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ABSTRACT

Stereo matching algorithm has been widely adopted by various stereo vision
applications such as 3D video conference and free viewpoint TV. In the typical local
methods for stereo matching, a fixed support window size is often adopted in cost
aggregation step. Larger supporting window can. improve the stereo matching
performance at low texture regions. However, it is blurred near depth discontinuities.

In this paper, we propose a variable window: size selection strategy before cost
aggregation step. The strategy determines the support. window by utilizing the
segment information derived from a color based segmentation method. This
information is also used for region-based cross voting scheme in refinement step.
Moreover, a combined matching cost measure with mini-census and color difference
is proposed. Experimental results show that the proposed method effectively improves
the performance of original method. According the performance evaluation at the
Middlebury website, the proposed method is one of the current state-of-the-art local

methods.

Index Terms-- Stereo matching ~ Variable support window * image segmentation
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Chapter 1 Introduction

Stereo matching is one of the most actively studied topics in computer vision.
The issue is to estimate the disparity map from a pair of rectified images of the same
scene taken from different viewpoints. The disparity of a pixel is the displacement
vector between corresponding pixels which horizontally shift from the left image to
the right image. The process of finding the disparity is referred as stereo matching or
disparity estimation. In_recent years, a large number of algorithms have been
proposed to solve the problem. The stereo matching algorithm has been widely
adopted by applications such as 3D video conference and free viewpoint TV [1]. It
will continue to be an attractive topic with the development of 3D video market in the
next few years.

According to the work published by Scharstein and Szeliski [2], a stereo
matching algorithm generally consists of the following four steps: matching cost
computation, cost (support) aggregation, disparity computation and disparity

refinement. Figure 1-1 depicts the flow of a stereo matching algorithm.

Matching cost Cost Disparity Disparity

computation aggregation computation refinement

Figure 1-1 A general flow of stereo matching algorithm.



The first step computes the initial matching costs of all disparity candidates for
each pixel by the cost measure, such as absolute difference (AD), gradient-based
measures, and non-parametric transforms like rank and census [3]. Among these
measures, the AD cost is the most commonly used for many stereo matching methods
due to its simplicity. The AD cost in RGB color space of a pixel p with respect to a
disparity d can be defined as:

Cio @, ) = 3 Tieramll' @) — 1'(@)] (1)
Where I, and Iy represent. the left and right images. The AD cost evaluating the
matching penalty seems intuitive; however, it has poor quality for global radiometric
changes. In a recent experiment by Hirschmdoller and Scharstein [4], the census
transform performs the best overall results in stereo matching methods, since the
match metrics compare the relative orderings instead of the intensity of the pixels.

Second, the cost aggregation step gathers the costs in a support window which is
usually a square window. A simple hypothesis of the cost aggregation is that
surrounding pixels with similar colors should be greatly correlated to the center pixel.

An aggregated cost of pixel p can be calculated by the following function:

Yiew, cost(i,d) X w(p, i) )
ZieWL w(p, i)

Cagg (pr d) =
Where cost(i) means the initial matching cost obtained from the previous step. In

addition, w(p,i) represents the related weight between the pixel p and its neighbors i



in current support windowW;,.. A simple schematic diagram of cost aggregation is
depicted in Figure 1-2. The cost aggregation reduces the matching ambiguities and

noise in the initial cost volume due to lack of more information.

‘Support window size

Figure 1-2 A cost-aggregation in pixel p with its neighbors i

With the aggregated costs, the disparity map can be simply computed by the
winner-take-all (WTA) process, which is to select the disparity candidate with the
minimal aggregated cost. The WTA method can be expressed as

D(p) = arg min C.ge(p, &) @)
, Where d s the disparity candidate over a disparity search range. Another
optimization method such as graph-cut is introduced by Boykov et al. in [5].

Finally, the disparity refinement step further refines the disparity by correcting
the error caused by the outlier pixels or image noise. A simple refinement tool is a 3x3
median filter. Figure 1-3 represents how a median filter works. In addition, left-right
consistency check [6] is an effective refinement technique to deal with the occluded

region. We will introduce it later in 3.7.1.



2,3,3,3(4)4,5,5,10
vl

23 |3 2 |3

3
3104-344
4

5 |5 415 |5

Figure 1-3 A 3x3 median filter

With the above steps, the disparity estimation algorithms can be roughly

classified into two types: local algorithms and global algorithms. Local methods focus

on the matching cost computation step and the cost aggregation step. Instead, global

methods emphasize on the disparity computation step.

Local algorithms estimate the disparity of each pixel independently within a

support window. The matching costs are aggregated over the window, after that, the

disparity candidate with the minimal cost is simply selected for the pixel by the WTA

rule. The local algorithms have low computation complexity and storage requirement,

so they are generally adopted by real-time applications. Recent research has proved

that a well-selected support window can give a quality result. The local approach with

the adaptive support weight (ADSW) is proposed by Yoon et al. [7] , which can

achieve the goal to apply a support window of arbitrary shape. Therefore, the ADSW

can have the comparable result approaching to the global method with considerable

execution time. Later, Tombari et al. proposed a segment-based support method [8] to

assign different weights to the pixels in a support window by based on the



segmentation information. Recently, the mini-census adaptive support weight

approach (MCADSW) [9] is accomplished to have lower complexity and more

capability of handling brightness bias problems than the original ADSW.

On the other hand, the cost aggregation step is simple in global algorithms.

Instead, the emphasis is on the disparity computation step. Global approaches

formulate the stereo matching problem as the objective energy function and

minimize it to determine the disparity map. The energy functions often include data

term and a neighboring.term. Some efficient optimizers like graph-cut [5] and belief

propagation are employed to minimize the energy function. A cooperative

optimization based on region segment proposed by Wang and Zheng [10] is the

state-of-art of global approach according to the Middlebury evaluation [11]. This

algorithm uses regions as matching objects and defines the corresponding energy

function with the constraints on data term, smoothness, and occlusion. Consequently,

global methods produce more accurate results than common local methods, but they

suffer from high computational complexity and can hardly be used in real-time

implementation.

The proposed algorithm in this thesis is focused on local algorithms. We

modified the MCADSW [9] algorithm by adopting a robust matching cost measure

and utilizing the segment information to determine variable support size for cost



aggregation. Moreover, the region information can also be used in our region-based

cross voting scheme to improve the quality of the disparity refinement result.

The rest of this thesis is organized as follows. Section 2 introduced the details of

the related works about local stereo matching methods. Section 3 describes our

motivation and the proposed algorithm step by step. The experimental results are

presented in section 4. Fin ction 5 concludes this thesi



Chapter 2 Related Work

2.1  Adaptive Support Weight Approach

Yoon proposed the concept of adaptive support weight (ADSW) [7] that assigned
different weights to the neighboring pixels in a support window. Two main grouping
concepts in support-weights generation are proximity and similarity. The former is
related to the spatial distance between surrounding pixels, and the latter is related to
the color distance of two pixels.-Based on above principles, the weight function in the
cost aggregation equation (2) can be defined as

w(p,i) = exp <— (%‘:'i) + %ﬁ'i))) (4)
,where 'ds and d. are the Euclidean distance respectively the distance between two
coordinates and the distance in CLELAB color space. A; and A, are two constants.
The cost aggregation strategy in ADSW is symmetrical, and the support weights in

both left and right image are generated and taken into account.

. . . . . .......... .
o\ wipd I o\ wiah |
Wi e We|
L i Py L] i abedy)
." ............................ ‘“‘
Left image Right image

Figure 2-1 A symmetrical cost aggregation




Figure 2-1 describes the symmetrical cost aggregation diagram. Let p and q be

respectively the center pixels in the current support window W, in the left image and

the support window Wy in the right image. Then, the cost aggregation is rewritten as

following

ZiEWL,jEWR TAD(L:])XW(p:L)XW(q!])
Yiew jewgW(®@.0)Xw(q.j)

Cagg(p,d) = (5)

For any point i € W corresponding to j € Wy, the matching cost is computed by

using the Truncated Absolute Difference (TAD), which can be expressed as

(6)
TAD(i,j)=min{ z 5D = 1), T
ke(R,G,B}

,where T is the truncation threshold parameter to reject outliers. After the dissimilarity
computation, the disparity map is computed by Winner-Takes-All (WTA) strategy.
The adaptive support weight gives an excellent performance in low-textured area and
near depth discontinuities. And the disparities in occluded regions can be corrected by

the left-right consistency check.

2.2 Segmentation-Based Adaptive Support Weight

In [8], Tombari et al. analysis the result obtained by the ADSW method. There
are some drawbacks in high-textured surfaces and repetitive patterns, since the
amount of aggregated support in ADSW may be insufficient in these regions. This is

because the use of spatial distance would determine the wrong support.



The basic idea of segmentation-based adaptive support is to embody the concept
of color similarity as well as segmentation information to improve the capability of
the support window. The proximity term has been eliminated from the support weight
computation. Instead, it is assumed that the disparity of each pixel has a similar value
in the same segment which can be obtained from a segmentation process, such as

Mean-Shift algorithm [12]. Hence, a novel weight function is proposed as follows:

1.0
w(p,i) = exp(} dc;P: i)
(o}

i € Segment(p)
) otherwise

(7)
The weight has to be the-maximum value if the pixel i lying on the same segment of
the central pixel p, otherwise, it is computed based on color similarity. The

Segment-support method provides notable improvements rather than only relying

blindly on spatial proximity and color similarity.

W, ® 0,0 Oiz.
L 0 O @
o0 o In this example,
P w(p,i;) =1.0
NG . de(p. i)
oo o ° W(P,lz)=exp(—T)

Figure 2-2 A example for the segmentation-based adaptive weight generation

2.3 Mini-Census Adaptive Support Weight

The mini-census adaptive support weight method (MCADSW) [9] is an effective

algorithm modified from the ADSW method, and the former one has much lower



complexity and more capability of dealing with brightness problem. The MCADSW
adopted the mini-census transform to improve the robustness to radiometric distortion.
Because mini-census cost measure has only relative information, a
scale-and-truncated approximation of the weight function is proposed. In addition, the

two-pass approach not only reduces computation complexity but also derives good

performance in low-texture areas.

5 9

7 40
19 “ a7 53

a8 42

52 47

Mini-Census Transform ‘

1 1

1 1

0 1

0 1
Bitstream: 111000 Bitstream: 111011

Hamming Distance = 2

Figure 2-3 The mini-census transform and matching introduced in [9]

2.3.1 Mini-Census Transform and Matching

The concept of original census transform [3] is to obtain relative information
instead of the intensity itself. The intensity used to compare is first transformed into
Y color space. If a pixel’s intensity is larger than the center pixel’s intensity, it is

transformed into the label 0, otherwise the label 1. The mini-census transform
10



compares the intensity of the 6 significant pixels with the center pixel. After the
transformation, each pixel can be represented as a 6-bit binary bitstream. The
mini-census cost between the corresponding pixels is taken as the hamming distance
between two mini-census bitstreams, which is defines as
Cme(p, d) = Ham(by (p), br(p — d)) (8)

,.where C,,. represents the mini-census cost of pixel p with the disparity level d.
Ham() is the hamming distance function. b, (p) and bgp(p — d) are referred as the
bitstream of current pixel in the left image and the bistream of corresponding pixel in
the right image, respectively. An example of the mini-census transform and matching
introduced in [9] is shown in Figure 2-3. The mini-census cost performs better

disparity result in occluded area than the traditional SAD does.

2.3.2 Weight Generation

The weight function in the MCADSW method also eliminates the proximity

weight. Moreover, a scale-and-quantize weight function is defined as

dC(p:l)

C

w(p,i) = quantize [exp (— ) X scaling factor] (9)
The weight function is scaled up by 64 and quantized to leave only one nonzero most

significant bit. The purpose of scaling the function is to increase the influence of

neighbor pixel which has the small color distance.

11



2.3.3 Two-pass Cost Aggregation

Support window size

Ca

: = [ [ [l _ Jo==np===s

Figure 2-4 Two-pass cost aggregation

The original cost aggregation (5) is divided into vertical and horizontal cost

aggregation In a two-pass-approach. First, the matching cost aggregates vertically to

compute a vertical cost of each column, and then aggregate each cost of the column in

the support window horizontally to compute the final aggregated cost. The equations

are written  as equations  (10) and (11), and are depicted in

‘Support window size. (10)

Ca

: = [ [ [l _ Jo==np===s

Figure 2-4.

Cost.y = Z Crne (i, d) X w(i, c)

iecol

Cagg (p» d) = ZcolEWL Costeo X W(p' c) (11)

where C,,. is the mini-census cost defined in equation (8). Notice that ¢ represents
12



the center pixel which changes column by column. Consequently, the MCADSW
method may improve the low-textured region with smoothing disparity, since the
correlated weight of the border or corner pixels could be increased with the help of

closer center pixel.




Chapter 3 Proposed Method

3.1 Motivation

In [7], the adaptive support weight can achieve the effect of using support
window with arbitrary sharp and give a quality depth result. Later, [2] proposed a
segment-based support weight to improve the performance. Mini-census transform in
[3] is employed to improve the capability of handling the lighting effect. However,
they all used a fixed support-window size. According to our observation in Figure
3-1, , it shows that the performance will not always be better while the support
window size gets larger. This drawback is evident especially for Teddy and Cones
sequences. The issue of support window size still remains. Moreover, the mini-census
matching cost in [3] is much less sensitive to brightness bias, but it might cause errors
in low textured region since it lacks of color information.

According to the problems mentioned above, we proposed an algorithm which is
modified from the Mini-Census Support Weight (MCADSW) [3]. In the proposed
method, we combine the mini-census transform with the robust absolute differences
(RAD) measure to increase the robustness of the matching process. In addition, the
segment-based idea is inspired from [2] which apply the information obtained from

the segmentation within the cost aggregation step. With the additional information, we
14



could determine the variable support window size instead of a fixed one. Besides, the

segment information can also be used for disparity refinement to improve the

performance of the final disparity result.

Error rate(%)

Error rate(%)

Teddy

25

mw=15

mw=31

nonocc all disc  Average

Tsukuba

nonocc all disc  Average

Venus

Error rate(%)

nonocc  all disc  Average

Cones
14 mw=15

Error rate(%)

nonocc all disc  Average

Figure 3-1 The performance comparison with different window size
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3.2 The flow of the proposed method

Input stereo images

6

Robust matching cost computation

!

Weight Generation and Truncation

6

Support Window size selection

6

Two-pass cost aggregation

"

Disparity computation and Disparity refinement

‘

Disparity Map
Figure 3-2 The flow of the proposed algorithm
Figure 3-2 shows the flow of the proposed algorithm. First, we employ the
Mean-Shift algorithm to segment the inputted stereo images into regions according to
similar color. Second, the initial matching cost is computed by the combined matching
cost measure. After that, the weight generation and truncation step generates the
weight coefficients needed in the cost aggregation. Before the cost aggregation, we
employ the segment information to determine the support window size. And then, the
matching cost will be aggregated by a two-pass cost aggregation. Once the aggregated

cost is computed, the disparity map can be simply computed through a winner-take-all
16



(WTA) strategy. Finally, the result can be refined by left-right check and region-based

cross voting.

3.3 Robust matching cost computation

Mini-census cost transforms the intensity of the data term into relative bitstreams.
Hence it can tolerate outliers caused by radiometric noise. Nevertheless, it could also
lead to matching ambiguities in the regions with repetitive pattern, while the color
information can deal with these matching ambiguities. The idea of combining cost
measures for improved performance of matching process is inspired from the works
accomplished by Mei et al [13]. . They propose a combined cost measure with the AD
and census for matching cost initialization. The benefit of the combination is
impressive with a few additional computation time.

Based on MCADSW [9], we tend to preserve the mini-census cost measure Cy,.
and combine with the color constraint. However, the origin AD cost range [0,255] is
much bigger than the mini-census cost range [0,6], so the combination cost might be
biased to the AD cost. Therefore, a robust function R is adopted for the AD measure
which maps the cost value range from [0,255] to [0,1]. It is defined as

R(Cap,Aap) =1 - exp(—iﬂ (12)
-AD

,where C,p is the traditional AD cost described as equation (1), and A4, is allowed

to control the influence of outliers. Given a pixel p with respect to a disparity level d,
17



the proposed robust matching cost can be calculated as follows:
CRobust(p' d) = Cmc + /1m X R(CADJAAD) (13)
,where A,, is a tuning constant to control the influence between color similarity and

the relative information.

3.4  Weight generation and truncation

We exploit the weight function of the MCADSW described in equation (9), In
addition, a simple truncation is implemented to alleviate the matching error due to
outlier pixels. We give a-minimum value zero to these outliers. Hence, a modified

weight function is proposed:

0 ,if dc.(p,i)> Ty

. (14)
quantize [exp (— #) X scaling factor] , otherwise
C

W(p,i) =

,where T, represents the threshold to separate the outliers; the cost d.(p,i) is sum

of color difference in YUV color space which is defined as

de(p,i) = Zke{Y,U,V}'Ik (p) — Ix (l)l (15)

The curve of our weight function is shown in Figure 3-3.

18
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Figure 3-3 The curve of our proposed weight function

3.5  Support window size selection

The basic concept of the proposed method is to employ the segment information
to change the correlation window size. From our analysis, the MCADSW method still
suffers from some incorrect disparity estimation at occlusion, low textured, and
repeating pattern areas. Although we can improve the matching quality by applying a
larger supporting window, the disparity map might be blurred near the discontinuous

area.

3.5.1 Image segmentaion

The concept of the segmentation process is to cut the image into several regions
which can enlarge the region size as big as the spatial and color is assessed. In our

19



approach, we adopt the Mean-Shift algorithm to process the segmentation. Two
constant parameters og and oy are referred as spatial radius and range radius
which construct the restraint of growing the segment. And the parameter Fuseg
promises the minimum size of each region. Figure 3-4 shows the left image and its
segmentation result of each of four testing stereo images available on Middlebury
website [11], with the same parameter set: g5 = 3, gz = 3, Fusey = 35.

After the image segmentation step, the addition information of segment
represents _an intelligent. proximity rather than the spatial distance, and it can be

employed later in the support window size selection and the refinement step.

3.5.2  Variable window size selection

Instead of adopting a fixed support window size, the proposed method makes use
of information obtained from the Mean-shift algorithm to determine the support
window size. By observing the segment result shown in Figure 3-4, a large segment
is often related to a low textured or repeating area, where the support window should
be enlarged to obtain more support information. On the other hand, a small segment is
usually related to a border or occluded area. The MCADSW method can achieve the
window with arbitrary shape to deal with border area, and the occluded area can be

refined later by the refinement step.

20



Hence, the window size selection can be expressed as:

(16)

,otherwise

) if Num(seg(p)) < Tcount

Wsmall
Wb ig

{

Figure 3-4 The left image and the segmentation result of 4 stereo images
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3.6 Two-pass cost aggregation

Once the window size is selected, the two-pass cost aggregation can be
processed. We adopt the same aggregation direction in [9] but simply modify the
original aggregation function (10)(11) with normalization after the cost aggregates.

The modified functions are described as equations (17) and (18):

Yiecol CRobust(L,d)Xw(i,c)
Ziecotw(i,€)

Cost., = (17)

_ Xicolew CoStcorxw(p,c)
Cagg (p, d) D Ycolew W(p,C)

(18)
3.7 Disparity refinement

The disparity maps computed by the above steps contain errors in the occluded
and discontinuous regions. The results of left and right images are denoted as D; and
Dy, respectively. We refine the disparity errors by several steps. First, we smoothen
the disparity map by a 3x3 median filter to alleviate the noise. Second, we detect the
outliers by the left-right check and then classify them into two categories. After that,
we treat the two kinds of outliers with different refinement rules. Finally, a
region-based cross voting refinement is performed. The first step has been introduced

in Figure 1-3, and the other steps are introduced as following.

22



3.7.1  Left-right check and Outliers classification

Left-right consistency check [6] is a widely used technique to detect the outliers.

For each pixel, a following check is performed:

D,(p) = Dr(p — (D, (p), 0)) (19)

If a pixel can’t satisfy the check, it is considered as an outlier. And then, based on the
method proposed by Hirschmuller [14], we classify the outliers into “occlusion” and
“mismatch” points. For each outlier pixel p, we perform the left-right check with all
disparity candidates, and.if no candidate could hold the check, p is an “occlusion”
pixel, otherwise a “mismatch” pixel.

Figure 3-5 demonstrates the classification results of four sequence on
Middlebury data sets compared with the occluded-region in the ground truth. If a
pixel is labeled as “occlusion”, we depict it with black color, and a “‘mismatch” pixel
is depicted with gray. The classification can effectively separate the occluded-region

which is similar to the ground truth.
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Figure 3-5 The classification results(left) and the occluded-region in the ground
truth(right)

3.7.2  Outlier refinement

The different kinds of outlier pixels require different refinement strategies.

1) If p is a mismatch pixel, we search the most similar neighbor q from the
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horizontal scanline w that starts from the pixel p - (N,0) to the pixel p+(N,0).

And then we accept the disparity of g to p, which can be expressed as

D = {D min C ,
L (p) { L(q)lqui(N,O),q;tp ap (P, q)}

2) If pisan occluded pixel, we first search the left and right nearest reliable
disparity, respectively denoted as S; and S,. If only one reliable pixel is

found, D, (p) is simply replaced by D;(S;) or D,(S,). Otherwise,

D, (p) = min(D,(s1), D, (s2)) .

3.7.3 ~ Region-based-cross voting

Votes

||q|||:> |

a

|:> D;(p) =arg max H,,

|
Disparity

Figure 3-6 Region-based cross voting

In this step, we reuse the segment information to further refine the disparity map.
For each pixel p, we build a histogram H, with DSR+1 bins for a cross voting
scheme, where DSR represents the disparity search range. The cross voting scheme is
depicted in Figure 3-6. We survey the neighbors both from the vertical and horizontal
directions, and collect the disparity votes if the neighbor q is located on the same
segment of p. After votes collection, the disparity candidate with the most votes is

assigned to p.
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Chapter 4 Experimental Results

To evaluate a stereo algorithm, a benchmark is provided on Middlebury Website
[11]. The four sequences, Tsukuba, Venus, Teddy, and Cones, are the most commonly
used for testing performance. For each image pair three error measures are proposed:
all image regions except for occlusions (nonocc), all regions (all), and near depth
discontinuities (disc). The default error threshold is set to 1.0.

In this section we present some experimental results of the proposed method.

The parameters are kept constant for all the data sets, which are presented in Table I.

Os OR Fusegp | A, Aap Ac
3 3 35 2 10 15
Ty Weman | Whp ig | Teount N
100 | 31x31 | 51x51 | 300 15

Table I Parameter settings for the Middlebury evaluation
4.1  Evaluation of the robust matching cost measure

First we compare the MCADSW [9] result obtained from our implement and the
result after adopted the robust matching cost, which is referred as RCADSW. Both by
using the winner-take-all (WTA) strategy, Figure 4-1 shows the gain which comes
from the combined matching cost measure, and the gain is independent of the

aggregated window size. The average error rate can be reduced by 0.2~0.25%.
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Figure 4-1 The averaged error rate in different cost measure (w means the
support window size)
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4.2

In addition, we compared the intermediate and final disparity result of our
proposed method. The support window size is fixed as 31x31 both to MCADSW and
RCADSW. The results using variable window size method with and without the final

refinement are respectively denoted as “Proposed” and “Pro+refine”. The quantitative

Compare the intermediate results of proposed method

evaluation of the intermediate and final disparity resultiis shown in Figure 4-2:
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3 — o
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g 12
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210
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o 8
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4 T T 1
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diparity estimation step

. Venus

7 A
g 6 / \
()
g5 e \\
c
8 4 —.—n
2 \ onocc
g3
5 \ —all
=2 — =
@ = \ A == disc

1 +

— ————
0 T T T 1
MCADSW RCADSW Proposed Pro+refine
diparity estimation step
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Figure 4-2 The error percentages of different error measures for 4 methods by
our implementation

Table 11 lists the average bad pixels with average ranking of 4 methods are
respectively: Our MCADSW 7.57% (82.3), RCADSW 7.10% (74.7), proposed 6.8%
(67.3), pro+refine 5.63% (39.1). These experimental results show that the

performance can be improved by each step in the proposed algorithm.
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) Tsukuba Venus Teddy Cones Avg.Bad
Algorithm )
nonocc | all disc | nonocc | all disc | nonocc | all disc | nonocc | all disc Pixels
Our MCADSW 2.71 3.33 11.1 | 0.62 1.50 |5.16 |6.75 145 |184 |3.91 124 | 104 7.57
RCADSW 2.37 2.93 10.3 | 0.84 1.86 | 7.26 | 6.35 143 |17.1 |3.23 11.6 | 8.76 7.10
Proposed 1.74 2.36 | 811 |0.69 1.63 |5.60 |6.42 13,5 |16.9 |3.70 11.8 |9.13 6.80
Proposed+refine | 1.99 2.25 |9.70 |0.20 032 |1.76 |5.83 11.1 | 153 |2.89 840 |7.71 5.63
Table Il Compared the results obtained from different step in the proposed algorithm
Tsukuba Venus Teddy Cones
Algorithm non | all disc | non | all disc | non | all disc | non | all disc
occ occ occ occ
Proposed 1.74-,2.36 |8.11 (0.69 |1.63 (560 |6.42 (135 | 169 (3.70 | 11.8 |9.13
MCADSW [9] 2.80 0.64 13.7 10.1
SegmentSupport [8] | 2.05 7.14 | 1.47 10.5 | 10.8 21.7 |5.08 12.5

Table 111 Comparison between proposed method and the related works using winner-take-all before refinement step

Tsukuba Venus Teddy Cones Avg. Ava.
Algorithm non | all disc | non | all disc | non |all disc | non |all disc Bad Rank
occ occ occ occ Pixels

AdaptWeight [7] 138 [ 1.85 | 690 (0.71 |1.19 |6.13 |7.88 |13.3 | 186 |3.97 |9.79 | 8.26 | 6.67 64.6
SegmentSupport [8] | 1.25 | 1.62 | 6.68 | 0.25 | 0.64 | 2.59 |8.43 |14.2 |18.2 |3.77 |9.87 [ 9.77 |6.44 53.7
AdaptLocalSeq [15] |1.33 | 1.82 |7.19 |0.32 |0.79 [4.50 | 532 {119 |145 |2.73 |9.69 | 7.91 |5.67 44.9
Proposed 1.74 12.36 | 811 | 0.69 |1.63 |560 |6.42 |13.5 | 169 |3.70 |11.8 |9.13 |6.80 67.3
Pro+refine 199 |2.25 |9.70 [ 0.20 |0.32 |1.76 | 583 |11.1 | 153 |2.89 [840 |7.71 |5.63 39.1

Table 1V Quantitative Middlebury evaluation of the propose method and the state-of-the-art local method
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4.3  Compare with the reference works

Table 111 demonstrates the comparison between proposed method and the two
related work on the Middlebury stereo benchmark using a winner-take-all (WTA) rule.
The table also reports the results published in [8] and [9] without the refinement
process which consist only part of the error measures. As it can be seen from the table,
the proposed method produces a notable improvement on non-occluded and

discontinuous area compared to segment support method.

4.4 —Compare with state-of-the-art methods

In the disparity refinement step, we fill the detected outliers with the reliable
neighbor pixels and introduce a histogram for cross voting procedure. Then, we
submit the obtained disparity maps to the Middlebury website and are compared to
the current state-of-the-art local methods. The gquantitative Middlebury evaluation is
shown in Table IVV. And the error percentages of different error measures for 4 test
stereo pairs in shown in Figure 4-3.

Finally, we show the disparity result obtained by the proposed method. From
Figure 4-4 to Figure 4-7 show the disparity maps and the corresponding error maps

of our proposed method and related method on the Middlebury data image sets. The
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error maps is evaluated by the default error threshold 1.0. The bad pixels are depicted

with gray color in occluded area, otherwise the black.
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(b) Error rate of Teddy sequence
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(d) Error rate of Teddy sequence

Figure 4-3 The error percentages of different error measures for 4 test stereo
pairs obtained from different methods
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(a)Left image of Teddy (b) Ground truth

(c) result of ADSW [7]

g

(e) result of SementSupport [8]

(g) result of proposed method  (h) Error map in proposed method
Figure 4-4 The disparity maps and the corresponding error map of our proposed
method and related methods on Teddy sequence
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(b) Ground truth
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(g) result of proposed method  (h) Error map in proposed method
Figure 4-5 The disparity maps and the corresponding error map of our proposed
method and related methods on Venus sequence
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(a)Left image of Tskuuba (b) Ground truth
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(g) result of proposed method  (h) Error map in proposed method
Figure 4-6 The disparity maps and the corresponding error map of our proposed
method and related methods on Tsukuba sequence
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Figure 4-7 The disparity maps and the corresponding error map of our proposed
method and related methods on Cones sequence
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Chapter 5 Conclusion

In this paper, a combined matching cost measure with mini-census and color
difference is proposed. Moreover, we propose a variable window size selection
strategy before cost aggregation step. The strategy determines the support window by
utilizing the segment information derived from a color based segmentation method.
This information is also used for region-based cross voting scheme in refinement step.
Experimental results show that the proposed method effectively improves the
performance of original method in low textured region and near depth discontinuities.
According the performance evaluation at the Middlebury website, the proposed

method is one of the current state-of-the-art local methods.
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