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Abstract

Spatial modulation (SM) technique has received intensive interest recently for its
capability to improve the spectral-efficiency and lower the transeeiver complexity. This
is because SM induces zero inter-channel interference and requires a single RF chain
only.

To detect or encode SM signals; channel state information(CSI), which is to be
obtained by a channel estimator at either the transmit or the receive side, is needed
for spatial identification. The first SM-related-issue investigated in this thesis concerns
channel estimation in a correlated time-varying channel. We propose superimposed-
pilot-assisted and decision-directed spatial channel estimation schemes. These schemes
improve the system throughput by either removing or reducing the pilot overhead.

Since the use of co-located dual-polarized antennas offers a space- and cost-effective
alternative for multiple antenna systems, we then review the feasibility of using such
antenna arrays and present a new SM scheme which takes advantage of the channel
decorrelation inherited in a dual-polarized antenna array. A suboptimal detector which
needs only half of the ML detector complexity is proposed. This suboptimal detector

performs much better than the MF-based method. For a dual-polarized antenna array
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based SM system, we suggest a general channel model which takes into account the
spatial correlation and introduce a model-based spatial channel estimator.

Finally, to avoid the CSI requirement, we propose an Alamouti coding based differ-
ential space time block coded SM (DSTBC-SM) scheme.

For each proposed scheme, we provide computer simulation results to demonstrate

and verify its superiority against the existing solutions.
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Chapter 1

Introduction

Multiple-input and multiple-output (MIMO) techniques have drawn intensive atten-
tion and R&D efforts in the past decade as they promise to offer a system capacity which
is linearly proportional to the minimum of the transmit and receive antennas numbers
[1]-[3] in a richly scattered environment.. The extra spatial degrees of freedom is specially
welcome for wireless communication system designers who are always looking for novel
transmission techniques to achieve both high data rate and high spectral efficiency.

Many existing techniques have been-developed to exploit the promised MIMO ca-
pacity. One simple yet efficient scheme to-achieve-the full diversity (array) gain is the
class of space-time codes (STC)" [4]." Besides achieving full diversity gain with low re-
ceiver complexity, it also hag high'spectral efficiencyof‘one symbol per channel use [5].
The Bell Labs layered space-time (BLAST) [6], on the other hand, demultiplexes data
streams into a number of substreams which are then transmitted by different anten-
nas, resulting in a data rate increase proportional to the number of transmit antennas.
The multiplexing gain, however, is obtained by using equal number of receive antennas
and complex signal processing at the receive side to eliminate the inter-(spatial)channel
interference (ICI).

Another transmission technique which uses multiple antennas is spatial modulation
(SM). SM is a simple scheme which avoids ICI, timing synchronization of multiple spatial

data streams and reduces the cost of multiple radio frequency (RF) chains by allowing



one transmit (and receive) antenna to be active in any one transmission interval [7].
In addition, SM can exploit transmit antenna index to convey information to enhance
spectral efficiency and capacity [11]. The low system complexity requirement, relative
high spectral efficiency, and robust error performance in correlated channels [8] have
made SM an attractive candidate for high rate transmissions. However, the SM system
needs at least two transmit antennas and the transmit-receive wireless links have to
be sufficiently dissimilar to each other to yield adequate performance [9]. When the
only information is carried by the transmit antenna index, SM degenerates to the so-
called space shift keying (SSK) modulation [10] which is easy to implement although the
associated achievable data rate is rather limited.

Maximum likelihood (ML), matched-filter (MF)-based and sphere detection (SD)
based receivers have been introduced for detecting SM signals [12], [13]. These detectors
perform fairly well only when the-channel state information (CSL) is perfectly known by
the receiver. CSI is often obtained by using a pilot-assisted least square (LS) or minimum
mean square error (MMSE) channel estimator{14]. In most cases, the channel is assumed
to be either static (time-invariant).or block faded [15];.[16], these known estimators yield
poor performance valid for time-varying or correlated block-fading channels. In this
thesis, we propose two channel estimation schemes for aise in time-varying block-faded
channels that takes advantage of the SM structure. The first scheme is a decision-
directed one which uses the detected signals of previous blocks to update estimated
channel coefficients. Since the selected transmit antenna is uniformly distributed, all
CSIs would be updated in a sufficient long transmission period. The performance of this
scheme has error floor in high SNR (signal-to-noise ratio) region due to the propagation
of channel estimation error. We introduce a superimposed pilot CSI estimation scheme
to overcome this shortcoming and improve the system performance without incurring
extra pilot overhead.

While multiple spatially-separated antennas at the transmitter and receiver can pro-



vide multiplexing and/or array gains, these antennas need to have a large physical sepa-
ration to yield uncorrelated spatial channels. A space- and cost-effective alternative [17]
can be obtained by using co-located orthogonally-polarized antennas. A MIMO channel
using dual polarized antennas has a better channel condition as compared to that of
the conventional one when fixing antenna numbers and the area that can accommodate
antenna hardware. Moreover, the use of such antennas offers additional degree of free-
dom with the same structure of antenna array [18]. The dual-polarized antenna system,
however, possesses complicated depolarized properties because of the coupling effect be-
tween different orthogonal polarizations as were shown in [19], [20], [21]; measurements
of depolarization parameters can befound in [19].

We make use of the advantages inherited in dual-polarized antennas and propose
a new scheme called dual-polarized spatial modulation (DPSM) to fully exploit multi
antenna capabilities. ;/This scheme-convey information in the pelarization of antenna,
antenna index, and symbol transmitted. [t can outperform conventional MIMO system
in correlated channel-because of the better channel condition. -Moreover, we develop
the ML detector andthe MF-based detector.of DPSM. and we propose a sub-optimal
DPSM detector whose complexity is almost half of ML defector and its performance is
much better than MF-based‘methed. In addition, DPSM assuages the problem of poor
SM performance when the transmit-to-receive wireless links are too much alike, i.e., the
MIMO channel is too correlated or has a bad condition [9].

Spatial correlation is also considered in dual-polarized channels. In [19], [21], [22]
the transmit and receive spatial correlations are assumed to be de-coupled, resulting
in Kronecker-like model [23]. As spatial correlation between transmitter and receiver
does exist [24], alternate correlated channel models are introduced to incorporate this
joint correlation [25], [26]. However, these analytic models often call for the knowledge
of second-order channel statistics that are not easy to obtain, [27] proposed a reduced-

rank channel model and compact CSI representation to solve this inconvenience. and



generalizes the above-mentioned channel models. In this thesis, we combine this model
with dual-polarization effects and propose a modified channel estimation method for this
modified dual-polarized channel model.

Finally, we notice that space-time block-coded spatial modulation (STBC-SM) has
been proposed recently [28] to improve the SM spectral efficiency. An Alamouti coded-
based differential STBC-SM (DSTBC-SM), which dose not need CSI and performs well
in slow time-varying channel, is studied.

The rest of this thesis is organized as follows. In Chapter 2 we present the transceiver
structure of a typical SM system along with spatial correlated channel models. In
Chapter 3, we propose two time varying channel estimation methods for SM systems and
give simulated performance: Chapter 4 describes a'dual-polarized antenna array based
SM scheme and the associated CSI estimation methods for spatial correlated channels.
Space-time-coded systems are introduced-in Chapter 5. Our main contributions are
summarized in Chapter 6.

The following notations are used throughout the thesis: upper case bold symbols
denote matrices and lower case bold symbols.denote vectors. Iy is a N x N identity
matrix. ()7, (-)¥, and{(:)! represent the transpose, conjugate transpose, and pseudo-
inverse of the enclosed items; respectively. (-)~! denotes the inverse of matrix. vec(-) is
the operator that forms one tall vector by stacking columns of a matrix. While E{-}, |-|,
and || - || denote the expectation, absolute value, and Frobenius norm of the enclosed

items, respectively, ® and ® are respectively the Hadamard and Kronecker product.



Chapter 2

Preliminaries

2.1 Conventional MIMO System Model

When MIMO system. is used in-wireless communications; it is commonly referred
to the uni-polarized multiple input-multiple out antenna system. These antennas are
spatial separated to yield an uncorrelated channel; thus they can provide diversity gain
and increase the reliability of wireless links [1]. Moreover, under suitable channel fading
conditions, spatially multiplexing gain can be achieved and increase the MIMO capacity.

For conventional MIMO system, the MIMO channel between transmitter and receiver

at time k is modeled as
&
H(k, 1) =) H,(k)o(t — 7,), (2.1)
p=1

where G is the maximum number of paths between the subchannel of a transmit and
receive antenna pair. 7, is the delay of the pth path , and 0 denotes the Dirac delta
function. If we consider a narrowband flat-fading MIMO system with Ny transmit
antennas and Ny receive antennas, MIMO channel representation is reduced to a N x
Ny single-tap fading channel matrix. Then when data vector x(¢) is transmitted, the

received signal is denoted as

y(k) = H(k)x(k) + 2z(k), (2.2)



where for rayleigh-fading spatial-uncorrelated channel, the elements of H(k) are indepen-
dent and identically distributed, zero mean complex Gaussian random variables. z(k) is
the additive white Gaussian noise (AWGN) vector, whose entries are of zero mean and

with variance o2. Figure 2.1 gives the brief MIMO system model,

Transmitter I Receiver
h1,1
>

) A

\\\ /Il
\\ ’,

. \ 1/
0 : \\ ,/ hl,NT .
— > De- : Modulation % Detecti
multiplexing &'y etection [——
’ \

1, \\ hNR,].

II \\

’ \

’ \

________._____>
Ay gy

Figure:2.1. A MIMO system model.

2.2 Spatial Modulation (SM) Schemes and Their De-
tections

In MIMO system, many transmission techniques have been designed to improve
spectral efficiency such as vertical Bell Laboratories layered space-time (V-BLAST) ar-
chitecture. BLAST transmission systems suffer from high inter-channel interference
resulting from the simultaneous transmissions on the same frequency for MIMO chan-
nel. Spatial modulation (SM) is an innovative approach which can boost the spectral
efficiency and further avoid ICI by using active transmit antenna indices as additional

source of information. In the following subsections, we will discuss the transceiver design

of SM.



2.2.1 Spatial Modulation Transmission

We consider the block fading case that channel gain remains unchanged within a
block time and eliminate the time parameter t in this chapter. To begin with, data bits
are partitioned into groups of m = log, (M Np) bits where in each group the first log, Ny
bits indicate the transmit antenna to be used and the remaining bits corresponds to an
M-QAM symbol. This M-QAM constellation is denoted as Aj,; and the symbol in it

are transmitted by the indexed antennas. Figure 2.2 depicts the system model described

above.
-
Tx Ant. Symbol
L Estimation Detection
: Spatia! L Detection Spatial .
Modulation J L - Demodulation _
Q X H Xf’ Q

Figure 2.2:°A. MIMO-SM system model.

Spatial modulation (SM) maps m x B data matrix Q to X, Ny X B transmitted
signal matrix, where B denotes block size which should be equal or larger than Ng. The
reason is that Matrix X £ [xy,---xp] has only one nonzero element in each column
where x; is the signal vector transmitted at the ith time slot. At time slot i, the (th
entry of x;, x,;, is the transmit symbol of antenna ¢. The case when z, = 0 means

antenna ¢ is not used at the ¢th instant. One example of SM mapping rule is shown in

Table 2.1.



Input bits | Antenna Index | Transmit Symbol Antenna Index | Transmit Symbol
000 1 +1 1 +1+j
001 1 -1 1 14j
010 2 +1 1 -1-j
011 2 -1 1 +1-j
100 3 +1 2 +1+]
101 3 -1 2 -1+
110 4 +1 2 -1-j
111 4 -1 2 +1-j

Table 2.1: SM mapping table for 3 bits/transmission

At the receiver side, the Ny x B received signal matrix Y can be expressed as

where

Y - HX + Z,
X = [le"' 7XB];
Y = [YIv"' 7y3];
7 = [Zla"' 7ZB:|;
H = [hy,--- hy,].

(2.3)

(2.4)
(2.5)
(2.6)

(2.7)

Matrix H describes the overall N x N channel matrix whose (m,n)-th element

I is the channel response between the mth transmit antenna and the mth receive

antenna. The elements of H are independent and identically distributed (i.i.d.), zero-

mean complex Gaussian random variables with unit variance, o7 = 1. In addition, Z is

the Ng x B additive white Gaussian noise (AWGN) matrix, whose entries are of zero

mean and E{ z; 2z } = 02 I,,, observed at the receiver. We assume an average transmit

power of E,, i.e.,

1 9, 1 H
E. = LE[IX[}] = & E[tr { XX/}

(2.8)



Through this thesis, we consider a quasi-static scenario, where channel remains un-
changed over the period of B and is independent of both X and Z.
Because only one transmit antenna is active, say fth antenna, during symbol time 7,

alternatively we have

yi = hyxy + 2, (2.9)
where xy € Ay and fori=1,---  B,i=1,---, Np
Xi = [0, @y, 0]" €Cny, (2.10)
yi = Jywn B Ui e CN", (2.11)
2= AP, aZNR,i]T S CNR, (2.12)
hj = [hyj,-,hng,l" €CVE. (2.13)

2.2.2 Optimal:Detector

Due to SM’s specific structure, its receiveris inherently of low complexity. With the
assumption that the channel statednformation (CSI) H is known to the receivers, we
introduce the single-stream-based maximum likelihood (ML) and matched filter (MF)-
based detector respectively in this.and the next subsection, respectively.

Since the channel coefficients are assumed equally likely, the optimal detector based

on the ML principle is equal to maximizing the probability P(Y|H, X) [29],

~IY-HX[

PYIH.X) = e

(2.14)

ML detection exhaustively searches over all transmit antenna index and constellation
point pairs. It is often regarded as a high complexity detection technique. However, the
complexity of SM’s ML detector is much reduced due to the fact that only one transmit
antenna is used at a time. Therefore, the ML metric of each time can be expressed as

(@i,igi) = argmax P(y;|H,x;) = arg Ilpin ly: — Izihg||2, (2.15)
s Ly

a2



whose search space is of order O(M Nr). It is also called the single-stream-based ML

detector

2.2.3 Sub-Optimal Detector

For the MF-based detector, we need to normalize every column of H by its norm

before estimation of transmit antenna index. The reason is as follows. First, let

h; = Hllaﬁ j=1,---,Np. (2.16)
As Cauchy-Schwarz inequality suggests:
[B4hy| = b)) = % S 0 =1, Ny, (2.17)
J
we can define the MF receiver as
(2.18)

gJ:E;IYZa izla"'7Ba

which reduces to ||h,||zg,; plus noise if j = £-or noise only when y; = z4;h,+2;. Therefore,

we can estimate transmit antenna index by finding the maximum value of |g;|.

(2.19)

l; = argmax |ge,;
éle{lvaT}

Next, left-multiplying y; by the pseudo-inverse of h; (hz = (h{'h;)~"h’) and quan-
tizing this product to the constellation points with function Q(-) to recover transmit

symbol z; ., i.e.,

thz 5o
67t _ b (2.20)

b — T — %
%, = hyi= = :
‘ SR VAR

(2.21)

2.3 Spatial-Correlated MIMO Channel Models

10



2.3.1 Conventional Correlated Channel Model

In general, a full correlation matrix R that specifies the NgNp x Nr Ny mutual
correlation coefficients between all channel matrix elements is used to describe the spatial

behavior of a general MIMO channel; specifically,
R £ E{vec(H Jvec(H" )"}, (2.22)

For example, the spatial correlation matrix of a 2 x 2 MIMO channel can be described

as

1t r s
B B 2 S
R = PRI e | (2.23)

st r t 1
3 . . . def
where t and r are transmit and receive-antenna correlation coefficients, and s; =
E{hi1h},} and s &f E{hi5h3  }-are-cross=channel correlation coefficients
1,17%22 2 = 127091 .

Consequently, a spatial.correlated Rayleigh fading channel can be modeled as
vec( ™) = Rivec(H"), (2.24)

where H,, is the i.i.d. complex Gaussian matrix with-unit variance.

However, there are some difficulties in using this-model. First, large number of
transmit and receive antennas will make the number of correlation matrix elements,
(NgrNr)?, too large to compute. Moreover, physical propagation of the radio channel,
such as angle of arrival (AOA), direction of departure (DOD), and etc., could not be

easily interpreted by this correlation matrix [24].

2.3.2 Kronecker Model

Kronecker model is commonly used when correlation between transmit and receive
antennas are independent and can be separated that the spatial correlation matrix is
given by the Kronecker product of those of the transmit and receive antennas, which is

reasonable when the main scattering is locally rich at each transmitter and receiver side

11



241,
H = RZH,(RY)". (2.25)

where Np x Np matrix Ry and Ny x Nr Ry represent spatial correlation of transmit
and receive antennas, respectively.
The separation statistic of Kronecker model implies that Ngp Ny x Nr Nt correlation

matrix of H can be expressed as
R=Rr®Rr. (2.26)

Since the strict assumption of separate correlation between transmitter and receiver
side, it would not be appropriate to model a correlated channel where transmitter and

receiver side have some correlation leading to capacity.and error probability misfits.

2.3.3 Virtual Channel Representation and Weichselberger Model

Both [25] and [26] consider joint correlation at both ends-of MIMO channel, so
the correlated channeliis modeled by basis matrices of two one-sided correlation matrix
and one coupling matrix which contains the correlation-between transmitter and receiver
side. In [25], a virtual channel representation using predefined discrete Fourier transform

(DFT) matrices is proposed:to model the correlated-¢hannel. Specifically,
H = Fr(Q,i © H,)FE, (2.27)

where Fr and Fp are respectively Ng x Ng and Ny x Np are predefined DF'T matrices
and flvm is the coupling matrix. However, this model is restricted to single polarized
uniform linear arrays (ULAs) only, we therefor introduce in the following a model that
copes with this issue.

In [26], eigenbases of transmit and receive correlation matrices are used to model this

spatial correlated channel, i.e.,

H=Ux(QoH,)U, (2.28)

12



where Ugr and Ur are the eigenbasis of the receive and transmit correlation matrix,
respectively. With Ar and A being the diagonal matrices comprise the eigenvalues,

which are nonnegative, of Rr and Ry, the eigen decompositions of Rz and Ry are
Ry = UzAgUR and Ry = UpA;UE, (2.29)
Q is the element-wise square root of the coupling matrix 2 which is defined as
[Q);; = E{[uj ,;Huj |*}, i=1,...,Ng,j=1,..., Np. (2.30)

where ug; and uy; are the ¢th and jth column vector of Ui and Uy, respectively. From
this coupling matrix, the mean amount of energy that is coupled with an eigenvector
of one side to that of the other canbé identified a more general framework of channel

model.

2.3.4 Model-Based Correlated Channel

The model-based correlated channel is introduced by [27]. Since the channel matrix
H can be decomposéd via singular value decomposition (SVD), H = UAVH  where U
and V are Ng x Ni and Np x &Ny unitary matrices, respectively, and A is a Ng x Np
diagonal matrix with non-negative entries. The two unitary matrices can be represented
by predefined unitary matrices Q; and Qs as UP; = Q and VP, = Q, where P; and

P, are unitary. As a result, we have
H= QP 'AP,)Q) = QCQY, (2:31)

where C is a complex random matrix, equation (2.29) can be regarded as a generalization
of all the models mentioned above. To be specific, it is equivalent to the Kronecker model
if C satisfies

vec(C) = (Br ® Bg)vec(Hy,), (2.32)

1
where 27 and Ep are obtained by Gram-Schmidt orthonormalization with R;. = QZr

and R% = QEg, and is related to the Weichselberger model when
Ur = QP and Ui = Q,P%, (2.33)
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with P7 and Pp being the eigenbasis matrices of E{CC#} and E{CTC*} whose eigen-
values are the same as those of E{HH} and E{H?H*}. Finally, if Q; and Q, are
chosen to be composed of columns of DFT matrices, this general model is compatible
with the virtual channel representation by Sayeed [25].

The fact that second-order statistics is not required, because spatial correlation is
captured by predetermined nonparametric regression, reduces the number of parameters
needed to be estimated when modelling the channel H by (2.29). This provides a great

complexity reduction when the dimension of H is large.

14



Chapter 3

Estimation of Spatial-Modulated
Time-Varying Channels

In this chapter, we firstigive a review of conventional pilot-based channel estimation
techniques and present ‘the proposed-time-varying channel estimation methods for SM

system.

3.1 Conventional Pilot-Based Channel Estimation
Methods

Considering a time-varying block-fading channel, its CSI is obtained by transmitting
pilot signal which is known to'the receiver. Assume pilot signal matrices X p(k)’s are of
size Nyt X B and the average pilot symbol energy equals to the data symbol energy. The

received signal at kth block time can be written as
Y p(k) = H(k)X p(k) + Zp (), (3.1)

where Yp (k) is Ng x B. H(k) is the Ng x Ny MIMO channel matrix at time k, and the
entries of AWGN matrix Z,(k) are i.i.d., zero mean complex Gaussian with variance o2.

To estimate a time-varying channel, pilot signal blocks are inserted in transmit data
stream periodically. Transmit data detection can thus be conducted with the estimated

channel. However, if the channel changes rapidly, the period of pilot signal insertion
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should be short to keep up with the change. This in turn reduces the power or spectral

efficiency of the data signal. We illustrate this idea in Figure 3.1.

’Pilot ‘ Data ‘Pilot ‘ Data ‘

‘Pilot ‘ Data ‘Pilot ‘ Data ‘Pilot ‘ Data ‘Pilot ‘ Data ‘

Figure 3.1: Periodical pilot signal insertion in transmit data.

Two conventional pilot-based channel estimation methods which are discussed in the

following.

3.1.1 Least Square Channel Estimation

The least square (LS) channel estimate of H(k).is found by minimizing the squared
error ||[Yp(k) — H(k)Xp(k)||2 [29]. As a resulf, the estimated channel Hyg(k) can be

derived by

Hps(k) = Xp(k)XE(R)(Xe(R)XE (k) ! (32)
= H(k) + Zp(k) X7 (E)Xp(k)XE (k).

While the main advantage of the LS channel estimation method is its low complexity, it

fails to take the statistics of the channel and noise into account. Such obliviousness can

result in significant noise power enhancement offer channel equalization performance

degradation. As LS estimation may be a suitable solution when channel and noise

statistics are unknown, it is not sufficient for our requirement.

3.1.2 Minimum Mean Square Error Channel Estimation

In order to solve the noise enhancement problem, minimum mean square error

(MMSE) channel estimation method is introduced. As its name suggests, if F minimizes
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the mean square error E{||Y p(k)F —H(k)||?}. Since the entries of H(k) are assumed to

be unit-variance, we have
Hynse(k) = Yp(k) X (k) (021n, + Xp(k)XE (k)™ (3.3)

Based on the abovementioned channel estimation methods, we propose two time-

varying channel estimation methods for SM systems and discuss in the ensuing sections.

3.2 Decision-Directed SM Channel Estimation

The main idea of decision-directed channel estimation is to track channel variations
using detected data symbols of previous blocks as pilots. This method saves the pilot
signal overhead and thus retains the data rate. Due:to the SM systems’ capability to
avoid ICI, the utilization of detected-data symbols can be a good approach to estimate
channel. The reason isthat it is proved the optimal channel estimation performance can
be achieved by using unitary pilot signal matrices which help decoupling channel vectors
at the receiver [30], [31]. This behavior-¢an similarly be realized by SM transmit data
matrices. Although it'is likely that one or more transmit antennas remain inactive in one
data block, in general, all' channel coefficients would be updated for a sufficiently long
transmission period since the selected transmit antenna index is a uniformly distributed
random variable.

However, the problem of error propagation resides in all decision-directed channel
estimation methods. An incorrectly detected symbol of a previous block may affect the
channel estimation performance of its following blocks and produce more symbol errors
that continue to propagation along the entire transmission. Hence, pilot signals are
inserted periodically and the previous result of channel estimation is forgotten, and the
forgetting factor « is introduced to compress the error propagation effect.

The initial guess of channel coefficients is derived by transmitting a full block of pilot

signals and estimating with either L.S- or MMSE- based methods. These coefficients can
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then be updated with decision-directed channel estimation for SM. When MF-based
detector is employed, as explained in Chapter 2, we first normalize the column vectors

of the estimated channel matrix of the previous ((k — 1)-th) block time, i.e.,

(k1) % hy(k—1) by (k-1
Ik = DI [y (k= 1)

Then the received signal of current instant (kth block time) is multiplied by the normal-

(3.4)

ized channel matrix H(k — 1) and we have

» 9172'.(]{5) o -
gz(k) - : =H (k_l)Yi(k)a t= 1>"' aB' (35)
gNT,i(k)

The active transmit antenna‘indexof :th instant of block & can be estimated by finding

the maximum value of the MF output:

li(k) = argmax |gy(k)], (3.6)
4;€{1,~- Nt}

and the carried data is detected via gy, ;(k);
A 9;,(k)
[y k= 1)]]
On the other hand, when ML detector is used, transmit antenna index and data are

jointly estimated by

~

(27, (k), £s(k)) = arg min |y;(k) — he,(k = D)z, * (3-8)

¢ (24,25)

Let %;(k) = [0,---,0,&; (k),0,---,0]T, the estimated data matrix X (k) can be denoted

X(k) = [xa(k) x2(k), - -+, xp(K)], (3.9)

which may not be full rank. Define . = {1,---, Ny} as the set of transmit antenna
indices and (k) = {¢,(k),--- , {(k)} the set of active antenna estimates in block k. We
flatten X (k) by removing its all-zero rows, which have indices belong to L \ /(k), and

denote the result by X(k).
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The channel estimates for the columns indexed by ¢(k) are thus

A ~

AL, Ng; (R)] (k) <Y ()X (k) (X (K)X (k). (3.10)

While columns that are not updated in this block are kept unchanged and remains the

same as the previous block, i.e.,

AL, Nes L\ 0()](k) = HI[L, -, Ny L\ {(k)](k — 1), (3.11)

However, to ameliorate error propagation effect, we would like to update channel

estimate not so abruptly. We define, instead,

A

H(E) =(1— o)H(k) + aH(k — 1), (3.12)

where H(k) is of the form‘as (3:10) and (3.12) and 0 <'a < 1.

We conclude this section by noting that the error-rate performance curve of this
scheme has an error floor in high-SNR region due to the possibility that not all channel
coefficients are updated in each block. Therefore, superimposed pilot signals, which
ensure every coefficient is updated, are introduced in next section to improve channel

estimation performance.

3.3 SM Channel Estimation With Superimposed Pi-
lots

Superimposed pilot-assisted approaches add (superimposed) low power pilot signal
onto the data signals before transmission. At the receiver, the channel can be estimated
by these superimposed pilot signals. Unlike the traditional pilot-assisted methods, which
do not send any information during the estimation phase, superimposed pilot signals do
not cause any loss in transmit data rate. However, this is at the cost of decreasing
effective SNR due to the additional power for pilots. In the thesis, we propose a channel
estimation method, which combines the decision-directed channel estimation method

and use of superimposed pilot signals, for SM schemes.
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Note that the initial channel coefficient estimates are acquired by LS or MMSE esti-
mation while after that the estimated coefficients are updated by the detected SM data
matrices and imposed pilot signals. Since for an SM system only one transmit antenna
is active at a time, other transmit antennas can transmit pilot signals simultaneously
to improve the channel estimation quality. The power of superimposed pilots shall be
carefully designed because of the following reasons: i) pilots with large powers may cause
serious ICI in SM system; and ii) low power pilots do not give reliable estimates.

At the transmitter, data matrix X (k) and Ny x B superimposed pilot matrix S(k)

are transmitted at the same time. The received signal is denoted as
Y (k) = H{k)(X (k) +S(k)) + Z(k), (3.13)

Due to the fact that. the antenna selection is‘random, chances are one or more
antennas are not active.in a block-duration.. Thus, the transmit data matrix X(k)
might not be full rank-and.inversible, making channel tracking fails. Nevertheless, this
problem may be solved by designing the superimposed pilot matrix S(k) to be data-
dependent. Specifically, the pilot signalsare transmitted by transmit antennas which
are not used in X(k) and its corresponding matrix S(k) has column vectors that span
Ker{X(k)} (nullspace of X(k)):

Let Ny (k) be the matrix consists.of a set of basis vector of Ker{X(k)}, where it
satisfies

X (k)Nx(k) =0, (3.14)
and the size of Nx(k) is B x M withM =Nullity(X(k)).

Therefore,

Y (k)Ny«(k) = H(k)(X(k)+ S(k))Nx(k) + Z(k)Ng(k) (3.15)
= H(k)S(k)Nx(k) + Z(k)Ny(k).

In the following, we detail the design of the superimposed pilot signal matrix for

SM systems. For block k, S(k) has (B-M) nonzero vector, 0, and M single-component
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columns that have only one nonzero elements on the rows not used by X(k), where the
positions of the nonzero vectors depend on the time instants in which transmit antennas
are reused. For example, let both the number of transmit antennas and block size be 4.

For a single transmit data matrix

0 0 0 0 x1 0 0 x4
0 0 0 0 0 0 0 0
X(k) = 0w x5 x4 | O X(k) = 0 z2 x3 0 |’ (3.16)
xzr 0 0 O 0O 0 0 0
the corresponding superimposed pilot signal matrix can be
00 S 0 0 0 0 0
100 0 S 10 S 0 0
S(k) = 00 0. w0nln%E S(k) = 00 0 o0 | (3.17)
0 0.0 -0 0. 0 0 Sy

where S;’s are the superimposed pilot signals with energy #.

Due to the SM characteristic (3.15) and the structure of superimposed pilots (3.17),
we proposed a channel estimation scheme for this system. It can-be summarized by the
following procedure:

Step 1: With the'detected data matrix X (k), derived by either MF-based or ML
detector, we obtain the matrix Ng(k) correspouding to its null space by solving M

underdetermined systems of linear equations
X () NG e B (k) = 0 (3.18)

for m=1,---, M, where X(k) < X[0(k); 1,---, B](k).
To simplify channel estimation (in the next step) and incorporate the sparse nature

of transmit data matrix, we arrange N (k) into a special form such that
SIL\ ¢(k);1,---, M)(k) = E ]y, (3.19)

where S(k) = S(k)Ng (k). The technique to achieve it is given in Appendix A.

Step 2: With Nx (k) superimposed pilots can be taken out as

Y (k) Y (k)N (k) = H(k)S(k)Ny (k) + Z(k)Ny (k). (3.20)
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Hence the LS channel estimations on the pilot positions can be obtained as
H[L, -, Ng L\ {(R)](k) = Y ()P (k)" (P(R)P(K))")~". (3.21)
Let H[L, -+, Np; L\C(k)] (k) < H[1, -+, Nps L\E(k)](k) and H[1, -, Np; (k)] (k) = 0,
Y (k) = Y (k) — H(k)S(k). (3.22)

The LS channel estimates for the remaining columns g(lﬁ?) are

A ~ —

HIL, - Nps ((k))(k) = Y (k)X (k) (X (k)X ()", (3.23)

where X is defined similarly in Section 3.2.

3.4 Simulation Results

In this section, the simulation results of the proposed two channel estimation meth-
ods are presented. Fora 4 x4 MIMO system, we generate each independent path of the
spatial uncorrelated time-varying channels by jake’s model [35]. The carrier frequency
is 2GHz and sampling time T is 0.1ms-of the duration 10s channel paths. Then the

time correlation function is defined as
E{ i (E)h(te) } = Jo(2m fo(ta—12)T5). (3.24)

Setting the block length to 4 for the reason that at least 4 symbol times are needed
to fully estimate the total number of channel coefficients. The frame size is 5 where the
first block consist of pilot signals only. In addition, QPSK constellation is used.

In Figure 3.2 and Figure 3.3, we generate the time-varying channel at mobile velocity
30 km per hour, and compare the bit error rate(BER) and normalized minimum mean
square error(NMSE) of decision-directed channel method based on MF-based and ML
detector and perfect CSI under the same pilot overhead. It is shown that the performance
of decision-directed channel estimation is better than that of only initial pilot estima-

tion is used. Moreover, the decision-directed channel estimation based on ML detector
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outperforms MF-based detector. The BER and NMSE performance of decision-directed
channel estimation method via different mobile velocity based on MF-based and ML
detector are given in Figure 3.4, Figure 3.5, Figure 3.6, and Figure 3.7. It can be seen

that there is error floor in high SNR region.

lo T T
—+&— DD-MF-based
perfect CSI

—<— Pilot

—<— DD-ML

BER

Eb/No

Figure 3.2: BER performance of SM detectors with decision-directed channel estimation.

Superimposed channel estimation method is propesed to improve the error floor
performance of decision-directed channel estimation, the energy of superimposed pilot
signals affects the BER performance which is shown in Figure 3.8 where the MF-based
detector is used and the mobile velocity is set to 30 km /hr. If the energy of superimposed
signals is too large, it would cause the serious ICI to receiver and thus degrades the BER
performance. However, if the energy is small, it could not have good channel estimation
performance. Hence, the optimal energy of the superimposed signal is approximately
2/SNR which is shown in Figure 3.9. The BER performance of superimposed channel
estimation method under different mobile velocity based on MF-based and ML detector
are shown in 3.10 and 3.11, respectively. In addition, we can see from these simulation

results that the use of superimposed signal can get better performance than that of
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Figure 3.5: NMSE performance of MF-based detector with decision-directed channel
estimation under various mobility.
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Figure 3.7: NMSE performance of ML detector with decision-directed channel estimation
under various mobility.
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Chapter 4

Spatial Modulation Using
Dual-Polarized Antenna Arrays

4.1 Dual-Polarized MIMO Channel Models

In MIMO wireless. communication systems, antenna spacings are usually required
to be at least half a wavelength at subscriber units and ten wavelengths at base stations
to achieve satisfactory performance. < This condition restricts the implementation of
MIMO systems on some space-limited devices. However, since orthogonal polarization
can decrease the correlation of .transmit antennas or receive antennas, the usage of co-
located dual-polarized antennas can be-a.space- and cost-effective alternative. Figure
4.1 depicts a co-located dual-polarized MIMO system with antennas grouped into pairs.

For ideal dual-polarized antennas, cross-polar transmissions, from a vertically-polarized
transmit antenna to a horizontally-polarized receive antenna or from a horizontally-
polarized transmit antenna to a vertically-polarized receive antenna, equal to zero.
Practically, there are two depolarization mechanisms that can cause polarization in-
terference: cross-polar isolation (XPI) due to use of imperfect antennas and the depo-
larization caused by the propagation channel which can be identified by the existence of
cross-polar ratio (XPR). The interplay between both effects forms the global cross-polar

discrimination (XPD) which quantifies the separation between two channels of different
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Figure 4.1:"A ‘co-located-dual-polarized MIMO system model.

polarizations. Besides, vertically-polarized electromagnetic wave is vulnerable to electric
current on the ground, so co-polar ratio (CPR) can be taken into consideration in some
cases. Figure 4.2 shows the depolarization mechanisms dis¢ussed above.

def

We first consider one dual-polarized transmit-receiveantenna pair, Let p;; = |hi;]? (i, €

{V, H}) be the instantaneous dual-polarized channel gain. The channel is a 2 X 2 matrix,

hvv  hyu
Hr = 4.1
, {th hHH], (4.1)

and depolarization parameters can be defined as

(1) Cross-polar isolation:

e E 10
Transmitter : XPI; & {pis} (4.2)
E{pi;}
e E 10
Receiver : XPIy & {pi} (4.3)
E{p;i}
(2) Cross-polar ratio:
XPR % DPvv _ Phn (4.4)
Pho Poh
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Figure 4.2: Depolarization.mechanisms.

(3) Co-polar ratio:

CPR % Z

Phh

Dual-
polarized
receive
antenna

(4.5)

Analytically, XPleffect at transmitter and receiver can be respectively modelled with

coupling matrices

1 \/ Xa in
M A N 5
t |: ,—Xa,t 1 :| )
NN { 1 Xy }
3 Xag1 ’

(4.6)

(4.7)

where x,; and x,, are the inverse of XPI at transmitter and receiver, respectively. If

the used dual-polarized antennas are in perfect condition, these scalars will equal to

zeros. Note that this depolarization mechanism affect line-of-sight (LOS) and scattered

components whereas XPR exists only in non-line-of-sight components.

While the above definitions concentrate only on the channel gains, to get a thorough

understanding of the depolarization effect, the dual-polarized channel can be characterize

by the correlation matrix E{vec(HE )vec(HZ)}. The diagonal terms of this 4 x 4 matrix

are the average channel gains of each channel coefficient and the off-diagonal ones include

the cross-polar correlations (XPC) between h;; and h;; or hj;, co-polar correlation (CPC)
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between h,, and hyp,, and anti-polar correlation (APC) between h,y;, and hy,,. This model
is verified by several measurements to be a good approximation to the real dual-polarized
channels. The corresponding parameters to various environment settings are given in
[19] and references therein.

In the following, one dual-polarized antenna pair is extended to a MIMO system.
As the measurement result [19] shown, in Rayleigh fading environment, the spatial
correlation properties are independent of the polarization, i.e., beam pattern are similar
for all antennas, the parameters concerning the polarization and spatial correlation can
be decoupled in our model. It is especially true when the system is implemented in
macrocells or microcells. It is explained in the following.

An Np x Np dual-polarized MIMO fading chanmel consists of Np/2 and Ng/2 co-
located dual-polarized transmit and receive antenna pairs. If all dual-polarized antennas
are identically oriented, the joint-transmitter-to-receiver direction spectrum would be

equivalent for all co-lecated antennas. The matrix can thus be written as
H, = Hup a7 ® M, WM, (4.8)
2 2

where Hy, /2xn,./2 is the spatial correlated Rayleigh fading channel and W is the de-
polarization matrix which.ds separated from the spatial correlation parameters. Matrix
W models the differential attendation and the correlated phase shifts between the dual-

polarized channels. Specifically,

L /exv* /xo*  \/pdy
srEy | VEXY px EXGy p/XoT rH
vec(W™) = UXo /X N X" vec(W;), (4.9)
VHOL /X0 /XY p

where g and x represent the inverse of CPR and XPR, o and 9 are the receive and

1/2

transmit correlation coefficients between polarization vv and hv, hh and hv, vv and vh
or hh and vh. d; and d, are respectively co- and anti-polar correlation coefficients. The
last term,

(4.10)

w €j<I>3 €j<I>4 9
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where ®;’s are uniformly distributed in [0, 27).

As a result, a dual-polarized MIMO channel can be formed into

H171 H172 ... H 7%

. Hy; Hy, ... H,n
H, = . . . 7 ? ) (4'11)

Hﬁl Hﬁz e H& &

2 2 22

where H; ; is the dual-polarized channel matrix of the jth transmit and ith receive

antenna pairs:

hiviv  hivia
H; = J J . 4.12
" [ hiHjV hiHjH } ( )

where each entry h;p,;p, is the channel coefficient between the P;-polarized ith transmit

antenna pair and Pj-polarized jthe receiverantenna pair. In addition, we define the

column vectors of Hy as

H, — [hlv,th,~-~ h%v,hﬂﬂ] . (4.13)

2

4.2 Dual-Polarized Spatial-Correlated (DPSC) Chan-
nel Model

Most of the previous proposalsmodel spatial correlated channels by the Kronecker
model which is not reasonable when joint correlation exists between transmitter and
receiver. A more general model [27] has been discussed in Chapter 2 and is considered
here to incorporate with the dual-polarized systems.

We assume the XPIs of all dual-polarized antenna pairs are infinite, i.e., the transmit
and receive antenna in a pair are perfectly polarized. Matrices M, and M; become iden-
tity and are thus ignored in the following discussion. A dual-polarized MIMO channel
is denoted as

H,=Hy, ~n, @ W, (4.14)
2 2
It has been proven that 4.14 can be equally represented by

H, = Qu,,.x,CQN, (4.15)
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where C is complex random and Qu, x, and Qu, k, are Ny x Kp and Ny x Kp
predefined unitary matrices, respectively with Kg (< Ng) and Kr (< Np) being the
modelling orders to be discussed later [27].

Several types of functions can be chosen as (basis) vectors in the predefined unitary
matrices [27]. In this thesis, polynomial basis functions [32] are used. Specifically, these
polynomial functions are of degree D where the entries of the corresponding basis matrix
D are specified as

[D]i,j = (Z - l)j_la 7’7] = ]-72a T ,D, (416)

where D equals to Ny when D is used to determine Qn, x, and Np to determine
Qng iy Consider first the construction of Qpy g, -+ In order to satisfy the unitary
property, by applying QR.decomposition, we can obtain the orthonormal polynomial
basis matrix Q, i.e., Di= QR. Then, we can choose the first K; columns of Q to
be the predefined matrices Qn, x;-where modelling order K7 can be determined by
Akaike information criterion (AIC) or minimum-description length (MDL) approach
[33]. QN Ky is obtained analogously.

Due to the property that co-located dual-polarized antennas experience the same
spatial characteristics, we are able'to reduce the degree of this basis matrix D to half of

the original DPSC MIMO channel model is thus. modified to
He = (Quay, ©1)CQY, , @ T), (4.17)

C = CoW, (4.18)

where the depolarization effect is coupled into C and the modelling orders Kr < % and

Kr < % With predefined Q ~y K and Q ~p Kp? identification of the unknown channel
KR 3

H, is equivalent to the estimation of é, which usually has fewer unknowns than those

of H,.
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4.3 Time-Varying DPSC Channel Estimation

Let Xp(k) be Ny x B, a full-rank pilot matrix used to estimate time-varying DPSC

channel H,. The received signal can be expressed as

Yo(k) = H()Xp(k) +Zp(k) (4.19)

= (Qup g, @TICH(QY, S T)Xp(h) + Zp(R).

where Q~y K Qg Kn and X p(k) are known to the receivers. By a property of vector
2 b 2 b L

operation, we have
vec(ABC) = (CT @ A)wec(B). (4.20)
Due to the fact that (4.20),

vee(Yp(k)) = [(Xp (k)X Qupamr ©13)) @ (Qu 2, ® I)] vec(C(k)) (4.21)

+vec(Zp(k)),
the LS estimate of C(k) can be obtained as
vee(C(k)) = (VIV) SV vee(Y p(k)), (4.22)

where V & (Xp(k:)H(QNT/ZKT ® Ig)) ® (Qup/2.xn 1)

Note that the decision-directed channel estimation technique proposed in Chapter
3 can also be utilized here by substituting Xp(k) in (4.22) by X(k)[0(k):1,--- , B](k).
The detection algorithms for SM in dual-polarized channel are discussed in the next

subsection.

4.4 Data Detection in SM-DPSC Channels

When co-located dual-polarized in the SM system, information is conveyed by the
index of the transmit antenna pair and the specific polarization in that pair used and

the symbol transmitted. Hence, m = log,(NrM) bits are transmitted in each channel
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use. The receiver’s task thus contains the used transmit antenna and polarization index
estimation and transmitted symbol detection. The system model is depicted in Figure
4.3. A mapping rule for this SM system with two dual-polarized antenna pairs in both
the transmitter and receiver and BPSK or QPSK modulated symbols is suggested in
Table 4.1

Ant. 1 VP- Ant. 1

Transmitter I I Receiver
I HP- Ant. 1 HP- Ant. 1 I

— sMm H Detection > SMD |—>

[ Polar. Est. I Ant. Est. I Symbol Det. ]

Figure 4.3: A.dual-polarized SM_system model.

Three data detection techniques are proposed for the spatial modulated dual-polarized
MIMO system. Since we only concentrate on its data detection in this section, CSI Hy
is assumed known at the receiver and block index k is ignored. The received signal

corresponding to transmitted signal X can be represented as

Y =HX+Z (4.23)
The ML detector is simply
(24, £;) = argmin|ly; — bzl i=1,-- | B. (4.24)
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Input bits | Antenna Index | Transmit Symbol Antenna Index | Transmit Symbol
000 VP-1 +1 VP-1 +1+]
001 VP-1 -1 VP-1 -1+
010 HP-1 +1 VP-1 -1-j
011 HP-1 -1 VP-1 +1-]
100 VP-2 +1 HP-1 +1+j
101 VP-2 -1 HP-1 -1+
110 HP-2 +1 HP-1 -1-j
111 HP-2 -1 HP-1 +1-j

Table 4.1: An SM mapping table for the dual-polarized system for 3 bits/transmission

The MF-based detector for (4.24) is similar to the traditional one (2.16)-(2.21) for

(2.3) with following procedure:

~ h, h,
H = |: _ 71 7_,.’~’7]VT:| \ (425)
[ [
g = Hlyj (4.26)
{; = argmax |gy 4, (4.27)
eie{l,'--,NT}
To, = QA T )oi=1,-- B. (4.28)
||hx:ei

Prior to the introduction of the last detection method, we consider the following.

Since antenna polarization selection bares information for SM system in dual-polarized
MIMO system, we shall give a few facts. Based on the Cauchy-Schwarz inequality, for
a specific spatial channel ¢ (the ith column of H,, h;), we have the following due to the

mismatch of polarization:

|hf by < Ihf by |
il = |[hy|

= |[hv |l (4.29)

which agree with our intuition. On the other hand, for two different spatial channel
vectors, say h; and h;, the correlation between their portions corresponding to the same

polarization outweighs that corresponding to different polarizations, i.e.,

i h;g|  |[hi byl
Il = |yl

< [[hyv |- (4.30)
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This is because of the inability of a polarized antenna to receive signal of other polar-
izations. In this way, the (horizontal) polarization of a signal passing through h;y can
be effective estimated prior to the antenna and symbol detection.

As a result, the polarization used can be detected before ML detection of antenna
pair index and symbol. This suboptimal method effectively lower the complexity of
detection algorithm with some performance loss. Specifically, first calculate (4.24) and
find the MF output of vertical or horizontal polarized transmit antenna of each transmit
antenna pair,

Nt

2
np = [y ny| = Z argmax - by - np1 +hiy - nps (4.31)
i=1 nPG{[1a0]7[071]}
where np is the indicator vector whose position of value 1 represents the detected po-
larization in a specific transmit antenna pair and ny and 7 count the total number

of detected polarization used in all-transmit antenna pairs. Based on the majority vote

algorithm, the used polarization of the transmit antenna is decided via

~

P —=arg max. {nv nu} (4.32)

Based on the result, the ML detector of the antenna pair used and symbol transmitted

only needs to search over the specifie P—polarized channel vectors,

(2;,0;) = arg min |ly;(k) — hyeg |, i=1,...,B. (4.33)

;i l;=1P
This detection method reserves the high detection performance of the ML detector but
needs only about half of the complexity required by the latter. As will be shown later,

it outperform the MF-based detector.

4.5 Simulation Results

In this section, we investigate the performance of SM scheme using dual-polarized

antenna. For simplicity and the measurement results in [19], we concentrate on the effect
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of XPR and CPR. The values of ;1 and x are set to 0.7 and 0.1 for all the simulation
results except for Figure 4.8 and Figure 4.9, and the parameters of polarized correlation
are set to zero. First, the BER performance of 2 x 2 SM comparing to 4 x 4 SM using
dual-polarized antenna is given in Figure 4.4 where MF-based detector is used and CSI
is assumed known to receiver. We can see from the result that the use of dual-polarized
antennas can give the polarization diversity gain.

10 : : ‘
— % — SM-BPSK
~ © — SM-16 QAM

—— DPSM-BPSK
—©OS— DPSM-16 QAM

BER

10_ i i i i i i i i

Figure 4.4: Comparison of BER performance for-SNM-under conventional MIMO channel
and dual-polarized MIMO channel.

We also give a BER performance comparison between SM and V-BLAST and space
time code based on Alamouti[4] under dual-polarized channel in Figure 4.5. Based on
the same spectral efficiency which is 8 bits/transmission, SM outperforms V-BLAST
and Alamouti scheme. V-BLAST in this simulation result uses QR-based detector and
Alamouti and SM scheme use ML detector.

Then the normalized mean square error of dual-polarized spatial correlated channel

estimation method is shown in Figure 4.6. In this figure, we use the 3GPP SCM model
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I 3
—6— V-BLAST 16-QAM 4x2|
—<— Alamouti 256QAM 4x2 (]
—>— SM 32 QAM 4x8

BER

107° I I I I

Figure 4.5: Comparison of BER performance for SMrand VBLAST and Alamouti scheme
under dual-polarized channel for 8 bits/transmission.

to generate the co-located dual-polarized spatial correlated channel. Two channels with
different angle spread:(AS) 2 and 15 with mobile velocity 60 km/hr are adopted in
the simulation result:”The number of transmit and receive antennas setting to 8, we
compare the NMSE performarnce of conventional- MIMO channel estimation methods
and modified dual-polarized channel estimation method: It ¢an be seen from this figure
that dual-polarized spatial correlated. channel estimation method only use half of the
basis to achieve the same estimation performance with conventional method.

The BER performance of proposed detectors for SM in dual-polarized system is
shown in Figure 4.7. We consider a 4 x 4 MIMO channel using dual-polarized antennas,
and QPSK modulated signals. From the result, ML detector performs the best of three
detectors and the low-complexity sub-optimal detector outperforms MF-based detector
where we assume CSI is known to receiver in this simulation result. We also investigate
the influence on the three detectors of depolarization effect caused by propagation chan-
nel. From Figure 4.8, fixed parameter y to 0.5, when the value y is too small, all the three

detectors can not have adequate performance because the horizontal-polarized channel
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NMSE
=
[S)

—#— KT=8, KR=8,AS=15
KT=4, KR=4, AS=15 (DP)
102H —e— KT=7, KR=8, AS=15
—5— KT=6, KR=8, AS=15

— © — KT=8, KR=8, AS=2
— B8 —KT=7, KR=8, AS=2
— + — KT=6, KR=8, AS=2 L
KT=4, KR=4, AS=2 (DP)
10‘3 I I i I i
0 5 10 15 20 25 30
Eb/NO

Figure 4.6: NMSE comparison of channel estimation for dual-pelarized spatial-correlated
MIMO channel with different modelling order,”AS=2 and 15.

is too small than vertical and thus cause the signals transmit by horizontal-polarized
antenna cannot be successfully detected:” The effect of y which denotes the inverse of
XPR value with fixed .= 0.5 on the detectors’s performanceis given in Figure 4.9. The
result shows that when the value of x is too large which'means that cross interference
between polarization is large, the perfermance of the MF-based and the suboptimal
detector degrade since the large x value can make the channel vector of vertical- and
horizontal-polarized transmit antenna become similar thus the value of MF output of
both the vertical and horizontal polarized antenna are approximately equal. Therefore,
the MF-based and suboptimal detectors cannot detect the polarization correctly.

The following part, we give the simulation result of different time-varying channel
estimation methods in DPSC channel where ¢ and r are assumed to be 0.3, and three
detectors are investigated. In Figure 4.10-4.15, the BER and NMSE performance of

decision-directed channel estimation method based on MF-based, suboptimal and ML
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14 16 18

based detector, suboptimal



[ —¢— MF-based Deteector|
| —— Sub-ML Detector |
—©6— ML Detector

BER

4 i i i i

10

Figure 4.9: The effect of different chi (inverse of XPR) value with different detectors on
BER performance.
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Figure 4.11: NMSE performance of decision-directed channel estimation method with

MF-based detector in DPSC channel under different mobile velocity.
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Figure 4.12: BER performance of decision-directed channel estimation method with low
complexity ML detector in DPSC channel under different mobile velocity.
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Figure 4.13: NMSE performance of decision-directed channel estimation method with
low complexity ML detector in DPSC channel under different mobile velocity.
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Figure 4.15: NMSE performance of decision-directed channel estimation method with
ML detector in DPSC channel under different mobile velocity.
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Chapter 5

Space-Time Block-Coded Spatial
Modulation (STBC-SM) System

5.1 STBC-SM System

Conventional space-time block-codes (STBCs) offer an excellent way to exploit
the potential of MIMO systems because of theimprovement of transmission reliabil-
ity, obtaining both diversity and coding gain. Redundant copies of the data stream
transmitted through multiple transmit antennas via STBC./As a result, different copies
of the data are received and hence can provide the mere reliable information. More-
over, STBC schemes are simple to implement-and decode. However, the symbol rate of
unitary STBCs is upper-bounded by 1 symbol per channel use. Therefore, space-time
block-coded SM (STBC-SM) system is introduced to improve the spectral efficiency of
conventional STBCs [28].

In the STBC-SM scheme, both STBC symbols and the indices of the transmit an-
tennas by which these symbols are transmitted carry information. The famous STBC
proposed by Alamouti [4] suggests that the system transmits two symbols, drawn from
the constellation, by the two transmit antennas respectively at a time. During the first
time slot, the symbols x; and x5 are simultaneously transmitted by the first and second

transmit antennas, respectively, then, in the next time slot, —z3 and 2] are transmitted
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by the respective transmit antennas. In other words, the codeword is given by

*

X = [x; %] = [xl % ] . (5.1)

The above Alamouti codeword matrix is extended to the antenna domain for the STBC-
SM system where the selection of two out of N antennas to transmit the two symbols
introduce additional carried information. The spectral efficiency is shown to be superior
to the conventional STBC or SM system in [28]. We first give an example of STBC-SM
systems in the following [28].

Consider a MIMO system with four transmit antennas (Np = 4), a STBC code € is

designed to be of the following form:

T T
. o r1 X2 0 0 0 0 T 1))
&1 = {Xy1, X2} = {{ —xy 00 } ’ { 0 0 =25 =] } } ’

T T
& = {Xo1, Xas} = {[ 8 €1 X2 8 } ’ { 0D 8 8 T } }eje. (5.2)

—z5 I3 T —T5
where the codebooks £; and &, contains two codewords X,;;, j = 1,2 that do not interfere
with each other. A codebook is constructed by grouping a codewords satisfying Xg Xk =
O2x2, j, k =1,2, j # k,.and @ is a rotation angle to be optimized for a given modulation
scheme. With this STBC<SM.cedebook design, coding gain and diversity gain of the
scheme can be maximized. A ‘mapping rule of this example with BPSK modulation
symbols is given in Table 5.1.

When there are more than two codebooks, multiple rotation angles shall be imple-
mented. The optimization of these rotation angles in the STBS-SM system is done by
maximizing the minimum distance in the code. For detail, see [28].

Noted that the number of transmit antennas in the STBC-SM scheme needs not be
an integer power of 2 as is restricted in SM scheme and thus provides design flexibility.
A design procedure to generalize STBC-SM system to Np antennas is given in the

following:
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Table 5.1: STBC-SM mapping table for 2 bits/transmission

Antenna | Input Transmit Antenna | Input Transmit
Position Bits Matrix Position Bits Matrix
0000 | r11007" 1000 [0 1 10]T o0
~-1100 0-110
0001 | r1-10 O]T 1001 [0 1-1 O]T jo
’ 1100 ’ 0110
1 3
0010 [—1 1 00 1010 fro—1 1 O]T jo
~1-100 0-1-10
0011 [_1 _10017 1011 | r0—1 -1 O]T 0
e 1 -100 ‘ 01 -10
1 2
0100 [oo 117" 1100 [1 00 1 ]T jo
00-11 100-1
0101 [00 1-17" 1401 [—1 00 1]T j6
’ 001 1 . 1001
2 4
011g [00—1 f 2\ ! 00—1]Te,-0
00-1—1 ~100-1
0111 1 ro0-1-17" 1118 = 100 — 1] 26
001-1 =100 1

Step 1: Find the number of possible combinations of two out of N transmit anten-
nas. This number ¢ = L(A;T)ng, where 1 is a positive integer, should be a power of 2 to
carry information bits by antenna selection.

Step 2: To make codewords in i codebook do not interfere with each other, their
nonzero rows have to be nonoverlapping. Therefore, we can calculate the number of
codewords in a codebook and total number of codebooks to be a = [%] and n = [£],
respectively.

Step 3: Construct the STBC-SM codewords starting from &; which contains a non-

interfering codewords as

& = {[X 02y (np—2)]", [0202 X Ogs(vp—ny]”s+ , [Oaxaga1) X Oy (np—20)]" } (5.3)
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where X is defined as (5.1). The other codebooks, &;, 2 < i < n, are created sequentially
in a similar manner, where every codebook &; should contain non-interfering codewords
of different transmit antenna combinations and must be composed of codewords that
were never used in the previous codebooks §;, j <.

Step 4: Determine the optimal 6; of each codebook &; by maximizing the minimum
distance where i = 1,--- ,n. Code & = {&1,&, -+ ,n} is determined.

Since there are ¢ antenna combinations, the spectral efficiency of STBC-SM is
1 .
m=g log, ¢ + log, M |bits/s/Hz], (5.4)

where the factor % is due to the normalization by the block size B = 2. With codeword

X¢(k) drawn from this determined €ode, the received signal at time k can be denoted as
V(i = EL(R)Xe (k) + Z0k). (5.5)

where X¢(k) is an Ngp % 2.STBC-SM codeword matrix. While.the conventional ML

detector needs an exhaustive search over-¢M? metrices, i.e.,
X¢ (k)= aig - 1 8E FL(R) XS (5.6)
€

the unitary property of Alamouti code suggests a simpler ML detector. Specifically, the

received signal can be replaced by a 2Ngp X 1 vector [4]

y(6) = Hell) | 210 | +ath (5.7

where H¢(k) is the 2Nk X 2 equivalent channel matrix corresponding to the different

realizations of STBC-SM codewords. In the case of Ny = 4, there are ¢ = 4 possible
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realizations for He,

hy 1 hio | [ hi3 hi4
12 —hiy 14 —his
He = : : ;o Hey = : : : (5.8)
hngi  hige hngs  hiNga
L h}kVsz _h}kVRJ i | 7VR,4 - 7VR,3 |
[ hy 290 hy 30 | [ hi ap hia |
hisp  —hisp hire  —hisp
Hey = : : CHe = : :
hNR,2<P hNR,?,SO hNR,4 hNR,1
*NR73('0 B *NR72¢ i | }kVR,lQO _h}kVRAQO ]

where ¢ = ¢ and time index k is neglected for the moment. The ML detector (5.9)
can be simplified and decouplediinto two independent ML symbol detectors due to the
column-orthogonality in every Hy,, i.e,

(@i,ij,gi(k)) = arg-min ||y (k).— hgi,j(k)xsz, j=1,2. (5.9)

5.2 Differential STBC-SM Scheme

Differential space-time modulation (DSTM) has received much attention recent by,
since it not only avoids MIMO channel estimation but also.can achieve considerably
high spatial diversity gain. In order.to realize DSTM, the data information needs to be
first encoded into differential space-time block codes (DSTBCs). In general, DSTBC is
designed to be unitary to simplify the transceiver [34].

In the thesis, we propose a differential STBC-SM system which dose not need CSI
knowledge at the receiver and thus outperforms STBC-SM in the presence of channel
estimation error. With the need that the DSTBCs should be unitary, it necessitates us
to modify the non-unitary Alamouti code-based STBC-SM codewords introduced in the
previous section.

Due to the fact that for an Np-transmit-antenna STBC-SM system, only two transmit

antennas are selected to transmit symbols and the rest of the antennas are inactive, we
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let the number of transmit antennas be even 2 and extend the STBC-SM codeword

matrix to Ny x Np with a procedure given later. We recall the Ny = 4 case as an

example, the STBC-SM codeword

Xe =

{ to 2z 0 Or (5.10)

—x5 7 0 0
can be extended to an unitary matrix by extending the block size B = 4 and letting

the unused antennas to transmit additional symbols in time instants 3 and 4. The

corresponding DSTBC codeword matrix becomes

1 To 0 0
—25 @]~ .0 0

Xp = 000 e | (5.11)
0 0 -z a3

Similar procedures generalized to other value of Ny is depicted as follows:

Step 1: Each codeword designed-for the Ny-transmit antenna STBC-SM system is
taken as the first two.columns of a DSTBC codeword matrix.

Step 2: To achieve the unitary property, the available transmit antennas at the
third and fourth time-cannot include the transmit antennas used in the previous tow
instants. Therefore, the'third and fourth columns (negleting the rows in which the first
two columns have nonzero elements) are designed to be the codewords of (Np — 2)-
antenna STBC-SM system.

Step 3: Similar process is done to the fifth and sixth columns and the remaining

columns by neglecting the occupied rows by the previous steps until all columns are

considered.

Nr —2(k—1)
2

k, the spectral efficiency of the proposed DSTBC-SM system is

Since we produce ¢, = {( )J possible combinations at each step
2’L

1
m = N—(log2 c1 + logy co + - - - + logy eny ) + logy M [bits/s/Hz| (5.12)
T 2

which is smaller than that of STBC-SM system (5.9).
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Let each symbol z; be taken from a unimodular € &p constellation with energy E,

(e.g. M-PSK, M-QAM, etc). For each codeword Xp, it satisfies

XpXE =2E,1Ix,, (5.13)

Np
where £p is the code constructed via the procedure and is of cardinality [[,2, cx. An

identity matrix which dose not contain any information is sent to initialize the trans-
mission, i.e, Vp(0) = Iy,. By mapping information bits to a DSTBC-SM codeword,

the differential encoded codeword matrix of the kth block becomes
Vp(k) =Vp(k—1)Xp, k>2 (5.14)

where

1
V2E,

denotes the normalized ¥ersion of V5 (k— 1) to ensure constant transmission power, i.e.,

Vpk=1) = Vith< 1) (5.15)
V(k = 1)VE(k—1)=1y,.
As a result, the received signals at (k — 1)-‘and kth block are respectively
Y(k—1) = HE-A)Vp(k—1)+ Z(k— 1), (5.16)
Y (k) = H(k)Vpk)+2Z(k). (5.17)
For slow time-varying channel, the channel matrices at two consecutive block times are

similar, hence H(k — 1) =2 H(k). The optimal non-coherent detector can be

A . 1
XD(]{:) = arg XrggngHY(k) - \/m

In addition, due to the unitary structure of Alamouti code, the transmit data symbols can

Y (k—1)Xp|? (5.18)

be estimated individually via the similar approach discussed in (5.8)—(5.7). Therefore,

the complexity of the optimal non-coherent detector is further reduced.

5.3 Simulation Results

The performances of the proposed DSTBC-SM are given in this section. In Figure
5.1, we compare the performance of STBC-SM and DSTBC-SM. The transmit and
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receive antennas are set to 4, and the slow-tim varying channel is generated by Jake’s
model the same as in previous Chapters. The performance of DSTBC-SM with QPSK
modulation under the mobile velocity of 40 km/hr outperforms STBC-SM with LS
channel estimation error due to the fact that the differential design dose not need CSI
at the receiver and can thus avoid the estimation error effect. We also investigate the
DSTBC-SM performance under different mobile velocity in Figure 5.2, and it can be

seen that the performance degrades with higher mobile velocity.

—6&— DSTBC-SM
—»— STBC-SM (CE)
8 —<— STBC-SM (Perfect)| |

BER

Figure 5.1: Comparison of BER performance for STBC-SM with perfect CSI, DSTBC-
SM and STBC-SM with channel estimation error.
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Figure 5.2: BER performance o
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Chapter 6

Conclusion

Several issues associated with SM systems are investigated in this thesis. We first
propose two channel estimators for time-varying SM channels. The decision-directed
estimator gives good error-rate performance when SNR/ is. not too high but exhibits
error floor in high SNR.regime. To.overcome the error propagation effect, we propose
a superimposed pilot-aided estimator which not only outperforms the decision-directed
method but reduce the pilot overhead.

New SM schemes for dual-polarized antenna arrays are then presented, along with a
modified channel estimator which takes into-account the spatial correlations. The corre-
sponding signal mapping and ME-based and ML detection techniques are proposed. We
also suggest a suboptimal low-complexity detector which achieves near-ML performance.

Looking into the depolarization effect on the performance of these detectors, we find
that considerable performance degradation incurs when the CPR value is small. On the
other hand, large XPR values cause performance loss on the MF-based and suboptimal
detectors but have little or no influence on the ML detector’s performance.

We also propose a differential STBC-SM scheme to relieve the burden of channel
estimation requirement. The simulation result shows that it performs well in slow time-
varying environments and outperforms the conventional STBC-SM with imperfect CSI
knowledge.

Detailed studies on the feasibilities of various SM systems, including cost, complexity
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and implementation losses have to be performed before the SM technology becomes a
realistic design option. As has been mentioned, the spatial channels have to be dissimilar
to a certain extent for the receiver to resolve the transmit antenna indices. We think
there must be ways to make the equivalent MIMO subchannels as dissimilar as possible
by proper signal design.

Finally, we notice that the SM scheme has recently been applied for high speed LED
(array) communications where optical on-off keying is used. To enhance the throughput
of such optical communication systems, higher-order modulations like PPM or PAM
can be employed. In an indoor environment where multiple optical sources coexist, opti-
cal interference must be considered and the associated interference-insensitive detection

scheme has to be developed«f LED communicationsystems are to become practical.
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Appendix A

In order to find a set of basis for the null space matrix that can be used to separate
superimposed pilots from data matrix, the choices of basis need to be satisfy a specific
form. Since each column of the data matrix X(k) only has one nonzero element, it is
not complicated to find the basis ofiits null space: We give the algorithm to solve this
issue as follows.

Let one data matrix. X of size Ny X B be

11 Tyo2 v TiB
T2.1 Loo T2 B

X = : . . (1)
INpd «INg2 ' INp,B

, and define the B X' M matrix N, which consists of the null space basis of X and
M = Nullity(X),

Nye11 Nz12 - Mgl
Ng21  Ng22 22, M
NzB1 MNzB2 " NzBM
These two matrices satisfy the condition that XN, = 0. This is equal to solve a

homogeneous system of linear equations:
Ng1jTi1 + Na2jTio + -+ Ngpxip =0, j=1,--- M (3)

where the bases are found by the rows of matrix X whose nonzero elements are larger
than one. For each equation, we set the second variable with nonzero coefficient to 1 and
solve the value of the first variable by setting other variables to zero and thus we can

get one basis of the null space. Then the second variable with nonzero coefficient is set
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to 0 and the third nonzero coefficient is set to 1 and solve the value of the first variable
to get another basis. The rest can be done by the same manner until all coefficients are
solved in one equation. By this way, we can get M basis of the null space for matrix X
to form N,.

For example, when a 4 x 4 BPSK data matrix is used,

-1

oS O O
S O O
o O = O

—~~

W~

N~—

the corresponding N, is
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