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國立交通大學 

生醫工程研究所 

 

 

摘要 

 

 

人臉辨識為圖形識別發展的一個重要應用，在過去的三十年來，研究學者致

力於提升臉部辨識系統的可靠度，許多人臉辨識的演算法也應運而生。在過去的

文獻曾提及，某些辨識的演算法易受到臉部影像間不同光線變化條件所影響，而

產生誤判人臉的情況。例如以特徵為基礎的技術，此種技術藉由統計方法來計算

特徵向量，進而擷取到能區分不同臉部影像差異性最大的特徵。例如: Eigenface

或 Tri-PLS 等方法。此種方法為對臉部影像作整體考量，也因此當臉部影像間存

在不同光線條件變化時，會使辨識率大受影響。 

針對此種問題，過去有許多演算法被提出，其中以 EMD 為基礎的技術在近

年來漸漸受到重視。研究學者使用不同的內插法來實作 BEMD, 並應用所提出的

方法來對臉部影像作前處理以達到可靠的辨識結果。 本論文嘗試以 Tri-PLS 對

臉部影像資料庫建樣板，並以此樣板來取代典型 BEMD 方法的內插過程，再進

一步檢視此種方法的有效性。  

評估演算法辨識率的部份使用了 Yale 及 PIE 人臉資料庫做測試，並與

Eigenface 及 Tri-PLS 等方法做比較。結果顯示所提出的方法 PLS-EMD 在辨識率

上優於此兩種方法，尤其在使用 PIE database 作評估時，Eigenface 及 Tri-PLS

的 leave-one-out cross-validation 辨識率約只有 20%及 40%，而 PLS-EMD 的辨識

率則可達到 90%，如此大的差距說明了 PLS-EMD 相較於一般的辨識方法，對影
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像間存在不同光線條件變化具有可靠的辨識能力。另外再進一步與典型的 BEMD

方法作比較，結果顯示所提出的方法無論是以 repeated random sub-sampling 

validation 或 leave-one-out cross-validation 做評估，在辨識率上均優於典型的

BEMD 作法。而在計算效能上，若以 PIE database 作評估，BEMD 在特定停止條

件下，平均每張影像計算時間約需 50 秒; 而 PLS-EMD 在此條件下僅需花費約 7

秒。由此可知其計算效能的差異。 
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Abstract 

 

 

Face recognition is an important application in the field of pattern recognition. 

Researchers devote themselves to enhance the reliability of the face recognition 

system in the past thirty years and many of the related algorithms emerge as the times 

require. As one of the major challenges in face recognition mentioned in literatures, 

some recognition algorithms will probably misclassify faces when different 

illumination conditions are present among face images. As one kind of feature 

extraction methods, feature-based methods extract features to distinguish different 

faces by solving eigenvalue problem; however this kind of method such as Eigenface 

and Tri-PLS suffers from the problem mentioned above. The feature-based methods 

take the whole regions of face image into consideration, and therefore the recognition 

rate will degrade significantly when the different illumination conditions are present 

in face images. 

Some algorithms have been proposed to deal with this problem in the past. As 

one kind of solutions, EMD-based methods have received significantly attention in 

recent years. Researchers adopted different interpolation methods to implement 

BEMD, and then applied the proposed methods to preprocess face images in order to 

enhance the recognition accuracy. In this study, a different approach which replaces 

the interpolation process of BEMD by selecting templates is proposed. The templates 

of the face database are obtained by Tri-PLS. 
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Yale and PIE databases are applied to evaluate the recognition rate of the 

proposed method. The compared methods include Eigenface and Tri-PLS. Simulation 

results show that the recognition rate of the proposed method (i.e. PLS-EMD) is better 

than that of the two methods. The recognition rate of Eigenface and Tri-PLS evaluated 

by leave-one-out cross-validation are only about 20 and 40 percent respectively, and 

that of PLS-EMD is about 90 percent. The great disparity between the two recognition 

rates indicates that PLS-EMD has a reliable recognition ability to resist different 

illumination variations between images compared to other general methods. 

Another comparison between BEMD and PLS-EMD is also given. The 

recognition results evaluated by sub-sampling validation and Leave-one-out 

cross-validation also shown that PLS-EMD has better recognition rate than that of 

BEMD. As for computing performance, the average computation time per image of 

PIE database computed by BEMD which adopts specific stop criteria is about 50 

seconds; however, it only takes about 7 seconds for PLS-EMD under the same 

condition. It is obvious that the computing performance of PLS-EMD is better than 

that of BEMD. 
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I. Introduction 

 
1.1  Background 

As one of most successful and famous application of image analysis, face 

recognition has received significant attention in the past several years. It plays an 

important role in the areas of smart cards [1], information security [2], law 

enforcement [3], surveillance [4], etc. Literature has shown that the recognition 

accuracy will probably drop significantly in a natural or uncontrolled environment [1]. 

For the purpose of enhancing the recognition accuracy in real applications, the 

environmental conditions are usually well-controlled, i.e. neutral face expression, 

small variation of lighting condition, processed image background, and a certain range 

of head pose variation [1]. One of the major challenges of face recognition is indicated, 

that is the illumination variation problem [5]. It is believed that variations caused by 

lighting in face images are even larger than differences among distinct individuals [5]. 

Therefore, the variations of lighting conditions among different face images will lead 

to great influence on the recognition accuracy. Some potential methods which are 

introduced in the section 1.1.1 have been proposed to deal with this problem.  

 

1.1.1  Approaches to illumination variation problem 

Those approaches for solving illumination problem can be classified into three 

categories [6] as follows. 

(a) Face and illumination modeling: 

The main concept of this category is to build illumination or face model to 

deal with the illumination variation problem. The Illumination Cone 

method [7] which attempts to synthesize the face images under different 

poses and illumination conditions by reconstructing the shape and albedo of 

the face from a small number of training images.  Lambertian surface [8] 

shows that the set of images under different lighting conditions can be 

simply characterized as a nine dimensional subspace in the space of all 

possible images. Three-dimensional morphable model [9] attempts to 

construct a general 3D human face model in order to fit different 
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illumination and pose conditions.  

(b) Illumination invariant feature extraction: 

Those methods in this category are mainly to extract the illumination 

insensitive facial features to perform further recognition. The representative 

methods include edge map, image intensity derivatives and Gabor-like 

filtering image [5]. Recently, quotient-image-based methods are reported to 

be a simple and efficient solution to illumination variations. Quotient Image 

(QI) [10] is defined as image ratio between a test image and linear 

combinations of three unknown independent illumination images. It only 

depends on the relative surface texture information and is illumination 

insensitive. Quotient Illumination Relighting (QIR) [11], Self-Quotient 

Image (SQI) [12] and Morphological Quotient Image (MQI) [13] are all 

derived from the idea of QI. As another recent work, Logarithmic Total 

Variation (LTV) [14] decomposes the image into two parts, one with 

small-scale features and the other one with large-scale features. Only 

small-scale features will be used for recognition. 

(c) Preprocessing and normalization: 

In this approach, the face images with different illumination conditions are 

preprocessed in order to obtain the normal lighting images. Further 

recognition will be performed based on the normalized images. The most 

commonly used methods include histogram equalization [15] and discrete 

cosine transform (DCT) based methods [16-19]. In the implementation of 

DCT, low-frequency discrete cosine transform coefficients are discarded to 

eliminate effects of illumination variations since illumination variations 

mainly lie in the low-frequency band. This method does not require 

multiple images to be trained. 
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1.1.2  EMD-based approaches 

As one kind of illumination invariant feature extraction methods mentioned 

above, the Empirical mode decomposition (EMD) based methods have received 

significant attention in recent years. EMD was originally proposed by Huang et al. in 

1998 [20] and was originally applied to analyze 1D signal. This method has been 

investigated how to apply to image analysis in recent years. Researchers have tried to 

apply EMD-based method to deal with the illumination problem. For example, 

Bhagavatula et al. [21] utilized EMD to decompose the face images in variant 

illumination conditions into different components and found that the illumination 

trend is presented in the last components. This observation gave them a thought for 

robust face recognition under variant illumination conditions by removing the 

components which contain the illumination effects. As a two-dimensional version of 

EMD, BEMD was proposed by Nunes et al. in 2003 [22] and applied to image 

analysis directly. Shao et al. [23] utilized BEMD to extract a series of normalization 

images from one subject, then canonical correlation analysis (CCA) is adopted to 

generate more discrimative features; Zhang et al. [24] proposed an improved BEMD 

to get bi-dimensional intrinsic mode functions (BIMF), then Riesz transform is 

subsequently applied to these obtained 2D analytic signals, i.e. BIMFs to get the 

corresponding monogenic signals. Finally, phase congruency (PC) [25] was calculated 

to get facial features under variant illumination conditions. 

As mentioned above, EMD-based methods have received significant attention in 

recent years, especially in the face recognition field. Researchers have noticed the 

ability of EMD-based methods to deal with the illumination problem. Therefore, it is 

valuable to investigate the properties and the characteristics of EMD-based methods. 
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1.2 Motivation 

 As mentioned in above studies, the methods derived from EMD are different. 

What are the differences among these methods? How to apply them to solve the 

illumination problem? A further thought is that is it possible to propose a modified 

version of EMD-based methods to apply to the illumination problem?  

 

1.3  Literature study 

EMD was originally developed for analyzing one-dimensional non-stationary and 

nonlinear signals (Huang et al. 1998). Due to its adaptability, effectiveness and the 

fact that it can decompose signal to multi-scale components, this decomposition 

technique is widely used and has been investigated how to extend to 2D version to 

analyze two-dimensional (2D) data/images. The thinking of developing 2D EMD was 

originated from Linderhed [26]. He successfully used EMD to encode and decode the 

audio signal and gave a thought that image compression can be realized by a 2D 

version of EMD in the same way. This thought inspires the researchers to develop a 

two-dimensional EMD. Nunes et al. proposed a typical 2D EMD method in 2003, 

which is known as BEMD. He is the first one who proposed a 2D framework of EMD.  

The extrema detection method of BEMD adopts neighboring window or 

morphological operation, and the interpolation method for constructing 2D envelope 

(i.e. surface) adopts radial basis function (RBF). Researchers subsequently followed 

this framework to investigate how to improve BEMD mainly by proposing different 

interpolation methods. For instance, Damerval et al. [27] replaced the interpolation 

method RBF with Delaunay triangulation and fixed number of iterations to obtain 

BIMFs; Linderhed [28] used thin-plate spline which is an alternate choice of RBF as 

the interpolation method; Xu et al. [29] provided another interpolation approach by 

using a mesh fitting method based on finite elements; Bhuiyan et al. [30] used order 

statistic filter to obtain upper and lower surfaces rather than using interpolation 

method. Except the 2D implementation, 1D EMD has also been applied to decompose 

images to obtain BIMFs [31]. In this technique, each row and/or each column of the 

2D data is processed by 1D EMD, which makes it a faster process. However, it has 
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been found that this 1D implementation results in poorer BIMF components compared 

to the standard 2D procedure since the former ignores the correlation among the rows 

and/or columns of a 2D image.  

In recent years, EMD has been further developed to process the multidimensional 

data by multi-dimensional ensemble EMD method, designated as MEEMD [32]. The 

decomposition is based on ensemble empirical mode decomposition (EEMD) to slice 

an image in each and every dimension involved. This method bypasses major 

obstacles and difficulties in traditional BEMD, such as how to define the 2D extrema 

and the mode-mixing problem. Another advantage of MEEMD is that it can be 

applied to decompose spatially three or more dimensional fields without any barrier. 

Such extension would not be feasible for the traditional two-dimensional approaches. 

This method represents a new milestone in the progress of EMD.  

The different decomposition methods mentioned above are given in table 1. 

 

 

 Table 1. Comparisons of different decomposition methods  
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1.4  Objective 

The interpolation method of the typical BEMD is implemented in a 

self-organization scheme. It means the interpolating values only depend on the values 

of local extrema without any corresponding class information of this decomposed face 

image participating in the interpolation process. It gives us an idea that maybe we can 

construct the upper and lower surfaces by adding corresponding class information of 

the decomposed face image into the interpolation process. This different interpolation 

approach can be seen as a cross-correlation scheme. It has a cross relationship 

between the intrinsic values of this decomposed face image (X) and the corresponding 

class information (Y). Is it possible to implement the interpolation process by this 

different approach? Does this different scheme have better recognition accuracy or 

performance than the typical BEMD on the illumination variation issue? 

 

1.5  Contribution 

The contribution of this research is to propose and implement cross-correlation 

scheme of 2D-EMD which is different from traditional approach by self-organization 

scheme. Due to the cross-correlation property, PLS-EMD approach is possibly helpful 

to enhance recognition accuracy of face recognition under different illumination 

conditions. 

 

1.6  Thesis organization 

This thesis can be mainly divided into six chapters. The related works are given in 

chapter II and the proposed PLS-EMD method will be introduced in the end of this 

chapter. Chapter III displays the simulation results and compares some representative 

methods with the proposed method under different illumination conditions. The 

performance issue, the advanced comparisons and the validation of PLS-EMD will be 

discussed in chapter IV. Conclusion and future works are given in the last chapter of 

this thesis. 
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II. Material and methods 
 

2.1  Empirical mode decomposition 

Empirical mode decomposition (EMD) was originally developed for analysis of 

one-dimensional non-stationary and nonlinear signals (Huang et al. 1998). It 

decomposes a signal into a finite sum of intrinsic mode functions (IMF) that generally 

allow well-behaved Hilbert transforms. This makes it possible to construct a 

time–frequency representation, called the Hilbert spectrum, using instantaneous 

frequency. EMD combined with Hilbert spectrum, called the Hilbert–Huang 

Transform (HHT), has many advantages over the traditional time–frequency analysis 

techniques in the adaptability, the capability of decomposing nonlinear and unstable 

signals. In recent years, HHT has been applied with great success in various 

application areas. 

 

2.1.1  Intrinsic mode function 

Ideally, the IMFs of a signal obtained by EMD are expected to have the following 

properties [20, 30]. 

(i) In the whole data set of an IMF, the number of local extrema and the number of 

zero crossings must be equal or differ by at most one. 

(ii) There should be only one mode of oscillation, that is, only one local maximum or 

local minimum, between two successive zero crossings. 

(iii) At any point, the mean value of the upper and lower envelopes, defined by the 

local maxima and minima points, is zero or nearly zero. 

(iv) The IMFs are locally orthogonal among each other. 
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2.1.2  Sifting process 

The overall sifting process can be viewed in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sifting process can be illustrated as follow: 

 

Define X(t) as an one-dimensional signal. 

(i) Initialize:  r = X(t), h0 =r, i=1 

(ii) Find the local extrema of hi-1 (local maxima and minima, respectively) by sliding 

window (local derivative is an alternate way to find local extrema [34]). 

(iii) Interpolate all the local maxima and minima respectively to generate upper 

envelope u(t) and lower envelope l(t) by cubic spline. 

(iv) Compute mean envelope m by the equation:  m = ( u(t) + l(t) ) / 2. 

Figure 1. Sifting process of EMD 
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(v) Calculate the difference between hi-1 and current mean envelope m. 

 hi = hi-1 – m 

 

(vi) Compute standard deviation:                               

 

*Note: SD has alternate definitions in other studies [35]. 

 

(vii)  If SD is greater than the predefined threshold value, which is usually a small 

nearly zero value, then set iteration index i = i+1 and repeat the sifting process 

from step (ii).  

Otherwise, if SD is less than the predefined threshold, then regard hi as an IMF 

and set intermediate residual r = r –hi. Finally, check r to insure enough 

extrema points. If there are enough extrema points, then set hi-1 = r and repeat 

sifting process from step (ii). Otherwise, terminate the sifting process. 

  


 















 


T

t i

i

th

thth

0
2

1

2

1

)(

)()(
SD



 

10 

 

An example of sifting result can be viewed in figure 2. 

 

 

 

 

 

 

 

 

original 

signal 

IMF1 

IMF2 

IMF3 

IMF4 

IMF5 

IMF6 

IMF7 

IMF8 

residual 

Figure 2. Example of sifting result ( Revised from Huang et al. 1998, ”The empirical 

mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series 

analysis” [20]) 
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 From the figure, we can find that the IMF1 corresponds to the highest local 

frequency of oscillation of original signal; IMF2 corresponds to the second highest 

local frequency of oscillation and so on. The last component of the sifting result, i.e. 

residual corresponds to the trend of the data. By summing up all the components, we 

obtain 

                                                         (1) 

 

That is, we can decompose a signal by EMD to find its different frequency 

components. This method is totally adaptively and can be applied to nonlinear and 

non-stationary signal compared with traditional Fourier transform.  

 

2.1.3  Completeness and orthogonality 

 The property “completeness”, which is established by equation (1), represents 

that an original data can be reconstructed by summing up all the IMFs and the residual. 

To further check the orthogonality of IMFs, an equation is given first: 

 

                                                        (2) 

 

in which residual is regarded as an extra component Cn+1. An overall index of 

orthogonality (IO) [20] is defined as: 

                      

                                                            (3) 

 

 

The orthogonality actually depends on the decomposition methods; however,       

a lower value of IO is preferred. 

rCtX
n

i

i 
1

)(

 
























T

t

n

j

n

k

kj

tX

tCtC

0

1

1

1

1
2 )(

)()(
IO






 
1

1

1   ,  )(
n

i

ni rCCtX



 

12 

 

2.2  Bi-dimensional Empirical mode decomposition 

Bi-dimensional Empirical mode decomposition (BEMD) is a two-dimensional 

extension of EMD and it has been applied in various real-world problems, e.g. 

medical image analysis, pattern analysis, and texture analysis. The typical BEMD was 

firstly proposed by Nunes in 2003 [22]. Researchers followed the framework of this 

typical BEMD to develop their own BEMD. They mainly focused on the modification 

or replacement of the interpolation method from the typical BEMD to enhance the 

performance or get better sifting results. A brief introduction of typical BEMD will be 

given from section 2.2.1 to section 2.2.4 and the interpolation method will be 

introduced in section 2.2.5. 

 

2.2.1  Bi-dimensional intrinsic mode function 

 The definitions and the properties of BIMFs are slightly different from IMFs. It is 

sufficient for BIMFs to follow only the final two (iii and iv) properties mentioned in 

section 2.1.1.. In fact, due to the properties of an image and the BEMD process, it is 

impossible for a BIMF to satisfy the first two properties (i and ii), since the maxima 

and minima points are defined in a 2D scenario for an image. This viewpoint can be 

referred to this literature [30]. 

 

2.2.2  Sifting process 

The sifting process of BEMD can be viewed in figure 3. It is obvious that the 

sifting process is nearly the same as EMD except extrema detection by neighboring 

window or morphological operators and surface construction by RBF.  
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The sifting process can be illustrated as follow: 

 

Define X as an image data 

(i) Initialize:  r = X, h0 =r, i=1 

(ii) Find the local extrema of hi-1 (local maxima and minima, respectively) by 

neighboring window.  

(iii) Interpolate values between all the local maxima and minima respectively to 

generate upper surface u and lower envelope l by RBF. 

(iv) Compute the mean surface m by the equation:  m = ( u + l ) / 2. 

(v) Calculate the difference between hi-1 and current mean surface m. 

 hi = hi-1 – m 

Figure 3. Sifting process of BEMD 
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(vi) Compute standard deviation:                               

 

where (x, y) is the position of h and (M, N) is the total number of rows and 

columns of the decomposed image. 

*Note: SD has alternate definitions in other studies [22, 34]. 

(vii)  If SD is greater than a predefined threshold value, which is usually a small 

nearly zero value, then set iteration index i = i +1 and repeat the sifting process 

from step (ii);  

Otherwise, if SD is less than the predefined threshold, then regard hi as an 

BIMF and set intermediate residual r = r – hi. Finally, check r to ensure 

enough extrema points. If there are enough extrema points, then set hi-1 = r 

and repeat sifting process from step (ii); Otherwise, terminate the sifting 

process. 

 

It should be noted that different equations of SD affect the number of required sifting 

iterations to obtain a BIMF. As another stop criterion, fixed number of iterations is an 

alternate way to obtain BIMFs [27].  

  

2.2.3  Completeness and orthogonality 

The sifting results of BEMD also satisfy the completeness condition:   

                                                        (4) 

 

in which X is an image data, Ci is the corresponding i
th

 BIMF, n is the total 

number of BIMFs and r represents residual. 
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Equation (4) indicates that an original image can be reconstructed by summing 

up all the BIMFs and the residual. To further check the orthogonality of BIMFs, an 

equation is given first: 

 

                                                        (5) 

 

in which residual is regarded as an additional component Cn+1. The overall index of 

orthogonality (IO) for examining the sifting results is defined as: 

                      

                                                            (6) 

 

A low value of IO is preferred for the local orthogonality among the components. 

 

2.2.4  Extrema detection 

In order to detect the distribution of extrema of an image, neighboring window is 

applied to compare each pixel location of an image with its neighbors (4, 6 or 8 

connectivity). If its pixel value is strictly greater/lower than its neighbors, than it is a 

local maxima/minima point. 

Another extrema detection method which is based on morphological operators is 

a useful operator provided by mathematical morphology [36]. This function finds 

regions of uniform pixel value whose neighboring regions all have smaller or larger 

values. 
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2.2.5  Surface interpolation 

The typical BEMD adopts radial basis function (RBF) to perform surface 

construction. RBF-based interpolation methods are examples of global interpolation 

methods for scattered data points. They impose fewer restrictions on the geometry of 

the interpolation centers and are suited to problems where the interpolation centers do 

not form a regular grid as in the case of local maxima or minima maps of images or 

textures. However, a minimum number of interpolation centers with which an RBF 

interpolator can work may pose some limitations on its usefulness. 

The scattered data interpolation can be implemented by the following formula:    

 

                                                             (7) 

 

Where, 

x is the position of sifting components h  

oj are RBF centers,  

N is total number of RBF centers, 

    denotes Euclidean distance, 

  is a real-valued function called basis function,  

wj are coefficients of RBF, and 

     is a low-degree polynomial, typically linear or quadratic. 

 

Some examples of   are given in Table 2. 
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The sifting results, computation cost and the accuracy of different basis functions 

were studied and compared by Bhuiyan et al. [34]. It has been observed that 

RBF-cubic, RBF-thin-plate spline, RBF-inverse multiquadric, and RBF-Gaussian 

interpolators provide better results than the others. 

 

Table 2. Choices of φ  for various RBFs. 
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2.3  Partial Least Square 

 Partial Least Square (PLS) is a method for prediction or feature extraction by 

finding latent vectors from modeling the relations between independent variables (X) 

and dependent variables (Y). Traditionally, this modeling of Y by means of X is done 

using multiple linear regression (MLR), which works well as long as the X-variables 

are fairly few and fairly uncorrelated, i.e., X has full rank. With modern measuring 

instrumentation, including spectrometers, chromatographs and sensor batteries, the 

X-variables tend to be many and also strongly correlated. Therefore, MLR shows its 

limitation under the situations mentioned above. PLS receives significant attention 

recently by the fact that it can analyze data with strongly collinear (correlated), noisy, 

and numerous X-variables, and also simultaneously model several response variables, 

Y.  

Unlike traditional regression methods which directly find maximum covariance 

between X and Y, it firstly projects X (n × m) and Y (n × d) (where n denotes the 

sample number and m, d denote the feature dimension of X and Y, respectively) onto 

their own new spaces, and then the latent variable (T) is used to model their 

covariance structure.  

 Consider the general form of PLS algorithm to model the relation between the 

two blocks of variables: 

 

X = TP
T
+E                          

  Y = UQ
T
+F = TCQ

T
+F 

 

where X (n × m) and Y (n × d) are the matrices of zero-mean independent and 

dependent variables, respectively. T and U are (n × a) matrices of the a extracted 

latent vectors (components, score vectors). P (m × a) and Q (d × a) represent 

matrices of loadings. E (n × m) and F (n × d) are the matrices of residuals. C (p × p) 

is a diagonal matrix with regression coefficient. 

(8) 
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2.3.1  PLS1 algorithm 

 PLS algorithm can be roughly divided into two categories: PLS1 (Y is one 

dimension) and PLS2 (Y is multi-dimension). The introduction will focus on PLS1 

due to the fact that the dependent variables of different samples will only have one 

dimension in the subsequent application of this thesis. 

 PLS1 is a special case of PLS2, where Y is a vector in PLS1 and a matrix in 

PLS2. The algorithm is as follows (training phase): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Interpretation of PLS1 algorithm: 

Step2:  we seek the direction in the space of X, which yields the maximum 

covariance between X and y. This direction is given by a unit vector wi , 

and is such that large variations in x-values are accompanied by large 

variations in the corresponding  y-values. 
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Step3:  The score vector ti is formed as a linear combination of the rows of X with 

weight wi .  

Step4:  The regression coefficient pi is obtained from simple linear regressions of the 

columns of X on ti . 

Step5:  Regression coefficient bi is calculated by ordinary linear regression of y on ti. 

Step6:  ii

T

ii bty,  yptXX   represents the residuals after regressing X on ti, 

and the residuals after regressing y on ti , respectively. 

After the first run through Steps 2-6, the procedure is repeated using the residuals X2 

and y2. The algorithm then finds the best linear combination of the rows of X2 for the 

purpose of predicting y2, thus picking up any further structure in the connection 

between X and y not accounted for by t1. This is repeated on and on, such that each 

run of the algorithm in principle reveals more and more information about the 

connection between X and y. 

 

2.3.2  Prediction (testing) phase of PLS1 

 

 

 

 

 

 

 

 

2.4  Tri-linear Partial Least Square 

 Tri-linear Partial Least Square (Tri-PLS) is an extension of PLS to analyze 

three-way data by a folding scheme, whereas PLS applies an unfolding scheme to 

analyze three-way data. Three-way data can occur when the variables are 

characterized by a matrix instead of a vector. When applying unfolding scheme, the 

three-way data (cube of the calibration matrices) are unfolded to give a matrix that 
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contains each sample in one row. This is done by concatenating all rows of matrix of 

one. 

 Applying Tri-PLS to analyze data is mostly when the data is organized as the 

form of three-way. For example, an image database is the form of three-way data, 

since an image corresponds to a matrix and all the images in the database can be seen 

as a cube of matrices, which is a three-way data. It is not necessary to use PLS to 

analyze three-way data, since PLS needs to unfold all the rows or columns of one 

sample to a vector for all the samples and combines all the vectors in one matrix, 

whereas Tri-PLS can handle the cube of matrices directly. Therefore, it is intuitive to 

use Tri-PLS to handle the three-way data and the advantages of Tri-PLS compared 

with PLS are mentioned in [37].  

 

2.4.1  Tri-PLS1 algorithm 

 Tri-PLS algorithm can be divided into two categories as the same as PLS: 

Tri-PLS1 (Y is one dimension) and Tri-PLS2 (Y is multi-dimension). The introduction 

will focus on Tri-PLS1 due to the fact that Y will only be one column in the 

subsequent application of this thesis. 

 Tri-PLS1 is a special case of Tri-PLS2, where Y is a vector in Tri-PLS1 and a 

matrix in Tri-PLS2. The algorithm of Tri-PLS1 is given as follows (training phase): 
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2.4.2  Prediction (testing) phase of Tri-PLS1 

 

 

 

 

2.5  PLS templates 

  In this study, a different approach which replaces the interpolation process of 

BEMD by selecting PLS templates is proposed. The templates are obtained by the 

calibration process of Tri-PLS on some well-known face databases.  

 

2.5.1  Linkage between Tri-PLS and BEMD 

The linkage between Tri-PLS and BEMD is shown in figure 4. 
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Figure 4. Linkage between Tri-PLS and BEMD  

 



 

23 

 

 The lower part of figure 4 represents the decomposition result of one image in 

the database by the sifting process of BEMD. As introduced in section 2.2.3, the 

sifting result of BEMD follows the characteristic “completeness”, i.e. an image can be 

represented as the summation of BIMFs and the residual. Each BIMF can be 

represented mathematically as the rectangle parts displayed in the lower part of figure 

4. Traditionally, the sifting process of BEMD for obtaining each BIMF is to iteratively 

compute the mean surface m of the sifting component by some interpolation methods 

such as RBF, Delaunay triangulation and finite elements. Instead of constructing 

surfaces by the methods mentioned above, a new thought of surface construction is 

derived from Tri-PLS. The calibration results of Tri-PLS in the upper part of figure 4 

is shown that each image Xi (i=1,2,…,n) in the database can be represented as the 

summation of partial regression quantity a

i

a wt (i=1,2,…,n; a is the number of latent 

vector) and the final regression error Exi. It should be noticed that the size of the 

loading weights wj (j=1,2,…,a) are identical to that of the images in the database and 

each score i

at (i=1,2,…,n) is a scalar. For example, if the images in the database are of 

the size 128x128, then all the wj (j=1,2,…,a) are of the same size 128x128. We can 

find that the loading weights of each Xi are identical in first iteration (i.e. w1) and are 

identical in second iteration (i.e. w2), and so on. The loading weights wj (j=1,2,…,a) 

can be seen as the common quantities of all images in the database described by the 

calibration process of Tri-PLS. In addition to the common quantities, the differences 

of the images can be discriminated by multiplying the scores i

kt (i=1,2,…,n; 

k=1,2,…,a) by the common quantity wk. We can therefore serve the common 

quantities wj (j=1,2,…,a) as the templates of the selected face database and then apply 

these templates into the sifting process of BEMD to replace previous interpolation 

process.  

How to select the templates in each sifting iteration of BEMD and how to adjust 

the templates in order to preserve the characteristic of the sifting process will be 

introduced in the following sections. 
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2.5.2  Surface construction by selecting PLS templates 

 A new approach of surface construction by selecting PLS templates is proposed. 

The modified sifting process, which is shown in figure 5, starts from detecting local 

extrema (local maxima and local minima, respectively) of the current sifting 

components hi and then compare hi with PLS templates w1, w2, … , wa. Two templates 

selected from these candidates will be served as the upper and the lower surfaces 

respectively (the detailed selecting process will be introduced in section 2.5.3). A 

further modification for the two selected templates will be performed in order to fit 

the local maxima and minima of hi, respectively (the detailed adjusting process will be 

introduced in section 2.5.4). The mean surface is determined by calculating the mean 

of the two modified templates wi and wj. Once the mean surface is obtained, we can 

further obtain a new sifting component hi+1 by the equation hi+1 = hi – m. Check 

whether hi+1 is BIMF or not and then repeat the sifting process just the same as that of 

BEMD. 

 

 

Figure 5. Surfaces construction by PLS templates  
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2.5.3  Selecting template from candidate 

 In order to select templates as upper and lower surfaces, the method proposed 

here is to decide which templates wi has maximal correlation with the sifting 

component h. For instance, after determining the local maxima and minima of the 

sifting component h, the process compares local maxima and minima respectively 

with the intensity values of corresponding positions of all templates and then selects 

one template which has maximal correlation coefficient with h. 

   

 

 

 
Figure 6. Template selecting 
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2.5.4  Adjusting the selected template 

 Selecting templates is the first step to construct the upper and lower surfaces; 

however, adequate modification is necessary for the selected template to be applied to 

the sifting process.  

 

 

 

 

 

For the purpose of preserving the sifting property of EMD-based methods, we 

have to consider the local extrema of the sifting component in each sifting iteration. 

Linear regression is adopted here to build a minimal sum of square error relation 

between the local extrema of the sifting component and the intensity values of 

corresponding positions of the selected template. The modification procedure is show 

in figure 7. 

After applying linear regression, we obtain the regression coefficients b and error 

term b0. The modified template can be obtained by multiplying b by the selected 

template and adding the error term b0. The modified template is now regarded as the 

constructed surface. 

Figure 7. Adjusting templates by linear regression  
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III. Simulation result 
 

3.1  Recognition procedure 

  In this section, the self-organization scheme method BEMD and the proposed 

cross-correlation scheme method, namely PLS-based EMD (PLS-EMD) are compared. 

This compared method BEMD is a typical type of BEMD which is proposed by Nunes 

in 2003. The adopted interpolation method is thin-plate spline which is a specious 

case of RBF. As shown in figure 8, a testing image is firstly preprocessed by BEMD 

or PLS-EMD, after the preprocessing stage, the features of this preprocessed image 

are extracted in the feature extraction stage and finally a classifier is applied to 

determine which class this testing image belongs to. The selected feature extraction 

method is PCA and the classifier is KNN. It should be noted that instead of using all 

the preprocessing results to extract features, the first mode (i.e. 1
st
 BIMF) of BEMD 

and PLS-EMD are applied to extract features since the high spatial frequency 

component is believed more robust to illumination changes [38]. 

 In order to examine whether the proposed method is an effective method to 

enhance recognition accuracy under different illumination conditions, two databases 

(i.e. Yale and PIE) are used in the simulation process. In addition to BEMD and 

PLS-EMD, two famous methods Eigenface and Tri-PLS are further taken into 

comparison. Eigenface and Tri-PLS both extract global features of face images and 

therefore they are believed more sensitive to illumination changes. 

  

  

Figure 8. Recognition procedure of BEMD and PLS-EMD 
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3.2  Evaluation methods and databases 

 In the evaluation stage, repeated random sub-sampling validation and 

Leave-one-out cross-validation (LOOCV) were used to evaluate the performance of 

Eigenface, Tri-PLS, BEMD and PLS-EMD under different illumination conditions. 

The databases used in the simulation process are Yale database and PIE database. 

 

3.2.1  Repeated random sub-sampling validation 

 In repeated random sub-sampling validation [39], a subject of training samples 

for each class is randomly selected, and the remaining samples are as testing samples. 

For each of the random sub-sampling procedure, it is repeated 30 times to take an 

average recognition rates for every database. 

 

3.2.2  Leave-one-out cross-validation 

 Due to the fact that some sample might not be selected as testing sample in the 

above repeated random sub-sampling validation, further complete verification 

LOOCV is introduced. Considering a dataset with n samples, at each of the LOOCV 

procedure, one sample is selected as the testing sample, and the remaining n-1 

samples are as training samples, thus n times iteration of LOOCV is executed. In 

LOOCV scheme, all the samples will be considered as testing samples and every 

sample will not be training and testing sample simultaneously in each LOOCV 

procedure 
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3.3  Yale database 

 Yale database is a well-known database in the field of face recognition. It is 

designed by the team of Yale University. The variations in Yale database are 

composed of illumination, expression and eyewear. There are 15 classes of different 

people with 11 images per person (i.e., 165 images in total). Each image is resized to 

73x96 pixel in the simulation process. An example of Yale database is given in figure 

9. 

 

 

 

 

 

 

 

3.3.1  Preprocessing result of PLS-based EMD 

 The preprocessing results of PLS-EMD are given in figure 10. The 4 original 

images mainly differ from the illumination conditions. The light orientation of first 

image is from left side of the face and therefore the shadow is presented on the right 

side of background; the light orientation of second image is opposite to first image, 

therefore, the shadow is presented on the left side of background. An interesting 

observation is that the illumination effects of the 4 original images are presented in the 

residual respectively. That is the dark and bright regions in the original images’ 

background are presented in the corresponding areas of the residual. A further 

observation is that each 1
st
 BIMF is like a processed image by removing the 

illumination effects from original images. The illumination effects of the original  

Figure 9. Example of Yale database 
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images can be seen as the low frequency part of spatial frequency. Therefore the 

illumination effects will be extracted in the residual due to the sifting property of 

EMD-based method. 

 

 

 

 

 

Figure 10. Preprocessing results of PLS-EMD – Yale database 
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3.3.2  Sub-sampling validation result of Yale database 

In this experiment, the size of the training sample for each class is chosen to be 1, 

3 and 5; in other words, there are 15, 45 and 75 training samples out of 165 samples. 

The recognition results of different methods are displayed in figure 11. The 

recognition rates of Eigenface and Tri-PLS are related to the number of selected 

principal components, therefore the horizontal axis is the number of selected principal 

components and the vertical axis is the corresponding recognition rate; however, the 

recognition rates of BEMD and PLS-EMD are independent to the principal 

components, thus the recognition rates of the two are just plotted on the graph by 

arrows. The number of templates of PLS-EMD applied in the simulation process is 30. 

The adopted standard deviation for both BEMD and PLS-EMD are defined as 

follows: 

 

 

 

 

And the threshold is 0.01 and 0.1 respectively. 

The results show that BEMD and PLS-EMD outperform than Eigenface and 

Tri-PLS in the three cases of different number of training samples. The possible 

reasons of this observation might due to the fact that frequency-based methods are 

more robust to illumination changes, while Eigenface and Tri-PLS do not belong to 

this category. Eigenface and Tri-PLS take the whole region of an image into account 

and therefore the two methods are sensitive to illumination changes. Another 

observation is that the cross-correlation scheme PLS-EMD outperforms than the 

self-organization scheme BEMD in most cases except for the first case which the 

recognition rate of BEMD is 0.61 and that of PLS-EMD is 0.60. 
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Figure 11. Results of sub-sampling validation – Yale database 

              (a) 1 training image and 10 testing images per class 

(b) 3 training images and 8 testing images per class 

(c) 5 training images and 6 testing images per class 
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3.3.3  LOOCV result of Yale database 

In LOOCV procedure, the parameter setting of each method is identical to that of 

sub-sampling validation results mentioned above. The recognition accuracy of 

PLS-EMD outperform than the other three methods.   

 

 

 

 

  

Figure 12.  Results of LOOCV – Yale database  
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3.4  PIE database 

 PIE database is another well-known database in the field of face recognition. It is 

designed by the team of Carnegie Mellon University. PIE database contains 41368 

images of 68 people, with each person under 13 different poses, 43 different 

illumination conditions, and 4 different expressions. In this experiment, we choose a 

subset with only the frontal view (set c27) under different illumination conditions with 

total images of 1428. All the selected images are cropped and resized to 32x32 pixel. 

An example of PIE database is given in figure 13. 

   

 

 

 

 

3.4.1  Preprocessing result of PLS-based EMD 

The preprocessing results of PLS-EMD are given in figure 14. The 4 original 

images mainly differ from the illumination conditions. The light orientation of first 

image is from right side of the face and therefore the shadow is presented on the left 

face; the light orientation of second image is opposite to first image, and therefore the 

shadow is presented on the right side of the face. An observation which is similar to 

that of the preprocessing results of Yale database is that the illumination effects of the 

4 original images are presented in the residual respectively. That is the dark and bright 

regions of the face are presented in the corresponding areas of the residual. A further 

observation is that 1
st
 BIMF is like a processed image by removing the illumination 

effects from original images. The illumination effects of the  

Figure 13.  Example of PIE database  
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original images can be seen as the low frequency part of spatial frequency. Therefore 

the illumination effects will be extracted in the residual due to the sifting property of 

EMD-based method. 

 

 

 

 

Figure 14.  Preprocessing results of PLS-EMD – PIE database  
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3.4.2  Sub-sampling validation result of PIE database 

 In this experiment, the size of the training sample for each class is chosen to be 4, 

8 and 12; in other words, there are 272, 544 and 816 training samples out of 1428 

samples. The recognition results are compared in figure 15. The number of templates 

of PLS-EMD is still 30. The adopted SD type is identical to the simulation process of 

Yale database and the threshold of BEMD and PLS-EMD are 0.01 and 0.1 

respectively.   

 

 

 

 

 Figure 15. Results of sub-sampling validation – PIE database 

              (a) 4 training images and 17 testing images per class 

(b) 8 training images and 13 testing images per class 

(c) 12 training images and 9 testing images per class 
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It is obvious that BEMD and PLS-EMD outperform than Eigenface and Tri-PLS 

in all the cases of different training samples. There is a significant gap in the 

recognition rate between the two groups since PIE database has large illumination 

variations among different face images and Eigenface and Tri-PLS suffer from the 

severe illumination effects. The frequency-based methods (BEMD and PLS-EMD) are 

insensitive to large illumination variations and therefore are more robust to the 

illumination effects. Another observation is that the cross-correlation scheme 

PLS-EMD outperforms than the self-organization scheme BEMD in most cases 

except for the first case which the recognition rate of BEMD and PLS-EMD are equal. 

 

3.4.3  LOOCV result of PIE database 

In LOOCV procedure, the parameter settings of each method are identical to that 

of sub-sampling validation results mentioned above. The recognition accuracy of 

PLS-EMD outperform than the other three methods. 

 

 

 

 

Figure 16.  Results of LOOCV – PIE database  
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IV. Discussion 
 

In this chapter, the performance issue of PLS-EMD and the validation of BIMFs 

obtained by PLS-EMD are discussed. The global mean of BIMF is regarded as the 

validation index to examine whether the obtained BIMFs satisfy the original 

characteristics. As for the performance issue, the number of iterations needed for 

BIMFs under different stop criteria and the computation time are considered as the 

performance index. The following discussion will focus on the comparison of 

EMD-based methods between self-organization scheme (typical BEMD) and 

cross-correlation scheme (PLS-EMD). 

  

4.1  Computing performance of sifting process  

Different types of SD will lead to different sifting results and thus the different 

number of iterations needed for BIMFs. To compare the performance of PLS-EMD 

with BEMD, two types of SD are adopted in the simulation process. The definitions 

are given as follows: 

 

 

                                                         

 

 

                                                     

 

 

The corresponding simulation results under SD1 and SD2 are given in Table 3, 4 

and Table 5, 6 respectively.  
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 We can observe from Table 3 that the average number of iterations needed for 

BIMFs of PLS-EMD is fewer than that of BEMD. This result shows that the sifting 

process of PLS-EMD for searching BIMFs converges faster than that of BEMD. Here, 

only the comparison results of first three BIMFs are shown since the comparison 

results of other BIMFs are consistent with the observation of first three BIMFs. 

Therefore, only the first three BIMFs are examined in the following discussion. 

Another comparison in Table 4 is to compare the average computation time per image 

for both Yale and PIE databases. PLS-EMD takes less time than BEMD on both 

databases. It should be noticed that the threshold values of PLS-EMD and BEMD are 

500 and 0.1 respectively. Literature [34] has shown that the value 0.1 is regarded as an 

appropriate threshold value for BEMD under SD1. The value 500 of PLS-EMD is 

empirically obtained from the simulation results. The results indicate that the 

threshold value of PLS-EMD for obtaining BIMFs is not necessary to set as small as 

that of BEMD, therefore the spending time of sifting process of PLS-EMD is less than 

that of BEMD.  

Table 3.  Average number of iterations for BIMFs under SD1 

(The threshold values of BEMD and PLS-EMD are 0.1 and 500 respectively.)          

Table 4.  Average computation time per image (second / image) under SD1 

(The threshold values of BEMD and PLS-EMD are 0.1 and 500 respectively.) 
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The comparison of the average computation time per image under SD2 is given 

in Table 6. PLS-EMD also takes less time than BEMD on both databases. It should be 

noticed that the threshold values of PLS-EMD and BEMD are 0.1 and 0.01 

respectively. Literature [34] has shown that the value 0.01 is an appropriate threshold 

value for BEMD under SD2. As for PLS-EMD, the value 0.1 is also empirically 

obtained from the simulation process. The threshold value of PLS-EMD for obtaining 

BIMFs is also not necessary to set as small as that of BEMD, therefore the spending 

time of sifting process of PLS-EMD is less than that of BEMD. 

The average number of iterations needed for BIMFs under SD2 is compared in 

Table 5. The number of iterations needed for the first BIMF of PLS-EMD is less than 

that of BEMD on both Yale and PIE databases; however, the number of iterations 

needed for the second and the third BIMFs of PLS-EMD are more than that of BEMD. 

A detailed investigation of this observation will be given in section 4.2.1. 

Table 5.  Average number of iterations for BIMFs under SD2   

(The threshold values of BEMD and PLS-EMD are 0.01 and 0.1 respectively.) 

Table 6.  Average computation time per image (second / image) under SD2  

(The threshold values of BEMD and PLS-EMD are 0.01 and 0.1 respectively.) 
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4.2 Evaluation of BIMFs 

In addition to the performance issue, another issue what we concern about is 

whether BIMFs obtained by PLS-EMD satisfy the original characteristics. Two 

indices are utilized to evaluate BIMFs found by BEMD and PLS-EMD. One is the 

global mean of BIMF and the other is the index of the orthogonality (IO). 

 

4.2.1  Global mean of BIMF 

A 2D envelope can be seen as BIMF when it satisfies the condition that the mean 

value (local mean) of the 2D mean envelope (i.e. surface) is zero or nearly zero at any 

points. The term ‘Global mean’ indicates the mean value of the local mean of the 

sifting component (i.e. intermediate surface). In order to investigate the process of 

obtaining BIMFs, the value of SD and the global mean of the intermediate sifting 

components during sifting process will be checked. It should be noticed that the stop 

criteria here is adopted SD2 since the observation of more iterations of the second and 

the third BIMFs of PLS-EMD under SD2 than that of BEMD need to be investigated.   

The variations of the value of SD of intermediate sifting components during 

sifting process are shown in figure 17(a). The horizontal axis denotes the number of 

iterations of the sifting process for finding each BIMF and the vertical axis denotes 

the corresponding value of SD of the intermediate sifting components. ‘․’ stands for 

the sifting process for finding first BIMF, ‘×’ for that of the second BIMF, and ‘。’ for 

that of the third BIMF. It is obvious that the value of SD of the intermediate sifting 

component drops nearly zero within 10 iterations during the sifting process of finding 

each BIMF. If the value of SD of the intermediate sifting component is smaller than a 

predefined threshold value which is usually a small value close to zero, then this 

intermediate sifting component is regarded as BIMF. Figure 17(b) shows that the 

global mean of the intermediate sifting component drops nearly zero within 10 

iterations during the sifting process for each BIMF. We can find that the variations of 

the global mean are similar to that of the value of SD; that is to say, the first three 

BIMFs can be obtained within 10 iterations by checking the value of SD; similarly, if 

we adopt global mean as the stop criteria, then the first three BIMFs can also be 



 

42 

 

obtained within 10 iterations since the local mean of the sifting components is nearly 

zero at each point which ensures the obtained BIMFs can satisfy the original 

characteristic of BIMF. 

 

 

 

 

 

 

Next, the sifting process of PLS-EMD is examined. Figure 18(a) shows that the 

first BIMF can be obtained within 10 iterations since the value of SD is approximately 

nearly zero and will be smaller than the predefined threshold value; however, the 

second and the third BIMFs are obtained over 50 iterations. This simulation result is 

consistent with the above comparison results in section 4.1 that the numbers of 

iterations needed for the second and the third BIMFs of PLS-EMD are more than that 

of BEMD. A further examination of global mean is given in figure 18(b). The global 

mean of the intermediate sifting component is approximately nearly zero within 10 

iterations for finding each BIMF. It is reasonably to infer that BIMFs will be obtained 

within 10 iterations since the global mean is nearly zero; however, this finding is 

inconsistent with the results of figure 18(a). A possible inference is given that 

checking the value of SD to obtain BIMFs will lead to additional and unnecessary 

iterations for searching the second and the third BIMFs. Global mean is probably a 

better choice of the stop criteria of PLS-EMD. 

Figure 17.  Variations of the value of SD and the global mean during sifting process 

(a) Variations of the value of SD  

(b) Variations of the global mean 
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 Figure 18.  Variations of the value of SD and the global mean during sifting process 

(a) Variations of the value of SD  

(b) Variations of the global mean 
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4.2.2  Index of orthogonality 

For the purpose of examining the orthogonality of components (BIMFs and 

residual) obtained by BEMD and PLS-EMD, the index of orthogonality (IO) of the 

components is computed and is given in Table 7. As introduced in section 2.2.3, a low 

value of IO is preferred for orthogonality among components. It is obvious that the 

value of IO of BEMD is smaller than that of PLS-EMD when both Yale and PIE 

databases are taken into account; however, the differences of the value are small. We 

can say that the decomposition result of BEMD is little better than that of PLS-EMD 

when IO is taken into account.    

Another viewpoint is how significance of orthogonality it is to the subsequent 

applications? Just as the results displayed in chapter III, the recognition rate of 

PLS-EMD is better than that of BEMD, but the orthogonality among the components 

obtained by PLS-EMD is worse than that of BEMD. We apply the quantity measure 

(i.e. IO) here to compare the decomposition results of PLS-EMD and BEMD; 

however, the orthogonality among the components might not important at all for the 

recognition purpose since we only utilize 1
st
 BIMF as the preprocessed result to 

extract features. Therefore a conclusion is given that whether IO is a means of 

comparing the EMD-based methods or not depends on the applications themselves.  

 

 

 

 

Table 7.  Comparison of index of orthogonality  
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4.2.3  Illumination tendency in residual  

 Literatures [22, 27] have shown that the residual of the decomposition results of 

BEMD presents the trend of the decomposed image. The trend of a face image can be 

seen as the illumination effect or illumination tendency of this image. Three face 

images with different illumination conditions are given in figure 19(a). The residuals 

decomposed from figure 19(a) by BEMD and PLS-EMD are given in figure 19(b) and 

19(c) respectively. We can find that PLS-EMD has the ability to find the illumination 

tendency in the residual just the same as that of BEMD. This observation is consistent 

with the fact that EMD-based methods have the ability to extract low frequency part 

of spatial frequency into the residual. Another observation from figure 19(c) is that the 

residual found by PLS-EMD has an effect of enhancing the contrast of the 

illumination tendency compared with the results of BEMD. However, there is no 

quantity measure here to evaluate which illumination tendency found by BEMD and 

PLS-EMD is better. We just can say PLS-EMD has an effect of enhancing the contrast 

of illumination tendency compared to BEMD. 

 

 

Figure 19. (a) Face images with different illumination conditions  

         (b) Residuals decomposed from figure 19(a) respectively by BEMD 

         (c) Residuals decomposed from figure 19(a) respectively by PLS-EMD 
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V. Conclusion 
 

In this study, a new thought of surface construction by a different approach, i.e. 

cross-correlation scheme for implementing 2D-EMD is proposed. The proposed 

method is based on selecting templates obtained from the calibration process of 

Tri-PLS to replace RBF in typical BEMD. It is shown that the recognition rate of the 

proposed method PLS-EMD is better than that of BEMD under different illumination 

conditions and the performance of PLS-EMD is also better than that of BEMD. 

 

 

VI. Future Work 

 

The proposed method still has some implementation issues about templates 

selection and the subsequent adjustment. The sifting result of PLS-EMD reveal the 

mode mixing problem to some extent from the preprocessing results displayed above. 

Are there any alternate methods to select the candidate templates and adjust the 

selected template to get better recognition results? How to relieve the mode mixing 

problem? It is valuable to investigate this issue in the future. 
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