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Robust observer–controller compensator design using the loop shaping design
procedure and the algebraic method
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SUMMARY

This paper investigates robust observer-controller compensator design using Vidyasagar’s structure (VS). VS has a unit
matrix parameter H similar to the Q parameter for the Youla–Kucera parameterization. VS can be designed based on the
left coprimeness of the central controller in the H∞-loop shaping design procedure (H∞-LSDP) and therefore can preserve
the intrinsic properties of the H∞-LSDP. This paper introduces algebraic methods to simplify the design of H in the VS
controller by solving specific algebraic equations. In particular, the algebraic design of H can achieve two things. First, a
dynamic H adjusts the tracking performance and yields the integral action. Second, a dynamic H rejects the input and output
sinusoidal disturbances with known frequencies. These attributes are indications of the flexibility of the proposed method
since the output-feedback controller design of the H∞-LSDP cannot easily deal with such conditions. This paper discusses
the achieved loop and the closed-loop behavior of the system with VS, and also gives two numerical examples. The first
example shows that the proposed method results in a better design in many aspects than the resulting from H∞-LSDP. The
second example shows the application of the proposed method to rejecting input and output step disturbances, and input
and output multiple sinusoidal disturbances, for which the H∞-LSDP can hardly be used. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The observer–controller compensator (OBC) has been
widely used in control system design because of
its great flexibility [1–10]. In 2001, Giua et al. [3]
proposed an OBC for a three-degree-of-freedom
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overhead crane with a time-varying suspending rope.
Pandian et al. [4] proposed design methods for
the estimation of chamber pressure variables and a
sliding-mode controller to control a cylinder actuator.
Noijen et al. [5] proposed a state-feedback controller
combined with an observer that estimated the orien-
tation error based on available trajectory information
and measurement of the position coordinates for a
unicycle mobile robot system. Driessen and Duggirala
[6] proposed an OBC for a relatively large class of
systems with hysteresis, and Alazard and Apkarian
[7] used the Youla–Kucera parameterization (YKP) to
give arbitrary-order H∞ or � controllers. Gao and Ho
[8] suggested that the YKP may be non-proper and
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ROBUST OBSERVER–CONTROLLER COMPENSATOR DESIGN 1177

proposed a modified parameterization of all proper
stabilizing compensators. Gao and So [9] proposed
a unified doubly coprime factorization, which is
applicable to both descriptor systems and state-space
systems. Gao [10] developed a PD observer param-
eterization for descriptor systems using the coprime
factorization technique. Vidyasagar’s structure (VS)
is an OBC with an observer observing the partial
state and a controller with an H parameter [11, 12].
Instead of the Q parameter over the set of proper
and stable real rational functions denoted by RH∞ in
the YKP of [13–15], this H parameter is a unit over
the set of proper and stable real rational functions
denoted by U(RH∞). On the other hand, applica-
tions using the H∞-loop shaping design procedure
(H∞-LSDP) of [16–18] have been the subject of
further study, e.g. [19–23]. Panagopoulos and Astrom
[19] showed that traditional methods for the design of
PID controllers can be related to the H∞-loop shaping
method. Zhu et al. [21] designed a robust power system
stabilizer using H∞-loop shaping approach. Schinstick
et al. [22] applied H∞-loop shaping method to linear
motor stages and non-contacting machines control.
Patra et al. [23] used the H∞-loop shaping method
to design a robust load frequency controller. Hence,
applying the principle of the H∞-loop shaping method
to VS and relating VS to the H∞-LSDP fulfills the
specified robustness requirement for more powerful
design.

The H∞-LSDP is an open-loop shaping approach
that follows the elementary open-loop shaping princi-
ples specifying the closed-loop objectives in terms of
requirements on the open-loop singular values, denoted
by �(•). That is, for a plant G and a controller K ,
the controller design achieves the desired loop (and
controller) gains in the appropriate range:

�(GK)�1, �(KG)�1, �(K )�1 (1)

in a low frequency range [0,�l ] and

�̄(GK)�1, �̄(KG)�1, �̄(K )�� (2)

in a high frequency range [�h,∞] where � is not too
large. �̄(•) and �(•) denote the maximum and minimum
singular values, respectively. Hence, such a controller

design makes

�̄((I +GK)−1), �̄((I +KG)−1)

�̄(K (I +GK)−1), �̄((I +GK)−1G)
(3)

small in [0,�l ] for good performance, and

�̄(GK(I +GK)−1), �̄(K (I +GK)−1G) (4)

small in [�h,∞] for good robustness.
Section 2 shows that VS itself is a simple scheme and

its equivalent output-feedback controller has a subset of
solutions to the YKP in terms of feedback properties.
In comparison with the equivalent controller and the
YKP, the VS observer can be derived from the left
coprimeness of the central (output-feedback) controller.
The different feedback solutions to VS from YKP are
indicated, and the feedback and tracking properties for
the H parameter in the VS are also presented. Section
3 reviews the H∞-LSDP and describes the VS design
procedure. The first step of the VS design procedure
uses the pre- and post-weighting matrices to shape the
nominal plant, as in the H∞-LSDP. These weighting
matrices can be constant or dynamic. Using constant
weighting matrices can reduce the dimension of VS
and increase the crossover frequency. The dynamic
weighting matrices are used for the integral action with
the phase-advance term so that the feedback system
can reject step disturbances. The VS observer can then
be designed from the left coprimeness of the central
controller of the H∞-LSDP for a strictly proper plant.
For a specific performance, the final step uses algebraic
methods to design the H parameter in the VS controller
to obtain the controller. Algebraically designing H
provides solutions to four cases: constant H yields the
integral action, dynamic H yields the integral action
with the phase-advance term, dynamic H adjusts the
tracking performance and yields the integral action,
and dynamic H rejects the input and output sinusoidal
disturbances with known frequencies, according to the
algebraic equations. A constant pre-weighting matrix
W1 and post-weighting matrix W2 are considered in
the first three cases. The first two cases for rejecting
step disturbances can also be achieved by W1 or W2.
The last two cases present the flexibility of VS since
the output-feedback controller design of the H∞-LSDP
cannot easily cope with the sinusoidal disturbance
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rejection and the tracking control. H can affect the
robust stability in addition to performance. Thus, the
observer design of VS inherits the properties of the
controller in the H∞-LSDP and preserves certain robust
stability. The VS controller design provides a robust
stability/performance tradeoff. Section 4 provides two
numerical examples. The first considers the case of a
VS design that uses a pre-weighting matrix to reject
the step disturbance and H to adjust the robust stability
and the step tracking response. The case is compared
to the output-feedback of the H∞-LSDP with and
without a pre-filter. The second example is designed to
reject the input–output sinusoidal and step disturbances
using the H parameter and the post-weighting matrix,
respectively. Section 5 provides the conclusions of this
paper.

2. DISCUSSION OF VS

A nominal plant G(s) is assumed to be a proper real
rational matrix. G(s) is said to have a doubly coprime
factorization if (N (s),M(s)) and (Ñ (s), M̃(s)) are a
right coprime factorization (RCF) and a left coprime
factorization (LCF) of G(s), i.e. G=NM−1= M̃−1 Ñ ,
respectively, and N (s), M(s), Ñ (s), M̃(s), Xr (s),
Yr (s), Xl(s), and Yl(s) exist over RH∞ such that[

Xr Yr

−Ñ M̃

][
M −Yl

N Xl

]
=
[
M −Yl

N Xl

][
Xr Yr

−Ñ M̃

]

= I (5)

Viswanadham [11] and Vidyasagar [12] proposed
the VS, the OBC of Figure 1(a), where the nominal
plant G(s) has an RCF, i.e. G=NM−1; the observer
composed of Xr and Yr observes the ‘internal state’ z
to be ẑ, and the controller Cv(s) feeds ẑ back. More-
over, r , di and do denote the command reference, input
disturbance and output disturbance, respectively; y is
the system output, and er and ed are the internal signals.

The system of Figure 1(a) is internally stable [12] if
and only if

M(s)+Cv(s)=H(s)∈U(RH∞) (6)

G1( )v rI C X −+

v rC Y

r

−

id

re de y
od

1( )M s−

−
r y

( )N s
zre

de

id od

( )rX s ( )rY s
( )vC s

Vidyasagar's structure

ẑ

G

(a)

(b)

Figure 1. Vidyasagar’s structure: (a) observer–controller
compensator and (b) equivalent compensator.

The system of Figure 1(a) also can be transformed
to the system of Figure 1(b) in terms of input–output
equivalence. The notation U(RH∞) denotes a unit over
RH∞. When a square matrix and its inverse are stable,
the matrix belongs to U(RH∞).

In terms of the feedback properties, the output-
feedback controller Kv(s)=(I +CvXr )

−1 ·(CvYr ) in
Figure 1(b) can be represented according to Equations
(5) and (6) as

Kv(s) = (I +CvXr )
−1(CvYr )

= [H−1(I +CvXr )]−1[H−1(CvYr )]
= [Xr+H−1Yl Ñ ]−1[Yr−H−1Yl M̃] (7)

The YKP, all stabilizing controllers, can be parameter-
ized as follows:

KYK(s)=(Xr +QÑ )−1(Yr −QM̃)

Q(s)∈RH∞ and det(I +QÑ X−1
r )(∞) �=0 (8)

When Q(s) is zero, the result is the central controller
of KYK(s), X−1

r Yr . In comparison with Xr and Yr of
Equation (8), Xr and Yr of Equation (7) play the similar
role as central (output-feedback) controller, although
H in Equation (7) cannot be zero. Nevertheless, this
shows that the observer design of VS can be derived
from the LCF of the central controller. Moreover,
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ROBUST OBSERVER–CONTROLLER COMPENSATOR DESIGN 1179

the term H−1Yl in Equation (7) corresponds to Q in
Equation (8). This means that Kv(s) is a subset of
the YKP since H is a unit over RH∞. However, VS
is simpler than the YKP structure. Noted that VS in
Figure 1(a) is stable itself while Kv(s) of Equation (7)
and KYK(s) of Equation (8) are not necessarily stable.

VS is different from the YKP in terms of input–
output relationships. The transfer functions from
(r,di,do) to (er ,ed , y) in Figure 1(b) are as follows:

⎡
⎢⎣
er

ed

y

⎤
⎥⎦=

⎡
⎢⎢⎣
MH−1 M(Xr +H−1Yl Ñ )− I −M(Yr −H−1Yl M̃)

MH−1 M(Xr +H−1Yl Ñ ) −M(Yr −H−1Yl M̃)

NH−1 N (Xr +H−1Yl Ñ ) I −N (Yr −H−1Yl M̃)

⎤
⎥⎥⎦
⎡
⎢⎣

r

di

do

⎤
⎥⎦ (9)

Replacing Kv(s) in Figure 1(b) with the YKP of
Equation (8), produces transfer functions from (r,di,do)
to (er ,ed , y),

⎡
⎢⎣
er

ed

y

⎤
⎥⎦=

⎡
⎢⎢⎣
M M(Xr +QÑ )− I −M(Yr −QM̃)

M M(Xr +QÑ ) −M(Yr −QM̃)

N N (Xr +QÑ ) I −N (Yr −QM̃)

⎤
⎥⎥⎦

×
⎡
⎢⎣

r

di

do

⎤
⎥⎦ (10)

Even if Q in Equation (10) is replaced with H−1Yl ,
Equation (10) is still not equivalent to Equation (9) with
respect to r . H exists in nine elements in Equation (9).
The first column in Equation (9) corresponds to the
tracking performance and the last two columns corre-
spond to the feedback performance. This shows that
H has both tracking and feedback properties. Finally,
VS is more flexible than the central controller since the
controller is included in VS [24].

3. COMPENSATOR DESIGN

This section uses the VS properties to obtain the
observer directly from the LCF of the controller in
the H∞-LSDP in [17, 18]. This method ensures that
the proposed VS design procedure is convenient and

has the inherent properties of the H∞-LSDP. The
H∞-LSDP is first reviewed below.

3.1. Review of the H∞-LSDP

The H∞-LSDP of [17, 18] incorporates the perfor-
mance/robustness tradeoff obtained in loop shaping,
with the guaranteed stability properties of the robust
stabilization H∞

problem [16]. The main results of [17, 18] are as
follows.

The H∞-LSDP uses a pre-weighting matrix W1
and/or a post-weighting matrix W2 to shape the
singular values of the nominal plant G to the desired
open-loop shape GS =W2GW1.W1 andW2 are selected
such that GS has no hidden modes. The two weighting
matrices can increase the loop gain and the crossover
frequency, and/or introduce the integral action with or
without the phase-advance term.

Then, the robust stabilization H∞ problem is applied
to the normalized RCF of GS to produce a robust
controller K∞. Several researchers [12, 25–27] advo-
cate an expression of coprime factor uncertainty in
terms of additive stable perturbations to coprime factors
of the nominal plant. Such a class of perturbations
has advantages over additive or multiplicative unstruc-
tured uncertainty models. For example, the number of
unstable zeros and poles may change as the plant is
perturbed. That is, if the shaped plant is

GS =NSM
−1
S (11)

a perturbed plant can be written as

G� =(NS+�N )(MS+�M )−1 (12)

where MS and NS are the RCF of GS , and �M and �N
are stable, unknown transfer functions representing the

uncertainty and satisfying
∥∥∥[ �N

�M

]∥∥∥∞ <ε, where ε(>0)

presents the stability margin. The design objective is to
find a feedback controller K∞ that stabilizes all such
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G� for a given ε. Such a stabilizing controller K∞
satisfies

‖M−1
S (I +K∞GS)

−1[K∞ I ]‖∞�ε−1 (13)

Suppose the shaped plant of GS has the minimal
realization (A, B,C,D). A state-space construction for
the normalized RCF can be obtained in terms of a solu-
tion to the generalized control (filter) algebraic Riccati
equation as follows. The generalized control algebraic
Riccati equation (GCARE) is

(A−BS−1DTC)TX+X (A−BS−1DTC)

−XBS−1BTX+CTR−1C=0 (14)

and generalized filter algebraic Riccati equation
(GFARE) is

(A−BS−1DTC)Z+Z(A−BS−1DTC)T

−ZCTR−1CZ+BS−1BT=0 (15)

where R≡ I +DDT, and S≡ I +DTD. Then, the
normalized RCF (MS,NS) is given as

[
MS−−−
NS

]
=

⎡
⎢⎢⎣

A+BF BS−1/2

F S−1/2

- - - - - - - - - - - - - - - -
C+DF DS−1/2

⎤
⎥⎥⎦ (16)

where F≡−S−1(DTC+BTX). The normalized RCF
of GS means

MT
S (−j�)MS(j�)+NT

S (−j�)NS( j�)= I

for all � (17)

McFarlane and Glover [17] showed that a central
controller satisfying Equation (13) can be obtained as
follows:

K∞ =
[
A+BF+�2(WT)−1ZCT(C+DF) −�2(WT)−1ZCT

BTX DT

]
(18)

where W ≡ I +(X Z−�2 I ) and � are defined as 1/ε. In
addition, a maximum value of ε can be obtained by a
non-iterative method, and is given by

εmax=
⎛
⎝1−

∥∥∥∥∥
[
NS

MS

]∥∥∥∥∥
2

H

⎞
⎠

1/2

(19)

where ‖•‖H denotes the Hankel norm, and εmax is
the maximum stability margin. � is always selected to
be �/εmax, where � is a constant greater than zero.
The final feedback controller K is constructed as
W1K∞W2.

3.2. VS design procedure

This section presents the VS design procedure and
discusses only the strictly proper rational plant.

3.2.1. Selections of weighting matrices. The first step
is to select the constant or dynamic weighting matrices
W1 and/or W2 to shape the singular values of GS(=
W2GW1) as the LSDP does [17].

3.2.2. The design of the observer. The second step is
to find an observer in VS. Suppose the shaped plant GS
has a minimal realization [A, B,C,D] where D=0,
and the perturbed shaped plant is presented by Equation
(12). Then, according to Equation (16), the normalized
RCF of GS can be represented by

[
MS−−−
NS

]
=

⎡
⎢⎢⎢⎣
A+BF B

F I
- - - - - - - - - - - -

C 0

⎤
⎥⎥⎥⎦ (20)

where F=−BTX . Theorem 1 shows that the observer
composed of Xr and Yr in VS can be derived from
the LCF of the central controller in terms of feedback
properties. Hence, the observer can be obtained

from the LCF of the central controller in Equation (18),
which satisfies Equation (13) with stability margin ε as
follows:

[
Xr --

- Yr
]=

⎡
⎣A+QLC B

--
--
--
--
--
- −QL

−F I 0

⎤
⎦ (21)
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where Q=−�2(WT)−1, F=−BTX and L=−ZCT.
Such an observer design preserves all advantages of the
H∞-LSDP in the design of VS. Moreover, the realiza-
tions of Xl , Yl , ÑS and M̃S can be presented as follows:

[Xl -- Yl ] =
⎡
⎣ A+BF B

--
--
--
--
--
- −QL

C+DF I 0

⎤
⎦ (22)

[ÑS -- M̃S] =
⎡
⎣A+QLC B

--
--
--
--
--
- QL

C 0 I

⎤
⎦ (23)

where ÑS and M̃S are the LCF of GS , but not the
normalized LCF. Such coprime factorizations in Equa-
tions (20)–(23) satisfy Equation (24).[

Xr Yr

−ÑS M̃S

][
MS −Yl

NS Xl

]

=
[
MS −Yl

NS Xl

][
Xr Yr

−ÑS M̃S

]
= I (24)

3.2.3. Design of H (the controller). The third step is
to find the controller Cv in VS such that

‖M−1
S (I +KvGS)

−1[Kv I ]‖∞�ε−1
v (=�v) (25)

where Kv =(I +CvXr )
−1CvYr and εv are the stability

margin with respect to the shaped plant for the system
with VS. The internal stability condition of Equation (8)
can be rewritten as

MS(s)+Cv(s)=H(s)∈U(RH∞) (26)

According to Equations (9), (24), and (26),
Equation (25) can be written as Equation (27) or (28).

‖[H−1CvYr H−1(I +CvXr )]‖∞ � ε−1
v (27)

‖[Yr −H−1Yl M̃S Xr +H−1Yl ÑS]‖∞ � ε−1
v (28)

Equation (28) shows that the H parameter in Cv can
affect the value of the stability margin εv . Here, H is
selected according to the control requirements and then
the value of εv can be checked. H may require several
redesigns to obtain a satisfactory value of εv .

G1W 2W

rX rY

vC

SG
( )i ( )ii

−
observer

controller

Figure 2. VS design procedure.

Remark 3.1
Equation (25) implicitly considers minimizing the H∞
norm of the transfer functions from (d̃o, d̃i) to (y1, y2)
in Figure 3(a) as follows:

‖M−1
S (I +KvGS)

−1[Kv I ]‖∞

=
∥∥∥∥∥
[

I

GS

]
(I +KvGS)

−1[Kv I ]
∥∥∥∥∥∞

=
∥∥∥∥∥
[
W−1

1

W2G

]
(I +KG)−1[KW−1

2 W1]
∥∥∥∥∥∞

(29)

where the inner function
[
MS
NS

]
is pre-multiplied to go

to the four-block problem. Corollary 1 of [18] shows
that Equation (29) also equals Equation (30) by inter-
changing Kv and GS:

‖M−1
S (I +KvGS)

−1[Kv I ]‖∞

=
∥∥∥∥∥
[

I

Kv

]
(I +GSKv)

−1[GS I ]
∥∥∥∥∥∞

=
∥∥∥∥∥
[

W2

W−1
1 K

]
(I +GK )−1[GW1 W−1

2 ]
∥∥∥∥∥∞

(30)

Equation (30) presents the transfer functions from
(d̃i, d̃o) to (y2, y1) in Figure 3(b).

Equations (29) and (30) show how all the closed-loop
objectives of Equations (3) and (4) are incorporated.

The following will show how to design H alge-
braically to achieve the four cases: constant H yields
the integral action, dynamic H yields the integral action
with the phase-advance term, dynamic H adjusts the
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(a)

(b)

G

1W vK 2W

1
1W −

1W 1
2W −

2W

1y 2y
id

~
od

~

−

G

1W vK 2W

1W 1
1W −

2W 1
2W −

1y 2y
id

~
od

~

−

Figure 3. Two cases of the transfer functions from (d̃i, d̃o)
to (y1, y2).

tracking performance and yields the integral action in
the feedback system, and dynamic H rejects the input
and output sinusoidal disturbances with known frequen-
cies according to the algebraic equations.

The first case uses constant H to provide the inte-
gral action in the feedback system for the input and
output disturbance rejections. If the disturbance is a
step from the input and/or output of the plant, rejecting
the disturbance requires that the Smith–Macmillan form
of W1KvW2G [point (i) of Figure 2] and GW1KvW2
[point (ii) of Figure 2] have a pole at 0 for every channel.
If three conditions hold (W1 and W2 are constant, at
least one channel of GYr and YrG does not have any
poles at 0, and Kv can be represented as Kv =(C−1

v +
Xr )

−1Yr ), then the requirements equal

(C−1
v +Xr )|s=0=0 (31)

The third condition implies that the DC gain of Cv must
not be a zero matrix so that Equation (31) equals

(I +CvXr )|s=0=0 (32)

Equation (32) presents the Smith–Macmillan in the
form where the term I +CvXr has a zero at 0 for
every channel. The right-hand sides of Equations (31)
and (32) are zero matrices with compatible dimensions.

The proof of Equation (32) is as follows. The transfer
functions from the input disturbance to the output are

y=W1NSH
−1(I +CvXr )W

−1
1 ·di (33)

When each element in the vector di is a unit step, each
element in y indeed has a zero steady state according
to Equation (32) and the final value theorem. Because
of H−1(I +CvXr )= Xr +H−1Yl ÑS , Equation (33) can
be rewritten as

y=W1NS(Xr +H−1Yl ÑS)W
−1
1 ·di (34)

Equations (33) and (34) show that the requirement of
Equation (32) for the input step disturbance rejection
also can be written as

(Xr +H−1Yl ÑS)|s=0=0 (35)

since the DC gain of H must not be a zero
matrix. Because of Xl ÑS =NSXr in Equation (24),
Equation (35) can be rewritten as

(Xl +NSH
−1Yl)|s=0=0 (36)

Moreover, the transfer functions from the output distur-
bance to the output are

y=W−1
2 (Xl +NSH

−1Yl)M̃SW2 ·do (37)

Hence, when each element in the vector do is a unit
step, each element in y indeed has a zero steady state,
according to Equation (36) and the final value theorem.

According to Equations (26) and (31), H in Cv

should satisfy

H |s=0=(MS−X−1
r )|s=0 (38)

Equation (38) shows that the simplest way to select
Hwith integral action is

H =(MS−X−1
r )|s=0 (39)

There is only one requirement for the constant H in
Equation (39) that makes the system’s input and output
unit step disturbances zero at the steady state.

The stability margin may be small, although
Equation (39) leads to integral action in the feedback
system and good step disturbance rejection at low
frequencies. Hence, the second case will give the feed-
back system integral action with the phase-advance
term using dynamic H to increase the stability margin.
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Figure 4. Positive output-feedback controller derived
from VS.

Each channel in the open-loop shaping with a zero at
�2(>0) can be achieved by satisfying

(C−1
v +Xr )

−1|s=�2
=0 (40)

Equation (40) shows that the Smith–Macmillan form
of the term C−1

v +Xr has a pole at �2 for each channel
if the pole at �2 is not a hidden mode. Moreover, we
assume that the Smith–Macmillan form of the term
Xr does not have a pole at �2. Hence, the Smith–
Macmillan form of the term C−1

v must have a pole at
�2 for each channel. That is, the term Cv has a zero at
�2 for each channel so that the following equation is
satisfied:

H |s=�2
=MS|s=�2

(41)

Thus, the integral action with the phase-advance term
requires that H satisfy Equations (38) and (41). In that
case, the element Hij of the i th row and j th column in
H can be selected as

Hij(s)=hij
s+kij
s+ p

(42)

where the real number p(>0) is given, and hij and
kij(>0) are selected according to Equations (38) and
(41). This results in Cv . The final compensator can be
in the form of the observer–controller configuration of
Figure 2 or the (positive) output-feedback controller
K =−W1KvW2 of Figure 4.

W1 andW2 are assumed to be I in Figure 4. Rejecting
the step input and output disturbance in VS requires
that only parameter H satisfy Equations (38) and (41).
This property of VS is better than that of the controller
in the H∞-LSDP, which may require W1 and W2 to
improve the input and output step disturbances, respec-
tively [17].

In the third case, H is used to adjust the tracking
performance and produce the integral action in the feed-
back system. Suppose that the nominal plant has three
inputs and three outputs, W1 is an identity matrix, and
W2 is a constant matrix. To achieve unit step demand
responses, the DC gain of the H parameter satisfies the
final value theorem as follows:

lim
t→∞ y(t) = lim

s→0
sW−1

2 NSH
−1

⎡
⎢⎣
1/s

1/s

1/s

⎤
⎥⎦

=
⎛
⎜⎝W−1

2 NSH
−1

⎡
⎢⎣
1

1

1

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣
s=0

=
⎡
⎢⎣
1

1

1

⎤
⎥⎦ (43)

where y is the nominal plant output; NS is obtained
from the normalized RCF ofGS(=NSM

−1
S );W−1

2 NSH−1

is the transfer function from step demands to y, and the
step demands are a 3×1 vector with each element 1/s.
It is impossible for the DC gain of the H parameter
to satisfy Equations (38) and (43). An extra constant
matrix J is required to regulate the output responses
and achieve the two objectives as follows:

lim
t→∞ y(t) = lim

s→0
sW−1

2 NSH
−1 J

⎡
⎢⎣
1/s

1/s

1/s

⎤
⎥⎦

=
⎛
⎜⎝W−1

2 NSH
−1 J

⎡
⎢⎣
1

1

1

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣
s=0

=
⎡
⎢⎣
1

1

1

⎤
⎥⎦ (44)

where the DC gain of H satisfies Equation (38). Intro-
ducing the constant J yields the final compensator in
Figure 5, where r is the demand, y is the plant output,
and di and do are the input and output disturbances,
respectively.

The extra constant matrix J does not affect the open-
loop shape, as shown in below

J (I+J−1XrCv J )−1 · J−1Yr=(I+XrCv)
−1Yr =Kv

(45)
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Figure 5. Control scheme of VS for tracking and step
disturbance rejections.

If H is selected to be constant, as shown in Equa-
tion (39), the dynamic responses of the outputs depend
only on NS due to constants W2 and J . However,
NS is often not sufficiently good to obtain satisfactory
tracking performance. Hence, the dynamic H matrix is
required and can be designed using

H−1=
⎡
⎢⎣
h1 h2 h3

h4 h5 h6

h7 h8 h9

⎤
⎥⎦ · det(NS)

	(s)
(46)

where det(NS) is the determinant of NS , the roots of
the polynomial 	(s) with the same orders as det(NS)

are designed in the left-half plane, and h1, . . . ,h9 can
be obtained relying on the fact that the DC gains of H
in Equations (38) and (46) are identical. The transfer
function from r to y is then given by

y=W−1
2 ·Num(NS)

	(s)
·
⎡
⎢⎣
h1 h2 h3

h4 h5 h6

h7 h8 h9

⎤
⎥⎦· J ·r (47)

where Num(NS) is the numerator matrix of NS . The
term det(NS) in Equation (46) can be chosen freely
and has no effect on the tracking performance since it
cancels. Equation (47) shows that 	(s) can be designed
to control the tracking performance. If the absolute
values for the roots of 	(s) are larger, the tracking
response is faster but the system robustness is reduced.
The robustness can be checked using Equation (B1).
Thus, if the dynamic H matrix is designed as shown in
Equation (36), the objectives of good step disturbance
rejections and tracking performance can be achieved.

H is designed in a similar way for other dimensions of
the square or for wide plants.

Suppose that di and do are sinusoidal with frequen-
cies at �. If H is used to reject di and do, the following
two equivalent equations must be satisfied according to
Equations (34) and (37), respectively:

(Xr +H−1Yl ÑS)|s=j� = 0 (48)

(Xl +NSH
−1Yl)|s=j� = 0 (49)

Equations (48) and (49) can be rewritten as Equations
(50) and (51), respectively:

H |s=j� = −Yl ÑS X
−1
r |s= j� (50)

H |s=j� = −Yl X
−1
l NS|s= j� (51)

Because of Xl ÑS =NSXr in Equation (24),
Equation (50) is equivalent to Equation (51). This
means that the input and output sinusoidal rejections
with a known frequency require only one of either
Equation (50) or (51), which shows good VS prop-
erties. The following discussion uses Equation (50).
Since each element for H at � is a complex number,
solving Equation (50) requires two unknown coeffi-
cients in each element of H . Hence, the i th row and
j th column element of H can be given algebraically as

Hij(s)=hi j1+ hi j2
s+ ph

(52)

where ph(>0) is given, and hi j1 and hi j2 can be
solved according to Equation (50). If the result of H
is not unimodular, another value of ph is given and
Equation (50) is solved again. In a similar manner,
if the input and output disturbances have two known
sinusoidal frequencies, �1 and �2, then each element
of H needs four coefficients to be solved as

Hij(s)=hi j1+ hi j2
s+ ph

+ hi j3
(s+ ph)2

+ hi j4
(s+ ph)3

(53)

The four coefficients for each element of H in
Equation (53) are obtained according to Equation (50)
with respect to � at �1 and �2. That is, the number
of the coefficients in Hij(s) to be solved is twice the
number of the different frequencies.
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The H in VS provides flexibility to the compensator.
When designing H , it is straightforward to obtain solu-
tions to the four cases described earlier. More complex
H design methods are not presented here. For example,
H adjusts the tracking performance and rejects the sinu-
soidal input disturbance simultaneously. Since H , W1,
or W2 can achieve integral action with or without the
phase-advance term, it is possible to implement the
integral action using W1 or W2, and to solve other prob-
lems such as tracking control or sinusoidal disturbance
with H .

3.3. Achieved loop shape

As described above, the desired loop shaped was
specified as W2GW1, but the final shape of the loop
achieved is in fact given by W1KvW2G at the plant
input [point (i) of Figure 2] and GW1KvW2 [point
(ii) of Figure 2]. McFarlane and Glover [17] have
suggested that if �(≡ε−1) is small enough, �(GS), is
large enough at low frequencies, and �̄(GS) is small
enough at high frequencies, then the deteriorations of
the loop shapes W1K∞W2G and GW1K∞W2 at low
and high frequencies are limited for the H∞-LSDP,
according to Theorems A.1 and A.2, respectively.
With the help of these results [17], this section shows
that the deteriorations of the loop shapes W1KvW2G
and GW1KvW2 at low and high frequencies are also
limited, according to Theorems 1 and 2, respectively.

The following equations show that �(Kv) requires a
bound on the deterioration of the loop shapes at low
frequencies:

�(GK) = �(GW1KvW2)

� �(W2GW1)�(Kv)/c(W2) (54)

�(KG) = �(W1KvW2G)

� �(W2GW1)�(Kv)/c(W1) (55)

where the designer can select the condition numbers
c(W1) and c(W2). The following result shows that
�(Kv) is bounded by �(X−1

r Yr ), �(Cv), and �(Xr ), and
hence by Equations (54) and (55), and the high gain of
�(Cv) limits the deterioration of Kv at low frequencies.

Theorem 1
At frequencies of high loop gain, the smallest singular
value of the controller Cv should increase since

�(Kv)�
�(X−1

r Yr )

1+ 1

�(Cv)�(Xr )

(56)

Proof
Equation (56) follows from simple manipulation of
singular value inequalities. �

�(X−1
r Yr ) in Equation (56) is the smallest singular

value of the central controller K∞ in Equation (18),
and is large enough if � is small enough and �(GS) is
large enough at low frequencies, according to Theorem
A.1. Hence, for such K∞, Kv is large enough if �(Cv)

is large enough. Then, �(GK) or �(KG) are also large
enough at low frequencies according to Equations (54)
and (55).

The following equations show that �̄(Kv) requires a
bound on the deterioration of the loop shapes at high
frequencies:

�̄(GK) = �̄(GW1KvW2)

� �̄(W2GW1)�̄(Kv)c(W2) (57)

�̄(KG) = �̄(W1KvW2G)

� �̄(W2GW1)�̄(Kv)c(W1) (58)

In a similar manner, the following result shows that
�̄(Kv) is bounded by �̄(X−1

r Yr ), �̄(Cv), and �̄(Xr ), and
hence by Equations (57) and (58), while the low gain of
�̄(Cv) limits the deterioration of Kv at high frequencies.

Theorem 2
At frequencies of low loop gain, the largest singular
value of the controller Cv should decrease because

�̄(Kv)�
�̄(X−1

r Yr )
1

�̄(Cv)�̄(Xr )
−1

(59)

Proof
Equation (59) follows from simple manipulation of
singular value inequalities. �
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�̄(X−1
r Yr ) in Equation (59) is the largest singular

value of the central controller K∞ in Equation (18),
and is small enough if � is small enough and �̄(GS) is
small enough at high frequencies according to Theorem
A.2. Hence, for such K∞, Kv is small enough if �̄(Cv)

is small enough. Then, either �̄(GK) or �̄(KG) is also
small enough at high frequencies according to Equa-
tions (57) and (58).

This section shows that the selections of K∞ and Cv

can affect the singular values of Kv . Moreover,W1,W2,
and Cv can be used to set the performance/robustness
tradeoff so that Equation (25) is satisfied.

3.4. Closed-loop behavior

The H∞-LSDP in [17] ensures that a number of
standard closed-loop design objectives are bounded.
According to Equations (30) and (31), Theorem 4.2 in
[17] can be rewritten as Theorem B.1. Theorem B.1
shows that the bounds on the behavior of all closed-
loop transfer functions of Equations (3) and (4)
depend on the normalized RCF or normalized LCF of
GS =W2GW1, �v , W1, and W2. Hence, the closed-loop
objectives of the VS are also ‘well behaved’, as they
are referred to by McFarlane and Glover [17].

The trade-off between stability and performance
can be seen in Equations (B1)–(B7). When fewer task
requirements are required of H , more-complex W1
and/or W2 is/are needed and c(W1) and/or c(W2) are
larger (bigger than one). Then, to satisfy Equations
(B1)–(B7), �v will be smaller since c(W1) and/or
c(W2) will be larger (greater than one). Hence, when
fewer task requirements are placed on H , the stability
margin is larger, and vice versa.

4. TWO DESIGN EXAMPLES

Example 1
This example applies to the proposed VS design proce-
dure for designing a robust compensator for the aircraft
model AIRC [17]. Algebraic methods are proposed for
the input and output step disturbance rejection and the
tracking performance. The robust VS compensator is
compared with the H∞-LSDP controller.

The model used in a linearized model of the vertical-
plane dynamics of an aircraft with three inputs, three

outputs, and five states. The inputs are spoiler angle
(u1 measured in tenths of a degree), forward acceler-
ation (u2 in m/s2), and elevator (u3 in degrees). The
states are altitude relative to some datum (x1 in m),
forward speed (x2 in m/s), pitch angle (x3 in degrees),
pitch rate (x4 in degree/s), and vertical speed (x5 in
m/s). The three outputs (y1, y2, y3) are just the first
three states (x1, x2, x3), which are to be controlled. The
continuous-time state-space matrices of the nominal
plant are listed in Appendix C. The plant has no trans-
mission zeros and has poles located at −0.78±1.03j,
−0.0176±0.1826j and 0.

The design requirements are to achieve a crossover
frequency of about 10 rad/s, with reasonably damped
responses and zero steady-state error in the face of step
demands or disturbances.

VS Design Procedure:
Step 1. The dynamic pre-weighting matrix W1 is

selected as

W1=diag

{
24(s+0.4)

s
,
12(s+0.4)

s
,
24(s+0.4)

s

}
(60)

to increase the crossover frequency and reject the input
and output disturbances. W2 is an identity matrix.

Step 2. An eighth-order controller K∞ of Equation
(18) satisfying Equation (13) (ε=0.361) is obtained.
Xr and Yr , the LCF of K∞, are derived from Equation
(21). The observer composed of Xr and Yr is obtained
in Appendices D.1 and D.2.

Step 3. The controller (Cv) is designed. The normal-
ized RCF of the shaped plant GS(s)(=G(s)W1(s))
is (NS(s),MS(s)). NS(s) has poles at −12.2268,
−0.4001, −7.6683±7.6322j and −2.3696±2.3435j.
Then, the transfer function from r to y in Figure 5 is
as follows:

y=W−1
2 NSH

−1 J ·r (61)

where W2 is an identity matrix. If H−1 is selected to be

H−1(s) = diag

{
0.1(s+12.2268)

s+5

0.1(s+12.2268)

s+5
,
0.1(s+12.2268)

s+5

}

(62)
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then the stable zero of H−1(s) at −12.2268 cancels
the stable pole of NS(s), which can reduce the control
effort on r . Moreover, the value of the coefficient, 0.1, in
each element of H−1 can increase the stability margin
according to Equation (28). The system stability margin
εv is 0.326. When the coefficient is near zero, εv will
be close to ε. If the value of the coefficient is larger, the
value of εv will be smaller. For example, the stability
margin is 0.165 when the value of the coefficient is 1.
Therefore, H(s) requires several designs to obtain a
satisfactory value of εv . This is the disadvantage of the
VS design procedure. Moreover, a constant matrix J
for regulating the output final values is given by

J =
⎡
⎢⎣

−2.4661 −0.3402 3.2443

−0.2276 4.0751 0.2544

−3.2542 −0.0272 −2.4764

⎤
⎥⎦ (63)

The MS of Appendix D.3 and designed H and Cv

are obtained according to Equation (26). Then, the
final (negative) feedback controller K =W1Kv is
obtained. Figure 6(a) and (b) show the singular values
of the open loops, GK and KG, respectively; their
crossover frequencies are about 10 rad/s. Figure 7(a)
and (b) shows the output and input sensitivity func-
tions with the largest peak values of 1.57 and 1.58,
respectively. Figure 8(a) and (d) shows the output
responses and control inputs, respectively, for demands
with (1/s,0,0). Figure 8(b) and (e) shows the output
responses and control inputs, respectively, for demands
with (0,1/s,0). Figure 8(c) and (f) shows the output
responses and control inputs, respectively, for demands
with (0,0,1/s). Figure 8 demonstrates that the outputs
have almost no overshoots, the interaction between
outputs is less than 20%, and the control inputs are
limited as follows:

u1<10◦, u2<5m/s, u3<10◦

Comparison with the H∞-LSDP
McFarlane and Glover [17] designed this example

with W2 as follows:

W2=diag

{
24(s+0.4)

s
,
12(s+0.4)

s
,
24(s+0.4)

s

}
(64)

10-3 10-2 10-1 100 101 102
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1010

10-3 10-2 10-1 100 101 102

100

1010
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Figure 6. Singular values of (a) GK and (b) KG.
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10-10

100

10-3 10-2 10-1 100 101 102
10-10

100

rad/sec 

rad/sec 

(a)

(b)

Figure 7. Singular values of (a) output sensitivity function
and (b) input sensitivity function.

Here, the final controller K =K∞W2 of the H∞-LSDP
is obtained with no model reduction. The stability
margin ε of the H∞-LSDP is 0.361.
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Figure 8. (a)–(c) Unit step responses for outputs and (d)–(f) control inputs.

The controller of the H∞-LSDP is compared with
the case of VS. Figure 9(a) and (b) show that the
singular values of GK and KG for the H∞-LSDP are
almost the same as those for VS. Hence, the input and
output sensitivity functions, which represent the ability
to reject input and output disturbances, respectively, are
almost the same for the two approaches. The largest
peak values in Figure 10(a) and (b) are 1.59 and 1.57,
respectively. These peak values also are almost the same
as those of the second case.

Figure 12 shows the unit step responses for outputs
and control inputs when the control scheme shown
in Figure 11 is used for tracking. The overshoot of
the outputs is less than 40%, the interaction between
outputs is less than 30%, and the control inputs are
limited as follows:

u1<40◦, u2<10m/s, u3<30◦

Hence, the VS case is the best for overshoots, interac-
tion, and range of control input. Moreover, the VS case
has a settling time about of 1 s, which is shorter than
that of the H∞-LSDP (≈2s).

Because of the implementation difference with
regard to the H∞-LSDP and the VS, a pre-filter Fp(s)
is added for the H∞-LSDP and the transfer function
from r to y becomes

y=PK(I +PK)−1Fp ·r =W−1
2 NSYrW2Fp ·r (65)

The pre-filter is designed according to

Fp(s)=diag{p f, p f, p f } (66)

where p f =8.454×10−2 ·(s+59.142)/(s+5). The
DC gain of pf is 1, and pf will cancel the farthest

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1176–1196
DOI: 10.1002/rnc



ROBUST OBSERVER–CONTROLLER COMPENSATOR DESIGN 1189

10-3 10-2 10-1 100 101 102

10-3 10-2 10-1 100 101 102

100

1010

100

1010

rad/ sec

rad/ sec

(a)

(b)

Figure 9. Singular values of (a) GK and (b) KG (LSDP).
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Figure 10. Singular values of (a) output sensitivity function
and (b) input sensitivity function (LSDP).

pole of Yr at −59.142 to improve the control effort.
Hence, the function of Fp(s) is similar to H−1(s) of

GK
r y

−

Figure 11. Control scheme for tracking.

Equation (62). Figure 13 shows the unit step responses
for outputs and control inputs, and illustrates that
the overshoot of the outputs is less than 30%, the
interaction between outputs is less than 20%, and the
control inputs are limited as follows:

u1<3◦, u2<10m/s, u3<20◦

Fp(s) must be higher order to decrease the overshoot.
Moreover, Fp(s) is a phase-lag pre-filter. If Yr (or NS)
has poles much farther than −59.142, the phase lag for
the unit step response will be significant with respect
to the pre-filter design of Fp(s). However, the similar
function with respect to H(s) in VS does not have
the phase-lag problem since H(s) is in the feedback
loop.

The stability margin of the H∞-LSDP with or
without a pre-filter is a little better than the VS case.
Adding a pre-filter in the H∞-LSDP can improve the
control effort, interaction, and overshoot, but cannot
improve the settling time due to the phase-lag pre-filter.
The VS case seems the best design in many aspects,
as summarized in Table I.

Example 2
This example presents the design of VS for a 2×2
nominal multiple-input multiple-output plant. W2 is
used to reject two channels of input and output unit step
disturbances, and H is used to reject two channels of
input and output sinusoidal disturbances at frequencies
of 1 and 5 rad/s. In this case, the design can hardly
be achieved using the H∞-LSDP. The nominal plant is
given by

G(s)= 1

s2+9s+20

[
2 −1

0.5 3

]
(67)
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Figure 12. (a)–(c) Unit step responses for output responses and (d)–(f) control input responses (LSDP).

with the output vector (y1, y2). W1 is an identity matrix
and W2 is given as

W2=diag

{
45(s+0.1)

s
,
45(s+0.1)

s

}
(68)

Equation (68) yields two channels of input and
output unit step disturbances with zero steady sate.
Figure 14(a) and (b) show the singular values of G
and the shaped plant W2G, respectively.

The crossover frequency of W2G in Figure 14(b)
is about 10 rad/s. A controller K∞ of Equation (18)
satisfying Equation (13) (ε=0.549) is obtained
resulting in the observer composed of Xr and
Yr is obtained. When the input and output have
multiple sinusoidal disturbances with frequencies
at 1 and 5 rad/s, then according to Equations (48)

and (53), the unimodular matrix H can be designed
according to

H(s) =
[−0.1894 0.0142

0.0142 −0.3528

]

+ 1

s+1

[−1.6398 −0.0319

−0.0319 −1.2732

]

+ 1

(s+1)2

[
2.6995 0.0442

0.0442 2.1917

]

+ 1

(s+1)3

[−2.4099 −0.0323

−0.0323 −2.0381

]
(69)

The output and input sensitivity functions are shown
in Figure 15, where the peak value is 1.91. Moreover,
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Figure 13. Unit step responses for output responses (a)–(c) and control input responses (d)–(f) (LSDP with pre-filter).

Table I. Comparison of VS and LSDP with/without pre-filter where �̄ is ε or εv , Po and Pi are the peak values of the output
and input sensitivity functions, respectively, and ts is the settling time.

ε̄ Po Pi u1 (degree) u2 (m/s) u3 (degree) Overshoot Interaction ts (s)

VS 0.326 1.57 1.58 <8 <5 <10 No <20% 1
LSDP 0.361 1.59 1.57 <40 <10 <30 <40% <30% 2
LSDP with pre-filter 0.361 1.59 1.57 <3 <10 <20 <30% <20% 2

the stability margin εv of the system is 0.190.
Figure 16(a) shows the output responses for the distur-
bance vector (1/s,1/s) at the input and output of the
plant. Figure 16(b) shows the output for the sinusoidal
input disturbance vector (sin t+sin5t,sin t+sin5t)
at the input and output of the plant. Figure 16(c)
shows the output responses for the total disturbances
of Figure 16(a) and (b).

5. CONCLUSIONS

The YKP-like property of VS means that the VS
design procedure can improve on the H∞-LSDP
while maintaining its inherent properties. Convenient
numerical computation is not a feature of the VS design
procedure because of the H parameter. However,
H does give the VS design procedure flexibility in
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Figure 14. Singular values of (a) G and (b) W2G.
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Figure 15. Output and input sensitivity functions of
Example 2.

tracking control, or for the input-output step and
known multiple sinusoidal disturbances. The tracking
control in particular does not suffer from the phase-lag
problem. The design of H requires more study to meet
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Figure 16. Output responses with respect to (a) the unit
step disturbances (1/s,1/s) at the input and output and (b)
the sinusoidal input disturbance (sin t+sin5t,sin t+sin5t)
at the input and output. (c) The total disturbances of

(a) and (b).

the objectives of controlling disturbances and tracking
simultaneously.

Demonstration files for Examples 1 and 2 are
provided online at http://s-web.nctu.edu.tw/users/
u9414829/WWW/.

APPENDIX A

A.1. Lower bound of the robust central controller

Theorem A.1 (McFarlane and Glover [17], Theorem
3.1).
A controller K∞ satisfying Equation (13), where GS
is assumed to be square, also satisfies

�(K∞(j�))��(GS(j�))−(�2−1)1/2√
�2−1�(GS(j�))+1

(A1)

for all � such that

�(GS( j�))>

√
�2−1

where �=ε−1.
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A.2. Upper bound of the robust central controller

Theorem A.2 (McFarlane and Glover [17], Theorem
3.3).
A controller K∞ satisfying Equation (13), where GS
is assumed to be square, also satisfies

�̄(K∞(j�))� (�2−1)1/2+ �̄(GS(j�))

1−√�2−1�̄(GS(j�))
(A2)

for all � such that

�̄(GS(j�))<1/
√

�2−1

where �=ε−1.

APPENDIX B

B.1. Bounds of standard closed-loop objectives

The following theorem is adapted from Theorem 4.2 in
[17].
Theorem B.1
Suppose G is the nominal plant, and K =W1KvW2 is
the final (negative) output-feedback controller from the
VS (see Figure 3). If

‖M−1
S (I +KvGS)

−1[Kv I ]‖∞��v (B1)

then

�̄(K (I +GK)−1)��v�̄(M̃S)�̄(W1)�̄(W2) (B2)

�̄((I +GK)−1)

�min{1+�v�̄(NS)c(W2),�v�̄(M̃S)c(W2)} (B3)

�̄(K (I +GK)−1G)

�min{1+�v�̄(MS)c(W1),�v�̄(ÑS)c(W1)} (B4)

�̄((I +GK)−1G)� �v�̄(ÑS)

�(W1)�(W2)
(B5)

�̄((I +KG)−1)

�min{�v�̄(MS)c(W1),1+�v�̄(ÑS)c(W1)} (B6)

�̄(G(I +KG)−1K )

�min{�v�̄(NS)c(W2),1+�v�̄(M̃S)c(W2)} (B7)

where �v =ε−1
v ; (ÑS, M̃S) and (NS,MS) are a normal-

ized LCF and RCF of GS(=W2GW1), respectively;
c(•) denotes �̄(•)/�(•), the condition number,

�̄(ÑS)= �̄(NS)=
(

�̄2(W2GW1)

1+ �̄2(W2GW1)

)1/2

(B8)

and

�̄(M̃S)= �̄(MS)=
(

1

1+�2(W2GW1)

)1/2

(B9)

Equations (B8) and (B9) are according to Lemma 4.1
in [18].

APPENDIX C

The state-space matrices of the aircraft model are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.1320 0 −1.0000

0 −0.0538 −0.1712 0 0.0705

0 0 0 1.0000 0

0 0.0485 0 −0.8556 −1.0130

0 −0.2909 0 1.0532 −0.6859

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

−0.1200 1 0

0 0 0

4.4190 0 −1.6650

1.5750 0 −0.0732

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C =
⎡
⎢⎣
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

⎤
⎥⎦ D=

⎡
⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎦
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APPENDIX D

1. Realization of Xr with [A, B,C,D] for Example 1

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−42.7680 −1.4270 3.1844 0 −1 0 0 0

−1.4270 −17.4481 3.1461 0 0.0705 −0.3718 2.1909 0

2.0524 3.3173 −69.2723 1 0 0 0 0

96.2007 49.0611 −632.9635 −.8556 −1.0130 13.6918 0 −5.1588

168.9301 21.6927 −217.1787 1.0532 −0.6859 4.8780 0 −0.2268

16.0264 1.5231 −11.0802 0 0 0 0 0

1.9211 −2.8493 −1.2976 0 0 0 0 0

31.9141 .0024 22.6255 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

−2.8800 12.0000 0

0 0 0

106.0560 0 −39.9600

37.8000 0 −1.7568

3.0984 0 0

0 2.1909 0

0 0 3.0984

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎣

−0.6030 −0.0916 0.6053 0.0708 0.1474 0.1276 −0.0006 −0.0015

−0.0557 0.9904 0.0236 0.0082 0.0234 −0.0007 0.1790 −0.0017

−0.7958 −0.0313 −1.0234 −0.1524 0.3435 0.0002 0.0006 0.1287

⎤
⎥⎥⎦

D =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦
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2. Realization of Yr with [A, B,C,D] for Example 1

A is the same as A of Appendix D.1.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

42.7680 1.4270 −2.0524

1.4270 17.3943 −3.3173

−2.0524 −3.3173 69.27230

−96.2007 −49.0126 632.9635

−168.9301 −21.9836 217.1787

−16.0264 −1.5231 11.0802

−1.9211 2.8493 1.2976

−31.9141 −0.0024 −22.6255

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C is the same as C of Appendix D.1.

D =

⎡
⎢⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

3. Realization of MS with [A, B,C,D] for Example 1

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.1320 0 −1 0 0 0

−1.0689 −12.2025 1.2885 0.1056 0.2145 0.0038 0.0412 0.1498

0 0 0 1 0 0 0 0

32.1579 8.5154 −105.1063 −14.4611 −2.9165 0.1674 0.0920 0.1498

21.3971 3.1176 −24.6786 −1.9826 −5.6525 0.05659 0.02497 0.0579

1.8685 0.2839 −1.8754 −0.2195 −0.4566 −0.3954 0.0020 0.0048

0.1219 −2.1699 −0.0518 −0.0180 −0.0512 0.0015 −0.3921 0.0037

2.4656 0.09697 3.1722 0.4723 −1.0641 −0.0008 −0.0019 −0.3989

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

−2.8800 12 0

0 0 0

106.0560 0 −39.9600

37.8000 0 −1.7568

3.0984 0 0

0 2.1909 0

0 0 3.0984

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C is the negative C of Appendix D.1

D =
⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦
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