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不同估計方法對資產配置的影響 

 

學生 : 陳岐穎                             指導教授 : 周幼珍 博士 

國立交通大學財務金融所  碩士班 

中文摘要 

    一般傳統上常討論到使用 Markowitz 的均異最適化(mean-variance optimization)

的方式進行資產配置。由於 Markowitz 模型有估計誤差極大化的傾向，可發現報酬率些

微改變將造成重大影響，因此我們必須尋找較佳的方法估計報酬率以及變異數，以求得

較合理之投資權重。 

 Black and Litterman 以及其他學者運用不同的資訊，提出相對應的報酬率或變異

數的貝氏估計式，以改善 Markowitz 模型的缺點。本研究在 Black and Litterman 模型

上做了應用，本研究不僅估計報酬率同時也一起估計變異數。在根據這些不同的估計方

法，創造出最佳的資產配置，並且比較傳統 Markowitz 模型、Bootstrap 法及各種貝氏

估計法所得的投資組合 Sharpe ratio。 

 實證結果在我們的資料上發現在 Black and Litterman 模型與 Shrinkage 下，會得

到比較高的 Sharpe ratio。由於此兩種方法不僅對報酬率的估計上做了修正，也對變異

數方面做了估計，可以得到一個風險比較小的投資組合。表示此兩種方法在我們的資料

下，風險及報酬的表現優於其他兩種方法。  

關鍵字 : Markowitz 均異最適化模型、資產配置、Black-litterman 模型、貝氏估計 
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ABSTRACT 

 

This paper applies some popular asset allocation models, like Black-Litterman 

model on an index fund. First, an overview is given of the foundations of 

modern portfolio theory with the mean-variance model. Although the model 

inspired a rich field of science and was used by many investors, it does have 

some obvious flaws. Next, we discuss some improvements that could be made 

over the mean-variance model. Finally, we compare the performance of the 

bootstrap methodology, Black-Litterman model, Bayesian approach and 

shrinkage methodology with the Sharpe ratio. The conclusion in our data can be 

drawn that BL-model improves the mean-variance model and has a better 

performance than other methods. 

 

Keyword: Mean-Variance model, Asset Allocation, Black-Litterman model, 

Bayesian approach 



iv 

 

Contents 

中文摘要 .................................................................................................................................... ii 

ABSTRACT .............................................................................................................................. iii 

Contents ..................................................................................................................................... iv 

Table Contents ........................................................................................................................... vi 

Figure Contents ......................................................................................................................... vi 

1、 Introduction .................................................................................................................... 1 

2、Literature Review ................................................................................................................. 2 

2.1 Introduction of Index fund ................................................................................................ 2 

2.1.1 The advantages of Index Fund ................................................................................... 3 

2.2 Markowitz Mean-Variance Portfolio Selection Model..................................................... 3 

2.2.1 Portfolio Selection Problem Formulations ................................................................. 4 

2.3 The Black Litterman Model .............................................................................................. 5 

3、 Methodology ....................................................................................................................... 8 

3.1 Bootstrap Methodology .................................................................................................... 8 

3.2 Black-Litterman Methodology ......................................................................................... 9 

3.2.1 Computing the CAPM Equilibrium Excess Returns ................................................ 11 

3.2.2 Computing   Via Reverse Optimization .............................................................. 11 

3.2.3 Specifying the Views ............................................................................................... 13 

3.2.4 Predicting of Covariance Matrix by GARCH Model............................................... 14 

3.2.5 The Black-Litterman Formula .................................................................................. 15 

3.3 Bayesian Approach ......................................................................................................... 17 

3.4 Shrinkage Methodology .................................................................................................. 18 

4、Empirical Results ................................................................................................................ 19 

4.1 Data ................................................................................................................................. 19 

4.2 Foreign Exchange Risk ................................................................................................... 20 

4.3 Markowitz Method ......................................................................................................... 20 

4.4 Bootstrap Method ........................................................................................................... 21 

4.5 Black-Litterman Method ................................................................................................. 21 

4.6 Bayesian Approach ......................................................................................................... 22 

4.7 Shrinkage Method ........................................................................................................... 23 



v 

 

4.8 Comparison of Markowitz Method and Other Approaches ............................................ 23 

4.8.1 Comparison of Portfolio Weights ............................................................................ 23 

4.8.2 Comparisons of Return, Risk and Sharpe Ratio ....................................................... 24 

5、 Conclusion and Suggestions ............................................................................................. 25 

5.1 Conclusion ...................................................................................................................... 25 

5.2 Suggestions ..................................................................................................................... 25 

6、 Reference .......................................................................................................................... 26 

Appendix A .............................................................................................................................. 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Table Contents 

Table 1: the parameter about Black-Litterman model .............................................................. 16 

Table 2：Summary statistics for the country-specific returns ................................................. 28 

Table 3：Historical correlations of excess returns................................................................... 29 

Table 4: Description of the parameters and data used in Markowitz method .......................... 30 

Table 5: Summaries the allocations and resulting returns with Markowitz and Bootstrap ...... 31 

Table 6: Description of the parameters used in Black-Litterman method ................................ 32 

Table 7：GARCH family results for estimate the investors‟ views ........................................ 33 

Table 8：Allocations with Black-Litterman model on three different confidence .................. 34 

Table 9：Description of the parameters used in the Bayesian approach ................................. 35 

Table 10：Summaries the allocations and resulting returns of Bayesian approach ................ 36 

Table 11：Description of the Shrinkage mean with k=0.1798 ................................................ 37 

Table 12：Description of the Shrinkage covariance ................................................................ 38 

Table 13：Summarizes the allocations and resulting return of all methods ............................ 39 

Table 14：Compare return, risk and Sharpe ratio .................................................................... 40 

 
 

 

 

Figure Contents 

 

Figure 1 : The process of deriving the New Combined Return Vector .................................... 10 

Figure 2：Mean distribution and convergence chart ............................................................... 35 

Figure 3：Sigma distribution and convergence chart .............................................................. 35 

 

 

 



1 
 

 

1、 Introduction  

Portfolio selection is concerned with selecting a portfolio of investments that will fulfill the 

investment objectives over the investment horizon. Although these objectives are different 

among investors, a positive and stable payoff on the investments is always desirable. 

With innovating of the information network and economic globalization, International asset 

allocation gradually becomes a hot topic. There are some quantitative approaches to portfolio 

selection. The quantitative approach uses a mathematical model to make the final allocation 

of investments. The model evaluates the characteristics of investments and determines which 

ones should be added to the portfolio, then compute the optimal weights. In this research, we 

assumed assets are known in the portfolio and focus on the portfolio weights. Harry 

Markowitz is the founder of quantitatively making investment decisions. Key factor of asset 

allocation is to determine the portfolio return and risk. In his seminal paper (1952), he found 

out that when we gather the assets with the same returns into one portfolio, the risk of this 

portfolio would be lower than a single asset itself. Furthermore if the correlation between the 

assets including in the portfolio is lower, the portfolio risk would be more diversifiable in 

order to avoid the so-called “non-systematic risk". It requires two inputs：The expected 

(excess) return for each stock and the risk of each stock. Although the model inspired a rich 

field of science and was used by many investors, it does have some obvious flaws. For 

instance, the true parameters (the expected returns and risks) are unknown and have to be 

estimated from data. When investors impose no constraints, asset weights in the optimized 

portfolios almost always have large short positions in many assets; when constraints rule out 

short positions, the models often prescribe “corner” solutions with zero weights in many 

assets. Hence, it is difficult to implement the optimized mean-variance solution in practice. 

These unreasonable results come from two problems. First, expected returns are very difficult 

to estimate. Second, the optimal asset weights in standard asset allocation models are 

extremely sensitive to the expected return assumptions (Black-Litterman, 1991). The standard 

statistical method to estimate the covariance matrix of stock returns is to compute the sample 

covariance matrix. However, the sample covariance matrix contains a lot of estimation error. 

Feeding the sample covariance matrix to a mean-variance optimizer will result in “extreme 

“portfolio weights. Michaud (1989) calls this phenomenon “error-maximization”. 

In view of the shortcomings of Markowitz model, Black and Litterman (1992) proposed a 
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means of estimating expected returns to achieve better-behaved portfolio models. Actually the 

model of Black and Litterman differs from the Markowitz model only with respect to the 

estimation of expected return. The Black-Litterman model sets the idealized market 

equilibrium as a point of reference. The model then specifies a chosen number of market 

views in the form of expected returns and a level of confidence for each view. Combining the 

views and equilibrium returns, the Black-Litterman expected returns are obtained by Bayesian 

approach. The Black-Litterman expected returns are then optimized in a mean-variance way, 

creating a portfolio where investors have opinions about future expected returns. 

An Index fund has been popular in these years, and how to allocate each index of the portfolio 

is also an important issue. We chose a Morgan Stanley emerging market index funds as the 

research object because recently the emerging market has been a hot top investment. Here, we 

apply the Bootstrap, Black-Litterman, Bayesian approach, Shrinkage methodology to 

constitute an index funds. Furthermore, we try to improve the Black-Litterman model by 

considering the shrinkage estimator of the covariance without using the historical sample 

covariance. The second section will do a quick review of the index fund, the Markowitz 

model, and literature about the Black-Litterman model. Subsequently, we arrive at the focus 

of our methodologies. The fourth section covers empirical results. Finally, we will discuss the 

differences between our methodologies by comparing the Sharpe ratio
1
. 

 

2、Literature Review 

This section reviews related literatures of this paper. First of all, we introduce the concept of 

index fund. Then we review the literatures related to the Black Litterman model. 

 

2.1 Introduction of Index fund 

 
Index funds are mutual funds that are intended to track the returns of a market index. A type 

of mutual fund with a portfolio constructed to match or track the components of a market 

index, such as the Standard & Poor‟s 500 index (S&P 500). 

                                                      

1
 Sharpe ratio = 

p

fp RR




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2.1.1 The advantages of Index Fund 

Investing in a collective investment scheme will increase diversity compared to a small 

investor directly holding a range of securities. Investing in an Index fund arrangement will 

achieve even greater diversification. 

An investment manager may actively manage your investment with a view to selecting the 

best securities. An index fund manager will try to select the best performing index to invest in 

based upon the managers past performance and other factors. If the manager is skillful, this 

additional level of selection can provide greater stability and take on some of the risk relating 

to the decisions.  

Going by the conception of “do not keep all eggs in one basket”, an index fund manager 

would invest in various securities which give investors benefits of diversification. By 

choosing a suitable Index fund, investors get a chance to invest across different classes of 

index within just one investment. Thus, it becomes very convenient for investing and 

monitoring. 

 

2.2 Markowitz Mean-Variance Portfolio Selection Model 

Mean-variance analysis presumes that return and risk (as measured by the portfolio variance) 

are all investors consider when making portfolio-selection decisions. Therefore, a rational 

investor would prefer a portfolio with a higher expected return for a given level of risk. An 

equivalent way to express the mean-variance principle is: a preferred portfolio is one that 

minimizes risk for a given expected return level. It is usually accepted that mean-variance 

analysis is grounded in either of two conditions: assets returns have a multivariate normal 

distribution or investor preferences are described by quadratic utilities. We start with some 

portfolio selection preliminaries. Suppose that there are N assets in which an investor may 

invest. Denote by tR the excess returns on the N assets at time t,  

'

,,1 ),.......,( tNtt RRR  ,             (1) 

and assume that they have a multivariate normal distribution, 

) , N(  ) , (  tR ,             (2) 

with mean and covariance matrix given by the Nx1 vector   and the NxN matrix  , 

respectively. The portfolios weights are the proportions of wealth invested in each of the N 

assets and are given by the Nx1 vector
'

1 ),.......( N  . A portfolio‟s return at time t is then 
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given by 

 



N

i

ttiip RRR
1

'

,               (3) 

Its expected return and variance are defined, respectively, as 

 



N

i

iip

1

'               (4) 

where i  is the expected return on asset i and 

  
 

'

1 1

2 ),cov(
N

i

N

j

jijip RR           (5) 

where ),cov( ji RR is the covariance between the returns on assets i and j. 

2.2.1 Portfolio Selection Problem Formulations 

We assume that the investor‟s objective is to maximize his wealth at the end of his investment 

horizon, i.e. T+1, where T is the last period for which return data are available. We have 

added the subscripts T+1 in the notation for the expected returns and covariance to stress that 

these refer to attributes of unobserved asset returns. The mean-variance principle can be 

express through the following portfolio problems: 

 

11:..

2

1
:max

'

1

'

1

'



 





ts

TT
w

            (6) 

where  is the relative risk aversion parameter, a measure for the rate at which the investor 

is willing to accept additional risk for a one unit increase in expected return. 

The composition of the investor‟s optimal portfolio (vector of optimal weights) is given by 

 
1

1

1

'

1

1

11

1

1

'

1

1

'

1

11

1

1

'

1

1

11

11
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



















































 


TT

TTTT

T

TTTw











     (7) 

More constraints are usually added to the optimization problems just given. For example, 

many institutional investors are not  permitted to take short positions. In such cases, the 

portfolio weights are constrained to be positive, N.1,.....,i ,0 i  

The classical mean-variance approach relies on the following two points. First, the unknown 

parameters are estimated from the sample of available data and the sample estimates are then 

treated as the true parameters. Second, it is implicitly assumed that the distribution of returns 

at the time of portfolio construction remains unchanged until the end of the portfolio holding 
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period. Usually, the sample estimates of  and   are computed as 

 



T

t

tR
T 1

1
̂   ,  







T

t

tt RR
T 1

')ˆ)(ˆ(
1

1ˆ               (8) 

We re-express the vector of optimal portfolio positions in above as 

 












ˆˆ1

ˆˆˆˆ1

1ˆ1

1ˆˆˆ1
1*

1'

11'

1'

11'

































 
w                            (9) 

Such an approach fails to recognize the fact that ̂ and ̂ may contain non-negligible 

amounts of estimation error. The resulting portfolio is quite often badly behaved, leveraging 

on assets with high estimated mean returns and low estimated risks, which are the ones most 

likely to contain high estimation errors. To deal with this, practitioners usually impose tight 

constraints on asset positions. However, this could lead to an optimal portfolio determined by 

the constraints instead of the optimization procedure. We consider the re-sampling, 

Black-Litterman, shrinkage methods to estimate the parameters. 

 

2.3 The Black Litterman Model 

This section provides a quick literature review of the Black-Litterman model. Black and 

Litterman initiated the first paper about Black-Litterman model in 1992, which provides a 

good discussion of the model along with the investor‟s view. However, they do not document 

all of their assumptions about the model. As a result, it is not easy to reproduce their results. 

They provide some of the key equations required to implement the Black-Litterman model, 

but they do not provide any equations for the posterior variance. 

Bevan and Winkelmann (1998) used the Black-Litterman model for 3 years global fixed 

income investment portfolios with exchange rate hedging (from February 1995 to December 

1997) and design an investment strategy. The empirical results show, 3-year performance is 

better than their target performance, and reached the level of risk management. According to 

the results of Goldman Sachs research department, Bevan and Winkelmann find out the 

market equilibrium return by setting a target Sharpe Ratio. Furthermore they offer guidance in 

setting the weight given to the view vector. After deriving an initial combined return 

(expected return) and the subsequent optimum portfolio weights, they calculate the 

anticipated Information Ratio of the new portfolio. They recommend a maximum anticipated 

Information Ratio of 2.0. If the Information Ratio is above 2.0, decrease the weight given to 
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the views. They also consider the market exposure and tracking error then compute the 

optimization portfolio weights subject to the given level of risk. 

Litterman and Winkelmann (1996) proposed a new method to measure the market risk of the 

portfolio, called the market exposure. By this method one can clearly understand: the 

sensitivity of the market and investor‟s portfolio, i.e. the degree change of portfolio per unit of 

the market. General speaking, the market portfolio exposure is the regression coefficient of 

the portfolio on market. In practice, some bond fund managers use duration to measure the 

market risk but it need some assumptions. 

He and Litterman (1999) says that the Black-Litterman asset allocation model have a very 

simple, intuitive property. The unconstrained optimal portfolio in the Black-Litterman model 

is the scaled market equilibrium portfolio (reflecting the uncertainty in the equilibrium 

expected returns) plus a weighted sum of portfolios representing the investor‟s views. The 

weight on a portfolio representing a view is positive when the view is more bullish than the 

one implied by the equilibrium and the other views. The weight increases as the investor 

becomes more bullish on the view, and the magnitude of the weight also increases as the 

investor becomes more confident about the view. However, when the capital budget and risk 

constraints are considered, the original intuitive property will not hold.  

Lee (2000) and Christodoulakis (2002) clearly derived the expected excess returns of 

Black-Litterman model under the Bayesian approach also they say lack-Litterman model has 

some other meaning. First, even if the investors have no view for a specific individual asset, 

but the weight of specific individual asset still change from their original market capitalization 

weights due to some correlation between all assets in the portfolio. That is to say when the 

investors have views of other assets, implies they still have some view for that specific 

individual asset. Second, the Black-Litterman model overcomes the most-often cited 

weaknesses of mean-variance optimization (unintuitive, highly concentrated portfolios, 

input-sensitivity, and estimation error-maximization) by change the “confidence” in views. 

Ldzorek (2002) provided detail of how to estimate the parameters in model. According to the 

assumptions of CAPM, one can use the market capitalization weight, historical covariance 

matrix of return and the risk aversion of investors to compute the equilibrium excess return. 

The equilibrium excess return conditional on the investor‟s view is distributed with a 

covariance structure proportional to the historical covariance matrix of return. The scalar is a 

known quantity to the investor that scales the historical covariance matrix of return. Black and 
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Litterman (1992) and Lee (2000) say that the scalar would be close to 0; but some scholars
2
 

think that would be close to 1. Fortunately, Ldzorek (2002) proposed a formula to solve this 

problem, the value of scalar depends on the investors‟ confidence level of views. 

According to Litterman (2003) the uncertainty of the investor view means the error terms of 

the investor view are also a common question without a “universal answers”. Regarding to the 

error terms of investor view, Herold (2003) says that the major difficulty of the 

Black-Litterman model is that it forces the user to specify a probability density function for 

each view, which makes the Black-Litterman model only suitable for quantitative managers. 

Idzorek (2005) provides a new method for incorporating user-specified confidence levels in 

each view to determine value of the error terms of investor view, making the model more 

useful for all individual investor not only for specific quantitative managers. 

Mankert (2006) analyzes the Black-Litterman model using both mathematical and behavioral 

finance approach. Mankert firstly makes use of sampling theoretical approach to generate a 

new interpretation of the model and gives an interpretable formula for the mystical parameter 

(scale of the historical covariance matrix of return). Secondly, she draws implications from 

research results within behavioral finance. One of the most interesting features of the 

Black-Litterman model is that the benchmark portfolio, against which the performance of the 

portfolio manager is evaluated, functions as the point of reference. According to behavioral 

finance, the actual utility function of the investor is reference-based and investors estimate 

losses and gains in relation to this benchmark. Implications drawn from research results 

within behavioral finance explain why the portfolio output given by the Black-Litterman 

model appears more intuitive to fund managers than portfolios generated by the Markowitz 

model. Another feature of the Black-Litterman model she proposes is that the user assigns 

levels of confidence to each asset view in the form of confidence intervals. 

Liang (2002) studies the out-of-sample performance of the Black-Litterman model on 

international asset allocation. He used the short-run momentum to estimate the invertors‟ 

views. 

Beach and Orlov (2006) provide an application of the Black-Litterman (1991, 1992) 

methodology to portfolio management in a global setting. They found an econometric model 

that accurately describes the dynamics of the excess returns on international portfolios and the 

dynamics of the returns volatility. They consider about asset returns are characterized by 

several stylized facts: volatility clustering, excess kurtosis, asymmetry, autocorrelation in risk, 

                                                      
2
 Bevan and Winkelmann (1998) set the scalar to 1 
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time-varying volatility. They combine the exponential GARCH (Nelson, 1991) and 

GARCH-in-Mean (Engle, Lilien and Robins, 1987) models to take into account of these 

characteristics of financial data. They use GARCH-derived views as an input into the 

Black-Litterman model, since there is no model that effectively describes an investor views. 

After that, they use four different “confidence (scale of the historical covariance matrix of 

return)”-based Black-Litterman allocation series to investigate the confidence effect. They 

allow an investor to determine if the portfolio risk is higher than acceptable; the investor can 

alter the confidence parameter, until a risk-appropriate allocation is generated. Finally, they 

found out the risk-tailored portfolio produced the highest returns of the portfolios considered, 

with lower risk than the original Black-Litterman result. 

 

3、 Methodology 

This section we will illustrate our approaches to the portfolio allocation. First of all, we 

introduce the bootstrap approach which is easy to understand and widely used. Second, we 

will discuss about the Black-Litterman model in detail. Finally, we introduce the Bayesian and 

shrinkage approach. 

 
3.1 Bootstrap Methodology 

Re-sampling methods are widely used in modern statistics. They use Monte Carlo Simulation 

to compute many statistically similar alternatives to enhance the information in a data set for 

analysis and estimation. In this section, we will describe the re-sampling methodology to 

improve the shortcoming of mean-variance theorem. In this approach, we use the historical 

data to compute the sample covariance matrix in place of the unknown true covariance matrix. 

We use bootstrap to avoid solely relying on the sample mean computed from past returns. The 

algorithm is as follows. 

Step 1 ：Resample from the past returns to create a bootstrap sequence of returns, the number 

of the data point in bootstrap sequence should be the same as in the original sample. 

Step 2 ：Compute the sample mean and sample covariance matrix from the bootstrap data call 

it X  and S*. 

Step 3 ：Solve the quadratic optimization problem (9) with X  and S*. Call the resulting 
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optimal vector of weights *w . 

Step 4 ：Repeat Step1~3 K times and average over the K weight vectors *w  to obtain the final 

vector of portfolio weights. 

There are two possibilities for the re-sampling in Step 1. One can resample from a parametric 

estimate of the underlying distribution, such as the normal distribution whose mean is the 

sample mean of the past returns and covariance matrix is the sample covariance matrix of the 

past returns. Alternatively, one can resample from the observed data with replacement. The 

two approaches yield very similar results in practice; here we use the second method to 

resample the data. Besides the bootstrap methodology, we examine the Bayesian approach to 

dealing with estimation risk in portfolio optimization, briefly discussing Black-Litterman 

model and shrinkage estimators. 

 

3.2 Black-Litterman Methodology 

The Black-Litterman model makes two significant contributions to the problem of asset 

allocation. First, it provides an intuitive prior, the CAPM equilibrium market portfolio, as a 

starting point for the application of Bayesian techniques to estimate returns. The idea that one 

could use „reverse optimization‟ to generate a stable distribution of returns from the CAPM 

market portfolio as a starting point is a significant improvement to the process of return 

estimation.  

Second, it provides a clear way to specify investors‟ views and to blend the investors‟ views 

with prior information using Bayesian techniques. This process estimates expected return and 

covariance which can be used as input to an optimizer. Before their paper, nothing similar had 

been published. The mixing process had been studied, but nobody had applied it to the 

problem of estimating returns. No research linked the process of specifying views to the 

blending of the prior and the investors‟ views. The Black-Litterman model provides a 

quantitative framework for specifying the investors‟ views, and a clear way to combine those 

investor‟s views with an intuitive prior to arrive at a new combined distribution. This process 

is presented as Figure 1 and it can be divided into three parts: Reverse optimization, 

specifying the views, and the Black-Litterman formula. Besides, we consider use shrinkage 

techniques to shrunk the sample covariance matrix, modify the drawbacks that 

Black-Litterman model only consider the historical sample covariance matrix.  
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Figure 1 : The process of deriving the New Combined Return Vector 
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3.2.1 Computing the CAPM Equilibrium Excess Returns 

The process of computing the CAPM equilibrium excess returns is straight forward. These 

returns will provide the prior distribution for the Black-Litterman model. 

CAPM is based on the concept that there is a linear relationship between risk and return. 

Further, it requires returns to be normally distribution. This model is of the form 

mf rrrE  )(                 (10) 

where 

fr  The risk free rate 

mr  The excess return of the market portfolio 

  A regression coefficient computed as 
m

p




   

  The residual or asset specific excess return 

Under the CAPM theory the investor is reward for the systemic risk measured by  , but is not 

rewarded for taking non-systemic risk associated with  . This is because within a diversified 

portfolio the total   should tend to 0 in the limit. 

The CAPM theory states that all investors should hold the market portfolio as their risky asset. 

They may hold arbitrary fractions of their wealth in the risky asset and the remainder in the 

risk-free asset depending on their degrees of risk aversion. The market portfolio is on the 

efficient frontier, and has the maximum Sharpe Ratio of any portfolio on the efficient frontier. 

Because all investors hold only this portfolio of risky assets, at equilibrium the market 

capitalizations of the various assets will determine their weights in the market portfolio. Now 

we start with the „reverse optimization‟ for compute the equilibrium excess returns. 

3.2.2 Computing   Via Reverse Optimization 

This section, we derive the equations for „reverse optimization‟ starting from the quadratic 

utility function. Throughout this paper, K is used to represent the number of views and N is 

used to represent the number of funds in the portfolio. 

wwwU TT   )
2

(                                  (11) 

where 

U  : The investor‟s utility; the objective function during portfolio optimization 

w  : The vector of weights invested in each asset (N x 1 column vector) 
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  : The vector of equilibrium excess returns for each asset (N x 1 column vector) 

   : The risk aversion parameter of the market 

   : The covariance matrix of excess returns (N x N matrix) 

We will constrain the problem by asserting that the covariance matrix of the return  is 

known
3
. The investor‟s utility U is a concave function, so it will have a single global 

maximum. If we maximize the utility with no constraints there is a closed form solution. We 

find the exact solution by taking the first derivative of (11) with respect to the weights and 

setting it to 0. Solving this for   yields (12) 

mktw                         (12) 

where 

mktw   : The market capitalization weight of the assets (N x 1 column vector) 

The Black-Litterman model uses „equilibrium‟ returns as a neutral starting point. Equilibrium 

returns are the set of returns that clear the market. The equilibrium returns are derived using a 

reverse optimization method in which the vector of implied excess equilibrium returns is 

extracted from known information using formula (12). 

In order to use formula (12) we need to have a value for , the risk aversion coefficient of the 

market. We can find   by multiplying both sides of (12) by 
T

mktw  and replacing vector 

terms with scalar terms. 

 
2

)(

m

fm rrE





                              (13) 

where 

E(r) : the total return on the market portfolio ( frrE )( ) 

fr  : the risk free rate 

2

m  : the variance of the market portfolio (
mkt

T

mktm ww 2 ) 

As part of our analysis we must arrive at the terms on the right hand side of formula (13); 

E(r), fr  and
2

m  in order to calculate a value for . When we have a value for , then we 

plug w,   and   into formula (12) and generate the equilibrium asset returns. Formula (12) 

is the closed form solution to the reverse optimization problem for computing asset returns 

given an optimal mean-variance portfolio in the absence of constraints. Furthermore if we 

feed ,  and  back into the formula (12), we also can solve for the weights (w). If we use 

                                                      
3
 We use the historical covariance matrix as the  . 
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historical excess returns rather than equilibrium excess returns, the results will be very 

sensitive to changes in  .with the Black-Litterman model, the weight vector is less sensitive 

to the reverse optimized   vector. This stability of the optimization process is one of the 

strengths of the Black-Litterman model. 

3.2.3 Specifying the Views 

We will describe the process of specifying the investors‟ views of estimated returns. We 

define the combination of the investors‟ views as the prior distribution. First, we will require 

each view to be unique and uncorrelated with the other views. This will give the prior 

distribution the property that the covariance matrix will be diagonal, with all off diagonal 

entries equal to 0. We constrain the problem this way in order to simplify the problem and 

improve the stability of the results. Second, we will require views to be fully invested; either 

the sum of weights in a view is zero (relative view) or is one (an absolute view). 

We will represent the investors‟ K views on N assets used the following matrices. 

1. P is a K x N matrix of the asset weights within each view, for a relative view the sum of 

weights will be 0, for an absolute view the sum of the weights will be 1. 



















NKK

N

pp

pp

P

,1,

,11,1







               (14) 

Different authors compute the various weights within the view differently; Idzorek uses a 

capitalization weighed scheme, whereas others use an equal weighted scheme. Here we 

use the capitalization weighed scheme. 

2. Q is a K x 1 matrix of the returns for each view. 

3. Ω is a K x K matrix of the covariance of the views. Ω is diagonal as the views are 

required to be independent. 1  is known as the confidence in the investors‟ views. The 

i-th diagonal element of Ω is represented as i . 

As an example of how these matrices be populated we have 3 assets and two views. First, a 

relative view in which the investor believes that asset 1 will outperform asset 2 by 4% with 

confidence 1 . Second, an absolute view in which the investor believes that asset 3 will return 

3% with confidence 2 . These views are specified as follows: 








 


100

011
  P ；  










3

4
 Q ；  










2

1

0

0
 




 

Given these matrices we can formulate the prior distribution mean and variance in portfolio 
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space as: 

PE(r) ~ N (Q, Ω)             (15) 

There are four main ways to calculate Ω. First, we actually compute the variance of the view. 

Second, we can just assume that the variance of the view will be proportional to the variance 

of the assets, just as the variance of the sampling distribution is. He and Litterman (1999) use 

this method, and we can use the variance of the view computed from the sampling 

distribution: 

 ))P(P( diag  T                  (16) 

Idzorek (2004) introduces the third method. He allows the specification of the view 

confidence in terms of the percentage move of the weights from no views to total certainty in 

the view. 

Beach and Orlov (2006) introduce the final method. They consider about asset returns are 

characterized by several stylized facts: volatility clustering, excess kurtosis, asymmetry, 

autocorrelation in risk, time-varying volatility. They use GARCH-derived views as an input 

into the Black-Litterman model. Here, we use GARCH-derived views as proxies for investor 

views in the Black-Litterman model. It is useful for expository purposes, since there is no 

model that effectively describes an investor‟s views. 

3.2.4 Predicting of Covariance Matrix by GARCH Model 

The GARCH model offers a more parsimonious model that reduces the computational burden. 

It uses past variances and past variance forecasts to forecast future variances. The model is 

quite successful in predicting conditional variances. GARCH models allow not only 

forecasting conditional means of asset returns, but also conditional variances. We combine the 

ARCH-in-Mean model to relate the expected return on assets to the expected risk, and the 

Exponential GARCH model to allow for asymmetric shocks to volatility. 

 

GARCH (p, q) 

 

In general, a GARCH model can be represented by two equations － one for the conditional 

mean and the other for the conditional variance: 

),0(~    ,                2

t

'

tttt Nxy                                       (17)                                                   








 
q

j

jtj

p

i

itit

1

2

1

22                              (18)  
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where: 

ty  : The dependent variable (i.e. excess return) 

tx  : Vector of exogenous variables 

  and , are the coefficients to be estimated. The one-period ahead forecast variance 

 2

t (conditional variance) depends on the mean ( ), news about volatility from the previous 

period ( 2

it , the ARCH term), and last period‟s forecast variance ( 2

jt , the GARCH term). 

GARCH (p, q) refers to the presence of q-order GARCH term and p-order ARCH term. 

 

EGARCH-M (p, q)  

 

Exponential GARCH models are able to account for asymmetric shocks to volatility. 

ARCH-in-Mean models introduce the conditional variance into the mean equation. 

  ˆ   2'

tttt xy                                        (19) 


 










q

i it

itiiti
p

j

jtjt

11

22   ˆlog



                                 (20) 

This EGARCH-M (p, q) model is used to estimate expected returns (Q) and conditional 

variance ( ). The log implies that the leverage effect is exponential, thus forecasts of the 

conditional variance are guaranteed to be nonnegative. The EGARCH model is able to 

capture the empirical regularity that a negative shock leads to a relatively higher conditional 

variance than a positive shock of the same magnitude. 

3.2.5 The Black-Litterman Formula  

Applying Bayes theory to the problem of blending the sampling and prior distributions, we 

can create a new posterior distribution of the asset returns. We can derive the equation
4
 for 

the posterior distribution of asset returns. 

)P)P)(( , P]P)Q][(P)([( N    )( -1-1T-1-1-1T-1-1T-1  RE         (21) 

where: 

E(R) : the new combined return vector (K x 1) 

  : a scalar 

  : the covariance matrix of excess returns (N x N) 

                                                      
4
 Detail will present in Appendix A 
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P : a matrix that identifies the assets involved in the views (K x N) 

  : a diagonal covariance matrix of error terms from the expressed views (K x K) 

  : the implied equilibrium return vector 

Q : the view vector 

We can represent the same formula for the mean returns in an alternative way: 

-1-1T-1-1T-1 P]P)Q][(P)[(    )(  RE            (22) 

Eq. (22) is the new combined return vector, and with all of the inputs and then entered into Eq. 

(22) new combined return vector is derived. The new recommended weights ( *w ) can be 

calculated by solving Eq. (9). The table 1 will show the detail about the Black-Litterman 

model‟s parameters. 

 

Table 1: the parameter about Black-Litterman model 
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The vector Q can be compute by the GARCH-derived mean 

equations and  compute the error terms ( ) from the view 

and covariance of error terms ( ) 

risk aversion 

coefficient of 

the market 

  

 
2

)(

m

fm rrE





  

scalar 

  

 

Lee typically sets the scalar (τ ) between 0.01 and 0.05 

Satchell and Scowcroft (2000) say the scalar (τ) is often set 

to 1. 

We set  the scalar (τ ) be 0.01 , 0.005 , 0.001 
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3.3 Bayesian Approach  

The classical approach to asset allocation is a two-step process: first the market distribution is 

estimated, the optimization is performed. But the classical „optimal‟ allocation is not truly 

optimal; the optimization process is extremely sensitive to the input parameters. Bayesian 

theory provides a way to limit the sensitivity of the final allocation to the input parameters by 

shrinking the estimate of the parameters. We will introduce the Bayesian approach under the 

standard normal-inverse-Wishart conjugate assumption for the market. Suppose now that the 

investor has informative beliefs about the mean vector and the covariance matrix of excess 

returns. We consider the case of conjugate priors the conjugate prior for the unknown 

covariance matrix of the normal distribution is the inverted Wishart distribution, while the 

conjugate prior for the mean vector of the normal distribution (conditional on  ) is 

multivariate normal. We make the following assumptions: first, the market consists of 

equity-like securities for which the returns are independently and identically distributed across 

time; second, the estimation interval is the same as the investment horizon; third, the returns 

are normally distributed: 

),(~,   NRt
                                                  (23) 

Then, we model the investor‟s prior experience as a normal-inverse-Wishart distribution: 











k

1
 , ~ QN     ,   )m , (~  IW                   (24) 

Where ( , Q ) represent the investor‟s experience on the parameters, whereas ( m , k ) 

represent the respective confidence. The prior parameter k  determines the strength of the 

confidence the investor places on the value Q. When k =0, the variance of  is infinite and 

its prior distribution becomes completely flat－the investors has no knowledge or intuition 

about the mean and let it vary uniformly from    to . It is important to notice that  and 

  is no longer independent in the prior (23). This prior dependence might not be 

unreasonable if the investor believes that higher risk could entail greater expected returns. 

It is possible to compute the posterior distribution of  and  under the above hypotheses. 

First, the information from the market is summarized in the sample mean and the sample 

covariance of the past realizations of the returns: 


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


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The posterior distribution of next-period‟s excess returns can be shown to be multivariate 

Student‟s t. The central limit theorem
5
 asserts that for large sample size, the distribution is 

approximately normal distribution. The mean of the predicted excess returns and their 

covariance matrix can be shown to be: 

)
~

kN

1
 , kQ)ˆ(N

kN

1
N(~

~
 , ˆ  ~ 





                          (26) 

)mN , )ˆ)(ˆ((W~ ˆ , ˆ  
~ '1- 


 QQ

KN

NK
NS           (27) 

where 

tr   : The excess returns on the N assets at time t 

N : number of asset 

The predictive mean in (26) is a weighted average of the prior mean Q and the sample mean 

̂ －the sample mean is shrunk toward the prior mean. The stronger the investor‟s belief in 

the prior mean is (the higher
kN

k


 is), the larger the degree to which the prior mean 

influences the predictive mean (the degree of shrinkage). When the investor has 100% 

confidence in the prior mean, the predictive mean is equal to the prior mean, ~ =Q and the 

observed data in fact become irrelevant to the determination of the predictive mean. 

 

3.4 Shrinkage Methodology  

A shrinkage estimator is a weighted average of the sample estimator and another estimator. 

Stein (1956) showed that shrinkage estimators for the mean, although not unbiased, possess 

more desirable qualities than the sample mean. The so-called James-Stein
6
 estimator of the 

mean has the general form: 

  0
ˆk-1       kJS                       (28) 

where the weight k, called the shrinkage intensity, is given by 

   














0

'

0 -ˆ-ˆT

2-N
 , 1min      


k                      (29) 

It is interesting to notice that any point 0  can serve as the shrinkage target. The resulting 

                                                      
5
 CLT: The distribution of sample means from smaller samples is better represented by Student's t-distribution, 

which converges to the normalized Gaussian distribution as the sample size increases 
6
 Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis (2nd ed.), John Wiley & Sons 
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shrinkage estimator is still better than the sample mean. However, the closer 0  is to the true 

mean  , the greater the gains are from using  JS in place of  ̂ . Therefore,  0 is often 

chosen to be the prediction of a model for the unknown parameter   . 

Shrinkage estimator for the covariance matrix has also been developed. For example, Ledoit 

and Wolf
7
 (2003) propose that the covariance matrix from the single-factor model of Sharpe 

(1963) (the single factor is the market) be used as a shrinkage target: 

    S-1      LW                             (30) 
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k
 , 1min , 0max                                     (31) 

where S is the sample covariance matrix and   is the covariance matrix estimated from the 

single-factor model. The shrinkage intensity can be shown to be inversely proportional to 

number of return observations. The constant of proportionality k is dependent on the 

correlation between the estimation error in S and the misspecification error in . 

 

4、Empirical Results 

4.1 Data 

We use 15 years of monthly data from January 1995 to September 2010 (189 months). The 

equity returns are from the Morgan Stanley Capital International (MSCI) Emerging Markets 

Index with gross dividends reinvested. We use one-month Eurodollar rate as a risk-free return
8
. 

The MSCI Emerging Markets Index is a free float-adjusted market capitalization index that is 

designed to measure equity market performance of emerging markets. The MSCI Emerging 

Markets Index consists of the following 21 emerging market country indices: Brazil, Chile, 

China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Korea, Malaysia, 

Mexico, Morocco, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, and 

Turkey. Table 2 presents summary statistics for the country-specific returns. Fourteen 

countries reject normality based on Kolmogorov-Smirnov statistic. Positive or negative 

                                                      
7
 Detail describe from Ledoit and Wolf (2003) , Honey, I Shrunk the Sample Covariance Matrix 

8
 Source form Federal Reserve Board of Governors system with one month Eurodollar rate 
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skewness is observed for many markets. Excess kurtosis is indicated for most of the return 

series. The correlations are in Table 3. All results in the paper have a U.S. dollar perspective. 

 

4.2 Foreign Exchange Risk 

The hedging of foreign exchange risk in an international portfolio is a significant decision that 

should be grounded in several practical and theoretical considerations. If purchasing power 

parity holds (and investors globally hold the same consumption basket), then the hedging of 

foreign currency risk would not be necessary, because the currency returns would exactly 

reflect inflation differences around the globe. Since purchasing power parity is known to not 

hold, hedging currency risk may be optimal. In Black and Litterman (1992), an 80% hedge 

ratio is applied, and the benefits of hedged are sizeable in a bond-only portfolio, at a 0.57% 

return advantage to the hedged portfolio, given a fixed risk level. For the equity-only portfolio, 

the return advantage for the hedge portfolio is only 0.08%, potentially insufficient to justify 

the cost in time and transaction costs. 

Many individual investors and small portfolio shops combine the currency and equity 

allocation decisions, with no attempt to hedge the currency exposure. Possibly, they assume 

that currency fluctuations are random or mean-revert in a manner that makes the currency 

allocation irrelevant over an extended timeframe. Alternatively, an investor may believe that 

the combined allocation to equities and currencies can be managed more effectively than by 

making separate decisions. We have chosen not to hedge the foreign currency risk. This 

approach allows a focus on other salient components of the international asset allocation 

decision. 

 

4.3 Markowitz Method 

The Markowitz approach often assumes that excess returns will equal their historical averages. 

A description of the parameters and the data used are given in Table 4. The problem with this 

approach is that historical means are very poor forecasts of future returns. Table 5 illustrates 

when we use these historical excess returns as our expected excess return assumptions, with 

and without shorting constraints. We may make a number of points about these “optimal” 

portfolios. First, they illustrate what we mean by “unreasonable” when we claim that standard 

mean-variance optimization models often generate unreasonable portfolios. The portfolio that 

does not constrain against shorting has many large long and short positions with no obvious 



21 
 

relationship to the expected excess return assumptions. When we constrain shorting we have 

positive weights in six countries. These portfolios are typical of those that the standard model 

generates. Next part we will apply a variant of the resample efficiency of Michaud (1998). 

 

4.4 Bootstrap Method 

We resample from the past returns to create a bootstrap sequence returns then compute the 

sample mean and sample covariance matrix. Solve the quadratic optimization weights and 

repeat 10,000 times to obtain the final vector of portfolio weights. Results are also presented 

in the Table 5. It seems more reasonable with Markowitz approach results. 

But Most of the time investors do have views- feelings that some assets are overvalued or 

undervalued at current market prices. An asset allocation model should help them to leverage 

those views to their greatest advantage. The basic problem that confronts investors trying to 

use quantitative asset allocation models is how to translate their views into a complete set of 

expected excess returns on assets that can be used as a basis for portfolio optimization. As 

above says, the problem is that optimal portfolio weights from a mean-variance model are 

incredibly sensitive to minor changes in expected excess returns. Next section we will present 

a GARCH model and Black-Litterman methodology of combining equilibrium weights with 

investor‟s subjective views. 

 

4.5 Black-Litterman Method 

The fundamental idea behind the Black-Litterman method is that the equilibrium that exists in 

the financial markets, represented by the existing capitalization weights, serves as the basis 

for establishing an optimal allocation. These market capitalization weights are used to 

establish implied equilibrium expected returns. The views held by the investor regarding 

expected returns are an additional input to the asset allocation decision. In our research 

presented in this paper, the GARCH families are used to provide the investor views and 

confidence measures for those views. The investment weights from the Black-Litterman 

method are then established by reverse optimization utilizing the blended return vector and 

the covariance matrix of historical returns )(1 REWi

 . The proportional weights are 

established as follows: 



22 
 

        





n

i

i

i

i

W

W
w

1

 

A description of the parameters and the data used in this paper are given in Table 6. The   

matrix is commonly referenced as reflecting the “confidence” in the views. Here we utilize 

one-period forward estimates of the variance from the EGARCH-M models (one estimate for 

each country, for each period) to provide the measure of confidence for each view. Table 7 

present the EGARCH-M result for estimate the investors‟ views and Table 8 summarizes the 

allocations and resulting returns of portfolios using market allocations and three different 

„confidence‟ based Black-Litterman allocation series. As the τ measure of the confidence in 

the “Black-Litterman implied returns” is decreased, the weighting on the market weights is 

given more importance. 

 

4.6 Bayesian Approach 

We continue with our illustration based on the monthly excess returns of the MSCI country 

indexes. Solve the quadratic optimization weights and repeat 10,000 times to obtain the final 

vector of portfolio weights. We choose the hyper parameters in (25) as follows: 

 

Q : We use GARCH model to estimate the Q. The reason for specifying Q is that we think 

investors may have some informative beliefs about the mean vector of excess returns. 

k  : We set k  equal to 188. k  often takes on the interpretation of the size of a 

hypothetical sample drawn from the prior distribution: the larger the sample size, the 

greater our confidence in the prior parameter, Q. 

Ω  : The diagonal covariance matrix we use GARCH model to estimate the Ω .  

m  : is equal to 22. We choose a low value for the degrees of freedom to make the prior for 

  non-informative and reflect our uncertainty about Ω . The mean of the inverse 

Wishart random variable exists if m >N+1. 

A description of the parameters and the data used in this paper are given in Table 9. 

Table 10 summarizes the allocations and resulting returns of portfolios. It seems more 

reasonable with Markowitz approach results. Figure 2 present the mean distribution and 

convergence chart. Figure 3 present the covariance distribution and convergence chart.  
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4.7 Shrinkage Method 

We now illustrate our last method using the shrinkage estimator to construct a portfolio based 

on our data. We first construct raw forecasts of the expected excess returns by shrinking the 

sample mean toward the shrinkage target. The historical average returns contain important 

information on future expected returns and should not be almost ignored. Here, we use 

GARCH model that accurately describes the dynamics of the excess returns and the dynamics 

of the returns volatility as our shrinkage target. Then, we construct a shrinkage estimator by 

using linear combination of the sample mean and our shrinkage target with shrinkage intensity. 

Table 11 present the results about the shrinkage mean. 

In a second step, we proceed with the shrinkage estimators for the covariance matrix. We 

include the sample covariance matrix, the shrinkage estimator of Ledoit and Wolf
9
 (2003). It 

is to take a weighted average of the sample covariance matrix with Sharpe‟s (1963) 

single-index model estimator. Table 12 presents the results about the shrinkage covariance.  

 

4.8 Comparison of Markowitz Method and Other Approaches 

We want to see the difference of the index fund allocation with traditional Markowitz‟ 

method
10

 and our others approach. In the first part, we compare the allocations with different 

approaches. The second part demonstrates the comparison with Sharpe ratio of our different 

approaches. 

4.8.1 Comparison of Portfolio Weights 

Table 13 summarizes the allocations and resulting returns of our all methods. One can found 

out that besides the Markowitz method all methods get relatively balanced weights than the 

traditional Markowitz method with sample estimates. 

As we discussed in the Section 2.2.1, there are many problems when using Markowitz‟ 

method to achieve optimal weights. Not surprisingly, weights with Markowitz‟ method based 

on historical return produce an extreme portfolio. Based on historical returns, the Markowitz 

model recommends the weights of 78.82%, 60.79%, and 46.44% on Morocco, Peru and Egypt, 

respectively, but recommends -78.95%, -69.63%, and -54.66% on the Taiwan, South Africa 

                                                      
9
 Ledoit and Wolf suggest the single-factor model of Sharpe (1963) as the shrinkage target. 

10
 Markowitz‟ method has been discussed and improved. The Black-Litterman and other approaches can be 

regarded as an improved Markowitz‟ method as well. Markowitz‟ method represents the traditional optimization 

based on the historical return vector 
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and Philippines, respectively without constrained short limit. Once the short limits are 

imposed, the portfolio recommends 0% on many countries. The extreme result with 

Markowitz model may prevent investors from using the model. 

Compared with the Markowitz model, the recommend weights with other approaches are not 

only reasonable but also more stable. For instance, the Black-Litterman approach 

recommends the 7.93%, 9.15% and 10.32% on Taiwan with different τ rather than 0% weight 

or large short, respectively. We now interest in which one approach would perform better, we 

consider comparing the return, risk, and Sharpe ratio. The results are present in Table 13. 

 

4.8.2 Comparisons of Return, Risk and Sharpe Ratio 

To make the baseline of our comparison, we first hold the investors only consider the return. 

The comparisons are presented in the Table 13. If investors only consider the absolute return 

we can found out the Bayesian approach generate the highest return and the second highest is 

Bootstrap than others. If investors care about the portfolio risk the Shrinkage approach prove 

the smallest standard deviation and the second smallest is Black-Litterman approach. In 

practice, when an investor choose which portfolios worth to invest they should not only 

consider the returns but also their risk. We choose the Sharpe ratio which is a measure of the 

excess return per unit of risk in investment assets. The Sharpe ratio has as its principal 

advantage that it is directly computable from any observed series of returns. As in Table 13 

shown, the Black-litterman approach prove the highest Sharpe ratio and Shrinkage approach 

prove second highest than others. 

Investors care about the profitability more than the stability of the portfolio. The 

Black-Litterman model may not result in a high absolute return in our research but it proves 

the high profitability with the highest Sharpe ratio. The attractiveness of the Black-Litterman 

is its combination of the investment strategies with quantitative methods.  
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5、 Conclusion and Suggestions 

5.1 Conclusion 

Mean-variance optimization has since its origination been the most popular method for asset 

allocations. The popularity could be due to the understandable premise on which it sorts assets. 

However, in practice, the mean-variance-portfolios are often generating unseasonable results 

and do not reflect the views of the investor. In order to cope with these problems, investors 

often constrain the mean-variance model in such way that the possible portfolios lie in a 

bandwidth they are comfortable with. Black and Litterman (1992) set out to alleviate these 

problems by making a model that would result in intuitively attractive portfolios and a model 

that could be used by investors. 

The purpose of this study is to apply the popular asset allocation models such like 

Black-Litterman, Bootstrap, traditional Bayesian, Shrinkage methods for index finds. We 

carry out Sharpe ratio to compare the methods. We find the Black-Litterman model can 

produce the highest profitability than others in our case. 

 

5.2 Suggestions 

This study we do our best effort in relevant literature review and comparison of different 

models, but there are still many imperfections have to improvement. First, we only have 

sample period from January 1995 to September 2010 monthly data (189 data for each asset) 

without to do a long-term study for the portfolio. Second, we assume the parameter of 

Black-Litterman τ is known to construct a portfolio without estimate the unknown parameter 

of τ. Finally, we only focus on one period forecast, like T+1 without do multiple predictions. 

If future researcher can improve those imperfections, it will make the model more flexible and 

useful. 
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Table 2：Summary statistics for the country-specific returns 

Table 2 contains summary statistics for the country-specific returns. One can easily found out that 

fourteen countries reject normality based on Kolmogorov-Smirnov statistic. Positive or negative 

skewness is observed for many markets. Excess kurtosis is indicated for most of the return series. 

 
 

 

 

 

Country 

Market 

Capitalization 

Weight 

Excess 

Return 
St.Dev Skewness Kurtosis 

K-S 

p value 

EM ---- 0.89% 7.19% -0.82 1.97 <0.010 * 

Brazil 19.19% 1.58% 11.34% -0.43 1.23 0.066  

Chile 0.24% 0.76% 6.80% -0.65 2.58 <0.010 * 

China 14.22% 0.46% 10.81% 0.57 2.60 0.025 * 

Colombia 0.22% 1.62% 9.73% -0.09 0.60 >0.150  

Czech 

Republic 
0.59% 1.25% 8.61% -0.29 1.38 0.029 * 

Egypt 0.72% 1.68% 9.70% 0.51 2.19 0.036 * 

Hungary 0.51% 1.56% 11.07% -0.25 2.94 0.024 * 

India 6.08% 0.99% 9.16% 0.041 0.71 >0.150  

Indonesia 1.81% 1.26% 14.14% 0.23 2.26 0.016 * 

Korea 15.76% 0.94% 12.32% 1.06 5.29 <0.010 * 

Malaysia 3.51% 0.47% 9.12% 0.71 6.32 <0.010 * 

Mexico 1.75% 1.11% 8.66% -0.82 1.78 0.113  

Morocco 0.07% 0.94% 5.67% 0.21 1.55 >0.150  

Peru 1.73% 1.58% 9.19% -0.33 2.66 <0.010 * 

Philippines 0.26% 0.05% 9.33% 0.37 2.63 0.021 * 

Poland 0.74% 1.02% 11.03% 0.073 1.29 >0.150  

Russia 9.51% 2.35% 16.55% 0.16 1.98 <0.010 * 

South Africa 9.98% 0.81% 8.20% -0.60 1.12 >0.150  

Taiwan 10.65% 0.19% 8.88% 0.27 0.35 >0.150  

Thailand 2.25% 0.41% 12.08% 0.18 1.86 <0.010 * 

Turkey 0.31% 2.17% 16.11% 0.46 2.01 0.014 * 
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Table 3：Historical correlations of excess returns 

 
 
 

 Brazil Chile China Colombia Czech Egypt Hungary India Indonesia Korea Malaysia Mexico Morocco Peru Philippines Poland Russia 
South 

Africa 
Taiwan Thailand Turkey 

Brazil 1 0.67 0.49 0.42 0.48 0.30 0.57 0.49 0.40 0.38 0.34 0.70 0.12 0.63 0.39 0.54 0.55 0.61 0.53 0.45 0.48 

Chile  1 0.49 0.47 0.42 0.35 0.49 0.51 0.50 0.39 0.48 0.58 0.14 0.53 0.51 0.48 0.55 0.56 0.57 0.49 0.48 

China   1 0.25 0.42 0.26 0.38 0.41 0.39 0.34 0.45 0.44 0.10 0.40 0.48 0.40 0.36 0.59 0.57 0.50 0.26 

Colombia    1 0.36 0.34 0.38 0.36 0.41 0.32 0.32 0.45 0.07 0.39 0.30 0.27 0.41 0.37 0.34 0.31 0.40 

Czech     1 0.36 0.67 0.47 0.38 0.36 0.32 0.32 0.14 0.44 0.28 0.65 0.39 0.50 0.42 0.30 0.37 

Egypt      1 0.41 0.41 0.33 0.29 0.24 0.32 0.28 0.30 0.30 0.38 0.28 0.41 0.33 0.28 0.38 

Hungary       1 0.45 0.42 0.34 0.39 0.24 0.10 0.50 0.40 0.74 0.51 0.57 0.41 0.34 0.52 

India        1 0.39 0.37 0.37 0.39 0.19 0.43 0.35 0.43 0.34 0.50 0.49 0.35 0.38 

Indonesia         1 0.45 0.60 0.37 0.09 0.40 0.61 0.36 0.53 0.46 0.41 0.57 0.25 

Korea          1 0.35 0.60 0.07 0.31 0.38 0.44 0.30 0.51 0.49 0.62 0.31 

Malaysia           1 0.35 0.04 0.33 0.56 0.39 0.42 0.38 0.53 0.53 0.25 

Mexico            1 0.03 0.57 0.47 0.60 0.56 0.63 0.51 0.46 0.47 

Morocco             1 0.14 0.003 0.13 0.03 0.24 0.18 0.11 0.05 

Peru              1 0.35 0.47 0.40 0.60 0.42 0.39 0.35 

Philippines               1 0.39 0.42 0.48 0.44 0.65 0.26 

Poland                1 0.37 0.61 0.45 0.41 0.44 

Russia                 1 0.47 0.53 0.38 0.47 

South Africa                  1 0.51 0.60 0.45 

Taiwan                   1 0.53 0.35 

Thailand                    1 0.26 

Turkey                     1 
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Table 4: Description of the parameters and data used in Markowitz method 

 

Parameter Description Value/Data 

  

Investor risk aversion coefficient 

 
2

)(

m

fm rrE





  2115.2

0475.0 , %78.0







 mmR
 

 

Rf Risk free rate Rf=0.28% 

  N x 1 vector of return As table 2 excess return 

  N x N covariance matrix of excess returns 
Historical covariance 

matrix 
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Table 5: Summaries the allocations and resulting returns with Markowitz and Bootstrap 

Table 5 illustrates the portfolios weights under the Markowitz and Bootstrap method. The portfolio 

that does not constrain against shorting has many large long and short positions. When we constrain 

shorting we have positive weights in seven countries. Compare to the bootstrap it seem more 

reasonable than the Markowitz results. 

 
        

 
 

 

 

 

 

 

 

                                                 

Country     

Market 

Capitalization   

Weight     

Markowitz result                 

Bootstrap   
Unconstrained 

Constrains without    

shorting assets 

Brazil            19.19%           14.63%             0%              6.08%         

Chile            0.24%             -31.04%               0%               5.01%     

China             14.22%           15.66%            0%                 1.99%    

Colombia            0.22%             28.44%           15.32%         7.57%    

Czech 

Republic     
0.59%      16%            1.81%             6.55%   

Egypt     0.72%     46.44%       16.06%           7.63%   

Hungary    0.51%     5.05%        0%             6.11%    

India      6.08%           3.27%       0%            4.87%    

Indonesia 1.81% -3.69% 0% 3.88% 

Korea 15.76% 27.02% 0% 3.28% 

Malaysia 3.51% 11.48% 0% 2.3% 

Mexico 1.75% 21.5% 0% 5.77% 

Morocco 0.07% 78.28% 38.78% 7.28% 

Peru 1.73% 60.79% 17.28% 7.54% 

Philippines 0.26% -54.66% 0% 0.13% 

Poland 0.74% -11.55% 0% 4.27% 

Russia 9.51% 41.12% 7.08% 6.6% 

South Africa 9.98% -69.63% 0% 4.45% 

Taiwan 10.65% -78.95% 0% 0.9% 

Thailand 2.25% 2.05% 0% 1.78% 

Turkey 0.31% 7.8% 3.67% 5.98% 
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Table 6: Description of the parameters used in Black-Litterman method 

 

Parameter Description Value/Data 

  
Value between 0 and 1, 

reflects confidence in views 
0.01 , 0.005 , 0.001 

Σ 
n x n covariance matrix of 

excess returns 
Use shrinkage covariance as in table 12 

P 
k x n matrix identifying the 

assets with views 

Diagonal identity matrix; views imposed 

for all assets 

  
n x 1 implied equilibrium 

return vector 

mktw  , 2115.2 is the estimated 

investor risk aversion coefficient. mktw  is 

the vector of month-beginning market 

capitalization weights 

Ω 
k x k diagonal covariance 

matrix of error terms for views 

EGARCH-M estimates of conditional 

variance using 189 months of data 

Q n x 1 vector of return views 
EGARCH-M estimates of conditional mean  

using 189 months of data 
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Table 7：GARCH family results for estimate the investors‟ views 

 

 
 
 
 
 
 
 
 

Country GARCH family  
Investor‟s view 

Q Ω 

Brazil GARCH(1,1) 2.23% 1.89% 

Chile EGARCH(2,2) 1.04% 0.41% 

China EGARCH(1,4) 2.49% 0.29% 

Colombia EGARCH(1,2) 2.7% 0.57% 

Czech Republic GARCH(3,2) 1.7% 1.13% 

Egypt GARCH(1,1) 0.91% 0.84% 

Hungary GARCH(1,2) 3.33% 1.42% 

India GARCH(1,3) 1.17% 0.79% 

Indonesia GARCH(1,2) 2.97% 1.17% 

Korea GARCH(2,2) 1.6% 0.63% 

Malaysia GARCH(2,3) 2.74% 1.08% 

Mexico GARCH(1,1) 2.14% 1.13% 

Morocco GARCH(1,1) 1.71% 0.54% 

Peru GARCH(1,1) 4.8% 0.32% 

Philippines GARCH-M(1,1) 4.07% 0.41% 

Poland GARCH(1,2) 1.74% 0.09% 

Russia GARCH(1,1) 2.06% 0.73% 

South Africa EGARCH(1,2) 1.59% 1.28% 

Taiwan GARCH(1,1) -0.53% 0.55% 

Thailand GARCH(1,2) 1.52% 0.59% 

Turkey GARCH(2,2) 2.59% 1.75% 
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Table 8：Allocations with Black-Litterman model on three different confidence 

Table 8 contains the result about Black-Litterman model use the shrinkage covariance as Σ. As the τ 

measure of the confidence in the “Black-Litterman implied returns” is decreased, the weighting on the 

market weights is given more importance. When τ decreasing, the optimal weights moving close to the 

market capitalization weight. 

 

 
 
 
 
 
 

Country 
Market Weights Weight 

τ=0.01 

Weight 

τ=0.005 

Weight 

τ=0.001 

Brazil 19.19% 16.8% 17.8% 18.86% 

Chile 0.24% 0.18% 0.23% 0.24% 

China 14.22% 13.65% 13.88% 14.13% 

Colombia 0.22% 1.32% 0.83% 0.35% 

Czech 0.59% 0.72% 0.67% 0.61% 

Egypt 0.72% 0.59% 0.66% 0.71% 

Hungary 0.51% 0.97% 0.76% 0.57% 

India 6.08% 5.25% 5.62% 5.97% 

Indonesia 1.81% 2.02% 1.93% 1.83% 

Korea 15.76% 13.67% 14.57% 15.48% 

Malaysia 3.51% 3.63% 3.57% 3.52% 

Mexico 1.75% 1.82% 1.79% 1.76% 

Morocco 0.07% 1.05% 0.6% 0.18% 

Peru 1.73% 5.85% 3.96% 2.21% 

Philippines 0.26% 2.99% 1.75% 0.58% 

Poland 0.74% 2.1% 1.64% 0.97% 

Russia 9.51% 8.24% 8.8% 9.35% 

South Africa 9.98% 8.77% 9.28% 9.81% 

Taiwan 10.65% 7.93% 9.16% 10.32% 

Thailand 2.25% 1.94% 2.1% 2.22% 

Turkey 0.31% 0.49% 0.41% 0.33% 
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Table 9：Description of the parameters used in the Bayesian approach 

 
Parameter Description Value/Data 

Q 
Investors‟ informative beliefs 

about the mean vector 

GARCH model to estimate using 189 

months of data 

k  Scale of the   We set k as 188 

  
n x n covariance matrix of excess 

returns 
189 month historical values 

Ω  
Investors‟ informative beliefs 

about the covariance matrix. 

k x k diagonal covariance matrix  

EGARCH-M estimates of variance 

using 189 months of data 

m  degrees of freedom We set m as 22 

 

 
Figure 2：Mean distribution and convergence chart 

 

 
Figure 3：Sigma distribution and convergence chart 
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Table 10：Summaries the allocations and resulting returns of Bayesian approach 

 

 
 
 
 
 
 
 
 
 
 
 

Country 
Market Capitalization 

weight 

Bayesian approach  

With 10,000 times 

Brazil 19.19% 10.11% 

Chile 0.24% 0.79% 

China 14.22% 1.89% 

Colombia 0.22% 3.54% 

Czech Republic 0.59% 4.81% 

Egypt 0.72% 1.24% 

Hungary 0.51% 14.15% 

India 6.08% 1.68% 

Indonesia 1.81% 9.21% 

Korea 15.76% 2.84% 

Malaysia 3.51% 7.12% 

Mexico 1.75% 6.51% 

Morocco 0.07% 2.07% 

Peru 1.73% 4.35% 

Philippines 0.26% 4.47% 

Poland 0.74% 0.19% 

Russia 9.51% 3.35% 

South Africa 9.98% 4.02% 

Taiwan 10.65% 1.87% 

Thailand 2.25% 2.72% 

Turkey 0.31% 13.07% 
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Table 11：Description of the Shrinkage mean with k=0.1798 

 

 
 
 
 

Country 
Sample mean 

estimate ̂  

GARCH 

estimate 0  
Shrinkage mean 

 

Brazil 1.58% 2.23% 1.7% 

Chile 0.76% 1.04% 0.81% 

China 0.46% 2.49% 0.83% 

Colombia 1.62% 2.7% 1.81% 

Czech Republic 1.25% 1.7% 1.33% 

Egypt 1.68% 0.91% 1.54% 

Hungary 1.56% 3.33% 1.88% 

India 0.99% 1.17% 1.02% 

Indonesia 1.26% 2.97% 1.57% 

Korea 0.94% 1.6% 1.06% 

Malaysia 0.47% 2.74% 0.88% 

Mexico 1.11% 2.14% 1.29% 

Morocco 0.94% 1.71% 1.08% 

Peru 1.58% 4.8% 2.16% 

Philippines 0.05% 4.07% 0.78% 

Poland 1.02% 1.74% 1.15% 

Russia 2.35% 2.06% 2.29% 

South Africa 0.81% 1.59% 0.95% 

Taiwan 0.19% -0.53% 0.06% 

Thailand 0.41% 1.52% 0.61% 

Turkey 2.17% 2.59% 2.24% 



 38 

 

 

Table 12：Description of the Shrinkage covariance 

 
 
 

 Brazil Chile China Colombia Czech  Egypt Hungary India Indonesia Korea Malaysia Mexico Morocco Peru Philippines Poland Russia 
South 

Africa 
Taiwan Thailand Turkey 

Brazil 1.29% 0.52% 0.62% 0.48% 0.49% 0.36% 0.73% 0.52% 0.68% 0.55% 0.38% 0.69% 0.10% 0.66% 0.43% 0.69% 1.05% 0.58% 0.54% 0.64% 0.90% 

Chile 0.52% 0.47% 0.37% 0.32% 0.26% 0.24% 0.38% 0.33% 0.50% 0.35% 0.31% 0.35% 0.07% 0.34% 0.34% 0.37% 0.63% 0.32% 0.35% 0.42% 0.54% 

China 0.62% 0.37% 1.17% 0.30% 0.41% 0.30% 0.48% 0.42% 0.62% 0.48% 0.46% 0.43% 0.08% 0.42% 0.50% 0.49% 0.68% 0.54% 0.55% 0.68% 0.50% 

Colombia 0.48% 0.32% 0.30% 0.95% 0.32% 0.34% 0.43% 0.35% 0.59% 0.41% 0.31% 0.33% 0.06% 0.37% 0.29% 0.32% 0.69% 0.31% 0.32% 0.40% 0.66% 

Czech  0.49% 0.26% 0.41% 0.32% 0.74% 0.32% 0.65% 0.39% 0.49% 0.41% 0.27% 0.36% 0.08% 0.36% 0.24% 0.62% 0.58% 0.36% 0.33% 0.34% 0.54% 

Egypt 0.36% 0.24% 0.30% 0.34% 0.32% 0.94% 0.46% 0.38% 0.48% 0.38% 0.24% 0.29% 0.16% 0.29% 0.29% 0.43% 0.48% 0.34% 0.30% 0.36% 0.63% 

Hungary 0.73% 0.38% 0.48% 0.43% 0.65% 0.46% 1.23% 0.47% 0.69% 0.49% 0.41% 0.60% 0.08% 0.52% 0.43% 0.91% 0.96% 0.53% 0.42% 0.48% 0.95% 

India 0.52% 0.33% 0.42% 0.35% 0.39% 0.38% 0.47% 0.84% 0.53% 0.44% 0.33% 0.37% 0.11% 0.38% 0.32% 0.45% 0.55% 0.39% 0.41% 0.41% 0.59% 

Indonesia 0.68% 0.50% 0.62% 0.59% 0.49% 0.48% 0.69% 0.53% 2.01% 0.81% 0.79% 0.53% 0.10% 0.54% 0.82% 0.59% 1.28% 0.55% 0.53% 1.00% 0.64% 

Korea 0.55% 0.35% 0.48% 0.41% 0.41% 0.38% 0.49% 0.44% 0.81% 1.52% 0.42% 0.44% 0.07% 0.38% 0.46% 0.62% 0.65% 0.53% 0.55% 0.94% 0.66% 

Malaysia 0.38% 0.31% 0.46% 0.31% 0.27% 0.24% 0.41% 0.33% 0.79% 0.42% 0.84% 0.29% 0.04% 0.30% 0.49% 0.41% 0.66% 0.30% 0.44% 0.60% 0.40% 

Mexico 0.69% 0.35% 0.43% 0.33% 0.36% 0.29% 0.60% 0.37% 0.53% 0.44% 0.29% 0.75% 0.03% 0.46% 0.39% 0.58% 0.81% 0.46% 0.40% 0.50% 0.68% 

Morocco 0.10% 0.07% 0.08% 0.06% 0.08% 0.16% 0.08% 0.11% 0.10% 0.07% 0.04% 0.03% 0.32% 0.09% 0.02% 0.10% 0.06% 0.12% 0.10% 0.10% 0.08% 

Peru 0.66% 0.34% 0.42% 0.37% 0.36% 0.29% 0.52% 0.38% 0.54% 0.38% 0.30% 0.46% 0.09% 0.85% 0.32% 0.50% 0.63% 0.46% 0.36% 0.46% 0.54% 

Philippines 0.43% 0.34% 0.50% 0.29% 0.24% 0.29% 0.43% 0.32% 0.82% 0.46% 0.49% 0.39% 0.02% 0.32% 0.87% 0.42% 0.68% 0.38% 0.38% 0.74% 0.42% 

Poland 0.69% 0.37% 0.49% 0.32% 0.62% 0.43% 0.91% 0.45% 0.59% 0.62% 0.41% 0.58% 0.10% 0.50% 0.42% 1.22% 0.71% 0.56% 0.45% 0.57% 0.82% 

Russia 1.05% 0.63% 0.68% 0.69% 0.58% 0.48% 0.96% 0.55% 1.28% 0.65% 0.66% 0.81% 0.06% 0.63% 0.68% 0.71% 2.74% 0.66% 0.79% 0.80% 1.30% 
South 

Africa 
0.58% 0.32% 0.54% 0.31% 0.36% 0.34% 0.53% 0.39% 0.55% 0.53% 0.30% 0.46% 0.12% 0.46% 0.38% 0.56% 0.66% 0.68% 0.38% 0.61% 0.61% 

Taiwan 0.54% 0.35% 0.55% 0.32% 0.33% 0.30% 0.42% 0.41% 0.53% 0.55% 0.44% 0.40% 0.10% 0.36% 0.38% 0.45% 0.79% 0.38% 0.78% 0.58% 0.52% 

Thailand 0.64% 0.42% 0.68% 0.40% 0.34% 0.36% 0.48% 0.41% 1.00% 0.94% 0.60% 0.50% 0.10% 0.46% 0.74% 0.57% 0.80% 0.61% 0.58% 1.47% 0.55% 

Turkey 0.90% 0.54% 0.50% 0.66% 0.54% 0.63% 0.95% 0.59% 0.64% 0.66% 0.40% 0.68% 0.08% 0.54% 0.42% 0.82% 1.30% 0.61% 0.52% 0.55% 2.60% 
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Table 13：Summarizes the allocations and resulting return of all methods 

Table 13 contains the all results about our methods. One can found out that besides the Markowitz method other method seems reasonable 

Country 

Market 

Capitalization 

weight 

Markowitz 

Bootstrap 

Black-Litterman 

Bayesian approach Shrinkage estimate 
constrained unconstrained 

τ=0.01 

 

τ=0.005 

 

τ=0.001 

 

Brazil 19.19% 0% 14.63% 6.08% 16.8% 17.8% 18.86% 10.11% 5.78% 

Chile 0.24% 0% -31.04% 5.01% 0.18% 0.23% 0.24% 0.79% 3.81% 

China 14.22% 0% 15.66% 1.99% 13.65% 13.88% 14.13% 1.89% 4.66% 

Colombia 0.22% 15.32% 28.44% 7.57% 1.32% 0.83% 0.35% 3.54% 4.2% 

Czech 0.59% 1.81% 16% 6.55% 0.72% 0.67% 0.61% 4.81% 4.12% 

Egypt 0.72% 16.06% 46.44% 7.63% 0.59% 0.66% 0.71% 1.24% 3.92% 

Hungary 0.51% 0% 5.05% 6.11% 0.97% 0.76% 0.57% 14.15% 5.53% 

India 6.08% 0% 3.27% 4.87% 5.25% 5.62% 5.97% 1.68% 4.32% 

Indonesia 1.81% 0% -3.69% 3.88% 2.02% 1.93% 1.83% 9.21% 6.17% 

Korea 15.76% 0% 27.02% 3.28% 13.67% 14.57% 15.48% 2.84% 5.02% 

Malaysia 3.51% 0% 11.48% 2.3% 3.63% 3.57% 3.52% 7.12% 3.98% 

Mexico 1.75% 0% 21.5% 5.77% 1.82% 1.79% 1.76% 6.51% 4.63% 

Morocco 0.07% 38.78% 78.28% 7.28% 1.05% 0.6% 0.18% 2.07% 1.33% 

Peru 1.73% 17.28% 60.79% 7.54% 5.85% 3.96% 2.21% 4.35% 4.54% 

Philippines 0.26% 0% -54.66% 0.13% 2.99% 1.75% 0.58% 4.47% 4.11% 

Poland 0.74% 0% -11.55% 4.27% 2.1% 1.64% 0.97% 0.19% 5.17% 

Russia 9.51% 7.08% 41.12% 6.6% 8.24% 8.8% 9.35% 3.35% 7.7% 

South Africa 9.98% 0% -69.63% 4.45% 8.77% 9.28% 9.81% 4.02% 4.47% 

Taiwan 10.65% 0% -78.95% 0.9% 7.93% 9.16% 10.32% 1.87% 4.3% 

Thailand 2.25% 0% 2.05% 1.78% 1.94% 2.1% 2.22% 2.72% 5.15% 

Turkey 0.31% 3.67% 7.8% 5.98% 0.49% 0.41% 0.33% 13.07% 7.07% 
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Table 14：Compare return, risk and Sharpe ratio 

Table 14 illustrates the portfolios under different approaches. When we only consider the returns the 

Bayesian approach generate the highest portfolio return. When investors consider the risk we can 

found Shrinkage approach can produce the smallest risk. Further, if we take return and risk into 

account the Black-Litterman prove the highest Sharpe ratio. 

 
 

Method Return Risk Sharpe ratio 

Black-Litterman 

τ=0.01 1.52% 3 7.73% 2 0.1964 1 

τ=0.005 1.47% 4 7.83% 3 0.1873 2 

τ=0.001 1.42% 5 7.94% 4 0.1787 4 

Bootstrap 2.53% 2 22.1% 6 0.1136 6 

Bayesian 2.61% 1 20.18% 5 0.1293 5 

Shrinkage 1.37% 6 7.47% 1 0.1830 3 
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Appendix A 

 

Reference：Christodoulakis (2002) on the Black-Litterman Approach Derivation 

Consider two possible events： 

 A  =  expected return 

 B =  equilibrium return 

By Bayes Law we can decompose the joint likelihood of A and B in the following： 

 

Pr(A) )A Pr(B               

Pr(B) )B Pr(A  )B , Pr(



A  

Then 

 

Pr(B)

Pr(A) )A Pr(B
  )B Pr( A

            (1) 

Therefore, Bayes Law provides a formal mechanism to synthesize views with empirical 

realities. As new data arrive, the posterior density can play the role of new prior, thus 

updating investor‟s beliefs in this set up. 

Let  

r  ：n X 1 vector of excess returns 

  ：n X n covariance matrix 

)I E(r  )( t1trE  n X 1 vector of investor-expected excess returns 

  ：the CAPM equilibrium excess returns, such that  

 

r  w    

r   

'

m

m







  

where Wm is the vector of capitalization weights, and 

r)var(w

r) w,cov(r 
  β

'

m

'

m
 

We now intend to make the appropriate assumptions to construct the composite equation (1) 

with our notation 

)Pr(

Pr(E(r)) )(r)  Pr(
  )  )(Pr(






E
rE                                       (2) 

We make some assume that prior beliefs in Pr(E(r)), take the form of k linear constraints on 
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the vector of n expected returns E(r) can be expressed with a k X n matrix P such that 

 P E(r) = q + v    

where v ~ N (0,Ω) and Ω is a k x k diagonal covariance matrix. Then  

 P E(r) ~ N (q,Ω)              (3) 

The probability density function of the data equilibrium returns conditional on the investor‟s 

of prior beliefs, is assumed to be  

 ) (E(r), N ~ E(r)                         (4) 

The fact that E(r)  )( E reflects the assumption of homogeneous views of all the investors in 

a CAPM-type world. The scalar  is a known quantity to the investor that scales the 

historical covariance matrix Σ. 

The marginal density function of data equilibrium returns, )Pr(  is a constant that will be 

absorbed into the integrating constant of the ) E(r) Pr(  . We consider two case certain and 

uncertain about the beliefs. 

Certain prior beliefs 

In this case the certainty regarding prior beliefs corresponds to zero standard deviation. Thus, 

the investor‟s views are expressed at an exact relationship which will simply form a constraint 

in an optimization problem. 

 
qPE(r):   ..

)-(E(r))'-(E(r) : min
)(





ts

rE


 

We can form a Lagrange function by λ 

q)(PE(r)-)-(E(r))'-(E(r)  L    

the f.o.c will be 

0'2)(2
)(





 PrE

rE

L
                                      (5) 

0)( 



qrPE

L


              (6) 

Solving equation (5) and (6) obtain the value of the Lagrange multiplier  

)(2)( 1'1   PqPP   

Substituting   back into (5) we obtain the optimal value for E(r) 

)()()( 1'1'1   PqPPPrE  

Uncertain prior beliefs 

When the investor forms prior beliefs with a degree of uncertainty, this is signified in the 
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non-zero value of diagonal elements of the Ω matrix. Then we have 
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1
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Form (2) we know that 

)Pr(

Pr(E(r)) )E(r) Pr(
  ) )(Pr(




 rE  

Substituting the pdf‟s, the posterior density will be proportional to  


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which can be written as 
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where 

 

 

 
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The posterior probability density function   )(rEpdf is multivariate normal with mean 

     qPPP 1'11
1'1 

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