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中文摘要 

立體視差估計演算法被廣泛的利用在許多實際應用層面，像是 3D 視訊會議

和多視角立體電視等。在一個典型的地區式視差估計演算法當中，通常會使用一

個固定的視窗大小來聚合視差匹配的代價。然而，越大的視窗大小雖然能提升在

低紋理區塊的表現，卻也同時讓視差的邊界被模糊化。 

 在本篇論文中，我們提出了一個可變動的視窗大小，先利用顏色資訊把圖片

連結或切割成多個區塊，再利用區塊的資訊來決定視窗的大小，同時在最後的優

化步驟，這些資訊也能用在一個十字區域式表決機制。另外，為了讓計算結果的

品質更加提升，我們更結合了微型普查(mini-census)和顏色差距的比對方式。

從實驗結果顯示，我們的方法能夠有效提升原本方法的效能，而且經由

Middlebury 網站的評估，我們的方法是目前的地區式演算法當中名列前茅的。 

 

關鍵字：視差估計、可變動視窗大小、區塊分割 
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ABSTRACT 

Stereo matching algorithm has been widely adopted by various stereo vision 

applications such as 3D video conference and free viewpoint TV. In the typical local 

methods for stereo matching, a fixed support window size is often adopted in cost 

aggregation step. Larger supporting window can improve the stereo matching 

performance at low texture regions. However, it is blurred near depth discontinuities. 

In this paper, we propose a variable window size selection strategy before cost 

aggregation step. The strategy determines the support window by utilizing the 

segment information derived from a color based segmentation method. This 

information is also used for region-based cross voting scheme in refinement step. 

Moreover, a combined matching cost measure with mini-census and color difference 

is proposed. Experimental results show that the proposed method effectively improves 

the performance of original method. According the performance evaluation at the 

Middlebury website, the proposed method is one of the current state-of-the-art local 

methods. 

 

Index Terms-- Stereo matching、Variable support window、image segmentation 
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Chapter 1 Introduction 

Stereo matching is one of the most actively studied topics in computer vision. 

The issue is to estimate the disparity map from a pair of rectified images of the same 

scene taken from different viewpoints. The disparity of a pixel is the displacement 

vector between corresponding pixels which horizontally shift from the left image to 

the right image. The process of finding the disparity is referred as stereo matching or 

disparity estimation. In recent years, a large number of algorithms have been 

proposed to solve the problem. The stereo matching algorithm has been widely 

adopted by applications such as 3D video conference and free viewpoint TV [1]. It 

will continue to be an attractive topic with the development of 3D video market in the 

next few years. 

According to the work published by Scharstein and Szeliski [2], a stereo 

matching algorithm generally consists of the following four steps: matching cost 

computation, cost (support) aggregation, disparity computation and disparity 

refinement. Figure 1-1 depicts the flow of a stereo matching algorithm. 

 
Figure 1-1 A general flow of stereo matching algorithm. 

Matching cost 
computation 

Cost 
aggregation 

Disparity 
computation 

Disparity 
refinement 
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 The first step computes the initial matching costs of all disparity candidates for 

each pixel by the cost measure, such as absolute difference (AD), gradient-based 

measures, and non-parametric transforms like rank and census [3]. Among these 

measures, the AD cost is the most commonly used for many stereo matching methods 

due to its simplicity. The AD cost in RGB color space of a pixel p with respect to a 

disparity d can be defined as: 

𝐶  (𝑝, 𝑑) =  
 

 
∑ |𝐼 

 (𝑝) − 𝐼 
 (𝑞)|  { , , }  

Where IL and IR represent the left and right images. The AD cost evaluating the 

matching penalty seems intuitive; however, it has poor quality for global radiometric 

changes. In a recent experiment by Hirschmϋller and Scharstein [4], the census 

transform performs the best overall results in stereo matching methods, since the 

match metrics compare the relative orderings instead of the intensity of the pixels. 

Second, the cost aggregation step gathers the costs in a support window which is 

usually a square window. A simple hypothesis of the cost aggregation is that 

surrounding pixels with similar colors should be greatly correlated to the center pixel. 

An aggregated cost of pixel p can be calculated by the following function:  

𝐶𝑎𝑔𝑔(𝑝, 𝑑) =
∑ 𝑐𝑜𝑠𝑡(𝑖, 𝑑)  𝑊𝐿

× 𝑤(𝑝, 𝑖) 

∑ 𝑤(𝑝, 𝑖)  𝑊𝐿

 

Where cost(i) means the initial matching cost obtained from the previous step. In 

addition, w(p, i) represents the related weight between the pixel p and its neighbors i 

(1) 

(2) 
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in current support windowWL. A simple schematic diagram of cost aggregation is 

depicted in Figure 1-2. The cost aggregation reduces the matching ambiguities and 

noise in the initial cost volume due to lack of more information. 

 

Figure 1-2 A cost aggregation in pixel p with its neighbors i 

With the aggregated costs, the disparity map can be simply computed by the 

winner-take-all (WTA) process, which is to select the disparity candidate with the 

minimal aggregated cost. The WTA method can be expressed as 

D(p) = argmin
d

Cagg(p, d) 

, where d  is the disparity candidate over a disparity search range. Another 

optimization method such as graph-cut is introduced by Boykov et al. in [5]. 

 Finally, the disparity refinement step further refines the disparity by correcting 

the error caused by the outlier pixels or image noise. A simple refinement tool is a 3x3 

median filter. Figure 1-3 represents how a median filter works. In addition, left-right 

consistency check [6] is an effective refinement technique to deal with the occluded 

region. We will introduce it later in 3.7.1. 

(3) 
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Figure 1-3 A 3x3 median filter 

With the above steps, the disparity estimation algorithms can be roughly 

classified into two types: local algorithms and global algorithms. Local methods focus 

on the matching cost computation step and the cost aggregation step. Instead, global 

methods emphasize on the disparity computation step. 

 Local algorithms estimate the disparity of each pixel independently within a 

support window. The matching costs are aggregated over the window, after that, the 

disparity candidate with the minimal cost is simply selected for the pixel by the WTA 

rule. The local algorithms have low computation complexity and storage requirement, 

so they are generally adopted by real-time applications. Recent research has proved 

that a well-selected support window can give a quality result. The local approach with 

the adaptive support weight (ADSW) is proposed by Yoon et al. [7] , which can 

achieve the goal to apply a support window of arbitrary shape. Therefore, the ADSW 

can have the comparable result approaching to the global method with considerable 

execution time. Later, Tombari et al. proposed a segment-based support method [8] to 

assign different weights to the pixels in a support window by based on the 
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segmentation information. Recently, the mini-census adaptive support weight 

approach (MCADSW) [9] is accomplished to have lower complexity and more 

capability of handling brightness bias problems than the original ADSW. 

  On the other hand, the cost aggregation step is simple in global algorithms. 

Instead, the emphasis is on the disparity computation step. Global approaches 

formulate the stereo matching problem as the objective energy function and 

minimize it to determine the disparity map. The energy functions often include data 

term and a neighboring term. Some efficient optimizers like graph-cut [5] and belief 

propagation are employed to minimize the energy function. A cooperative 

optimization based on region segment proposed by Wang and Zheng [10] is the 

state-of-art of global approach according to the Middlebury evaluation [11]. This 

algorithm uses regions as matching objects and defines the corresponding energy 

function with the constraints on data term, smoothness, and occlusion. Consequently, 

global methods produce more accurate results than common local methods, but they 

suffer from high computational complexity and can hardly be used in real-time 

implementation. 

  The proposed algorithm in this thesis is focused on local algorithms. We 

modified the MCADSW [9] algorithm by adopting a robust matching cost measure 

and utilizing the segment information to determine variable support size for cost 
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aggregation. Moreover, the region information can also be used in our region-based 

cross voting scheme to improve the quality of the disparity refinement result. 

  The rest of this thesis is organized as follows. Section 2 introduced the details of 

the related works about local stereo matching methods. Section 3 describes our 

motivation and the proposed algorithm step by step. The experimental results are 

presented in section 4. Finally, section 5 concludes this thesis.
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Chapter 2 Related Work 

2.1   Adaptive Support Weight Approach 

Yoon proposed the concept of adaptive support weight (ADSW) [7] that assigned 

different weights to the neighboring pixels in a support window. Two main grouping 

concepts in support-weights generation are proximity and similarity. The former is 

related to the spatial distance between surrounding pixels, and the latter is related to 

the color distance of two pixels. Based on above principles, the weight function in the 

cost aggregation equation (2) can be defined as 

w(p, i) = exp (−(
ds(p,i)

λs
+

dc(p,i)

λc
)) 

,where ds and dc are the Euclidean distance respectively the distance between two 

coordinates and the distance in CLELAB color space. λs and λs are two constants. 

The cost aggregation strategy in ADSW is symmetrical, and the support weights in 

both left and right image are generated and taken into account.  

 
Figure 2-1 A symmetrical cost aggregation 

 

(4) 
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Figure 2-1 describes the symmetrical cost aggregation diagram. Let p and q be 

respectively the center pixels in the current support window WL in the left image and 

the support window WR in the right image. Then, the cost aggregation is rewritten as 

following 

𝐶𝑎𝑔𝑔(𝑝, 𝑑) =
∑ 𝑇  ( ,𝑗)𝑖 𝑊𝐿,𝑗 𝑊𝑅

×𝑤(𝑝, )×𝑤(q,j) 

∑ 𝑤(𝑝, )𝑖 𝑊𝐿,𝑗 𝑊𝑅
×𝑤(𝑞,𝑗)

 

For any point i  WLcorresponding to j  WR, the matching cost is computed by 

using the Truncated Absolute Difference (TAD), which can be expressed as 

𝑇𝐴𝐷(𝑖, 𝑗) = min { ∑ |𝐼 
 (𝑖) − 𝐼 

 (𝑗)|

  { , , }

, 𝑇} 

,where T is the truncation threshold parameter to reject outliers. After the dissimilarity 

computation, the disparity map is computed by Winner-Takes-All (WTA) strategy. 

The adaptive support weight gives an excellent performance in low-textured area and 

near depth discontinuities. And the disparities in occluded regions can be corrected by 

the left-right consistency check. 

2.2   Segmentation-Based Adaptive Support Weight 

 In [8], Tombari et al. analysis the result obtained by the ADSW method. There 

are some drawbacks in high-textured surfaces and repetitive patterns, since the 

amount of aggregated support in ADSW may be insufficient in these regions. This is 

because the use of spatial distance would determine the wrong support. 

(5) 

(6) 
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 The basic idea of segmentation-based adaptive support is to embody the concept 

of color similarity as well as segmentation information to improve the capability of 

the support window. The proximity term has been eliminated from the support weight 

computation. Instead, it is assumed that the disparity of each pixel has a similar value 

in the same segment which can be obtained from a segmentation process, such as 

Mean-Shift algorithm [12]. Hence, a novel weight function is proposed as follows: 

𝑤(𝑝, 𝑖) =  {

1.0

exp (−
𝑑𝑐(𝑝, 𝑖)

𝜆𝑐
)
       

𝑖  𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑝)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The weight has to be the maximum value if the pixel i lying on the same segment of 

the central pixel p, otherwise, it is computed based on color similarity. The 

Segment-support method provides notable improvements rather than only relying 

blindly on spatial proximity and color similarity. 

 

Figure 2-2 A example for the segmentation-based adaptive weight generation 

2.3   Mini-Census Adaptive Support Weight 

 The mini-census adaptive support weight method (MCADSW) [9] is an effective 

algorithm modified from the ADSW method, and the former one has much lower 

(7) 
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complexity and more capability of dealing with brightness problem. The MCADSW 

adopted the mini-census transform to improve the robustness to radiometric distortion. 

Because mini-census cost measure has only relative information, a 

scale-and-truncated approximation of the weight function is proposed. In addition, the 

two-pass approach not only reduces computation complexity but also derives good 

performance in low-texture areas. 

 

Figure 2-3 The mini-census transform and matching introduced in [9] 

2.3.1 Mini-Census Transform and Matching 

 The concept of original census transform [3] is to obtain relative information 

instead of the intensity itself. The intensity used to compare is first transformed into 

Y color space. If a pixel’s intensity is larger than the center pixel’s intensity, it is 

transformed into the label 0, otherwise the label 1. The mini-census transform 
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compares the intensity of the 6 significant pixels with the center pixel. After the 

transformation, each pixel can be represented as a 6-bit binary bitstream. The 

mini-census cost between the corresponding pixels is taken as the hamming distance 

between two mini-census bitstreams, which is defines as 

𝐶 𝑐(𝑝, 𝑑) =   𝑚(  (𝑝),   (𝑝 − 𝑑)) 

,where 𝐶 𝑐 represents the mini-census cost of pixel p with the disparity level d. 

Ham() is the hamming distance function.   (𝑝) and   (𝑝 − 𝑑) are referred as the 

bitstream of current pixel in the left image and the bistream of corresponding pixel in 

the right image, respectively. An example of the mini-census transform and matching 

introduced in [9] is shown in Figure 2-3. The mini-census cost performs better 

disparity result in occluded area than the traditional SAD does. 

2.3.2 Weight Generation  

 The weight function in the MCADSW method also eliminates the proximity 

weight. Moreover, a scale-and-quantize weight function is defined as 

𝑤(𝑝, 𝑖) = 𝑞  𝑛𝑡𝑖 𝑒 [𝑒 𝑝 (−
  (𝑝, )

  
) × 𝑠𝑐  𝑖𝑛𝑔   𝑐𝑡𝑜𝑟] 

The weight function is scaled up by 64 and quantized to leave only one nonzero most 

significant bit. The purpose of scaling the function is to increase the influence of 

neighbor pixel which has the small color distance. 

(8) 

(9) 
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2.3.3 Two-pass Cost Aggregation 

 

Figure 2-4 Two-pass cost aggregation 

The original cost aggregation (5) is divided into vertical and horizontal cost 

aggregation in a two-pass approach. First, the matching cost aggregates vertically to 

compute a vertical cost of each column, and then aggregate each cost of the column in 

the support window horizontally to compute the final aggregated cost. The equations 

are written as equations (10) and (11), and are depicted in 

Figure 2-4. 

𝐶𝑜𝑠𝑡𝑐  = ∑ 𝐶 𝑐(𝑖, 𝑑) × 𝑤(𝑖, 𝑐)

  𝑐  

 

𝐶𝑎𝑔𝑔(𝑝, 𝑑) = ∑ 𝐶𝑜𝑠𝑡𝑐  × 𝑤(𝑝, 𝑐)𝑐   𝑊𝐿
 

where 𝐶 𝑐 is the mini-census cost defined in equation (8). Notice that c represents 

(10) 

(11) 
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the center pixel which changes column by column. Consequently, the MCADSW 

method may improve the low-textured region with smoothing disparity, since the 

correlated weight of the border or corner pixels could be increased with the help of 

closer center pixel. 
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Chapter 3 Proposed Method 

3.1   Motivation 

 In [7], the adaptive support weight can achieve the effect of using  support 

window with arbitrary sharp and give a quality depth result. Later, [2] proposed a 

segment-based support weight to improve the performance. Mini-census transform in 

[3] is employed to improve the capability of handling the lighting effect. However, 

they all used a fixed support window size. According to our observation in Figure 

3-1, , it shows that the performance will not always be better while the support 

window size gets larger. This drawback is evident especially for Teddy and Cones 

sequences. The issue of support window size still remains. Moreover, the mini-census 

matching cost in [3] is much less sensitive to brightness bias, but it might cause errors 

in low textured region since it lacks of color information. 

According to the problems mentioned above, we proposed an algorithm which is 

modified from the Mini-Census Support Weight (MCADSW) [3]. In the proposed 

method, we combine the mini-census transform with the robust absolute differences 

(RAD) measure to increase the robustness of the matching process. In addition, the 

segment-based idea is inspired from [2] which apply the information obtained from 

the segmentation within the cost aggregation step. With the additional information, we 
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could determine the variable support window size instead of a fixed one. Besides, the 

segment information can also be used for disparity refinement to improve the 

performance of the final disparity result. 

 

 

Figure 3-1 The performance comparison with different window size 
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3.2   The flow of the proposed method 

 

Figure 3-2 The flow of the proposed algorithm 

 

 Figure 3-2 shows the flow of the proposed algorithm. First, we employ the 

Mean-Shift algorithm to segment the inputted stereo images into regions according to 

similar color. Second, the initial matching cost is computed by the combined matching 

cost measure. After that, the weight generation and truncation step generates the 

weight coefficients needed in the cost aggregation. Before the cost aggregation, we 

employ the segment information to determine the support window size. And then, the 

matching cost will be aggregated by a two-pass cost aggregation. Once the aggregated 

cost is computed, the disparity map can be simply computed through a winner-take-all 
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(WTA) strategy. Finally, the result can be refined by left-right check and region-based 

cross voting. 

3.3   Robust matching cost computation 

 Mini-census cost transforms the intensity of the data term into relative bitstreams. 

Hence it can tolerate outliers caused by radiometric noise. Nevertheless, it could also 

lead to matching ambiguities in the regions with repetitive pattern, while the color 

information can deal with these matching ambiguities. The idea of combining cost 

measures for improved performance of matching process is inspired from the works 

accomplished by Mei et al [13]. . They propose a combined cost measure with the AD 

and census for matching cost initialization. The benefit of the combination is 

impressive with a few additional computation time. 

Based on MCADSW [9], we tend to preserve the mini-census cost measure Cmc 

and combine with the color constraint. However, the origin AD cost range [0,255] is 

much bigger than the mini-census cost range [0,6], so the combination cost might be 

biased to the AD cost. Therefore, a robust function R is adopted for the AD measure 

which maps the cost value range from [0,255] to [0,1]. It is defined as 

R(CAD, λAD) = 1 − exp (−
CAD
λAD

) 

,where CAD is the traditional AD cost described as equation (1), and 𝜆   is allowed 

to control the influence of outliers. Given a pixel p with respect to a disparity level d, 

(12) 
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the proposed robust matching cost can be calculated as follows: 

𝐶  𝑏𝑢𝑠𝑡(𝑝, 𝑑) = 𝐶 𝑐 + 𝜆 × 𝑅(𝐶  , 𝜆  ) 

,where 𝜆  is a tuning constant to control the influence between color similarity and 

the relative information. 

3.4   Weight generation and truncation 

 We exploit the weight function of the MCADSW described in equation (9), In 

addition, a simple truncation is implemented to alleviate the matching error due to 

outlier pixels. We give a minimum value zero to these outliers. Hence, a modified 

weight function is proposed: 

𝑤(𝑝, 𝑖 ) =  {
0                                                                       ,  𝑖   𝑑𝑐(𝑝, 𝑖) >  𝑇𝑤

𝑞  𝑛𝑡𝑖 𝑒 [𝑒 𝑝 (−
  (𝑝, )

  
) × 𝑠𝑐  𝑖𝑛𝑔   𝑐𝑡𝑜𝑟] ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

,where 𝑇𝑤 represents the threshold to separate the outliers; the cost 𝑑𝑐(𝑝, 𝑖) is sum 

of color difference in YUV color space which is defined as 

𝑑𝑐(𝑝, 𝑖) =  ∑ |𝐼  (𝑝) − 𝐼  (𝑖)|  {𝑌,𝑈,𝑉}  

The curve of our weight function is shown in Figure 3-3. 

(13) 

(14) 

(15) 
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Figure 3-3 The curve of our proposed weight function 

 

3.5   Support window size selection 

The basic concept of the proposed method is to employ the segment information 

to change the correlation window size. From our analysis, the MCADSW method still 

suffers from some incorrect disparity estimation at occlusion, low textured, and 

repeating pattern areas. Although we can improve the matching quality by applying a 

larger supporting window, the disparity map might be blurred near the discontinuous 

area. 

3.5.1   Image segmentaion  

 The concept of the segmentation process is to cut the image into several regions 

which can enlarge the region size as big as the spatial and color is assessed. In our 

YUV color difference 

weight 



 

20 
 

approach, we adopt the Mean-Shift algorithm to process the segmentation. Two 

constant parameters σS  and σR  are referred as spatial radius and range radius 

which construct the restraint of growing the segment. And the parameter 𝐹 𝑠𝑒  

promises the minimum size of each region. Figure 3-4 shows the left image and its 

segmentation result of each of four testing stereo images available on Middlebury 

website [11], with the same parameter set: 𝜎𝑆 = 3, 𝜎 = 3, 𝐹 𝑠𝑒 = 35. 

 After the image segmentation step, the addition information of segment 

represents an intelligent proximity rather than the spatial distance, and it can be 

employed later in the support window size selection and the refinement step. 

3.5.2   Variable window size selection  

Instead of adopting a fixed support window size, the proposed method makes use 

of information obtained from the Mean-shift algorithm to determine the support 

window size. By observing the segment result shown in Figure 3-4, a large segment 

is often related to a low textured or repeating area, where the support window should 

be enlarged to obtain more support information. On the other hand, a small segment is 

usually related to a border or occluded area. The MCADSW method can achieve the 

window with arbitrary shape to deal with border area, and the occluded area can be 

refined later by the refinement step.  

 



 

21 
 

Hence, the window size selection can be expressed as: 

𝑊 =  {
𝑊𝑠 𝑎            , 𝑖  𝑁 𝑚(𝑆𝑒𝑔(𝑝)) <  𝑇𝑐 𝑢𝑛𝑡

𝑊𝑏 𝑔                                         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

  

  

 

  

Figure 3-4 The left image and the segmentation result of 4 stereo images  

(16) 
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3.6   Two-pass cost aggregation 

Once the window size is selected, the two-pass cost aggregation can be 

processed. We adopt the same aggregation direction in [9] but simply modify the 

original aggregation function (10)(11) with normalization after the cost aggregates. 

The modified functions are described as equations (17) and (18): 

𝐶𝑜𝑠𝑡𝑐   =  
∑ 𝐶𝑅𝑜𝑏𝑢𝑠𝑡( , )𝑖  𝑜𝑙 ×𝑤( ,𝑐) 

∑ 𝑤( ,𝑐)𝑖  𝑜𝑙
 

𝐶𝑎𝑔𝑔(𝑝, 𝑑) =
∑ 𝐶 𝑠𝑡 𝑜𝑙×𝑤(𝑝,𝑐) 𝑜𝑙 𝑊

∑ 𝑤(𝑝,𝑐) 𝑜𝑙 𝑊
 

3.7   Disparity refinement 

 The disparity maps computed by the above steps contain errors in the occluded 

and discontinuous regions. The results of left and right images are denoted as 𝐷  and 

𝐷 , respectively. We refine the disparity errors by several steps. First, we smoothen 

the disparity map by a 3x3 median filter to alleviate the noise. Second, we detect the 

outliers by the left-right check and then classify them into two categories. After that, 

we treat the two kinds of outliers with different refinement rules. Finally, a 

region-based cross voting refinement is performed. The first step has been introduced 

in Figure 1-3, and the other steps are introduced as following. 

  

(17) 

(18) 
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3.7.1   Left-right check and Outliers classification 

Left-right consistency check [6] is a widely used technique to detect the outliers. 

For each pixel, a following check is performed: 

𝐷 (𝑝) = 𝐷 (𝑝 − (𝐷 (𝑝), 0)) 

If a pixel can’t satisfy the check, it is considered as an outlier. And then, based on the 

method proposed by Hirschmϋller [14], we classify the outliers into “occlusion” and 

“mismatch” points. For each outlier pixel p, we perform the left-right check with all 

disparity candidates, and if no candidate could hold the check, p is an “occlusion” 

pixel, otherwise a “mismatch” pixel. 

 Figure 3-5 demonstrates the classification results of four sequence on 

Middlebury data sets compared with the occluded-region in the ground truth. If a 

pixel is labeled as “occlusion”, we depict it with black color, and a “mismatch” pixel 

is depicted with gray. The classification can effectively separate the occluded-region 

which is similar to the ground truth. 

 

(19) 
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Figure 3-5 The classification results(left) and the occluded-region in the ground 

truth(right) 

3.7.2   Outlier refinement 

The different kinds of outlier pixels require different refinement strategies.  

1) If p is a mismatch pixel, we search the most similar neighbor q from the 
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horizontal scanline w that starts from the pixel p - (N,0) to the pixel p+(N,0). 

And then we accept the disparity of q to p, which can be expressed as 

𝐷 (𝑝) =  {𝐷 (𝑞)| min
𝑞 𝑝±(𝑁,0),𝑞≠𝑝

𝐶  (𝑝, 𝑞)} 

2) If p is an occluded pixel, we first search the left and right nearest reliable 

disparity, respectively denoted as 𝑆  and 𝑆2. If only one reliable pixel is 

found, 𝐷 (𝑝) is simply replaced by 𝐷 (𝑆 ) or 𝐷 (𝑆2). Otherwise, 

𝐷 (𝑝) = min (𝐷 (𝑠 ), 𝐷 (𝑠2)) . 

3.7.3   Region-based cross voting 

 

Figure 3-6 Region-based cross voting 

In this step, we reuse the segment information to further refine the disparity map. 

For each pixel p, we build a histogram  𝑝 with DSR+1 bins for a cross voting 

scheme, where DSR represents the disparity search range. The cross voting scheme is 

depicted in Figure 3-6. We survey the neighbors both from the vertical and horizontal 

directions, and collect the disparity votes if the neighbor q is located on the same 

segment of p. After votes collection, the disparity candidate with the most votes is 

assigned to p. 
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Chapter 4 Experimental Results 

To evaluate a stereo algorithm, a benchmark is provided on Middlebury Website 

[11]. The four sequences, Tsukuba, Venus, Teddy, and Cones, are the most commonly 

used for testing performance. For each image pair three error measures are proposed: 

all image regions except for occlusions (nonocc), all regions (all), and near depth 

discontinuities (disc). The default error threshold is set to 1.0. 

In this section we present some experimental results of the proposed method. 

The parameters are kept constant for all the data sets, which are presented in Table I. 

𝜎𝑆 𝜎  𝐹 𝑠𝑒  𝜆  𝜆   𝜆𝑐 

3 3 35 2 10 15 

𝑇𝑤 𝑊𝑠 𝑎   𝑊𝑏 𝑔 𝑇𝑐 𝑢𝑛𝑡 N  

100 31x31 51x51 300 15  

Table I  Parameter settings for the Middlebury evaluation 

4.1   Evaluation of the robust matching cost measure 

First we compare the MCADSW [9] result obtained from our implement and the 

result after adopted the robust matching cost, which is referred as RCADSW. Both by 

using the winner-take-all (WTA) strategy, Figure 4-1 shows the gain which comes 

from the combined matching cost measure, and the gain is independent of the 

aggregated window size. The average error rate can be reduced by 0.2~0.25%. 
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Figure 4-1 The averaged error rate in different cost measure (w means the 

support window size) 
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4.2   Compare the intermediate results of proposed method 

In addition, we compared the intermediate and final disparity result of our 

proposed method. The support window size is fixed as 31x31 both to MCADSW and 

RCADSW. The results using variable window size method with and without the final 

refinement are respectively denoted as “Proposed” and “Pro+refine”. The quantitative 

evaluation of the intermediate and final disparity result is shown in Figure 4-2: 
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Figure 4-2 The error percentages of different error measures for 4 methods by 

our implementation 

Table II lists the average bad pixels with average ranking of 4 methods are 

respectively: Our MCADSW 7.57% (82.3), RCADSW 7.10% (74.7), proposed 6.8% 

(67.3), pro+refine 5.63% (39.1). These experimental results show that the 

performance can be improved by each step in the proposed algorithm. 
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 Table II Compared the results obtained from different step in the proposed algorithm 

Algorithm 

Tsukuba Venus Teddy Cones 

non

occ 

all disc non

occ 

all disc non

occ 

all disc non

occ 

all disc 

Proposed 1.74 2.36 8.11 0.69 1.63 5.60 6.42 13.5 16.9 3.70 11.8 9.13 

MCADSW [9]  2.80   0.64   13.7   10.1  

SegmentSupport [8] 2.05  7.14 1.47  10.5 10.8  21.7 5.08  12.5 

Table III Comparison between proposed method and the related works using winner-take-all before refinement step 

Algorithm 

Tsukuba Venus Teddy Cones Avg. 

Bad 

Pixels 

Avg. 

Rank 
non

occ 

all disc non

occ 

all disc non

occ 

all disc non

occ 

all disc 

AdaptWeight [7] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67 64.6 

SegmentSupport [8] 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77 6.44 53.7 

AdaptLocalSeq [15] 1.33 1.82 7.19 0.32 0.79 4.50 5.32 11.9 14.5 2.73 9.69 7.91 5.67 44.9 

Proposed 1.74 2.36 8.11 0.69 1.63 5.60 6.42 13.5 16.9 3.70 11.8 9.13 6.80 67.3 

Pro+refine 1.99 2.25 9.70 0.20 0.32 1.76 5.83 11.1 15.3 2.89 8.40 7.71 5.63 39.1 

Table IV Quantitative Middlebury evaluation of the propose method and the state-of-the-art local method 

Algorithm 
Tsukuba Venus Teddy Cones Avg.Bad 

Pixels nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

Our MCADSW 2.71 3.33 11.1 0.62 1.50 5.16 6.75 14.5 18.4 3.91 12.4 10.4 7.57 

RCADSW 2.37 2.93 10.3 0.84 1.86 7.26 6.35 14.3 17.1 3.23 11.6 8.76 7.10 

Proposed 1.74 2.36 8.11 0.69 1.63 5.60 6.42 13.5 16.9 3.70 11.8 9.13 6.80 

Proposed+refine 1.99 2.25 9.70 0.20 0.32 1.76 5.83 11.1 15.3 2.89 8.40 7.71 5.63 
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4.3   Compare with the reference works 

Table III demonstrates the comparison between proposed method and the two 

related work on the Middlebury stereo benchmark using a winner-take-all (WTA) rule. 

The table also reports the results published in [8] and [9] without the refinement 

process which consist only part of the error measures. As it can be seen from the table, 

the proposed method produces a notable improvement on non-occluded and 

discontinuous area compared to segment support method. 

4.4   Compare with state-of-the-art methods 

 In the disparity refinement step, we fill the detected outliers with the reliable 

neighbor pixels and introduce a histogram for cross voting procedure. Then, we 

submit the obtained disparity maps to the Middlebury website and are compared to 

the current state-of-the-art local methods. The quantitative Middlebury evaluation is 

shown in Table IV. And the error percentages of different error measures for 4 test 

stereo pairs in shown in Figure 4-3.  

Finally, we show the disparity result obtained by the proposed method. From 

Figure 4-4 to Figure 4-7 show the disparity maps and the corresponding error maps 

of our proposed method and related method on the Middlebury data image sets. The 
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error maps is evaluated by the default error threshold 1.0. The bad pixels are depicted 

with gray color in occluded area, otherwise the black.  

 

(a) Error rate of Teddy sequence 

 

 

(b) Error rate of Teddy sequence 
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(c) Error rate of Teddy sequence 

 

 

(d) Error rate of Teddy sequence 

Figure 4-3 The error percentages of different error measures for 4 test stereo 

pairs obtained from different methods 
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(a)Left image of Teddy          (b) Ground truth 

  

(c) result of ADSW [7]           (d) Error map in [7] 

  

(e) result of SementSupport [8]      (f) Error map in [8] 

  

(g) result of proposed method   (h) Error map in proposed method 

Figure 4-4 The disparity maps and the corresponding error map of our proposed 

method and related methods on Teddy sequence
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(a)Left image of Venus          (b) Ground truth 

   

(c) result of ADSW [7]           (d) Error map in [7] 

   

(e) result of SementSupport [8]      (f) Error map in [8] 

   

(g) result of proposed method   (h) Error map in proposed method 

Figure 4-5 The disparity maps and the corresponding error map of our proposed 

method and related methods on Venus sequence
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(a)Left image of Tskuuba          (b) Ground truth 

  

(c) result of ADSW [7]           (d) Error map in [7] 

  

(e) result of SementSupport [8]      (f) Error map in [8] 

  

(g) result of proposed method   (h) Error map in proposed method 

Figure 4-6 The disparity maps and the corresponding error map of our proposed 

method and related methods on Tsukuba sequence
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(a)Left image of Cones          (b) Ground truth 

  

(c) result of ADSW [7]           (d) Error map in [7] 

  

(e) result of SementSupport [8]      (f) Error map in [8] 

  

(g) result of proposed method   (h) Error map in proposed method 

Figure 4-7 The disparity maps and the corresponding error map of our proposed 

method and related methods on Cones sequence
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Chapter 5 Conclusion 

In this paper, a combined matching cost measure with mini-census and color 

difference is proposed. Moreover, we propose a variable window size selection 

strategy before cost aggregation step. The strategy determines the support window by 

utilizing the segment information derived from a color based segmentation method. 

This information is also used for region-based cross voting scheme in refinement step. 

Experimental results show that the proposed method effectively improves the 

performance of original method in low textured region and near depth discontinuities. 

According the performance evaluation at the Middlebury website, the proposed 

method is one of the current state-of-the-art local methods. 
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