that the sifting
process of PLS-EMD for searching BIMFEs converges faster than that of BEMD. Here,
only the comparison results of first three BIMFs are shown since the comparison
results of other BIMFs are consistent with the observation of first three BIMFs.
Therefore, only the first three BIMFs are examined in the following discussion.
Another comparison in Table 4 is to compare the average computation time per image
for both Yale and PIE databases. PLS-EMD takes less time than BEMD on both
databases. It should be noticed that the threshold values of PLS-EMD and BEMD are
500 and 0.1 respectively. Literature [34] has shown that the value 0.1 is regarded as an
appropriate threshold value for BEMD under SD1. The value 500 of PLS-EMD is
empirically obtained from the simulation results. The results indicate that the
threshold value of PLS-EMD for obtaining BIMFs is not necessary to set as small as
that of BEMD, therefore the spending time of sifting process of PLS-EMD is less than
that of BEMD.
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Table 5. Average number of iterations for BIMFs under SD2
(The threshold values of BEMD and PLS-EMD are 0.01 and 0.1 respectively.)

15t BIMF 2" BIMF 34 BIMF
Yale PIE Yale PIE Yale PIE
BEMD 6934127 693:1.27  448:1.14 5844130 2444146  4.84+121

PLS-EMD 2.89+061  253i0.57 22.69+24.36 35.95+18.56 31.05:24.39 41.09:18.88

Table 6. Average computation time per image (second / image) under SD2
(The threshold values of BEMD and PLS-EMD are 0.01 and 0.1 respectively.)

Yale PIE
BEMD 0.29+0.07 4.35+1.06

PLS-EMD 0.14+0.10  1.84+0.09

The comparison of the average computation time per image under SD2 is given
in Table 6. PLS-EMD also takes less time than BEMD on both databases. It should be
noticed that the threshold values of PLS-EMD and BEMD are 0.1 and 0.01
respectively. Literature [34] has shown that the value 0.01 is an appropriate threshold
value for BEMD under SD2. As for PLS-EMD, the value 0.1 is also empirically
obtained from the simulation process. The threshold value of PLS-EMD for obtaining
BIMFs is also not necessary to set as small as that of BEMD, therefore the spending
time of sifting process of PLS-EMD is less than that of BEMD.

The average number of iterations needed for BIMFs under SD2 is compared in
Table 5. The number of iterations needed for the first BIMF of PLS-EMD is less than
that of BEMD on both Yale and PIE databases; however, the number of iterations
needed for the second and the third BIMFs of PLS-EMD are more than that of BEMD.

A detailed investigation of this observation will be given in section 4.2.1.
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4.2 Evaluation of BIMFs

In addition to the performance issue, another issue what we concern about is
whether BIMFs obtained by PLS-EMD satisfy the original characteristics. Two
indices are utilized to evaluate BIMFs found by BEMD and PLS-EMD. One is the
global mean of BIMF and the other is the index of the orthogonality (10).

4.2.1 Global mean of BIMF

A 2D envelope can be seen as BIMF when it satisfies the condition that the mean
value (local mean) of the 2D mean envelope (i.e. surface) is zero or nearly zero at any
points. The term ‘Global mean’ indicates the mean value of the local mean of the
sifting component (i.e. intermediate surface). In order to investigate the process of
obtaining BIMFs, the value of SD and the global mean of the intermediate sifting
components during sifting process will be checked. It should be noticed that the stop
criteria here is adopted SD2 since the observation of more iterations of the second and
the third BIMFs of PLS-EMD under SD2 than that of BEMD need to be investigated.

The variations of the value of SD of intermediate sifting components during
sifting process are shown in figure 17(a). The horizontal axis denotes the number of
iterations of the sifting process for finding each BIMF and the vertical axis denotes
the corresponding value of SD of the intermediate sifting components. © ¢ * stands for
the sifting process for finding first BIMF, ‘x’ for that of the second BIMF, and * - * for
that of the third BIMF. It is obvious that the value of SD of the intermediate sifting
component drops nearly zero within 10 iterations during the sifting process of finding
each BIMF. If the value of SD of the intermediate sifting component is smaller than a
predefined threshold value which is usually a small value close to zero, then this
intermediate sifting component is regarded as BIMF. Figure 17(b) shows that the
global mean of the intermediate sifting component drops nearly zero within 10
iterations during the sifting process for each BIMF. We can find that the variations of
the global mean are similar to that of the value of SD; that is to say, the first three
BIMFs can be obtained within 10 iterations by checking the value of SD; similarly, if

we adopt global mean as the stop criteria, then the first three BIMFs can also be
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obtained within 10 iterations since the local mean of the sifting components is nearly
zero at each point which ensures the obtained BIMFs can satisfy the original
characteristic of BIMF.
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Figure 17. Variations of the value of SD and the global mean during sifting process
(a) Variations of the value of SD

(b) Variations of the global mean

Next, the sifting process of PLS-EMD is examined. Figure 18(a) shows that the
first BIMF can be obtained within 10 iterations since the value of SD is approximately
nearly zero and will be smaller than the predefined threshold value; however, the
second and the third BIMFs are obtained over 50 iterations. This simulation result is
consistent with the above comparison results in section 4.1 that the numbers of
iterations needed for the second and the third BIMFs of PLS-EMD are more than that
of BEMD. A further examination of global mean is given in figure 18(b). The global
mean of the intermediate sifting component is approximately nearly zero within 10
iterations for finding each BIMF. It is reasonably to infer that BIMFs will be obtained
within 10 iterations since the global mean is nearly zero; however, this finding is
inconsistent with the results of figure 18(a). A possible inference is given that
checking the value of SD to obtain BIMFs will lead to additional and unnecessary
iterations for searching the second and the third BIMFs. Global mean is probably a
better choice of the stop criteria of PLS-EMD.
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(b)

Figure 18. Variations of the value of SD and the global mean during sifting process
(a) Variations of the value of SD

(b) Variations of the global mean
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4.2.2 Index of orthogonality

For the purpose of examining the orthogonality of components (BIMFs and
residual) obtained by BEMD and PLS-EMD, the index of orthogonality (10) of the
components is computed and is given in Table 7. As introduced in section 2.2.3, a low
value of 10 is preferred for orthogonality among components. It is obvious that the
value of 10 of BEMD is smaller than that of PLS-EMD when both Yale and PIE
databases are taken into account; however, the differences of the value are small. We
can say that the decomposition result of BEMD is little better than that of PLS-EMD
when 10 is taken into account.

Another viewpoint is how significance of orthogonality it is to the subsequent
applications? Just as the results displayed in chapter Ill, the recognition rate of
PLS-EMD is better than that of BEMD, but the orthogonality among the components
obtained by PLS-EMD is worse than that.of BEMD. We apply the quantity measure
(i.e. 10) here to compare the decomposition results of PLS-EMD and BEMD;
however, the orthogonality among the components might not important at all for the
recognition purpose since we only utilize 1% BIMF as the preprocessed result to
extract features. Therefore a conclusion is given that whether 10 is a means of

comparing the EMD-based methods or not depends on the applications themselves.

Table 7. Comparison of index of orthogonality

10

Yale PIE
BEMD 0.14+0.10 0.11+0.09

PLS-EMD 0.15:0.09 0.15+0.07
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4.2.3 Illumination tendency in residual

Literatures [22, 27] have shown that the residual of the decomposition results of
BEMD presents the trend of the decomposed image. The trend of a face image can be
seen as the illumination effect or illumination tendency of this image. Three face
images with different illumination conditions are given in figure 19(a). The residuals
decomposed from figure 19(a) by BEMD and PLS-EMD are given in figure 19(b) and
19(c) respectively. We can find that PLS-EMD has the ability to find the illumination
tendency in the residual just the same as that of BEMD. This observation is consistent
with the fact that EMD-based methods have the ability to extract low frequency part
of spatial frequency into the residual. Another observation from figure 19(c) is that the
residual found by PLS-EMD has an effect of enhancing the contrast of the
illumination tendency compared with the results of BEMD. However, there is no
quantity measure here to evaluate which.illumination tendency found by BEMD and
PLS-EMD is better. We just can say PLS-EMD has an effect of enhancing the contrast

of illumination tendency compared to BEMD.

(a)

El

(b)

(c) ‘
-
| B

Figure 19. (a) Face images with different illumination conditions

(b) Residuals decomposed from figure 19(a) respectively by BEMD
(c) Residuals decomposed from figure 19(a) respectively by PLS-EMD

45



V. Conclusion

In this study, a new thought of surface construction by a different approach, i.e.
cross-correlation scheme for implementing 2D-EMD is proposed. The proposed
method is based on selecting templates obtained from the calibration process of
Tri-PLS to replace RBF in typical BEMD. It is shown that the recognition rate of the
proposed method PLS-EMD is better than that of BEMD under different illumination
conditions and the performance of PLS-EMD is also better than that of BEMD.

V1. Future Work

The proposed method still has some implementation issues about templates
selection and the subsequent adjustment. The sifting result of PLS-EMD reveal the
mode mixing problem to some extent from the preprocessing results displayed above.
Avre there any alternate methods to select the candidate templates and adjust the
selected template to get better recognition results? How to relieve the mode mixing
problem? It is valuable to investigate this issue in the future.

46



References:

[1] W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, “Face recognition: A

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

literature survey,” ACM Computing Surveys, vol. 35, no. 4, pp. 399-459, Dec.

2003.

P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss, “The FERET evaluation
methodology for face-recognition algorithms,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, Oct. 2000.
A.K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric
Recognition,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 14, no. 1, pp. 4-20, Jan. 2004
R. Chellappa, C.L. Wilson, and S. Sirohey, “Human and machine recognition of
faces: a survey,” Proceedings of the IEEE, vol. 83, no. 5, pp. 705-741, May.
1995.

Y. Adini, Y. Moses and, S. Ullman, ‘Face recognition: the problem of
compensating for changes in illumination direction,” IEEE Trans. Pattern
Anal. Machine Intell., vol.19, no. 7, pp.721-732, Jul.1997.

Z.C. Lian, M.J. Er, and Y.C. Liang, “A novel efficient local illumination
compensation method based on DCT in logarithm domain,” Pattern
Recognition Letters, vol. 33, no. 13, pp. 1725-1733, Oct. 2012.

A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, “From few to many:
illumination cone models for face recognition under variable lighting and pose,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 6, pp. 643-660 , Jun.
2001.

R. Basri and D.W. Jacobs, “Lambertian reflectance and linear subspaces,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 2, pp. 218-233, Feb.
2003.

V. Blanz and T. Vetter, “Face recognition based on fitting a 3D morphable
model,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 9, pp.
1063-1073. Sep. 2003.

[10] A. Shashua and T. Riklin-Raviv, “The quotient image: class-based re-rendering

47



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

and recognition with varying illuminations,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 23, no. 2, pp. 129-139, 2001.

S. Shan, W. Gao, B. Cao, and D. Zhao, “Illumination normalization for robust
face recognition against varying lighting conditions,” in Proc. IEEE Workshop
on Analysis and Modelling of Faces and Gestures, France, 2003.

H.T. Wang, S.Z. Li, Y.S. Wang, and J.J. Zhang, “Self quotient image for face
recognition,” in Proc. Internat. Conf. on Image Processing, Singapore. 2004.
X.G He, J. Tian, L.F. Wu, Y.Y. Zhang, and X. Yang, “Illumination
normalization with morphological quotient image,” Journal of Software, vol.
18, no. 9, pp. 2318-2325, Sep. 2007

T. Chen, W. Yin, X.S. Zhou, D. Comaniciu and T.S. Huang, “Total variation
models for variable lighting face recognition,” IEEE Trans. Pattern Anal.
Machine, Intell, vol. 28, no. 9, pp..1519-1524, Sep. 2006
R.C. Gonzales and R.E. Woods, Digital Image Processing, 2nd Ed. Upper
Saddle River, New Jersey: Prentice Hall, ISBN: 0-201-18075-8, 1992.

W. Chen, M.J. Er, and S. Wu, “Illumination compensation and normalization
for robust face recognition using discrete cosine transform in logarithm
domain,” IEEE Trans. Systems Man Cybernet. B Cybernet, vol. 36, no. 2, pp.
458-466, 2006.

V.P. Vishwakarma, S. Pandey and M.N. Gupta, “A novel approach for face
recognition using DCT coefficients re-scaling for illumination normalization,”
in Proc. 15th Internat. Conf. on Advanced Computing and Communications,
Guwabhati, 2007.

C.A. Perez and L.E. Castillo, “Genetic improvements in illumination

compensation by the discrete cosine transform and local normalization for face

recognition,” in Proc. SPIE —The International Society for Optical Engineering,

International Symposium on Optomechatronic Technologies, San Diego, 2008.
M.V. Heydi, G.R. Edel, and C.M. Yadira, “A new combination of local
appearance based methods for face recognition under varying lighting
conditions,” in Proc. 13th Iberoamerican Congress on Pattern Recognition,
Havana, 2008.

48



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

N.E. Huang, Z. Shen, S.R. Long, M.C. Wu , H.H. Shih, Q.N. Zheng, N.C. Yen,
C.C. Tung, and H.H. Liu, “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proceedings of
the Royal Society A, vol. 454, no. 1971, pp. 903-995, 1998.

R. Bhagavatula and M. Savvides, “Analyzing facial images using empirical
mode decomposition for illumination artifact removal and improved face
recognition,” International Conference on Acoustics Speech and Signal
Processing (ICASSP 2007), Honolulu, HI, Apr. 15-20, 2007, pp. 505-508.

J.C. Nunes, Y. Bouaoune, E. Del’echelle, O. Niang, and Ph. Bunel, “Image
analysis by bidimensional empirical mode decomposition,” Image and Vision
Computing, vol. 21, no. 12, pp. 1019-1026, 2003.

M. Shao, Y. H. Wang, and X. Liang, “A BEMD based normalization method
for face recognition under variable. illuminations,” International Conference on
Acoustics Speech and Signal Processing (ICASSP 2010), Dallas, TX, Mar.
14-19, 2010, pp. 1114 —1117.

D. Zhang, J. J. Pan, Y. Y. Tang, and C. Wang, “lllumination invariant face
recognition based on the new phase features,” IEEE International Conference
on Systems Man and Cybernetics (SMC 2010), Istanbul, Turkey, Oct. 10-13,
2010, pp. 3909 —3914.

M.C. Morrone, J.R. Ross, D.C.Burr, and R.A. Owens, “Mach bands are phase

dependent,” Nature 324, pp. 250-253, Nov. 1986.

A. Linderhed, “2-D empirical mode decompositions in the spirit of image

compression,” in Proc. SPIE Wavelet and Independent Component Analysis

Applications IX, vol. 4738, Orlando, USA, Apr. 2002, pp. 1-8

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional

EMD,” IEEE Signal Processing Letters, vol. 12, no. 10, pp. 701-704, 2005.

A. Linderhed, “Variable sampling of the empirical mode decomposition of

two-dimensional signals,” Int. J. Wavelets Multresolution Inform. Process., vol.

3, no. 2005, pp. 435-452, Sep. 2005.

Y. Xu, B. Liu, J. Liu, and S. Riemenschneider, “Two-dimensional empirical

mode decomposition by finite elements,” Proceedings of the Royal Society A,
49



vol. 462, no. 2074, pp. 3081-3096, 2006.

[30] S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive
bidimensional empirical mode decomposition using order-statistics filter
based envelope estimation,” EURASIP J. Adv. Signal Process., vol. 2008, pp.
1-18, 2008.

[31] Z. Yang, D. Qi, and L. Yang, “Signal period analysis based on Hilbert—-Huang
transform and its application to texture analysis,” Proc. 3rd Int. Conf. on
Image and Graphics, Hong Kong, China, Dec. 18-20, 2004, pp. 430-433.

[32] Z. Wu, N.E. Huang, and X. Chen, “The multi-dimensional ensemble empirical
mode decomposition method,” Advances in Adaptive Data Analysis, vol. 1, no.
3, pp. 339-372, 2009.

[33] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive

Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[34] S. M. A. Bhuiyan, N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu, and R. R.
dhami, “Bidimensional empirical mode decomposition using various
interpolation techniques,” Advances in Adaptive Data Analysis, vol. 1, no. 2,
pp. 309-338, 20009.

[35] G. Wang, X.Y. Chen, and F.L. Qiao, “On intrinsic mode function,” Advances
in Adaptive Data Analysis, vol. 2, no. 3, pp. 277-293, 2010.

[36] S. Beucher, “Geodesic reconstruction, saddle zones and hierarchical
segmentation,” Image Analysis and Stereol, vol. 20, no. 3, pp. 137-141, 2001.

[37] R. Bro, “Multiway calibration. Multilinear PLS,” Journal of Chemometrics, vol.
10, no. 1, pp. 47-62, Dec. 1996.

[38] C. Nastar, “The image shape spectrum for image retrieval”, INRIA Technical
Report RR-3206, 1997.

[39] F. Dieterle. (2006, Aug. 14). Theory — Fundamentals of the Multivariate Data
Analysis [online]. Available: http://www.frank-dieterle.de/phd/2_4 3.html

50



