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摘  要 
 
 
 

本論文主要研究二維與三維的花樣生成問題。不論在二維或三維狀況中，

適當給定局部花樣的次序可定義出次序矩陣，此次序矩陣的特殊結構可使得較

大有限花樣所對應的高次次序矩陣被有系統的生成出來。給定某局部花樣子集

合，由次序矩陣可定義出轉化矩陣。利用低次與高次次序矩陣的特殊關係，可

得到相對應轉換矩陣的遞迴公式。空間熵的正則性是判斷包含所有可允許的全

局花樣集合複雜性的重要指標，而在此論文中，空間熵可藉由一組轉換矩陣的

最大特徵值計算出，一般而言，因為轉換矩陣的大小呈指數增長，使得空間熵

不易準確的計算出。因此定義所謂的連接算子，並利用其來估計空間熵的下界，

進而來驗證空間熵的正則性。另外，在二維情況中，可定義跡矩陣，利用其估

計更好的空間熵上界。在三維情況中，將以三維細胞類神經網路為例，呈現三

維花樣生成問題的應用。此博士論文所建立的理論，在研究網格動態系統及類

神經網路中全局解的複雜性上有極大的幫助。 
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Abstract

This dissertation investigates two and three-dimensional patterns generation

problems. Both in two and three-dimensional cases, an ordering matrix for the

set of all local patterns is established to derive a recursive formula for the ordering

matrix for a larger finite lattice. For a given admissible set of local patterns, the

transition matrix is defined and the recursive formula of high order transition ma-

trix is presented. Then, the spatial entropy is obtained by computing the maximum

eigenvalues of a sequence of transition matrices. The connecting operators are used

to verify the positivity of the spatial entropy, which is important in determining the

complexity of the set of admissible global patterns. Moreover, trace operator can

be also introduced to give a good estimate of the upper bound of spatial entropy. In

three-dimensional case, applications to three-dimensional Cellular Neural Networks

is presented. The results are useful in studying a set of global stationary solutions

in various Lattice Dynamical Systems and Cellular Neural Networks.
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1 Introduction

Lattices are important in scientifically modelling underlying spatial structures. Inves-
tigations in this field have covered phase transition [14], [15], [39], [40], [41], [42], [43],
[50], [51], [52], [53], chemical reaction [9], [10], [27], biology [11], [12], [24], [25], [26], [36],
[37], [38] and image processing and pattern recognition [19], [20], [21], [22], [23], [28], [32],
[33]. In the field of lattice dynamical systems (LDS) and cellular neural networks (CNN),
the complexity of the set of all global patterns recently attracted substantial interest. In
particular, its spatial entropy has received considerable attention [1],[2], [3], [4], [5], [6],
[7], [8], [16], [17], [18], [31], [34],[35], [44], [45], [46], [47], [48], [49].

The one dimensional spatial entropy h can be found from an associated transition
matrix T. The spatial entropy h equals to log ρ(T), where ρ(T) is the maximum eigenvalue
of T.

In two-dimensional situations, higher transition matrices have been discovered in [35]
and developed systematically [4] by studying the patterns generation problem.

This study extends our previous work [4]. For simplicity, two symbols on 2× 2 lattice
Z2×2 are considered. A transition matrix in the horizontal (or vertical) direction

A2 =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 , (1.1)

which is linked to a set of admissible local patterns on Z2×2 is considered, where aij ∈ {0, 1}
for 1 ≤ i, j ≤ 4. The associated vertical (or horizontal) transition matrix B2 is given by

B2 =




b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


 (1.2)

A2 and B2 are connected to each other as follows.

A2 =




b11 b12 b21 b22
b13 b14 b23 b24
b31 b32 b41 b42
b33 b34 b43 b44


 =

[
A2;1 A2;2

A2;3 A2;4

]
, (1.3)

and

B2 =




a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44


 =

[
B2;1 B2;2

B2;3 B2;4

]
. (1.4)

Notably if A2 represents the horizontal (or vertical) transition matrix then B2 repre-
sents the vertical (or horizontal) transition matrix. Results that hold for A2 are also valid
for B2. Therefore, for simplicity, only A2 is presented herein.

The recursive formulae for n-th order transition matrices An defined on Z2×n were
obtained [4] as follows

1



An+1 =




b11An;1 b12An;2 b21An;1 b22An;2

b13An;3 b14An;4 b23An;3 b24An;4

b31An;1 b32An;2 b41An;1 b42An;2

b33An;3 b34An;4 b43An;3 b44An;4


 (1.5)

whenever

An =

[
An;1 An;2

An;3 An;4

]
, (1.6)

for n ≥ 2, or equivalently,

An+1;α =

[
bα1An;1 bα2An;2

bα3An;3 bα4An;4

]
, (1.7)

for α ∈ {1, 2, 3, 4}. The number of all admissible patterns defined on Zm×n which can be
generated from A2 is now defined by

Γm,n(A2) = |Am−1
n |

= the summation of all entries in 2n × 2n matrix Am−1
n .

(1.8)

The spatial entropy h(A2) is defined as

h(A2) = lim
m,n→∞

1

mn
log Γm,n(A2) = lim

m,n→∞

1

mn
log |Am−1

n |. (1.9)

The existence of the limit (1.9) has been shown in [4], [18], [35]. When h(A2) > 0, the
number of admissible patterns grows exponentially with the lattice size m × n. In this
situation, spatial chaos arises. When h(A2) = 0, pattern formation occurs.

To compute the double limit in (1.9), n ≥ 2 can be fixed initially and m allowed to
tend to infinite [35] and [4]; then the Perron-Frobenius theorem is applied;

lim
m→∞

1

m
log |Am−1

n | = log ρ(An), (1.10)

which implies

h(A2) = lim
n→∞

1

n
log ρ(An), (1.11)

where ρ(M) is the maximum eigenvalue of matrix M . An is a 2n×2n matrix, so computing
ρ(An) is usually quite difficult when n is larger. Moreover, (1.11) does not produce any

error estimation in the estimated sequence
1

n
log ρ(An) and its limit h(A2). This causes

a serious problem in computing the entropy. However, for a class of A2, the recursive
formulae for ρ(An) can be discovered, along with a limiting equation to ρ∗ = exp(h(A2)),
as in [4].

This study takes a different approach to resolve these difficulties. Previously, the
double limit (1.9) was initially examined by taking the m-limit firstly as in (1.10). Now,
for each fixed m ≥ 2, the n-limit in (1.9) is studied. Therefore, the limit

lim
n→∞

1

n
log |Am−1

n | (1.12)

is considered. Write

Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
. (1.13)
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The investigation of (1.12) would be simpler if a recursive formula such as (1.7) could
be found for Am,n;α. The first task in this study is to solve this problem. For matrix
multiplication, the indices of An;α, α ∈ {1, 2, 3, 4} are conveniently expressed as

An =

[
An;11 An;12

An;21 An;22

]
. (1.14)

Then

Am,n;α =

2m−1∑

k=1

A(k)
m,n;α, (1.15)

where
A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1, (1.16)

k = 1 +
m∑

i=2

2m−i(ji − 1), (1.17)

and
α = 2(j1 − 1) + jm+1. (1.18)

A
(k)
m,n;α in (1.16) is called an elementary pattern of order (m,n), and is a fundamental

element in constructing Am,n;α in (1.15). Notably the elementary patterns are in lexico-
graphic order, according to (1.17). As in [4], the following m-th order ordering matrix.

Xm,n =

[
Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]
, (1.19)

is represented to record systematically these elementary patterns, where

Xm,n;α = (A(k)
m,n;α)

t
1≤k≤2m−1 (1.20)

is a 2m−1 column vector.
The first main result of this study is to introduce the connecting operator Cm, and to

use it to derive a recursive formula like (1.7) for A
(k)
m,n;α. Indeed,

Cm =




Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44


 (1.21)

=




Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44


 , (1.22)

where

Cm;ij =

([
ai1 ai2
ai3 ai4

]
◦
(
⊗̂
[
B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(
E2m−2×2m−2 ⊗

[
a1j a2j

a3j a4j

])

2m−1×2m−1

(1.23)

3



is a 2m−1 × 2m−1 matrix where Ek×k is the k × k full matrix; ⊗ denotes the Kronecker
product, ◦ denotes the Hadamard product and the product ⊗̂ which involves both the
Kronecker product and the Hadamard product, as stipulated by Definition 2.1.2.

In Theorem 2.1.4, Cm;ij is shown to be ai1i2ai2i3 · · ·aimim+1 , with i1 = i and im+1 = j.
Therefore, all admissible paths of A2 from i to j with lengthm are arranged systematically
in matrix Cm;ij. Now, the recursive formula is

A
(k)
m,n+1;α =




2m−1∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1∑

l=1

(Sm;α4)klA
(l)
m,n;4



, (1.24)

for m ≥ 2, n ≥ 2, 1 ≤ k ≤ 2m−1 and 1 ≤ α ≤ 4. (1.24) is the generalization of (1.7).
The recursive formula (1.24) immediately yields a lower bound on entropy. Indeed,

for any positive integer K and diagonal periodic cycle β1β2 · · ·βKβK+1, where βj ∈ {1, 4}
and βK+1 = β1,

h(A2) ≥
1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1

). (1.25)

Equation (1.25) implies h(A2) > 0, if a diagonal periodic cycle of β1β2 · · ·βKβ1 applies,
with a maximum eigenvalue of Sm;β1β2 · · ·Sm;βKβ1 that greater than one. This method
powerfully yields the positivity of spatial entropy, which is hard in examining the com-
plexity of patterns generation problems.

However, the subadditivity of Γm,n(A2) is known to imply

h(A2) ≤
1

mn
log Γm,n(A2) (1.26)

as in [18]. Consequently, (1.8), (1.10) and (1.26) indicate an upper bound of entropy as

h(A2) ≤
1

n
log ρ(An), (1.27)

for any n ≥ 2.
However, the Perron-Frobenius theorem also implies

lim sup
m→∞

1

m
log tr(Am−1

n ) = log ρ(An), (1.28)

where tr(M) denotes the trace of matrix M [29], [30]. Therefore, (1.28) implies

h(A2) = lim sup
m,n→∞

1

mn
log tr(Am−1

n ). (1.29)

In studying the double-limit of (1.29), for each fixed m ≥ 2, the n-limit in (1.29)

lim sup
n→∞

1

n
log tr(Am−1

n ) (1.30)

is first considered. (1.30) can be studied by introducing the following trace operator

Tm =

[
Cm;11 Cm;22

Cm;33 Cm;44

]
. (1.31)
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Then, a recursive formula for tr(Am
n ) can be verified

tr(Am
n ) =

∣∣∣∣∣∣
Tn−2
m




trXm,2;1

trXm,2;4



∣∣∣∣∣∣
, (1.32)

for n ≥ 2, where tr(Xm,n;α) = (trA
(k)
m,n;α)t1≤k≤2m−1 and |v| =

l∑

j=1

vj for vector v =

(v1, · · · , vl)t. Consequently, (1.29) and (1.32) yield

h(A2) = lim sup
m→∞

1

m
log ρ(Tm). (1.33)

Notably, for a large class of A2, the limit sup in (1.28), (1.29), (1.30) and (1.33) can
be replaced by limit. See section 2.2 for details.

Now, (1.33) can be applied to find the upper bounds of entropy. For example, when
A2 is symmetric,

h(A2) ≤
1

2m
log ρ(T2m), (1.34)

for any m ≥ 1. Since
Tn ≤ Bn (1.35)

can be shown for any n ≥ 2. Generally, (1.33) and (1.34) yield better approximation than
(1.11) and (1.27).

Moreover, this dissertation develops a general method to investigate three-dimensional
pattern generation problems, extending other studies [4] and [5] to the three-dimensional
case. It focuses on ordering matrices of patterns and on the connecting operator in the
three-dimensional case. The trace operator has been described elsewhere [8]. This work
is motivated by 3DCNN, so it is a major tool to study global patterns in 3DCNN.

Three-dimensional pattern generation problems are considered initially. Let S be a
finite set of p ≥ 2 colors, where Z3 denotes the integer lattice of R3. Denote, U : Z3 → S,
a global pattern by U(α1, α2, α3) = uα1α2α3 . The set of all patterns with p colors in a
three-dimensional lattice is expressed as Σ3

p ≡ SZ
3

= {U |U : Z3 → S}. The set of all
local patterns on Zm1×m2×m3 is denoted by

Σm1×m2×m3 ≡ {U |Zm1×m2×m3
|U ∈ Σ3

p}
where Zm1×m2×m3 = {(α1, α2, α3)| 1 ≤ αi ≤ mi, 1 ≤ i ≤ 3} is an m1 ×m2 ×m3 finite
rectangular lattice. For simplicity, two colors on the 2×2×2 lattice Z2×2×2 are considered
here. Given a basic set B ⊂ Σ2×2×2, the spatial entropy can be defined as

h(B) = lim
m1,m2,m3→∞

log Γm1×m2×m3(B)

m1m2m3
, (1.36)

where Γm1×m2×m3(B) is the number of distinct patterns in Σm1×m2×m3(B) and Σm1×m2×m3(B)
is the set of all local patterns on Zm1×m2×m3 , which can be generated from B, as described
elsewhere [18]. Six different orderings

[x] : [1] ≻ [2] ≻ [3]
[y] : [2] ≻ [1] ≻ [3]
[z] : [3] ≻ [1] ≻ [2]
[x̂] : [1] ≻ [3] ≻ [2]
[ŷ] : [2] ≻ [3] ≻ [1]
[ẑ] : [3] ≻ [2] ≻ [1]
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are obtained and the ordering matrix W2×2×2 for Σ2×2×2 can be introduced according to
the different ordering [ω]. Without loss of generality, X2×2×2 is considered

where

(1.37)

and the other cases are similar.
One of the main results is the construction of X̂2×m2×m3 from X2×2×2, where X̂2×m2×m3

represents the ordering matrix of Σ2×m2×m3 according to [x̂]-ordering. It can be addressed
in the following three steps.

Step I : Apply [x]-ordering to Z1×m2×2

2m2-2 2

2m2-3 2m2-1

y

and introduce ordering matrix X2×m2×2 for Σ2×m2×2 as in Theorem 3.1.1. By Theorem
3.1.8, the transition matrix Ax;2×m2×2 can be obtained from

Ax;2×m2×2 = (Ax;2×(m2−1)×2)22(m2−1)×22(m2−1) ◦ (E22(m2−2) ⊗ Ax;2×2×2),

⊗ is the tensor product and ◦ is the Hadamard product, where E2k is the 2k × 2k matrix
with 1 as its entries, as in Eq. (3.29).

Step II : Convert [x]-ordering into [x̂]-ordering on Z1×m2×2 using

2 2 2

and introduce the ordering matrix X̂2×m2×2 for Σ2×m2×2 as in Theorem 3.1.4. The associ-
ated transition matrix Ax̂;2×m2×2 is given by

Ax̂;2×m2×2 = Ptx;2×m2×2Ax;2×m2×2Px;2×m2×2,

where Px;2×m2×2 is the permutation matrix as in Theorem 3.1.10.

Step III : Define [x̂]-ordering on Z1×m2×m3 as

(m3-1)m2+1 (m3-1)m2+2 3 2

z

6



and introduce ordering matrix X̂2×m2×m3 for Σ2×m2×m3 as in Theorem 3.1.5. The recursive
formula for the transition matrix Ax̂;2×m2×m3 can be obtained by

Ax̂;2×m2×m3 = (Ax̂;2×m2×(m3−1))2m2(m3−1)×2m2(m3−1)

◦(E2m2(m3−2) ⊗ Ax̂;2×m2×2)

as in Theorem 3.1.11
Theorem 3.1.13 enables the maximum eigenvalue λx̂;2,m2,m3 of Ax̂;2×m2×m3 to be com-

puted, to yield the spatial entropy,

h(B) = lim
m2,m3→∞

log λx̂;2,m2,m3

m2m3
.

However, some estimates of lower bound of spatial entropy h(B) can be made using the
connecting operator. Then, for fixed m1, m2 ≥ 2, the m3-limit in Eq. (1.36) is studied:

lim
m3→∞

1

m3

log |Am1
x̂;2×m2×m3

|. (1.38)

The recursive formula of Am1
x̂;2×m2×m3

in m3 is considered. Accordingly, the next task is to
investigate Eq. (1.38). According to Eqs. (3.46) and (3.47),

A
m1

x̂;2×m2×m3
= [Ax̂;m1,m2,m3;α]2m2×2m2 ,

Ax̂;m1,m2,m3;α =
2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,m3;α

where A
(k)
x̂;m1,m2,m3;α

is called an elementary pattern of order (m1, m2, m3) and is a funda-
mental element in constructing Ax̂;m1,m2,m3;α. Vx̂;m1,m2,m3 is defined as

Vx̂;m1,m2,m3 = [Vx̂;m1,m2,m3;α],

Vx̂;m1,m2,m3;α = (A
(k)
x̂;m1,m2,m3;α)

t

as in Eqs. (3.48) and (3.49), which specifies systematically these elementary patterns. The
connecting operator Cx̂;m3;m1m2 is introduced as in Definition 3.2.2, and used to derive a

recursive formula for A
(k)
x̂;m1,m2,(m3+1);α1;α2

and A
(ℓ)
x̂;m1,m2,m3;α2

as in Theorem 3.2.5

Vx̂;m1,m2,m3+1;α1;α2 = Sx̂;m3;m1m2;α1α2Vx̂;m1,m2,m3;α2,

where Cx̂;m3;m1m2 = S
(r)
x̂;m3;m1m2

. The recursive formula Eq. (3.60) yields a lower bound on
entropy

h(Ax;2×2×2) (1.39)

≥ lim
m2→∞

1

m1m2P
log ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPα1)

such as in Theorem 3.2.12 and which implies h(Ax;2×2×2) > 0 if a diagonal periodic cycle
is applied with a limit in Eq. (1.39) that exceeds 0. This method powerfully yields

7



the positivity of spatial entropy, which is useful in evaluating the complexity of patterns
generation problems.

The method is very effective in elucidating the complexity of the set of mosaic patterns
in 3DCNN. A typical 3DCNN is of the form

dui,j,k

dt
= −ui,j,k + w +

∑

|α|,|β|,|γ|≤1

aα,β,γf(ui+α,j+β,k+γ) +
∑

|α|,|β|,|γ|≤1

bα,β,γui+α,j+β,k+γ,(1.40)

where (i, j, k) ∈ Z3, f(u) is a piecewise-linear output function, defined by

v = f(u) =
1

2
(|u+ 1| − |u− 1|).

Here, A = (aα,β,γ) is a feedback template, a spatial-invariant template; B = (bα.β,γ) is a
controlling template, and w is called a biased term or threshold. To elucidate the method,
consider nonzero a0,0,0 = a, a1,0,0 = ax, a0,1,0 = ay, a0,0,1 = az and zero other aα,β,γ and
bα,β,γ. Therefore, Eq. (1.40) can be rewritten as

dui,j,k

dt
= −ui,j,k + w + af(ui,j,k) + axf(ui+1,j,k) + ayf(ui,j+1,k) + azf(ui,j,k+1). (1.41)

The quantities ui,j,k represent the state of cell at (i, j, k). The stationary solution ū =
(ūi,j,k) of Eq. (1.41) satisfies

ui,j,k = w + avi,j,k + axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1, (1.42)

where v = f(u), which is very important in studying 3DCNNs: their outputs v̄ = (v̄i,j,k) =
f(ūi,j,k) are called patterns. A mosaic solution ū satisfies |ūi,j,k| ≥ 1 and its corresponding
pattern v̄ is called a mosaic pattern here |ūi,j,k| ≥ 1 for all (i, j, k) ∈ Z3. Among the sta-
tionary solutions, the mosaic solutions are stable and are crucial to study the complexity
of Eq. (1.41). Equation (1.42) has five parameters w, a, ax, ay and az. ax < ay < az < 0
and |ax| > |ay| + |az| are considered to elucidate application of our work. In particular,
region [4,8] in Fig. 4 in Sec. 3.3 is considered: the transition matrix can be written as

Ax;2×2×2 = G⊗ E ⊗E ⊗E,

where G =

[
1 1
1 0

]
and E =

[
1 1
1 1

]
.

Then, Steps (I), (II) and (III) yield the aforementioned admissible patterns in Σ2×m2×m3 ;
the corresponding transition matrix can be derived as in Proposition 3.1.15.

Step (I) =⇒Ax;2×m2×2 = ⊗(G⊗E)m2−1 ⊗ (⊗E2),
Step (II) =⇒ Ax̂;2×m2×2 = (⊗Gm2−1) ⊗ (⊗Em2+1),
Step (III) =⇒ Ax̂;2×m2×m3 = ⊗((⊗Gm2−1) ⊗E)m3−1 ⊗ (⊗Em2).

The complexity of the 3DCNN model, as in Eq. (1.41), can be examined using the
connecting operator defined in Sec. 3.2. Since the connecting operator

Cz;m1;m22;11 = Sz;m1;m22;11 = (⊗Gm2−1) ⊗ E,

the maximum eigenvalue can be exactly computed as

ρ(Sz;m1;m22;11) = 2gm2−1
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, where g = 1+
√

5
2

is the golden-mean, as in Proposition 3.3.1. According to Eq. (1.39),
the lower bound of spatial entropy in the region (VIII)-(i)-(1)-[4,8] can be estimated

h(Ax;2×2×2) ≥ lim
m2→∞

1

2m2
log ρ(Sz;m1;m22;11) =

1

2
log g.

Moreover, in this case, spatial entropy can be solved exactly from the maximum eigenvalue
of Ax̂;2×m2×m3 . Since

ρ(Ax̂;2×m2×m3) = 2m2+m3−1g(m2−1)(m3−1),

the spatial entropy is

h(Ax;2×2×2) = lim
m2,m3→∞

ρ(Ax̂;2×m2×m3)

m2m3
= log g

as in Proposition 3.1.15.
In summary, in two-dimensional case, this study yields lower-bound estimates of en-

tropy like (1.25) by introducing connecting operators Cm, and upper-bound estimates of
entropy like (1.34) by introducing trace operators Tm. And in three-dimensional case,
an ordering matrix for the set of all local patterns is established to derive a recursive
formula for the ordering matrix for a larger finite lattice. For a given admissible set of
local patterns, the transition matrix is defined and the recursive formula of high order
transition matrix is presented. Then, the spatial entropy is obtained by computing the
maximum eigenvalues of a sequence of transition matrices. This approach accurately and
effectively yields the spatial entropy.

The rest of this dissertation is organized as follows. Section 2 derives the connecting
operator Cm which can recursively reduce higher order elementary patterns to patterns of
lower order in two-dimensional lattice models. Then, the lower-bound of spatial entropy
can be found by computing the maximum eigenvalues of the diagonal periodic cycles of
sequence Sm;αβ. Moreover, the trace operator Tm of Cm is addressed. The entropy can
be calculated by computing the maximum eigenvalues of Tm. When A2 is symmetric, the
upper-bounds of entropy are also found. Finally, briefly discusses the theory for many
symbols on larger lattices. In Section 3, in three-dimensional lattice models, a recursive
formula for the ordering matrix X2×m2×2 for Σ2×m2×2 can be derived from X2×2×2. The
ordering [x] is converted to [x̂]. Then, a similar recursive formula is constructed for
ordering matrix X̂2×m2×m3 from X̂2×m2×2. Then, the recursive formula for the associated
high order transition matrices Ax̂;2×m2×m3 can be obtained from Ax;2×2×2. Moreover, the
connecting operator Cx̂;m3;m1m2 can be defined, which can recursively reduce elementary
patterns of high order to patterns of low order. Then, the lower-bound of spatial entropy
is determined by computing the maximum eigenvalues of the diagonal periodic cycles
of sequence Sx̂;m3;m1m2;αβ. Finally, an example of the application of our main results to
3DCNN is presented.
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2 Two-dimensional Pattern Generation Problems

2.1 Connecting Operators

2.1.1 Connecting operators and ordering matrices

This section derives connecting operators and investigates their properties. For clarity,
two symbols on 2 × 2 lattice Z2×2 are examined first. Section 2.3 addresses more general
situations.

Let A2 and B2 be defined as in (1.1)∼(1.4). The column matrices Ã2 and B̃2 of A2

and B2 are defined by

Ã2 =




a11 a21 a12 a22

a31 a41 a32 a42

a13 a23 a14 a24

a33 a43 a34 a44


 =

[
Ã2;1 Ã2;2

Ã2;3 Ã2;4

]
(2.1)

and

B̃2 =




b11 b21 b12 b22
b31 b41 b32 b42
b13 b23 b14 b24
b33 b43 b34 b44


 =

[
B̃2;1 B̃2;2

B̃2;3 B̃2;4

]
(2.2)

, respectively.
For matrices of higher order n ≥ 2, An, An+1 and An+1;α are defined as in (1.5)∼(1.7).
For matrix multiplication, the indices of An;α are conveniently expressed as

An =

[
An;11 An;12

An;21 An;22

]
. (2.3)

Clearly, An;α = An;j1j2 , where

α = α(j1, j2) = 2(j1 − 1) + j2. (2.4)

For m ≥ 2, the elementary pattern in the entries of Am
n is represented by

An;j1j2An;j2j3 · · ·An;jmjm+1,

where js ∈ {1, 2}. A lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)

is introduced, using

χ(Jm+1) = 1 +
m∑

s=2

2m−s(js − 1). (2.5)

Now,
A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1, (2.6)

where
α = α(j1, jm+1) = 2(j1 − 1) + jm+1 (2.7)

and
k = χ(Jm+1) (2.8)
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is given in (2.5). Notably, (2.5) and (2.8) do not involve jm+1 but (2.7)does.
Therefore, Am

n can be expressed as

Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
, (2.9)

where

Am,n;α =

2m−1∑

k=1

A(k)
m,n;α. (2.10)

Furthermore,
Xm,n;α = (A(k)

m,n;α)
t
1≤k≤2m−1 . (2.11)

1 ≤ k ≤ 2m−1, Xm,n;α is a 2m−1 column-vector that consists of all elementary patterns in
Am,n;α. The ordering matrix Xm,n of Am

n is now defined by

Xm,n =

[
Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]
. (2.12)

The ordering matrix Xm,n allows the elementary patterns to be tracked during the
reduction from Am

n+1 to Am
n . This careful book-keeping provides a systematic way to

generate the admissible patterns and later, lower-bound estimates of spatial entropy.
The following simplest example is studied first to illustrate the above concept.

Example 2.1.1. For m = 2, the following can easily be verified;

A2
n =

[
A2
n;11 + An;12An;21 An;11An;12 + An;12An;22

An;21An;11 + An;22An;21 An;21An;12 + A2
n;22

]
, (2.13)

and
A

(1)
2,n;1 = A2

n;11, A
(2)
2,n;1 = An;12An;21,

A
(1)
2,n;2 = An;11An;12, A

(2)
2,n;2 = An;12An;22,

A
(1)
2,n;3 = An;21An;11, A

(2)
2,n;3 = An;22An;21,

A
(1)
2,n;4 = An;21An;12, A

(2)
2,n;4 = A2

n;22.




. (2.14)

Therefore,

X2,n;1 =

[
A2
n;11

An;12An;21

]
, X2,n;2 =

[
An;11An,12
An;12An;22

]
,

X2,n;3 =

[
An;21An;11

An;22An;21

]
, X2,n;4 =

[
An;21An,12
A2
n;22

]
.




. (2.15)

Applying (1.7), and by a straightforward computation,

X2,n+1;1 =

[
A2
n+1;11

An+1;12An+1;21

]
(2.16)

=




[
b211A

2
n;1 + b12b13An;2An;3 b11b12An;1An;2 + b12b14An;2An;4

b13b11An;3An;1 + b14b13An;4An;3 b13b12An;3An;2 + b214A
2
n;4

]

[
b21b31A

2
n;1 + b22b33An;2An;3 b21b32An;1An;2 + b22b34An;2An;4

b23b31An;3An;1 + b24b33An;4An;3 b23b32An;3An;2 + b24b34A
2
n;4

]



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Clearly, the j1j2 entries of A2
n+1;11 and An+1;12An+1;21 in (2.16) consist of entries of

X2,n;α in (2.14) with α = α(j1, j2) in (2.4). Moreover, the terms in (2.16) can be rearranged
in terms of X2,n;α by exchanging the second row in the first matrix with the first row in
the second matrix in (2.16) as follows.




[
b211 b12b13
b21b31 b22b33

] [
A2
n;1

An;2An;3

] [
b11b12 b12b14
b21b32 b22b34

] [
An;1An;2

An;2An;4

]

[
b13b11 b14b13
b23b31 b24b33

] [
An;3An;1

An;4An;3

] [
b13b12 b214
b23b32 b24b34

] [
An;3An;2

A2
n;4

]




(2.17)

Applying (1.1), (1.2) and (2.1), (2.17) can be rewritten as




[
a2

11 a12a21

a13a31 a14a41

] [
A2
n;11

An;12An;21

] [
a11a12 a12a22

a13a32 a14a42

] [
An;11An;12

An;12An;22

]

[
a21a11 a22a21

a23a31 a24a41

] [
An;21An;11

An;22An;21

] [
a21a12 a2

22

a23a32 a24a42

] [
An;21An;12

A2
n;22

]




=

[
(B2;11 ◦ Ã2;11)X2,n;1 (B2;11 ◦ Ã2;12)X2,n;2

(B2;12 ◦ Ã2;11)X2,n;3 (B2;12 ◦ Ã2;12)X2,n;4

]
. (2.18)

Therefore, after the entries of X2,n+1;1 as in (2.17) or (2.18) have been permuted,
X2,n+1;1 can be represented by a 2 × 2 matrix

X̂2,n+1;1 ≡ P(X2,n+1;1) ≡
[
X2,n+1;1;1 X2,n+1;1;2

X2,n+1;1;3 X2,n+1;1;4

]
, (2.19)

where
X2,n+1;1;1 = S2;11X2,n;1,

X2,n+1;1;2 = S2;12X2,n;2,

X2,n+1;1;3 = S2;13X2,n;3,

X2,n+1;1;4 = S2;14X2,n;4





(2.20)

and
S2;11 = B2;11 ◦ Ã2;11 ≡ C2;11,

S2;12 = B2;11 ◦ Ã2;12 ≡ C2;12,

S2;13 = B2;12 ◦ Ã2;11 ≡ C2;21,

S2;14 = B2;12 ◦ Ã2;12 ≡ C2;22,




. (2.21)

The above derivation indicates that X2,n+1;α can be reduced to X2,n;β via multiplica-
tion with connecting matrices C2;αβ. This procedure can be extended to introduce the
connecting operator Cm = [ Cm;αβ ], for all m ≥ 2.

Before Cm is introduced, three products of matrices are defined as follows.

Definition 2.1.2. For any two matrices M = (Mij) and N = (Nkl), the Kronecker product
(tensor product) M ⊗ N of M and N is defined by

M ⊗ N = (MijN). (2.22)

For any n ≥ 1,
⊗Nn = N ⊗ N ⊗ · · · ⊗ N,

12



n-times in N.
Next, for any two m×m matrices

P = (Pij) and Q = (Qij)

where Pij and Qij are numbers or matrices, the Hadamard product P ◦ Q is defined by

P ◦ Q = (Pij ·Qij), (2.23)

where the product Pij ·Qij of Pij and Qij may be a multiplication between numbers, between
numbers and matrices or between matrices whenever it is well-defined.

Finally, product ⊗̂ is defined as follows. For any 4 × 4 matrix

M2 =




m11 m12 m21 m22

m13 m14 m23 m24

m31 m32 m41 m42

m33 m34 m43 m44


 =

[
M2;1 M2;2

M2;3 M2;4

]
(2.24)

and any 2 × 2 matrix

N =

[
N1 N2

N3 N4

]
, (2.25)

where mij are numbers and Nk are numbers or matrices, for 1 ≤ i, j, k ≤ 4, define

M2⊗̂N =




m11N1 m12N2 m21N1 m22N2

m13N3 m14N4 m23N3 m24N4

m31N1 m32N2 m41N1 m42N2

m33N3 m34N4 m43N3 m44N4


 . (2.26)

Furthermore, for n ≥ 1, the n+ 1 th order of transition matrix of M2 is defined by

Mn+1 ≡ ⊗̂Mn
2 = M2⊗̂M2⊗̂ · · · ⊗̂M2,

n-times in M2. More precisely,

Mn+1 = M2⊗̂(⊗̂Mn−1
2 ) =

[
M2;1 ◦ (⊗̂Mn−1

2 ) M2;2 ◦ (⊗̂Mn−1
2 )

M2;3 ◦ (⊗̂Mn−1
2 ) M2;4 ◦ (⊗̂Mn−1

2 )

]

=




m11Mn;1 m12Mn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4

m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2

m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4


 =

[
Mn+1;1 Mn+1;2

Mn+1;3 Mn+1;4

]
, (2.27)

where

Mn = ⊗̂Mn−1
2 =

[
Mn;1 Mn;2

Mn;3 Mn;4

]
.

Here, the following convention is adopted,

⊗̂M0
2 = E2×2.
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Definition 2.1.3. For m ≥ 2, define

Cm =




Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44


 =




Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44


 , (2.28)

where

Cm;αβ =

([
aα1 aα2

aα3 aα4

]
◦
(
⊗̂
[
B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(
E2m−2×2m−2 ⊗

([
a1β a2β

a3β a4β

]))

2m−1×2m−1

.

(2.29)

Similarly, for B2, define

Um =




Um;11 Um;12 Um;13 Um;14

Um;21 Um;22 Um;23 Um;24

Um;31 Um;32 Um;33 Um;34

Um;41 Um;42 Um;43 Um;44


 =




Wm;11 Wm;12 Wm;21 Wm;22

Wm;13 Wm;14 Wm;23 Wm;24

Wm;31 Wm;32 Wm;41 Wm;42

Wm;33 Wm;34 Wm;43 Wm;44


 , (2.30)

where

Um;αβ =

([
bα1 bα2

bα3 bα4

]
◦
(
⊗̂
[
A2;1 A2;2

A2;3 A2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(
E2m−2×2m−2 ⊗

([
b1β b2β
b3β b4β

]))

2m−1×2m−1

.

(2.31)

Sm = [Sm;αβ] and Wm = [Wm;αβ ].

Now Cm+1 can be found from Cm by a recursive formula, as in (1.7).

Theorem 2.1.4. For any m ≥ 2 and 1 ≤ α, β ≤ 4,

Cm+1;αβ =

[
aα1Cm;1β aα2Cm;2β

aα3Cm;3β aα4Cm;4β

]
, (2.32)

and

Um+1;αβ =

[
bα1Um;1β bα2Um;2β

bα3Um;3β bα4Um;4β

]
. (2.33)

Proof. By (2.27),

⊗̂Bm−1
2 = B2⊗̂(⊗̂Bm−2

2 ) =

[
B2;1 ◦ (⊗̂Bm−2

2 ) B2;2 ◦ (⊗̂Bm−2
2 )

B2;3 ◦ (⊗̂Bm−2
2 ) B2;4 ◦ (⊗̂Bm−2

2 )

]
.

Therefore,

Cm+1;αβ = (B2;α ◦ (⊗̂Bm−1
2 )) ◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[
aα1(B2;1 ◦ ⊗̂Bm−2

2 ) aα2(B2;2 ◦ ⊗̂Bm−2
2 )

aα3(B2;3 ◦ ⊗̂Bm−2
2 ) aα4(B2;4 ◦ ⊗̂Bm−2

2 )

]
◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[
aα1[(B2;1 ◦ ⊗̂Bm−2

2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)] aα2[(B2;2 ◦ ⊗̂Bm−2
2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)

aα3[(B2;3 ◦ ⊗̂Bm−2
2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)] aα4[(B2;4 ◦ ⊗̂Bm−2

2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)]

]

=

[
aα1Cm;1β aα2Cm;2β

aα3Cm;3β aα4Cm;4β

]
.
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A similar result also holds for Um;αβ ; the details are omitted here. The proof is complete.

Notably, (2.32) implies Cm;ij is ai1i2ai2i3 · · ·aimim+1 with i1 = i and im+1 = j. Cm;ij

consist of all words(or paths) of length m starting from i and ending at j. Indeed, the
entries of Cm and Bm+1 are the same. However, the arrangements are different. Cm can
also be used to study the primitivity of An, n ≥ 2, as in [6].

That the recursive formula (1.24) holds remains to be shown. Indeed, in (2.6) substi-
tuting n for n+ 1 and using (1.7),

A
(k)
m,n+1;α

= An+1;j1j2An+1;j2j3 · · ·An+1,jmjm+1

=

m∏

i=1

[
bαi1An;11 bαi2An;12

bαi3An;21 bαi4An;22

] (2.34)

where αi = α(ji, ji+1), for 1 ≤ i ≤ m. After m matrix multiplications are executed in
(2.34),

A
(k)
m,n+1;α =

[
A

(k)
m,n+1;α;1 A

(k)
m,n+1;α;2

A
(k)
m,n+1;α;3 A

(k)
m,n+1;α;4

]
(2.35)

where

A
(k)
m,n+1;α;β =

2m−1∑

l=1

K(m;α, β; k, l)A
(l)
m,n;β (2.36)

is a linear combination of A
(l)
m,n;β with the coefficients K(m;α, β; k, l) which are products

of bαlj, 1 ≤ l ≤ m. K(m;α, β; k, l) must be studied in more details.
Note that

Am
n+1 =

[
Am,n+1;1 Am,n+1;2

Am,n+1;3 Am,n+1;4

]
(2.37)

=




2m−1∑

k=1

A
(k)
m,n+1;1

2m−1∑

k=1

A
(k)
m,n+1;2

2m−1∑

k=1

A
(k)
m,n+1;3

2m−1∑

k=1

A
(k)
m,n+1;4




=




∑2m−1

k=1 A
(k)
m,n+1;1;1

∑2m−1

k=1 A
(k)
m,n+1;1;2

∑2m−1

k=1 A
(k)
m,n+1;2;1

∑2m−1

k=1 A
(k)
m,n+1;2;2∑2m−1

k=1 A
(k)
m,n+1;1;3

∑2m−1

k=1 A
(k)
m,n+1;1;4

∑2m−1

k=1 A
(k)
m,n+1;2;3

∑2m−1

k=1 A
(k)
m,n+1;2;4∑2m−1

k=1 A
(k)
m,n+1;3;1

∑2m−1

k=1 A
(k)
m,n+1;3;2

∑2m−1

k=1 A
(k)
m,n+1;4;1

∑2m−1

k=1 A
(k)
m,n+1;4;2∑2m−1

k=1 A
(k)
m,n+1;3;3

∑2m−1

k=1 A
(k)
m,n+1;3;4

∑2m−1

k=1 A
(k)
m,n+1;4;3

∑2m−1

k=1 A
(k)
m,n+1;4;4




Now, Xm,n+1;α;β is defined as

Xm,n+1;α;β = (A
(k)
m,n+1;α;β)

t. (2.38)

As in (2.17), the entries of Xm,n+1;α are rearranged into a new matrix

X̂m,n+1;α ≡ P(Xm,n+1;α) ≡
[
Xm,n+1;α;1 Xm,n+1;α;2

Xm,n+1;α;3 Xm,n+1;α;4

]
. (2.39)

15



From (2.36) and (2.38),

Xm,n+1;α;β = K(m;α, β)Xm,n;β (2.40)

where
K(m;α, β) = (K(m;α, β; k, l)), 1 ≤ k, l ≤ 2m−1,

is a 2m−1 × 2m−1 matrix. Now, K(m;α, β) = Sm;αβ must be shown as follows.

Theorem 2.1.5. For any m ≥ 2 and n ≥ 2, let Sm;αβ be given as in (2.28) and (2.29).
Then,

K(m;α, β) = Sm;αβ,

i.e.,
Xm,n+1;α;β = Sm;αβXm,n;β, (2.41)

or equivalently, the recursive formula (1.24) holds. That is,

A
(k)
m,n+1;α =




2m−1∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1∑

l=1

(Sm;α4)klA
(l)
m,n;4



. (2.42)

Moreover, for n = 1,

A
(k)
m,2;α =




2m−1∑

l=1

(Sm;α1)kl

2m−1∑

l=1

(Sm;α2)kl

2m−1∑

l=1

(Sm;α3)kl

2m−1∑

l=1

(Sm;α4)kl




(2.43)

for any 1 ≤ k ≤ 2m−1 and α ∈ {1, 2, 3, 4}.

Proof. The result is proven by the induction on m.
When m = 2, and α = 1, (2.41) was proven as in Example 2.1.1. The case with

α = 2, 3 and 4 can also be proved analogously; the details are omitted.
Now, (2.41) ia assumed to hold for m; the goal is to show that it also holds for m+ 1.

Since

Am+1
n+1 = An+1 · Am

n+1 =

[
An+1;1 An+1;2

An+1;3 An+1;4

] [
Am,n+1,1 Am,n+1;2

Am,n+1,3 Am,n+1;4

]
,

(2.11) implies

Xm+1,n+1;1 =

[
An+1;1Xm,n+1;1

An+1;2Xm,n+1;3

]
, Xm+1,n+1;2 =

[
An+1;1Xm,n+1;2

An+1;2Xm,n+1;4

]
,

Xm+1,n+1;3 =

[
An+1;3Xm,n+1;1

An+1;4Xm,n+1;3

]
, and Xm+1,n+1;4 =

[
An+1;3Xm,n+1;2

An+1;4Xm,n+1;4

]
.
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For α = 1, by induction on m,

(An+1;1P(Xm,n+1;1), An+1;2P(Xm,n+1;3))
t

=




[
b11An;1 b12An;2

b13An;3 b14An;4

] [
Sm;11Xm,n;1 Sm;12Xm,n;2

Sm;13Xm,n;3 Sm;14Xm,n;4

]

[
b21An;1 b22An;2

b23An;3 b24An;4

] [
Sm;31Xm,n;1 Sm;32Xm,n;2

Sm;33Xm,n;3 Sm;34Xm,n;4

]




=




[
b11Sm;11An;1Xm,n;1 + b12Sm;13An;2Xm,n;3 b11Sm;12An;1Xm,n;2 + b12Sm;14An;2Xm,n;4

b13Sm;11An;3Xm,n;1 + b14Sm;13An;4Xm,n;3 b13Sm;12An;3Xm,n;2 + b14Sm;14An;4Xm,n;4

]

[
b21Sm;31An;1Xm,n;1 + b22Sm;33An;2Xm,n;3 b21Sm;32An;1Xm,n;2 + b22Sm;34An;2Xm,n;4

b23Sm;31An;3Xm,n;1 + b24Sm;33An;4Xm,n;3 b23Sm;32An;3Xm,n;2 + b24Sm;34An;4Xm,n;4

]




Hence Xm+1,n+1;1 can be represented by a matrix

X̂m+1,n+1;1 ≡ P(Xm+1,n+1;1) ≡
[
Xm+1,n+1;1,1 Xm+1,n+1;1,2

Xm+1,n+1;1,3 Xm+1,n+1;1,4

]

=




[
b11Sm;11 b12Sm;13

b21Sm;31 b22Sm;33

] [
An;1Xm,n;1

An;2Xm,n;3

] [
b11Sm;12 b12Sm;14

b21Sm;32 b22Sm;34

] [
An;1Xm,n;2

An;2Xm,n;4

]

[
b13Sm;11 b14Sm;13

b23Sm;31 b24Sm;33

] [
An;3Xm,n;1

An;4Xm,n;3

] [
b13Sm;12 b14Sm;14

b23Sm;32 b24Sm;34

] [
An;3Xm,n;2

An;4Xm,n;4

]




Once again, (1.1), (1.2) and (2.1) can be used to recast the matrix X̂m+1,n+1;1 as




[
a11Cm;11 a12Cm;21

a13Cm;31 a14Cm;41

]
Xm+1,n;1

[
a11Cm;12 a12Cm;22

a13Cm;32 a14Cm;42

]
Xm+1,n;2

[
a21Cm;11 a22Cm;21

a23Cm;31 a24Cm;41

]
Xm+1,n;3

[
a21Cm;12 a22Cm;22

a23Cm;32 a24Cm;42

]
Xm+1,n;4




According to Theorem 2.1.4, the above matrix becomes

=

[
Cm+1;11Xm+1,n;1 Cm+1;12Xm+1,n;2

Cm+1;21Xm+1,n;3 Cm+1;22Xm+1,n;4

]
=

[
Sm+1;11Xm+1,n;1 Sm+1;12Xm+1,n;2

Sm+1;13Xm+1,n;3 Sm+1;14Xm+1,n;4

]
.

The cases with α = 2, 3 and 4 can also be considered analogously (2.41) follows.
Next, (2.42) follows easily from (2.35), (2.36) and (2.41).
Equation (2.43) remains to be shown. If the 2 × 2 matrix

A1 ≡
[
A1;11 A1;12

A1;21 A1;22

]
≡
[
A1;1 A1;2

A1;3 A1;4

]
≡
[

1 1
1 1

]
(2.44)

is introduced, then the previous argument also hold for n = 1. Hence, (2.43) holds. The
proof is complete.
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For any positive integer p ≥ 2, applying Theorem 2.1.5 p times permits the elemen-
tary patterns of Am

n+p to be expressed as the product of a sequence of Sm;βiβi+1
and the

elementary patterns in Am
n . The elementary pattern in Am

n+p is first studied.
For any p ≥ 2 and 1 ≤ q ≤ p− 1, define

A
(k)
m,n+p;α;β1;β2;··· ;βq

=

[
A

(k)
m,n+p;α;β1;β2;··· ;βq;1 A

(k)
m,n+p;α;β1;β2;··· ;βq;2

A
(k)
m,n+p;α;β1;β2;··· ;βq;3 A

(k)
m,n+p;α;β1;β2;··· ;βq;4

]
. (2.45)

Then

A
(k)
m,n+p;α;β1;β2;··· ;βp

=

2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

, (2.46)

where β0 = α and l0 = k can be easily verified. Therefore, for any p ≥ 1, a generalization
for (2.37) can be found for Am

n+p as a 2p+1 × 2p+1 matrix

Am
n+p =

[
Am,n+p;α;β1;β2··· ;βp

]
(2.47)

where

Am,n+p;α;β1;β2··· ;βp
=

2m−1∑

k=1

A
(k)
m,n;α;β1;β2··· ;βp

. (2.48)

In particular, if α; β1, β2 · · · , βp ∈ {1, 4}, then Am,n+p;α;β1;β2··· ;βp
lies on the diagonal of

Am
n+p in (2.47).

Now, define
Xm,n+p;α;β1;β2;··· ;βp

= (A
(k)
m,n+p;α;β1;β2;··· ;βp

)t. (2.49)

Therefore, Theorem 2.1.5 can be generalized to

Theorem 2.1.6. For any m ≥ 2, n ≥ 2 and p ≥ 1,

Xm,n+p;α;β1;β2··· ;βp
= Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp

Xm,n;βp
(2.50)

where α, βi ∈ {1, 2, 3, 4} and 1 ≤ i ≤ p.

Proof. From (2.46), (2.40) and (2.42),

A
(k)
m,n+p;α;β1;β2;··· ;βp

=

2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

=
2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

(Sm;βi−1βi
)li−1li)A

(lp)
m,n;βp

=

2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(Sm;β0β1)l0l1(Sm;β1β2)l1l2 · · · (Sm;βp−1βp
)lp−1lpA

(lp)
m,n;βp

=
2m−1∑

lp=1

(Sm;β0β1Sm;β1β2 · · ·Sm;βp−1βp
)l0lpA

(lp)
m,n;βp

=

2m−1∑

lp=1

(Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

18



is derived. By (2.49), then

Xm,n+p;α;β1;β2;··· ;βp
= (A

(k)
m,n+p;α;β1;β2;··· ;βp

)t

= (
2m−1∑

lp=1

(Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

)t

= Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
Xm,n;βp

.

The proof is complete.
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2.1.2 Lower bound of entropy

In this subsection, the connecting operator Cm is employed to estimate the lower bound
of entropy, and in particular, to verify the positivity of entropy.

First, recall some properties of Γm,n and spatial entropy.
Γm,n satisfies the subadditivity in m and n:

Γm1+m2,n ≤ Γm1,nΓm2,n, (2.51)

and
Γm,n1+n2 ≤ Γm,n1Γm,n2, (2.52)

or equivalently,
|Am1+m2

n | ≤ |Am1
n ||Am2

n | (2.53)

and
|Am

n1+n2
| ≤ |Am

n1
||Am

n2
|, (2.54)

for positive integers m,n,m1, n1, m2 and n2. Here

A1 =

[
1 1
1 1

]
(2.55)

is applied.
The subadditivity property implies

lim sup
m,n→∞

1

mn
log |Am

n | ≤
1

pq
log |Ap−1

q | (2.56)

for any p and q ≥ 2. Therefore,

h(A2) = lim
m,n→∞

1

mn
log |Am

n |

exists, and equals

inf
p,q≥2

1

pq
log |Ap−1

q |. (2.57)

In particular, h(A2) has an upper bound

h(A2) ≤
1

pq
log |Ap−1

q | (2.58)

for any p and q ≥ 2.
Similarly, when A2 is horizontal (or vertical) transition matrix for any m ≥ 1 and

q ≥ 2,

lim sup
n→∞

1

n
log |Am

n | ≤
1

q
log |Am

q |. (2.59)

Hence, the spatial entropy is hm(A2) on an infinite lattice Zm+1×∞ (or Z∞×m+1) and

hm(A2) ≡ lim
n→∞

1

n
log |Am

n | = inf
q≥2

1

q
log |Am

q |. (2.60)

For the proof of the above results, see [18].
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Furthermore, by Perron-Frobenius theorem,

lim
m→∞

1

m
log |Am

n | = log ρ(An). (2.61)

Therefore, for any n ≥ 2

h(A2) ≤
1

n
log ρ(An). (2.62)

For a proof of (2.61), see [4], [35].
The following notation is adopted.

Definition 2.1.7. Let X = (X1, · · · , XM)t, where Xk are N × N matrices. Define the
summation of Xk by

|X| =

N∑

k=1

Xk. (2.63)

If M = [Mij ] is a M ×M matrix, then

|MX| =
M∑

i=1

M∑

j=1

MijXj. (2.64)

Note that, (2.63) implies

|Xm,n;α| =

2m−1∑

k=1

A(k)
m,n;α = Am,n;α. (2.65)

As usual, the set of all matrices with the same order can be partially ordered.

Definition 2.1.8. Let M = [Mij ] and N = [Nij ] be two M × M matrices, M ≥ N if
Mij ≥ Nij for all 1 ≤ i, j ≤M .

Notably, if A2 ≥ A′
2 then An ≥ A′

n for all n ≥ 2. Therefore, h(A2) ≥ h(A′
2). Hence,

the spatial entropy as a function of A2 is monotonic with respect to the partial order ≥.

Definition 2.1.9. A K + 1 multiple index

BK ≡ (β1β2 · · ·βKβK+1) (2.66)

is called a (periodic) cycle if
βK+1 = β1. (2.67)

It is called a diagonal cycle if (2.67) holds and

βk ∈ {1, 4} (2.68)

for each 1 ≤ k ≤ K + 1.
For a diagonal cycle (2.66), denote

β̄K = β1; β2; · · · ; βK (2.69)

and
β̄nK = β̄K ; β̄K ; · · · ; β̄K . (n times) (2.70)
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First, prove the following Lemma.

Lemma 2.1.10. Let m ≥ 2, K ≥ 1, BK be a diagonal cycle. Then, for any n ≥ 1,

ρ(Am
nK+2) ≥ ρ(|(Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1

)nXm,2;β1|) (2.71)

Proof. Since BK is a periodic cycle, Theorem 2.1.6 implies

Xm,nK+2;β̄n
K

= (Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1
)nXm,2;β1. (2.72)

Furthermore BK is diagonal, and |Xm,nK+2;β̄n
k
| = Am,nK+2;β̄n

k
lies on the diagonal part as

in (2.47) with n + p = nK + 2, therefore

ρ(Am
nK+2) ≥ ρ(|Xm,nK+2;β̄n

K
|). (2.73)

Therefore, (2.71) follows from (2.72) and (2.73).
The proof is complete.

The following lemma is valuable in studying maximum eigenvalue of
(Sm;β1β2 · · ·Sm;βKβK+1

)nXm,2;β1 in (2.71).

Lemma 2.1.11. For any m ≥ 2, 1 ≤ k ≤ 2m−1 and α ∈ {1, 4}, if

tr(A
(k)
m,2;α) = 0, (2.74)

then for all 1 ≤ l ≤ 2m−1,

(Sm,α1)kl = 0 and (Sm;α4)kl = 0, (2.75)

i.e., the k-th rows of matrices Sm;α1 and Sm;α4 are zeros. Furthermore, for any diagonal
cycle BK , let U = (u1, u2, · · · , u2m−1) be an eigenvector of
Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1, if uk 6= 0 for some 1 ≤ k ≤ 2m−1, then

tr(A
(k)
m,2;α) > 0. (2.76)

Proof. Since A
(k)
m,2;α can be expressed as in (2.43). Therefore, tr(A

(k)
m,2;α) = 0 if and only if

(2.75) holds for all 1 ≤ l ≤ 2m−1. The second part of the lemma follows easily from the
first part.

The proof is complete.

By Lemma 2.1.10 and Lemma 2.1.11, the lower bound of entropy can be obtained as
follows.

Theorem 2.1.12. Let β1β2 · · ·βKβ1 be a diagonal cycle. Then for any m ≥ 2,

h(A2) ≥
1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1). (2.77)

and

h(A2) ≥
1

mK
log ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1). (2.78)

In particular, if a diagonal cycle β1β2 · · ·βKβ1 exists and m ≥ 2 such that

ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1) > 1,

or
ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1) > 1

then h(A2) > 0.
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Proof. First, show that

h(A2) ≥
1

mK
lim sup
n→∞

(log ρ(|(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1)
nXm,2;β1|). (2.79)

Indeed, from (1.11) and (2.71),

h(A2) = lim
n→∞

1

nK + 2
log ρ(AnK+2)

= lim
n→∞

1

m(nK + 2)
log ρ(Am

nK+2)

≥ 1

mK
lim sup
n→∞

1

n
(log ρ(|(Sm;β1β2 · · ·Sm;βKβ1)

nXm,2;β1 |)).

Now, the following remains to be shown

lim sup
n→∞

1

n
(log ρ(|(Sm;β1β2 · · ·Sm;βKβ1)

nXm,2;β1|) = log ρ(Sm;β1β2 · · ·Sm;βKβ1). (2.80)

Since Xm,2;β1 = (A
(k)
m,2;β1

)t, if tr(A
(k)
m,2;β1

) = 0 then Lemma 2.1.11 implies the k-th row
of Sm;β1β2 is zero which implies that the k-th row of (Sm;β1β2 · · ·Sm;βKβ1)

n is also zero for
any n ≥ 1.

If tr(A
(k)
m,2;β1

) = 0 for all 1 ≤ k ≤ 2m−1, then Sm;β1β2 ≡ 0. (2.80) holds trivially.

Now, assume that 1 ≤ k′ ≤ 2m−1 exists such that tr(A
(k′)
m,2;β1

) > 0. Define

X̂ = (A
(k′)
m,2;β1

)t = (X̂1, · · · , X̂M), (2.81)

where tr(A
(k′)
m,2;β1

) > 0 for 1 ≤ k′ ≤M ≤ 2m−1. Then ρ(X̂j) > 0 for 1 ≤ j ≤M .
Let M be the M ×M sub-matrix of Sm;β1β2 · · ·Sm;βKβ1 from which the k-th row and

k-th column have been removed whenever tr(A
(k)
m,2;β1

) = 0 for 1 ≤ k ≤ 2m−1.
Clearly,

|(Sm;β1β2 · · ·Sm;βKβ1)
nXm,2;β1 | = |MnX̂|, (2.82)

and
ρ(Sm;β1β2 · · ·Sm;βKβ1) = ρ(M). (2.83)

The proof of (2.80) comprise three steps, according to

(i) M is primitive,

(ii) M is irreducible, and

(iii) M is reducible.

(i) M is primitive. Then by Perron-Frobenius Theorem the maximum eigenvalue ρ(M)
of M is unique with maximum modulus, i.e.

ρ(M) = λ1 > |λj|, (2.84)

for all 2 ≤ j ≤M , where λj are eigenvalues of M. Moreover, a positive eigenvector
v1 = (v1, v2, · · · , vM)t is associated with λ1 [29], [30]. Furthermore, Jordan canonical
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form theorem states that a non-singular matrix P = [Pij ]M×M exists, such that the
real Jordan canonical form of M is

M̂ ≡ PMP−1 =




λ1 0 · · · 0
0 Jn2 · · · 0
...

...
. . .

...
0 · · · · · · Jnq


 , (2.85)

where Jnk
, 2 ≤ k ≤ q are real Jordan blocks and the associated eigenvalue λk of

Jnk
satisfies (2.84). Moreover, the positivity of eigenvector v1 implies that P can be

chosen such that
M∑

i=1

Pij = 1 (2.86)

and
P1j > 0 (2.87)

for all 1 ≤ j ≤M . Therefore, by (2.86)

|MnX̂| = |PMnX̂| = |PMnP−1PX̂|
= |(PMP−1)nPX̂| = |M̂nPX̂|

= λ1
n{

M∑

j=1

P1jX̂j +
M∑

j=1

qn,jX̂j}

where
lim
n→∞

qn,j = 0, (2.88)

for all 1 ≤ j ≤M , by (2.84).

Hence, by (2.87) and (2.88),

lim
n→∞

1

n
log ρ(|MnX̂|) = log λ1. (2.89)

Combining with (2.82), (2.83) and (2.89), (2.80) follows.

(ii) M is irreducible.

If M is irreducible but imprimitive, then k ≥ 2 exists, such that

λ1 = |λ2| = · · · = |λk| > |λj|

for all j > k. Then, by applying a permutation, M can be expressed as

M =




0 M12 0 · · · 0
0 0 M23 · · · 0
...

...
...

. . .
...

0
...

... 0 Mk−1,k

Mk1 0 · · · · · · 0



, (2.90)
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and,

Mk =




M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 · · · 0 Mk


 , (2.91)

where Mj = Mj,j+1Mj+1,j+2 · · ·Mj−1,j is primitive with the maximum eigenvalue λk1,
see [29], [30]. Hence, by the same argument as in (i)

lim
n→∞

1

n
log ρ(|MnkX̂|) = λk1,

(2.80) follows.

(iii) M is reducible.

In this case, by applying a permutation, M can be expressed as a block upper
triangular matrix:

M =




M11 M12 · · · · · · M1k

0 M22 · · · · · · M2k

0 0 · · · . . . · · ·
0 0 · · · 0 Mkk


 , (2.92)

where Mii is either irreducible or zero. Furthermore,

σ(M) =
k⋃

j=1

σ(Mjj),

where σ(M) and σ(Mjj) are the sets of eigenvalues of M and Mjj, respectively. In
particular, 1 ≤ j ≤ k exists, such that

ρ(Mjj) = ρ(M) = λ1. (2.93)

[29], [30]. Therefore, applying (2.83), (2.93) and the same argument as in (ii) yields
(2.80).

The proof is complete.

Definition 2.1.13. Let D denote the set of all diagonal cycle:

D = {β1β2 · · ·βKβK+1|β1β2 · · ·βKβK+1 satisfies (2.67) and (2.68)},

define

h∗(A2) = sup
m≥2,β1β2···βK+1∈D

1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1). (2.94)

and

h′∗(A2) = sup
m≥2, β1···βK∈D

1

mK
log ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1). (2.95)
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Then Theorem 2.1.12 implies

h(A2) ≥ h∗(A2) and h(A2) ≥ h′∗(A2). (2.96)

Knowing whether the equality holds for A2 is of interest, since h∗(A2) and h′∗(A2) are
more manageable than h(A2). However, a class of A2 has been found for what equality
(2.96) holds; details can be found in Example 2.1.14. of the next subsection.
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2.1.3 Examples of transition matrices with positive entropy

In this subsection, various examples are studied to elucidate the power of Theorem
2.1.12 in verifying that the entropies are positive. First, Golden-Mean type transition
matrices are studied.

Example 2.1.14. (A) Golden-Mean type

When two symbols on two-cell horizontal lattice Z2×1 and vertical lattice Z1×2 are
considered and both transition matrices are given by golden-mean type, i.e.,

H1 = V1 =

[
1 1
1 0

]
,

then the (horizontal) transition matrix A2 on Z2×2 is

A2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 , (2.97)

as in [46]. Verifying

B2 = Ã2 = B̃2 = A2. (2.98)

is also easy. Furthermore, for any n ≥ 2,

An+1 =

[
An+1 Bn+1

Cn+1 0

]
=




An Bn An 0
Cn 0 Cn 0
An Bn 0 0
0 0 0 0


 , (2.99)

where

An+1 =

[
An Bn

Cn 0

]

with Cn = Bn
t and An

t = An, i.e., An are symmetric for all n ≥ 2.

Moreover, the following two properties hold:

(i) For any m ≥ 2,
Cm;11 = Am−1, (2.100)

where

A1 ≡
[
a11a11 a12a21

a13a31 a14a41

]
, (2.101)

and

(ii) for any m ≥ 2,

1

m
log ρ(Am−1) ≤ h(A2) ≤

1

m
log ρ(Am). (2.102)

Therefore,
h(A2) = h∗(A2) > 0. (2.103)

The numerical results appears in Example 2.2.12.
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(B) Simplified Golden-Mean type.

Consider

A2 =




1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0


 , (2.104)

(2.104) cannot be generated from one-dimensional transition matrices H1 and V1,
as in the Golden-Mean type (2.97). Equation (2.104) is obtained by letting a23 =
a32 = 0 in the Golden-Mean type (2.97). (2.98) is easily verified, and for any n ≥ 2,

An+1 =




An
An−1 0

0 0
An−1 0

0 0
0 0
0 0


 . (2.105)

Furthermore, (i), (ii) and (2.103) hold as in (A).

(C) Generally, if A2 satisfies the following three conditions

(C1) B2 = A2,

(C2) a1j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3) Ã2;1 ≥ A2;j for 1 ≤ j ≤ 4,

then (i), (ii) and (2.103) hold. The matrices A2, which satisfy (C1), (C2) and (C3)
can be listed as 



1 1 1 0
1 0 a23 0
1 a32 0 0
0 0 0 0


 , (2.106)

and 


1 1 1 1
1 1 a23 a24

1 a32 1 a34

1 a34 a43 a44


 , (2.107)

where aij is either 0 or 1 in (2.106) and (2.107).

Notably, if (C2) and (C3) are replaced by

(C2)′ a4j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3)′ Ã2;4 ≥ A2;j for 1 ≤ j ≤ 4,

then for any m ≥ 2,
Cm;44 = Am−1 (2.108)

with

A1 =

[
a41a14 a42a24

a43a34 a44a44

]
, (2.109)

and property (ii) and equation (2.103) hold.
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In Example 2.1.14, the diagonal parts A2;1 or A2;4 are dominant. In this case, only
Cm;11 or Cm;44 is required to apply Theorem 2.1.12. In contrast, when A2;1 and A2;4 are no
longer dominant as in the following examples, A2;2 and A2;3 can complement each other
to establish that the entropy is positive.

Example 2.1.15. (A) Consider

A2 =




0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 , (2.110)

that (2.98) holds can be verified and

C2;11 =

[
0 1
1 0

]
, C2;22 =

[
1 0
1 0

]

C2;33 =

[
1 1
0 0

]
, C2;44 =

[
0 0
0 0

]

Therefore,

S2;14S2;41 =

[
1 1
1 1

]

and

h(A2) ≥
1

4
log 2.

(B) Consider

A2 =




0 1 1 0
1 0 1 1
1 0 0 1
1 1 1 0


 . (2.111)

Then verifying

B2 =




0 1 1 0
1 0 1 1
1 0 1 1
0 1 1 0


 , B̃2 =




0 1 1 0
1 0 0 1
1 1 0 1
1 1 1 0


 , and Ã2 =




0 1 1 0
1 1 0 1
1 1 0 1
0 1 1 0


 .

is simple.
Furthermore,

C2;11 =

[
0 1
1 0

]
, C2;22 =

[
1 0
0 1

]

C2;33 =

[
1 0
0 1

]
, C2;44 =

[
0 1
1 0

]

and

U2;11 =

[
0 1
1 0

]
, U2;22 =

[
1 0
0 1

]
,

U2;33 =

[
1 0
1 1

]
, U2;44 =

[
0 1
1 0

]
.
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Now, for any diagonal cycle, β1 · · ·βKβ1, ρ(S2;β1β2 · · ·S2;βKβ1) = 1, h(A2) > 0 cannot be
established.
However,

W2;11W2;14W2;41 = U2;11U2;22U2;33 =

[
1 1
1 0

]

which implies

h(A2) ≥
1

6
log g,

where

g =
1

2
(1 +

√
5) (2.112)

is the golden mean, which is a root of λ2 − λ− 1 = 0.
This example demonstrates the asymmetry of A2 and B2 in applying Theorem 2.1.12,

to verify the entropy is positive. Both Cm and Um are typically checked for completeness.

Example 2.1.16. Consider

A2 =




1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0


 . (2.113)

Then it is easy to check that

W2;11W2;14W2;41 =

[
2 0
0 0

]
, S3;44 =

[
G 0
0 0

]
,

and

S4;44 =




G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0


 ,

where

G =

[
1 1
1 0

]
and e1 =

[
1 0
0 0

]
. (2.114)

Therefore,

h(A2) ≥ max{1

6
log 2,

1

3
log g,

1

4
log g} =

1

3
log g.

Example 2.1.17. Consider

A2 =




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 . (2.115)

Then

B2 =




0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0


 = Ã2 and B̃2 = A2.
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Therefore

C2,11 =

[
0 1
1 1

]
≡ G′.

Furthermore,
C4;11 = G′ ⊗ e1 ⊗G′

and
C2m;11 = G′ ⊗ (⊗(e1 ⊗G′)m−1)

can be proved, and which implies

1

2m
log ρ(C2m;11) =

1

2
log g. (2.116)

for all m ≥ 1. Hence, h(A2) ≥ 1
2
log g. Moreover, in Remark 2.2.10 (ii), it can be shown

that h(A2) = 1
2
log g
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2.2 Trace operators Tm

The preceding section introduces connecting operators Cm, which can be used to find
lower bounds of spatial entropy. This section studies the diagonal part of Cm, which can
be used to investigate the trace of Am

n . When A2 is symmetric, T2m gives the upper bound
of spatial entropy.

The trace operator is defined first.

Definition 2.2.1. For m ≥ 2, the m-th order trace operator Tm of A2 is defined by

Tm =

[
Cm;11 Cm;22

Cm;33 Cm;44

]
=

[
Sm;11 Sm;14

Sm;41 Sm;44

]
, (2.117)

where Cm;ij is as given in (1.23) or (2.29).
Similarly, the m-th order trace operator T′

m of B2 is defined by

T′
m =

[
Um;11 Um;22

Um;33 Um;44

]
=

[
Wm;11 Wm;14

Wm;41 Wm;44

]
(2.118)

where Um;ij is as given in (2.31).

The relationships between the trace operator Tm, T
′

m and Am, Bm are given as follows.

Theorem 2.2.2. For any m ≥ 2,

Tm = (Bm)2m×2m ◦




E2m−2×2m−2 ⊗
[
a11 a21

a31 a41

]
E2m−2×2m−2 ⊗

[
a12 a22

a32 a42

]

E2m−2×2m−2 ⊗
[
a13 a23

a33 a43

]
E2m−2×2m−2 ⊗

[
a14 a24

a34 a44

]




(2.119)

and

T′
m = (Am)2m×2m ◦




E2m−2×2m−2 ⊗
[
b11 b21
b31 b41

]
E2m−2×2m−2 ⊗

[
b12 b22
b32 b42

]

E2m−2×2m−2 ⊗
[
b13 b23
b33 b43

]
E2m−2×2m−2 ⊗

[
b14 b24
b34 b44

]



. (2.120)

In particular,
Tm ≤ Bm and T′

m ≤ Am. (2.121)

Proof. By (2.117) and (2.29),

Tm = (Bm)2m×2m ◦




E2m−2×2m−2 ⊗
[
a11 a21

a31 a41

]
E2m−2×2m−2 ⊗

[
a12 a22

a32 a42

]

E2m−2×2m−2 ⊗
[
a13 a23

a33 a43

]
E2m−2×2m−2 ⊗

[
a14 a24

a34 a44

]



.

A similar result also holds for T′
m. Hence, (2.121) follows immediately.

The proof is complete.

32



Notably, the trace operator Tm (or T′
m) preserves all periodic words ai1i2ai2i3 · · ·aimim+1

(bi1i2bi2i3 · · · bimim+1) with im+1 = i1 of length m systematically as Bm (or Am).
The traces of the elementary patterns are defined accordingly.

Definition 2.2.3. For m,n ≥ 2 and 1 ≤ α ≤ 4, define

t(k)m,n;α = tr(A(k)
m,n;α), (2.122)

tr(Xm,n;α) = (t(k)m,n;α)1≤k≤2m−1 , (2.123)

and
tm,n = (tr(Xm,n;1), tr(Xm,n;4))

t, (2.124)

which are 2m−1 and 2m vectors, respectively.

Note that
tr(Am

n ) = tr(
∑2m−1

k=1 A
(k)
m,n;1 +

∑2m−1

k=1 A
(k)
m,n;4)

= |tr(Xm,n;1)| + |tr(Xm,n;4)|
= |tm,n|.

(2.125)

First prove that Tm can reduce the traces of higher-order to lower-order.

Proposition 2.2.4. For m ≥ 2 and n ≥ 2,

tm,n+1 = Tmtm,n (2.126)

Proof. By Theorem 2.1.5, it is easy to see



tr(Xm,n+1;1)

tr(Xm,n+1;4)


 =




Cm;11tr(Xm,n;1) + Cm;22tr(Xm,n;4)

Cm;33tr(Xm,n;1) + Cm;44tr(Xm,n;4)


 .

Then, (2.126) follows immediately.
The proof is complete.

Repeatedly applying Proposition 2.2.4 yields the following result.

Theorem 2.2.5. For m ≥ 2 and n ≥ 1,

tr(Am
n+2) = |Tn

mtm,2| (2.127)

≡
∑

βk∈{1,4}
|Sm;β1β2Sm;β2β3 · · ·Sm;βnβn+1tr(Xm,2;βn+1)|. (2.128)

Proof.

tr(Am
n )

=

2m−1∑

k=1

tr(A
(k)
m,n;1;1) +

2m−1∑

k=1

tr(A
(k)
m,n;1;4) +

2m−1∑

k=1

tr(A
(k)
m,n;4;1) +

2m−1∑

k=1

tr(A
(k)
m,n;4;4)

= |tr(Xm,n;1;1)| + |tr(Xm,n;1;4)| + |tr(Xm,n;4;1)| + |tr(Xm,n;4;4)|
= |tr(Sm;11Xm,n−1;1)| + |tr(Sm;14Xm,n−1;4)| + |tr(Sm;41Xm,n−1;1)| + |tr(Sm;44Xm,n−1;4)|
= |Tmtm,n−1|,

here Theorem 2.1.4 is used.
Reduction on n, yields

tr(Am
n ) = |Tn−2

m tm,2|.
Finally, (2.128) follows from (2.117) and (2.124).

The proof is complete.
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The following lemma is needed to show (1.33).

Lemma 2.2.6. Let Vm be a nonnegative eigenvector of Tm with respect to the maximum
eigenvalue ρ(Tm). If ρ(Tm) > 0, then

〈Vm, tm,2〉 > 0,

where 〈 , 〉 denotes the standard inner product of C2m

.

Proof. Let Vm = (u1, · · · , uM , u′1, · · · , u′M) be a nonnegative eigenvector of Tm, where

M = 2m−1. Since ρ(Tm) > 0, by Lemma 2.1.11, if uk > 0 (or u′l > 0) then tr(A
(k)
m,2;1) > 0

(or tr(A
(l)
m,2;4) > 0). The result follows by (2.124).

The proof is complete.

Now, (1.33) can be proved.

Theorem 2.2.7. For any m ≥ 2,

lim sup
n→∞

1

n
log tr(Am

n ) = log ρ(Tm), (2.129)

and

h(A2) = lim sup
m→∞

1

m
log ρ(Tm). (2.130)

Furthermore, if An are primitive for all n ≥ 2, then limsup in (2.129) and (2.130) can
be replaced by lim, i.e.,

lim
n→∞

1

n
log tr(Am

n ) = log ρ(Tm) (2.131)

and

h(A2) = lim
m→∞

1

m
log ρ(Tm). (2.132)

Proof. By Perron-Frobenius theorem, for all n ≥ 2, we have

lim sup
m→∞

1

m
log tr(Am

n ) = log ρ(An). (2.133)

Therefore, by (2.133) and Theorem 2.2.5, we have

h(A2) = lim
n→∞

1

n
log ρ(An) = lim sup

n,m→∞

1

mn
log tr(Am

n ) = lim sup
n,m→∞

1

mn
log |Tn

mtm,2|.

By Lemma 2.2.6 and by argument used to prove Theorem 2.1.12,

lim sup
n→∞

1

n
log |Tn

mtm,2| = log ρ(Tm) (2.134)

can be shown, and (2.129) and (2.130) follow immediately.
When An are primitive for all n ≥ 2, (2.131) and (2.132) follow.
The proof is complete.

Now, the symmetry of A2 is established to be able to be inherited by the higher order
matrices.
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Proposition 2.2.8. If A2 is symmetric, then An is also symmetric for each n ≥ 3.

Proof. The proposition is proven by induction on n.

Let M =

[
M1 M2

M3 M4

]
be a square matrix and Mi, 1 ≤ i ≤ 4, all be square matrices.

Then, the transpose matrix Mt of M is

Mt =

[
M1

t M3
t

M2
t M4

t

]
.

Therefore, M is symmetric if and only if

M1
t = M1, M3

t = M2 and M4
t = M4.

In particular, A2 is symmetric if and only if

At2;1 = A2;1, A
t
2;3 = A2;2 and At2;4 = A2;4. (2.135)

Now, An is assumed to be symmetric, such that

Atn;1 = An;1, A
t
n;3 = An;2 and Atn;4 = An;4. (2.136)

Since

An+1;α = [A2;α]2×2 ◦
[
An;1 An;2

An;3 An;4

]
,

(2.135) and (2.136) imply

Atn+1;1 = An+1;1, A
t
n+1;3 = An+1;2 and Atn+1;4 = An+1;4.

Hence, An+1 is symmetric.
The proof is complete.

Now, upper estimates of spatial entropy h(A2) are obtained when A2 is symmetric.

Theorem 2.2.9. If A2 is symmetric then for any m ≥ 1,

h(A2) ≤
1

2m
log ρ(T2m). (2.137)

Proof. By Proposition 2.2.8, A2m
n is symmetric for any m ≥ 1. The symmetry of A2m

n

implies that all eigenvalues of A2m
n are non-negative. Hence,

ρ(An)
2m = ρ(A2m

n ) ≤ tr(A2m
n ). (2.138)

On the other hand, the subadditivity of (2.58) implies

h(A2) ≤
1

(2mk + 1)n
log |A2mk

n |. (2.139)

Therefore, (2.138), (2.139) and (2.127) imply

h(A2) ≤ lim
n,k→∞

1

(2mk + 1)n
log |A2mk

n | = lim
n→∞

1

2mn
log ρ(A2m

n )

≤ lim
n→∞

1

2mn
log tr(A2m

n ) = lim
n→∞

1

2mn
log |Tn−2

2m t2m,2|

≤ 1

2m
log ρ(T2m).

The proof is complete.
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Notably, Tm (or T′
m) yields a better estimate than Bn (or An) whenever

h(A2) ≤
1

m
log ρ(Tm) (2.140)

holds.

Remark 2.2.10. (i) The problem in which An are primitive for all n ≥ 2 has already
been investigated [6]. In [6], various sufficient conditions have been found to ensure
that An are primitive for all n ≥ 2. Notably, limit in (2.131) and (2.132), instead of
limsup in (2.129) and (2.130), causes An to have a unique maximum eigenvalue with
a maximum modulus. Therefore, An may be imprimitive but (2.131) and (2.132) still
hold. For example, Golden-Mean type and simplified Golden-Mean type in Example
2.1.14 are imprimitive but (2.131) and (2.132) still hold. The remaining matrices
of these An are primitive if their rows and columns with zero entries are removed.

(ii) In general, limsup cannot be replaced by limit. For example, consider

A2 =




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 . (2.141)

Further computation shows that

T2m+1 = 0

and

T2m =

[
(⊗(G

′ ⊗ e1)
m−1) ⊗G

′

e1 ⊗ (⊗(G
′ ⊗ e1)

m−1)
e1 ⊗ (⊗(G

′ ⊗ e1)
m−1) e1 ⊗ (⊗(G

′ ⊗ e1)
m−1)

]

for all m ≥ 1, where G
′

=

[
0 1
1 1

]
and e1 =

[
1 0
0 0

]
.

Therefore, ρ(T2m+1) = 0. Furthermore, it can be shown that

ρ(T2m) ≤ gm + gm−1. (2.142)

Combining (2.116) and (2.142), h(A2) = 1
2
log g. Hence (2.130) holds only for

limsup. Unlike (2.62) this example demonstrates that (2.140) does not hold for any
n = 2m+ 1. This phenomenon is a disadvantage in determining the upper estimate
of entropy associated with replacing An with Tn.

Example 2.2.11. Consider

A2 =




1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0




which was studied as in Example 2.16. Now, A2 is asymmetric. Furthermore,

tr(A2
n) = 3
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can be obtained for all n ≥ 2. Hence, (2.138) and then (2.137) fail when m = 1. However,

C4;44 =




G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0


 ,

where G =

[
1 1
1 0

]
, e1 =

[
1 0
0 0

]
and 0 =

[
0 0
0 0

]
. Hence tr(A4

n) grows at least

exponentially with exponent ρ(G) = g, the golden-mean.

Whether (2.137) holds for some m ≥ 2 is of interest.

Example 2.2.12. Consider the Golden-Mean type

A2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 ,

which was studied as in Example 2.1.14. A2 is symmetric, so the numerical results can
be obtained as follows.

m ρ(Am−1)
1
m ρ(Tm)

1
m ρ(Am)

1
m

2 1.3415037626 1.5537739740 1.5537739740
3 1.3804413572 1.4892228485 1.5370592754
4 1.4041128626 1.5069022259 1.5284545258
5 1.4201397131 1.5017251916 1.5233415461
6 1.4316975290 1.5035148094 1.5199401525
7 1.4404277508 1.5028716910 1.5175154443
8 1.4472546963 1.5031163748 1.5156994341
9 1.4527395436 1.5030208210 1.5142884861
10 1.4572426033 1.5030591603 1.5131606734
11 1.4610058138 1.5030435026 1.5122385423
12 1.4641976583 1.5030500001 1.5114705290
13 1.4669390746 1.5030472703 1.5108209763
14 1.4693191202 1.5030484295 1.5102644390
15 1.4714048275 1.5030479329 1.5097822725
16 1.4732476160 1.5030481473 1.5093605030

Notably, both ρ(Am)
1
m and ρ(T2m)

1
2m are monotonically decreasing in m. In contrast,

ρ(Am−1)
1
m and ρ(T2m+1)

1
2m+1 are monotonically increasing in m, that ρ(T2m)

1
2m gives

better upper bound than ρ(Am)
1
m . That ρ(T2m+1)

1
2m+1 are lower bounds is conjectured.

If they were, then ρ(Tm)
1
m would yield a very sharp estimates.
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2.3 More symbols on larger lattice

As mentioned in the introduction, many physical and engineering problems involve
many (more than two) symbols and larger k × k lattices, where k ≥ 3. Therefore, the
results found in the previous sections must be extended to any finite number of symbols
p ≥ 2 on any finite square lattice Z2l×2l, l≥1, where

2l =

{
k if k is even
2k − 2 if k is odd

. The results are only outlined here, and the details are left to the readers. Proofs of
theorems are omitted for brevity.

For fixed p ≥ 2 and l ≥ 1, denote by

q = pl
2

. (2.143)

The horizontal and vertical transition matrices are given by

A2 =




a1,1 a1,2 · · · a1,q2

a2,1 a2,2 · · · a2,q2

...
...

. . .
...

aq2,1 aq2,2 · · · aq2,q2


 (2.144)

and

B2 =




b1,1 b1,2 · · · b1,q2

b2,1 b2,2 · · · b2,q2
...

...
. . .

...
bq2,1 bq2,2 · · · bq2,q2


 , (2.145)

respectively.
Now, A2 and B2 are related to each other by

A2 =




A2;1 A2;2 · · · A2;q

A2;q+1 A2;q+2 · · · A2;2q
...

...
. . .

...
A2;q(q−1)+1 · · · · · · A2;q2


 (2.146)

where

A2;α =




bα,1 bα,2 · · · bα,q
bα,q+1 bα,q+2 · · · bα,2q

...
...

. . .
...

bα,q(q−1)+1 bα,q(q−1)+2 · · · bα,q2


 , (2.147)

and

B2 =




B2;1 B2;2 · · · B2;q

B2;q+1 B2;q+2 · · · B2;2q
...

...
. . .

...
B2;q(q−1)+1 · · · · · · B2;q2


 (2.148)
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where

B2;α =




aα,1 aα,2 · · · aα,q
aα,q+1 aα,q+2 · · · aα,2q

...
...

. . .
...

aα,q(q−1)+1 aα,q(q−1)+2 · · · aα,q2


 , (2.149)

respectively, where 1 ≤ α ≤ q2. The column matrices Ã2 and B̃2, A2 and B2 are defined
as in (2.1) and (2.2). For higher order transition matrices An, n ≥ 3, are defined as

An =




An;1 An;2 · · · An;q

An;q+1 An;q+2 · · · An;2q
...

...
. . .

...
An;q(q−1)+1 An;(q−1)q+2 · · · An;q2


 (2.150)

where

An;α =




bα,1An−1;1 bα,2An−1;2 · · · bα,qAn−1;q

bα,q+1An−1;q+1 bα,q+2An−1;q+2 · · · bα,2qAn−1;2q
...

...
. . .

...
bα,q(q−1)+1An−1;q(q−1)+1 bα,q(q−1)+2An−1;q(q−1)+2 · · · bα,q2An;q2


 . (2.151)

Rewriting the indices of An;α as follows, facilitates matrix multiplication.

An =




An;11 An;12 · · · An;1q

An;21 An;22 · · · An;2q
...

...
. . .

...
An;q1 An;q2 · · · An;qq


 . (2.152)

Clearly, An;α = An;j1j2 , where

α = α(j1, j2) = q(j1 − 1) + j2. (2.153)

For m ≥ 2, the elementary pattern in the entries of Am
n is given by

An;j1j2An;j2j3 · · ·An;jmjm+1,

where js ∈ {1, 2, · · · , q}.
The lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)

is introduced by

χ(Jm+1) = 1 +

m∑

l=2

qm−l(jl − 1). (2.154)

Specify
A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1,
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where α = α(j1, jm+1) satisfies (2.153) and k = χ(Jm+1) is as given in (2.154). Based on
this arrangement, Am

n can be written as

Am
n =




Am,n;1 Am,n;2 · · · Am,n;q

Am,n;q+1 Am,n;q+2 · · · Am,n;2q
...

...
. . .

...
Am,n;q(q−1)+1 Am,n;q(q−1)+2 · · · Am,n;q2


 ,

where

Am,n;α =

qm−1∑

k=1

A(k)
m,n;α.

Moreover, Xm,n;α = (A
(k)
m,n;α)t, where 1 ≤ k ≤ qm−1 and Xm,n;α is a qm−1-vector that

comprise all elementary patterns in Am,n;α. The ordering matrix Xm,n of Am
n is now

defined as

Xm,n =




Xm,n;1 Xm,n;2 · · · Xm,n;q

Xm,n;q+1 Xm,n;q+2 · · · Xm,n;2q
...

...
. . .

...
Xm,n;q(q−1)+1 Xm,n;q(q−1)+2 · · · Xm,n;q2


 ,

and Xm,n+1;β can be reduced to X2,n;β by multiplication with connecting matrices Cm;α,β.
The connecting operator Cm is defined as follows.

Definition 2.3.1. For m ≥ 2, define

Cm =




Cm;1,1 Cm;1,2 · · · Cm;1,q2

Cm;2,1 Cm;2,2 · · · Cm;2,q2

...
...

. . .
...

Cm;q2,1 Cm;q2,2 · · · Cm;q2,q2




=




Sm;1,1 · · · Sm;1,q
...

. . .
...

Sm;1,q(q−1)+1 · · · Sm;1,q2

· · ·
Sm;q,1 · · · Sm;q,q

...
. . .

...
Sm;q,q(q−1)+1 · · · Sm;q,q2

...
. . .

...
Sm;q(q−1)+1,1 · · · Sm;q(q−1)+1,q

...
. . .

...
Sm;q(q−1)+1,q(q−1)+1 · · · Sm;q(q−1)+1,q2

· · ·
Sm;q2,1 · · · Sm;q2,q

...
. . .

...
Sm;q2,q(q−1)+1 · · · Sm;q2,q2




(2.155)
where

Cm;α,β = ((B2;α)q×q ◦ (⊗̂Bm−2
2 )q×q)qm−1×qm−1 ◦ (Eqm−2×qm−2 ⊗ Ã2;β)qm−1×qm−1 . (2.156)

Like Theorem 2.1.4, Cm+1;α,β can be obtained in terms of Cm;γ,β.

Theorem 2.3.2. For any m ≥ 2 and 1 ≤ α, β ≤ q2

Cm+1;α,β =




aα;1Cm;1,β aα;2Cm;2,β · · · aα;qCm;q,β

aα;q+1Cm;q+1,β aα;q+2Cm;q+2,β · · · aα;2qCm;2q,β
...

...
. . .

...
aα;q(q−1)+1Cm;q(q−1)+1,β aα;q(q−1)+2Cm;q(q−1)+2,β · · · aα;q2Cm;q2,β


 .
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Denote by

A
(k)
m,n+1;α =




A
(k)
m,n+1;α;1 A

(k)
m,n+1;α;2 · · · A

(k)
m,n+1;α;q

A
(k)
m,n+1;α;q+1 A

(k)
m,n+1;α;q+2 · · · A

(k)
m,n+1;α;2q

...
...

. . .
...

A
(k)
m,n+1;α;q(q−1)+1 A

(k)
m,n+1;α;q(q−1)+2 · · · A

(k)
m,n+1;α;q2




and Xm,n+1;α;β = (A
(k)
m,n+1;α;β)

t where A
(k)
m,n+1;α;β is a linear combination of A

(l)
m,n;γ. Now,

Theorem 2.1.5 can be generalized to the following theorem.

Theorem 2.3.3. For any m ≥ 2 and n ≥ 2, let Sm;α,β be as given in (2.155) and (2.156).
Then Xm,n+1;α;β = Sm;α,βXm,n;β.
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3 Three-dimensional Patterns Generation Problems

3.1 Ordering Matrices and Transition Matrices

This section describes three-dimensional patterns generation problems. Here, m1, m2,
m3 ≥ 2 are fixed and indices are omitted for brevity. Let S be a set of p colors, and
Zm1×m2×m3 be a fixed finite rectangular sublattice of Z3, where Z3 denotes the integer
lattice on R3 and (m1, m2, m3) a three-tuple of positive integers. Functions U : Z3 →
S and Um1×m2×m3 : Zm1×m2×m3 → S are called global patterns and local patterns on
Zm1×m2×m3 respectively. The set of all patterns U is denoted by Σ3

p ≡ SZ
3
, such that Σ3

p

is the set of all patterns with p different colors in a three-dimensional lattice. For clarity,
two symbols, S = {0, 1} are considered. Let x, y and z coordinate represent the 1st-, 2nd-
and 3rd-coordinates respectively as Fig. 1.

x

y

z

Figure 1: Three-dimensional coordinate system.

Six orderings [ω] ordering are represented as Eq. (3.1)

[x] : [1] ≻ [2] ≻ [3]
[y] : [2] ≻ [1] ≻ [3]
[z] : [3] ≻ [1] ≻ [2]
[x̂] : [1] ≻ [3] ≻ [2]
[ŷ] : [2] ≻ [3] ≻ [1]
[ẑ] : [3] ≻ [2] ≻ [1]

(3.1)

On a fixed finite lattice Zm1×m2×m3 , an ordering [ω] : [i] ≻ [j] ≻ [k] is obtained on
Zm1×m2×m3 , which is any one of the above orderings on Zm1×m2×m3

ψω(α1, α2, α3) = mjmk(αi − 1) +mk(αj − 1) + αk,

where 1 ≤ αℓ ≤ mℓ and 1 ≤ ℓ ≤ 3. The ordering [ω] on Zm1×m2×m3 can now be applied
to Σm1×m2×m3 . Indeed, for each U = (uα1α2α3

1) ∈ Σm1×m2×m3 , define

ψω(U) ≡ ψω;m1,m2,m3(U)

≡ 1 +
mi∑
αi=1

mj∑
αj=1

mk∑
αk=1

uα1α2α3ω
αi,αj ,αk
mi,mj ,mk

,

where

ω
αi,αj ,αk
mi,mj ,mk = 2mimjmk−ψω(α1,α2,α3)

= 2mkmj(mi−αi)+mk(mj−αj)+(mk−αk).

1Use uα1α2α3
to substitute uα1,α2,α3

for simplicity afterward.
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U is referred to herein as the ψω(U)-th element in Σm1×m2×m3 by ordering [ω]. Identifying
the pictorial patterns using ψω(U) is very effective in proving theorems since computations
can now be performed on ψω(U). For instance, the orderings on Z2×2×2 can be represented
as Fig. 2.

1

2

3

4 5

6

7

8 1

3

2

4 5

7

6

8

1 2

3 4

5 6

7 8

1 3

2 4

5 7

6 8

(1):[x]-ordering (4):[x̂]-ordering

(2):[y]-ordering (5):[ŷ]-ordering

(3):[z]-ordering (6):[ẑ]-ordering

Figure 2: The orderings of Z2×2×2.

3.1.1 Ordering matrices

The cube Zm1×m2×m3 can be decomposed by m1-many (m2-many andm3-many) parallel
2-dimensional rectangles in Z1×m2×m3 (Zm1×1×m3 and Zm1×m2×1). Any patterns U =
(uα1α2α3) ∈ Σm1×m2×m3 can be decomposed accordingly. For example, in [x]-ordering,
define the α1-th layer of rectangle as

Zα1;m2×m3 = {(α1, α2, α3)|1 ≤ α2 ≤ m2, 1 ≤ α3 ≤ m3}.

Pattern U in α1-th layer is assigned the number

iα1 ≡ 1 +

m2∑

α2=1

m3∑

α3=1

uα1α2α3x
1,α2,α3

1,m2,m3
, (3.2)

where x1,α2,α3

1,m2,m3
= 2m2m3−m3(α2−1)−α3 . As denoted by the 1 ×m2 ×m3 pattern

x1×m2×m3;iα1
=

uα11m3 uα12m3 · · · uα1m2m3

...
...

. . .
...

uα112 uα122 · · · uα1m22

uα111 uα121 · · · uα1m21

.

In particular, when m2 = 2 and m3 = 2, as denoted by x1×2×2;iα1
, where

iα1 = 1 + 23uα111 + 22uα112 + 2uα121 + uα122 (3.3)
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and

x1×2×2;iα1
≡ xiα1

=
uα112 uα122

uα111 uα121
,

where α1 ∈ {1, 2}. A 2 × 2 × 2 pattern U = (uα1α2α3) can now be obtained from the
[x]-direct sum of two 1 × 2 × 2 patterns using [x]-ordering:

x2×2×2;i1i2 ≡ xi1i2
≡ xi1 ⊕ xi2
=

,

where iα1 as in Eq. (3.3) and α1 ∈ {1, 2}. Therefore, the complete set of 28 patterns in
Σ2×2×2 is given by a 16 × 16 matrix X2×2×2 = [xi1i2

2] as its entries in

where .

(3.4)

That

ψx(xi1i2) = 24(i1 − 1) + i2

is easily verified, and local patterns in Σ2×2×2 are thus counted by going through each
row successively in Eq. (3.4). Correspondingly, X2×2×2 can be referred to as an ordering
matrix for Σ2×2×2. A 2 × 2 × 2 pattern can also be regarded as an [x]-direct sum of two
1 × 2 × 2 patterns using [x̂]-ordering,

x̂2×2×2;̂i1 î2
≡ x̂î1 î2 ≡ x̂î1 ⊕ x̂î2

where

îα1 = 1 + 23uα111 + 22uα121 + 2uα112 + uα122, α1 ∈ {1, 2}.
The ordering matrix X̂2×2×2 can be represented as

where .

2Use xi1i2 to substitute xi1,i2 for simplicity afterward.
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Now,

ψx̂(x̂î1 î2) = 24(̂i1 − 1) + î2

can be verified. Similarly, a 2×2×2 pattern can also be viewed as a [y]-direct ([ŷ]-direct)
and [z]-direct ([ẑ]-direct) sum of 2 × 1 × 2 and 2 × 2 × 1 patterns:

yj1j2 ≡ yj1 ⊕ yj2,

ŷĵ1ĵ2 ≡ ŷĵ1 ⊕ ŷĵ2,

zk1k2 ≡ zk1 ⊕ zk2 ,

ẑk̂1k̂2 ≡ ẑk̂1 ⊕ ẑk̂2 ,

where

jα2 = 1 + 23u1α21 + 22u1α22 + 2u2α21 + u2α22, α2 ∈ {1, 2}, (3.5)

ĵα2 = 1 + 23u1α21 + 22u2α21 + 2u1α22 + u2α22, α2 ∈ {1, 2},
kα3 = 1 + 23u11α3 + 22u12α3 + 2u21α3 + u22α3 , α3 ∈ {1, 2},
k̂α3 = 1 + 23u11α3 + 22u21α3 + 2u12α3 + u22α3 , α3 ∈ {1, 2}.

A 16 × 16 matrix Y2×2×2 = [yj1j2] or Z2×2×2 = [zk1k2] can also be obtained for Σ2×2×2,
such that Y2×2×2 =

where ,

or Z2×2×2

where .

The relationship between W2×2×2 must be studied, where W ∈ {X,Y,Z, X̂, Ŷ, Ẑ}.
Before the relations are explained, the column matrix and the row matrix are must be
given. Let A = [aij ] be a m2 ×m2 matrix, the column matrix A(c) of A is defined as

A(c) =




A
(c)
1 A

(c)
2 · · · A

(c)
m

A
(c)
m+1 A

(c)
m+2 · · · A

(c)
2m

...
...

. . .
...

A
(c)
(m−1)m+1 A

(c)
(m−1)m+2 · · · A

(c)
m2



,
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A
(c)
α =




a1α a2α · · · amα
a(m+1)α a(m+2)α · · · a(2m)α
...

...
. . .

...
a((m−1)m+1)α a((m−1)m+2)α · · · am2α


 ,

where 1 ≤ α ≤ m2.
The row matrix A(r) of A is defined as

A(r) =




A
(r)
1 A

(r)
2 · · · A

(r)
m

A
(r)
m+1 A

(r)
m+2 · · · A

(r)
2m

...
...

. . .
...

A
(r)
(m−1)m+1 A

(r)
(m−1)m+2 · · · A

(r)
m2



, (3.6)

A
(r)
α =




aα1 aα2 · · · aαm
aα(m+1) aα(m+2) · · · aα(2m)
...

...
. . .

...
aα((m−1)m+1) aα((m−1)m+2) · · · aαm2


 , (3.7)

where 1 ≤ α ≤ m2. Hence, based on some observations, X2×2×2 can be represented in
terms of yj1j2 as

X2×2×2 = Y
(r)
2×2×2. (3.8)

Furthermore, Y2×2×2 = X
(r)
2×2×2, Z2×2×2 = X̂

(r)
2×2×2, X̂2×2×2 = Z

(r)
2×2×2, Ŷ2×2×2 = Ẑ

(r)
2×2×2 and

Ẑ2×2×2 = Ŷ
(r)
2×2×2 can also be obtained. The remainder of this subsection addresses the

construction of X̂2×m2×m3 from X2×2×2 in the following three steps, where X̂2×m2×m3 rep-
resents the ordering matrix of Σ2×m2×m3 according to [x̂]-ordering generated from Σ2×2×2.

Step I : Apply [x]-ordering to Z1×m2×2 using

2m2-2 2

2m2-3 2m2-1

y

(3.9)

and introduce ordering matrix X2×m2×2 for Σ2×m2×2.

Step II : Convert [x]-ordering into [x̂]-ordering on Z1×m2×2 by

2 2 2

(3.10)

and introduce ordering matrix X̂2×m2×2 for Σ2×m2×2.
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Step III : Define [x̂]-ordering on Z1×m2×m3 by

(m3-1)m2+1 (m3-1)m2+2 3 2

z (3.11)

and introduce ordering matrix X̂2×m2×m3 for Σ2×m2×m3 .
To introduce X2×m2×2, define

y2×m2×2;j1j2...jm2
≡ y2×2×2;j1j2⊕̂y2×2×2;j2j3⊕̂ · · · ⊕̂y2×2×2;jm2−1jm2

≡ yj1 ⊕ yj2 ⊕ · · · ⊕ yjm2
, (3.12)

where 1 ≤ jk ≤ 24 and 1 ≤ k ≤ m2. Herein, a wedge direct sum ⊕̂ is applied to 2× 2× 2
patterns whenever they can be attached to each other.

Now, X2×m2×2 can be obtained as follows.

Theorem 3.1.1. For any m2 ≥ 2, Σ2×m2×2 = {yj1j2...jm2
}, where yj1j2...jm2

is given in Eq.
(3.12). Furthermore, the ordering matrix X2×m2×2 = [yj1j2...jm2

] which is a 22m2 × 22m2

matrix can be decomposed into following matrices

X2×m2×2 = [X2×m2×2;j1]22×22 ,

where 1 ≤ j1 ≤ 24. For fixed j1, j2, . . . , jk ∈ {1, 2, . . . , 24},

X2×m2×2;j1j2...jk = [X2×m2×2;j1j2...jkjk+1
]22×22 ,

where 1 ≤ jk+1 ≤ 24 and k ∈ {1, 2, · · · , m2 − 2}. For fixed j1, j2, · · · , jm2−1,

X2×m2×2;j1j2...jm2−1 = [y2×m2×2;j1j2...jm2−1jm2
]22×22,

where y2×m2×2;j1j2...jm2
is defined as in Eq. (3.12).

Proof. From Eq. (3.5), uα1α2α3 can be solved in terms of jα2 , yielding

u1α21 = [
jα2 − 1

23
], (3.13)

u1α22 = [
jα2 − 1 − 23u1α21

22
], (3.14)

u2α21 = [
jα2 − 1 − 23u1α21 − 22u1α22

2
], (3.15)

u2α22 = jα2 − 1 − 23u1α21 − 22u1α22 − 2u2α21, (3.16)

where [ ] is the Gauss symbol. Equations (3.13)-(3.16), yield the following table.

jα2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
u1α21 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
u1α22 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
u2α21 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
u2α22 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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For any m2 ≥ 2, we have

im2;1 = 1 +

m2∑

α2=1

(22(m2−α2)+1u1α21 + 22(m2−α2)u1α22),

im2;2 = 1 +

m2∑

α2=1

(22(m2−α2)+1u2α21 + 22(m2−α2)u2α22).

From the above formulae,

im2+1;1 = 22(im2;1 − 1) + 2u1(m2+1)1 + u1(m2+1)2 + 1,

im2+1;2 = 22(im2;2 − 1) + 2u2(m2+1)1 + u2(m2+1)2 + 1.

Now, by induction on m2 the theorem follows from the last two formulae and the above
table. The proof is complete.

Remark 3.1.2. By the same method, the following relations can be derived. The details
of the proof are omitted here for brevity.

X̂2×2×m3 = [z2×2×m3;k1k2...km3−1km3
]22m3×22m3

Ym1×2×2 = [xm1×2×2;i1i2...im1−1im1
]22m1×22m1

Ŷ2×2×m3 = [ẑ2×2×m3;k̂1k̂2...k̂m3−1k̂m3
]22m3×22m3

Zm1×2×2 = [x̂m1×2×2;̂i1 î2...̂im1−1 îm1
]22m1×22m1

Ẑ2×m2×2 = [ŷ2×m2×2;ĵ1ĵ2...ĵm2−1ĵm2
]22m2×22m2

Next, [x]-ordering is converted into [x̂]-ordering for Z1×m2×2. Since Z1×m2×2 = {(1, α2, α3) :
1 ≤ α2 ≤ m2, 1 ≤ α3 ≤ 2}, the position (α2, α3) is the α-th in Eq. (3.9), where

α = 2(α2 − 1) + α3. (3.17)

In Eq. (3.10), the position of (1, α2, α3) is the α̂-th, where

α̂ = m2(α3 − 1) + α2.

The relation

α̂ = m2α + (1 − 2m2)[
α− 1

2
] + (1 −m2),

or

α̂ = k if α = 2k − 1,

and

α̂ = m2 + k if α = 2k,

1 ≤ k ≤ m2 is easily verified.
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Now, the ordering [x̂] in Eq. (3.10) on Z1×m2×2 can be extended to Z1×m2×m3 by Eq.
(3.11). For a fixed m2, [x̂]-ordering on Z1×m2×m3 is clearly one-dimensional; it grows in
the z-direction. Given ordering Eq. (3.11) on Z1×m2×m3 , for U = (uα1α2α3) ∈ Σ2×m2×m3 ,
denoted by

îα1 = 1 +

m2∑

α2=1

m3∑

α3=1

uα1α2α32
m2(m3−α3)+(m2−α2),

where α1 = 1, 2,

ψx̂(U) = 2m2m3 (̂i1 − 1) + î2.

Now, let x̂î1 î2 = U = (uα1α2α3), yielding the new ordering matrix X̂2×m2×2 = [x̂2×m2×2;̂i1î2
]

for Σ2×m2×2. The relationship between X2×m2×2 and X̂2×m2×2 is established before X̂2×m2×m3

is constructed from X̂2×m2×2 for m3 ≥ 3.
A conversion sequence of orderings can be obtained from Eqs. (3.9)-(3.10). Where Pk

represents the permutation of N2m = {1, 2, · · · , 2m2} such that Pk(k + 1) = k, Pk(k) =
k + 1 and the other numbers are fixed. Pk is also the permutation on Z1×m2×2 such that
it exchanges k and k+1 while keeping the other positions fixed, i.e.,

· k + 1 · ·
· · k ·

Pk−→ · k · ·
· · k + 1 · .

Clearly, equation (3.9) can be converted into Eq. (3.10) in many ways using the
sequence of Pk. A systematic approach is proposed here.

Lemma 3.1.3. For m2 ≥ 2, equation (3.9) can be converted into Eq. (3.10) using the

following sequences of m2(m2−1)
2

permutations successively

(P2P4 · · ·P2m2−2)(P3P5 · · ·P2m2−3) · · ·
(PkPk+2 · · ·P2m2−k) · · · (Pm2−1Pm2+1)Pm2 ,

(3.18)

2 ≤ k ≤ m2.

Proof. When m2 = 2 and 3, verifying that Eq. (3.18) can convert Eq. (3.9) into Eq.
(3.10) is relatively simple.

When m2 ≥ 4, and for any 2 ≤ k ≤ m2, applying

(P2P4 · · ·P2m2−2)(P3P5 · · ·P2m2−3) · · · (PkPk+2 · · ·P2m2−k)

to Eq. (3.9), yields two intermediate cases:
(i) when 2 ≤ k ≤ [m2

2
],

1 2 · · · k k + 2 k + 4 · · · k + 2ℓ · · · · · · 2m2 − 3k + 1 · · · 2m2 − k − 2 2m2 − k

k + 1 k + 3 · · · 3k − 1 · · · · · · · · · 3k − 1 + 2ℓ · · · 2m2 − k − 1 2m2 − k + 1 · · · 2m2 − 1 2m2

,

(3.19)

where 0 ≤ ℓ ≤ m2 − 2k.
(ii) when [m2

2
] + 1 ≤ k ≤ m2 − 1,

· · ·· · ·· · ·· · ·

· · ·· · ·· · ·· · ·1 2 k − 1 k k + 2 2m2 − k

k + 1 2m2 − k − 12m2 − k + 12m2 − k + 2 2m2 − 1 2m2

.

(3.20)
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When k = m2 in Eq. (3.20), equation (3.10) holds. Equation (3.19) and Eq. (3.20)
are established by mathematical induction on k. When k=2, verifying that Eq. (3.9) is
converted into

· · ·· · ·· · ·

· · ·· · ·· · ·1 2 4 2m2 − 42m2 − 2

3 5 2m2 − 32m2 − 1 2m2

.

by P2P4 · · ·P2m2−2 is relatively easy such that Eq. (3.19) holds for k=2. Next, assume
that Eq. (3.19) holds for k ≤ [m

2
]. Then, by applying Pk+1Pk+3 · · ·P2m2−k−1 to Eq.

(3.19), equation (3.19) can be verified to hold for k+1 when k+1 ≤ [m2

2
] or becomes Eq.

(3.20) when k + 1 ≥ [m2

2
]. When k ≥ [m2

2
] + 1, Pk+1Pk+3 · · ·P2m2−k−1 is applied to Eq.

(3.20). Equation (3.20) can also be confirmed to hold for k + 1. Finally, equation (3.10)
is concluded to hold for k = m2. The proof is thus complete.

Based on Lemma 3.1.3, X2×m2×2 can be converted into X̂2×m2×2 as follows. Let

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , (3.21)

and for 2 ≤ j ≤ 2m2 − 2, as denoted by

P2m2;j = I2j−1 ⊗ P ⊗ I22m2−j−1 ,

where Ik is the k × k identity matrix. Moreover, let

Px;2×m2×2 = (P2m2;2P2m2;4 · · ·P2m2;2m2−2)
· · · (P2m2;k · · ·P2m2;2m2−k) · · · (P2m2;m2),

(3.22)

2 ≤ k ≤ m2. Then, the following theorem holds.

Theorem 3.1.4. For any m2 ≥ 2,

X̂2×m2×2 = Ptx;2×m2×2X2×m2×2Px;2×m2×2. (3.23)

Proof. From Eq. (3.17), in Z1×m2×2 the position (α2, α3) is the α-th in Eq. (3.9), where
α = 2(α2 − 1) + α3. Define

ℓα ≡ 1 + 2u1α2α3 + u2α2α3 ,

1 ≤ ℓα ≤ 4 and 1 ≤ α ≤ 2m2. For U = (uα1α2α3) ∈ Σ2×m2×2, from Theorem 3.1.1 it can
be denoted by y2×m2×2;j1j2...jm2

and by Eq. (3.5) for fixed 1 ≤ α2 ≤ m2:

jα2 = 1 + 23u1α21 + 22u1α22 + 2u2α21 + u2α22,

where 1 ≤ jα2 ≤ 16. Accordingly, yjα2
can be represented by yℓ2α2−1ℓ2α2

and the relation
is




y1 y2 y3 y4

y5 y6 y7 y8

y9 y10 y11 y12

y13 y14 y15 y16


 =




y11 y12 y21 y22

y13 y14 y23 y24

y31 y32 y41 y42

y33 y34 y43 y44


 .
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Therefore, from Eq. (3.12) patterns in ordering matrix X2×m2×2 can be specified by

y2×m2×2;j1j2...jm2
= yj1 ⊕ yj2 ⊕ · · · ⊕ yjm2

= yℓ1ℓ2 ⊕ yℓ3ℓ4 ⊕ · · · ⊕ yℓ2m2−1ℓ2m2

≡ yℓ1ℓ2...ℓ2m2
.

For any 1 ≤ k ≤ 2m2 − 1,

P t
2m2;kX2×m2×2P2m2;k

= P t
2m2;k[yℓ1ℓ2...ℓkℓk+1...ℓ2m2

]P2m2;k

= [yℓ1ℓ2...ℓk+1ℓk...ℓ2m2
]

is easily verified, such that P2m2;k exchanges ℓk and ℓk+1 in X2×m2×2. Therefore, Eq. (3.23)
follows from Eq. (3.22) and Lemma 3.1.3.

Now, according to Theorem 3.1.4,

X̂2×m2×2 = [x̂2×m2×2;̂i1î2
],

1 ≤ î1, î2 ≤ 2m2. From some observations as Eq. (3.8), X̂2×m2×2 can be represented as
z2×m2×2;k1k2 , where 1 ≤ k1, k2 ≤ 22m2 . The [x̂]-expression

X̂2×m2×2 = Z
(r)
2×m2×2 (3.24)

for Σ2×m2×2 enables X̂2×m2×m3 to be constructed for Σ2×m2×m3 . Indeed, for fixed m2 ≥ 2
and m3 ≥ 2, let

x̂2×m2×m3 ;̂i1 î2
≡ z2×m2×m3;k1k2...km3

≡ z2×m2×2;k1k2⊕̂z2×m2×2;k2k3⊕̂ · · · ⊕̂z2×m2×2;km3−1km3
. (3.25)

Therefore, by a similar argument as was used to establish Theorem 3.1.1 the following
theorem holds for X̂2×m2×m3 , the detailed proofs are omitted for brevity.

Theorem 3.1.5. For fixed m2 ≥ 2 and for any m3 ≥ 2, the ordering matrix X̂2×m2×m3

with respect to [x̂]-ordering can be expressed as

X̂x̂;2×m2×m3 = [X̂2×m2×m3;k1]2m2×2m2 ,

where 1 ≤ k1 ≤ 22m2 . For fixed 1 ≤ k1, k2, · · · , kl ≤ 22m2,

X̂2×m2×m3;k1k2···kl
= [X̂2×m2×m3;k1k2···klkl+1

]2m2×2m2

where 1 ≤ kl+1 ≤ 22m2 and 1 ≤ l ≤ m3 − 2. For fixed k1, k2, · · · , km3−1,

X̂2×m2×m3;k1k2···km3−1 = [z2×m2×m3;k1k2...km3
],

where z2×m2×m3;k1k2...km3
is given by Eq. (3.25).

Remark 3.1.6. Similarly, according to other orderings, the following relations can be
derived

X2×m2×m3 = [y2×m2×m3;j1j2...jm2
]2m2m3×2m2m3

Ŷm1×2×m3 = [ẑm1×2×m3;k̂1k̂2...k̂m3
]2m1m3×2m1m3

Ym1×2×m3 = [xm1×2×m3;i1i2...im1
]2m1m3×2m1m3

Ẑm1×m2×2 = [ŷm1×m2×2;ĵ1ĵ2...ĵm2
]2m1m2×2m1m2

Zm1×m2×2 = [x̂m1×m2×2;̂i1 î2...̂im1
]2m1m2×2m1m2 .
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3.1.2 Transition matrices

Based on the definitions of the ordering matrices X̂2×m2×m3 for Σ2×m2×m3 having been
defined, high order transition matrices Ax̂;2×m2×m3 can now be derived from Ax;2×2×2. As
in the two-dimensional case [4], a basic set B ⊂ Σ2×2×2 is assumed to give. Define the
transition matrix Ax;2×2×2 = Ax;2×2×2(B) by

Ax;2×2×2 = [ax;2×2×2;i1i2 ]24×24 , (3.26)

where

ax;2×2×2;i1i2 = 1 if xi1i2 ∈ B,
= 0 otherwise.

(3.27)

Then, the transition matrix Ax;2×m2×2 is a 22m2 × 22m2 matrix with entries ax;2×m2×2;i1i2
3,

where

ax;2×m2×2;i1i2 = ay;2×m2×2;j1j2...jm2

=

m2−1∏

k=1

ay;2×2×2;jkjk+1
. (3.28)

Before Ax;2×m2×2 is introduced, three products of the matrices are defined as follows.

Definition 3.1.7. For any two matrices M = (Mij) and N = (Nkl), the Kronecker product
(tensor product) M ⊗ N of M and N is defined by

M ⊗ N = (MijN).

For any n ≥ 1,
⊗Nn = N ⊗ N ⊗ · · · ⊗ N,

n-times in N.
Next, for any two m×m matrices

P = (Pij) and Q = (Qij)

where Pij and Qij are numbers or matrices, the Hadamard product P ◦ Q is defined by

P ◦ Q = (Pij ·Qij),

where the product Pij ·Qij of Pij and Qij may be a multiplication of numbers, of numbers
and matrices or of matrices whenever it is well-defined.

Finally, product ⊗̂ is defined as follows. For any 4 × 4 matrix

M2 =




m11 m12 m21 m22

m13 m14 m23 m24

m31 m32 m41 m42

m33 m34 m43 m44


 =

[
M2;1 M2;2

M2;3 M2;4

]

and any 2 × 2 matrix

N =

[
N1 N2

N3 N4

]
,

3Use ax;2×2×2;i1i2 to substitute ax;2×2×2;i1,i2 for simplicity afterward.
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where mij are numbers and Nk are numbers or matrices, for 1 ≤ i, j, k ≤ 4, define

M2⊗̂N =




m11N1 m12N2 m21N1 m22N2

m13N3 m14N4 m23N3 m24N4

m31N1 m32N2 m41N1 m42N2

m33N3 m34N4 m43N3 m44N4


 .

Furthermore, for n ≥ 1, the n+ 1-th order of transition matrix of M2 is defined by

Mn+1 ≡ ⊗̂Mn
2 = M2⊗̂M2⊗̂ · · · ⊗̂M2,

n-times in M2. More precisely,

Mn+1 = M2⊗̂(⊗̂Mn−1
2 ) =

[
M2;1 ◦ (⊗̂Mn−1

2 ) M2;2 ◦ (⊗̂Mn−1
2 )

M2;3 ◦ (⊗̂Mn−1
2 ) M2;4 ◦ (⊗̂Mn−1

2 )

]

=




m11Mn;1 m12Mn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4

m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2

m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4


 =

[
Mn+1;1 Mn+1;2

Mn+1;3 Mn+1;4

]
,

where

Mn = ⊗̂Mn−1
2 =

[
Mn;1 Mn;2

Mn;3 Mn;4

]
.

Here, the following convention is adopted,

⊗̂M0
2 = E2.

where where E2 is the 2 × 2 matrix with 1 as its entries.

Theorem 3.1.1, yields results for Ax;2×m2×2 as Tn in Theorem 3.1 in [4]. Indeed,

Theorem 3.1.8. Let Ax;2×2×2 be a transition matrix that is given by Eq. (3.26) and Eq.
(3.27). Then, for high order transition matrices Ax;2×m2×2, m2 ≥ 3, the following three
equivalent statements hold:
(I) Ax;2×m2×2 can be decomposed into m2 successive 4 × 4 matrices

Ax;2×m2×2 = [Ax;2×m2×2;j1]4×4,

where 1 ≤ j1 ≤ 16. For fixed 1 ≤ j1, j2, . . . , jk ≤ 16,

Ax;2×m2×2;j1j2...jk = [Ax;2×m2×2;j1j2...jkjk+1
]4×4,

where 1 ≤ jk+1 ≤ 16 and 1 ≤ k ≤ m2 − 1. For fixed j1, j2, . . . , jm2−1 ∈ {1, 2, . . . , 16},

Ax;2×m2×2;j1j2...jm2−1 = [ay;2×m2×2;j1j2...jm2
]4×4,

where ay;2×m2×2;j1j2...jm2
is defined in Eq. (3.28).

(II) Starting from

Ax;2×2×2 = [Ax;2×2×2;j1]4×4

53



and

Ax;2×2×2;j1 = [ay;2×2×2;j1j2]4×4,

for m2 ≥ 3, Ax;2×m2×2 can be obtained from Ax;2×(m2−1)×2 by replacing Ax;2×2×2;j1 with

(Ax;2×2×2;j1)4×4 ◦ (Ax;2×2×2)4×4.

(III) For m2 ≥ 3,

Ax;2×m2×2 = (Ax;2×(m2−1)×2)22(m2−1)×22(m2−1) ◦ (E22(m2−2) ⊗ Ax;2×2×2), (3.29)

where E2k is the 2k × 2k matrix with 1 as its entries.

Proof. (I) The proof involves simply replacing X2×m2×2;j1j2...jk and y2×m2×2;j1j2...jm2
by

Ax;2×m2×2;j1j2...jk and ay;2×m2×2;j1j2...jm2
in Theorem 3.1.1, respectively.

(II) follows directly from (I).
(III) follows from (I); Ax;2×m2×2 = [Ax;2×m2×2;j1], 1 ≤ j1 ≤ 24. (I) yields the following
formula;

Ax;2×m2×2 = [ay;2×2×2;j1j2Ax;2×(m2−1)×2;j2 ]

= (Ax;2×(m2−1)×2)22(m2−1)×22(m2−1)⊗̂[E22(m2−2) ⊗ Ax;2×2×2].

The proof is complete.

Remark 3.1.9. As stated in Remark 3.1.2, the following formulae apply

Ax̂;2×2×m3 = [az;2×2×m3;k1k2...km3−1km3
]22m3×22m3

Ay;m1×2×2 = [ax;m1×2×2;i1i2...im1−1im1
]22m1×22m1

Aŷ;2×2×m3 = [aẑ;2×2×m3;k̂1k̂2...k̂m3−1k̂m3
]22m3×22m3

Az;m1×2×2 = [ax̂;m1×2×2;̂i1 î2...̂im1−1 îm1
]22m1×22m1

Aẑ;2×m2×2 = [aŷ;2×m2×2;ĵ1ĵ2...ĵm2−1 ĵm2
]22m2×22m2 .

Now, the transition matrix Ax̂;2×m2×2, with respect to the ordering matrix X̂2×m2×2

can be obtained. Additionally, by using Theorem 3.1.4 yields

Theorem 3.1.10.

Ax̂;2×m2×2 = Ptx;2×m2×2Ax;2×m2×2Px;2×m2×2.

Proof. The proof involves simply replacing y2×m2×2;j1j2...jm2
by ay;2×m2×2;j1j2...jm2

in Theo-
rem 3.1.4.

Theorem 3.1.5 yields transition matrix Ax̂;2×m2×m3 from Ax̂;2×m2×2. Equation (3.24)
yields the transition matrix

Ax̂;2×m2×2 = [Ax̂;2×m2×2;k1] (3.30)

and

Ax̂;2×m2×2;k1 = [az;2×m2×2;k1k2]. (3.31)

Therefore,
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Theorem 3.1.11. Let Ax̂;2×m2×2 be a transition matrix given by Eq. (3.30) and Eq.
(3.31). Then, for high order transition matrices Ax̂;2×m2×m3, m2 ≥ 3, we have the follow-
ing three equivalent statements hold,
(I) Ax̂;2×m2×m3 can be decomposed into m3 successive 2m2 × 2m2 matrices:

Ax̂;2×m2×m3 = [Ax̂;2×m2×m3;k1]2m2×2m2 ,

where 1 ≤ k1 ≤ 22m2 . For fixed 1 ≤ k1, k2, . . . , kℓ ≤ 22m2,

Ax̂;2×m2×m3;k1k2...kℓ
= [Ax̂;2×m2×m3;k1k2...kℓkℓ+1

]2m2×2m2 ,

where 1 ≤ kℓ+1 ≤ 22m2 and 1 ≤ ℓ ≤ m3 − 2,

Ax̂;2×m2×m3;k1k2...km3−1 = [az;2×m2×m3;k1k2...km3
]2m2×2m2 ,

where 1 ≤ km3 ≤ 22m2 and by Eq. (3.25)

az;2×m2×m3;k1k2...km3
=

m3−1∏

ℓ=1

az;2×m2×2;kℓkℓ+1
.

(II) For any m3 ≥ 3, Ax̂;2×m2×m3 can be obtained from Ax̂;2×m2×(m3−1) by replacing
Ax̂;2×m2×2;k1 with

(Ax̂;2×m2×2;k1)2m2×2m2 ◦ (Ax̂;2×m2×2)2m2×2m2 .

(III) Furthermore, for m3 ≥ 3,

Ax̂;2×m2×m3 = (Ax̂;2×m2×(m3−1))2m2(m3−1)×2m2(m3−1)

◦(E2m2(m3−2) ⊗ Ax̂;2×m2×2).
(3.32)

The proof closely resembles that of Theorem 3.1.1 and Theorem 3.1.8. Details of the
proof can be omitted since obvious and repeated.

Remark 3.1.12. As in Remark 3.1.6, the following formulae are obtained

Ax;2×m2×m3 = [ay;2×m2×m3;j1j2...jm2
]2m2m3×2m2m3

Aŷ;m1×2×m3 = [aẑ;m1×2×m3;k̂1k̂2...k̂m3
]2m1m3×2m1m3

Ay;m1×2×m3 = [ax;m1×2×m3;i1i2...im1
]2m1m3×2m1m3

Aẑ;m1×m2×2 = [aŷ;m1×m2×2;ĵ1ĵ2...ĵm2
]2m1m2×2m1m2

Az;m1×m2×2 = [ax̂;m1×m2×2;̂i1î2...̂im1
]2m1m2×2m1m2 .

Finally, the spatial entropy h(B) can be computed from the maximum eigenvalue
λx̂;2,m2,m3 of Ax̂;2×m2×m3 . Indeed,

Theorem 3.1.13. Let λx̂;2,m2,m3 be the maximum eigenvalue of Ax̂;2×m2×m3, then

h(B) = lim
m2,m3→∞

log λx̂;2,m2,m3

m2m3

. (3.33)
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Proof. By the same arguments as in [17], the limit Eq. (1.36) is well-defined and exists.
From Ax̂;2×m2×m3 , for m2 ≥ 2 and m3 ≥ 2,

Γx̂;m1×m2×m3(B) =
∑

1≤i,j≤2m2m3

(Am1−1
x̂;2×m2×m3

)ij

= |(Am1−1
x̂;2×m2×m3

)|.

As in the one-dimensional case,

lim
m1→∞

log |(Am1−1
x̂;2×m2×m3

)|
m1

= log λx̂;2,m2,m3 ,

as in for example [4]. Hence,

h(B) = lim
m1,m2,m3→∞

log Γx̂;m1×m2×m3(B)

m1m2m3

= lim
m2,m3→∞

1

m2m3
( lim
m1→∞

log Γx̂;m1×m2×m3(B)

m1
)

= lim
m2,m3→∞

log λx̂;2,m2,m3

m2m3
.

The proof is complete.

Remark 3.1.14. Let λx;2,m2,m3, λŷ;m1,2,m3, λy;m1,2,m3, λẑ;m1,m2,2 and λz;m1,m2,2 be the max-
imum eigenvalue of Ax;2×m2×m3, Aŷ;m1×2×m3, Ay;m1×2×m3 , Aẑ;m1×m2×2 and Az;m1×m2×2 re-
spectively. Then,

h(B) = lim
m2,m3→∞

log λx;2,m2,m3

m2m3

= lim
m1,m3→∞

log λŷ;m1,2,m3

m1m3

= lim
m1,m3→∞

log λy;m1,2,m3

m1m3

= lim
m1,m2→∞

log λẑ;m1,m2,2

m1m2

= lim
m1,m2→∞

log λz;m1,m2,2

m1m2
.

The detailed proofs are as above.
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3.1.3 Computation of λm,n and entropies

The last subsection provided a systematic means of writing down Ax̂;2×m2×m3 from
Ax;2×2×2. As in a two-dimensional case [4], a recursive formula for λx̂;2,m2,m3 can be
obtained in a special structure. An illustrative example is presented in which Ax̂;2×m2×m3

and λx̂;2,m2,m3 can be derived explicitly to demonstrate the methods developed in the
preceding subsection. More complete results will be presented later.

Let

G =

[
1 1
1 0

]
and E = E2 =

[
1 1
1 1

]
, (3.34)

and

Ax;2×2×2 = G⊗ E ⊗E ⊗E. (3.35)

Proposition 3.1.15. Substitute Ax;2×2×2 into Eq. (3.34) and Eq. (3.35). Then,

(i) Ax;2×m2×2 = ⊗(G⊗ E)m2−1 ⊗ (⊗E2), (3.36)

(ii) Ax̂;2×m2×2 = (⊗Gm2−1) ⊗ (⊗Em2+1), (3.37)

(iii) Ax̂;2×m2×m3 = ⊗((⊗Gm2−1) ⊗ E)m3−1 ⊗ (⊗Em2). (3.38)

Furthermore, for the maximum eigenvalue λx̂;2,m2,m3 of Ax̂;2×m2×m3 , the following recursive
formulae apply:

λx̂;2,m2+1,m3 = 2gm3−1λx̂;2,m2,m3 (3.39)

and

λx̂;2,m2,m3+1 = 2gm2−1λx̂;2,m2,m3 (3.40)

for m2, m3 ≥ 2 with

λx̂;2,2,2 = 23g. (3.41)

The spatial entropy is

h(Ax;2×2×2) = log g, (3.42)

where g = 1+
√

5
2

, the golden-mean.

Proof. The proof is described only briefly, and the details are omitted for brevity.
(i) can be proven by Theorem 3.1.8 and induction on m2. Indeed, by Eq. (3.29),

Ax;2×3×2 = (Ax;2×2×2)4×4 ◦ (E22 ⊗ Ax;2×2×2)4×4

= (G⊗E ⊗E ⊗ E)4×4 ◦ (E ⊗E ⊗ (G⊗ E ⊗ E ⊗ E))4×4

= (G ◦ E) ⊗ (E ◦ E) ⊗ (E ◦G) ⊗ (E2×2 ◦ (E ⊗ E ⊗E))2×2

= G⊗E ⊗G⊗ E ⊗ E ⊗ E.
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Assume that Ax;2×(m2−1)×2 = ⊗(G⊗ E)m2−2 ⊗ (⊗E2). Then by Eq. (3.29) again,

Ax;2×m2×2 = (Ax;2×(m2−1)×2) ◦ ((⊗E2(m2−2)) ⊗ Ax;2×2×2)
= (⊗(G⊗ E)m2−2 ⊗ (⊗E2))22m2−2×22m2−2 ◦ ((⊗E2(m2−2)) ⊗ (G⊗E ⊗ E ⊗ E)22m2−2×22m2−2

= (⊗(G⊗ E)m2−2 ⊗ (E ⊗ E))22m2−2×22m2−2

◦ (⊗(E ⊗E)m2−2 ⊗ (G⊗ E) ⊗ (E ⊗E))22m2−2×22m2−2

= ⊗[(G ◦ E) ⊗ (E ◦ E)]m2−2 ⊗ (E ◦G) ⊗ (E ◦ (E ⊗ E ⊗ E))
= ⊗(G⊗ E)m2−2 ⊗ (G⊗ E) ⊗ (E ⊗ E)
= ⊗(G⊗ E)m2−1 ⊗ (⊗E2).

(ii) The following property of matrices is required and detailed proofs are omitted: For
any two 2 × 2 matrices A and B,

P (A⊗ B)P = B ⊗ A, (3.43)

where P is given by Eq. (3.21). Equation (3.37) is proven by induction on m2. When
m2 = 2, by Theorem 3.1.10,

Ax̂;2×2×2 = Ptx;2×2×2Ax;2×2×2Px;2×2×2

= (P4;2)
tAx;2×2×2P4;2

= (I2 ⊗ P ⊗ I2)((G⊗E) ⊗ (E ⊗ E))(I2 ⊗ P ⊗ I2)
= G⊗ (P (E ⊗ E)P ) ⊗ E

= G⊗ E ⊗ E ⊗E

by Eq. (3.43).
Now, Eq. (3.37) is assumed to hold for m2 − 1;

Ax̂;2×(m2−1)×2 = (⊗Gm2−2) ⊗ (⊗Em2).

Then

Ax̂;2×m2×2

= Ptx;2×m2×2Ax;2×m2×2Px;2×m2×2

= [(P2m2;2P2m2;4 · · ·P2m2;2m2−2)(P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m2;m2)]
t

Ax;2×m2×2[(P2m2;2P2m2;4 · · ·P2m2;2m2−2)(P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m2;m2)]
= (P2m2;m2) · · · (P2m2;3P2m2;5 · · ·P2m2;2m2−3)[(P2m2;2P2m2;4 · · ·P2m2;2m2−2)(

⊗ (G⊗ E)m2−1 ⊗ (⊗E2)
)
(P2m2;2P2m2;4 · · ·P2m2;2m2−2)](P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m;m2)

= (P2m2;m2) · · · (P2m2;3P2m2;5 · · ·P2m2;2m2−3)[G⊗ (⊗(G⊗ E)m2−2 ⊗ (⊗E2)) ⊗ E]
(P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m2;m2)

= G⊗ {(P2(m2−1);m2−1) · · · (P2(m2−1);2P2(m2−1);4 · · ·P2(m2−1);2(m2−1)−2)[⊗(G⊗E)m2−1]
(P2(m2−1);2P2(m2−1);4 · · ·P2(m2−1);2(m2−1)−2) · · · (P2(m2−1);m2−1)} ⊗E

= G⊗ (Ptx;2×(m2−1)×2Ax;2×(m2−1)×2Px;2×(m2−1)×2) ⊗E

= G⊗ Ax̂;2×(m2−1)×2 ⊗ E

= G⊗ ((⊗Gm2−2) ⊗ (⊗Em2)) ⊗ E

= (⊗Gm2−1) ⊗ (⊗Em2+1).

(iii) For a fixed m2, these results are proven by induction on m3 ≥ 2. Assume that Eq.
(3.38) holds for m3 − 1;

Ax̂;2×m2×(m3−1) = ⊗((⊗Gm2−1) ⊗ E)m3−2 ⊗ (⊗Em2).
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Then, by Eq. (3.32),

Ax̂;2×m2×m3 = Ax̂;2×m2×(m3−1) ◦ ((⊗Em2(m3−2)) ⊗ Ax̂;2×m2×2)
= [⊗((⊗Gm2−1) ⊗ E)m3−2 ⊗ (⊗Em2)] ◦ [(⊗Em2(m3−2)) ⊗ (⊗Gm2−1) ⊗ (⊗Em2+1)]

= ⊗
(
(⊗Gm2−1) ⊗E

)m3−2 ⊗
(
(⊗Gm2−1) ⊗ (⊗Em2+1)

)

= ⊗((⊗Gm2−1) ⊗E)m3−1 ⊗ (⊗Em2).

For the maximum eigenvalue λx̂;2,m2,m3, equation (3.41) is easily verified. Equation
(3.39) is established for fixed m3 using Eq. (3.38), yielding

Ax̂;2×(m2+1)×m3 = ⊗((⊗Gm2) ⊗ E)m3−1 ⊗ (⊗Em2+1)

=
(
G⊗ (⊗Gm2−1) ⊗ E

)m3−1 ⊗
(
⊗Em2 ⊗E

)
,

which implies

λx̂;2,m2+1,m3 = 2gm3−1λx̂;2,m2,m3 ,

see [13], [29] and [30].
Similarly, for a fixed m2, equation (3.40) is proven using Eq. (3.38) again:

Ax̂;2×m2×(m3+1) = ⊗((⊗Gm2−1) ⊗ E)m3 ⊗ (⊗Em2)
= ⊗((⊗Gm2−1) ⊗ E) ⊗ Ax̂;2×m2×m3 ,

which implies

λx̂;2,m2,m3+1 = 2gm2−1λx̂;2,m2,m3 .

Finally, equation (3.42) follows from Eqs. (3.39), (3.40) and Theorem 3.1.13. The proof
is thus complete.
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3.2 Connecting Operator

This section introduces the connecting operator and employs it to derive a recur-
sive formula between an elementary pattern of order (m1, m2, m3 + 1) and that of order
(m1, m2, m3). It is also adopted to obtain a lower bound on entropy.

3.2.1 Connecting operator in z-direction

This subsection derives connecting operators and studies their properties. For brevity,
only the connecting operator in the z-direction is discussed but the other cases are similar,
and will be considered in the following Remarks. For clarity, as in the former section, two
symbols on lattice Z2×2×2 are examined first.

According to Theorem 3.1.11, the transition matrix Ax̂;2×m2×m3 can be represented as
Ax̂;2×m2×m3;α, where 1 ≤ α ≤ 22m2 , is a 2m2(m3−1) × 2m2(m3−1) matrix.

For matrix multiplication, the indices of Ax̂;2×m2×m3 are conveniently expressed as



Ax̂;2×m2×m3;11 Ax̂;2×m2×m3;12 · · · Ax̂;2×m2×m3;12m2

Ax̂;2×m2×m3;21 Ax̂;2×m2×m3;22 · · · Ax̂;2×m2×m3;22m2

...
...

. . .
...

Ax̂;2×m2×m3;2m21 Ax̂;2×m2×m3;2m22 · · · Ax̂;2×m2×m3;2m22m2


 .

Clearly, Ax̂;2×m2×m3;α = Ax̂;2×m2×m3;β1β2, where α = α(β1, β2) = 2m2(β1 − 1) + β2. For
m1 ≥ 2, the elementary pattern in the entries of Am1

x̂;2×m2×m3
is given by

Ax̂;2×m2×m3;β1β2Ax̂;2×m2×m3;β2β3 · · ·Ax̂;2×m2×m3;βm1βm1+1

where βr ∈ {1, 2, · · · , 2m2} and 1 ≤ r ≤ m1 +1. A lexicographic order for multiple indices
Im1+1 = (β1β2 · · ·βm1βm1+1) is introduced, using

K(Im1+1) = 1 +

m1∑

r=2

2m2(m1−r)(βr − 1). (3.44)

Now, A
(k)
x̂;m1,m2,m3;α can be represented by

Ax̂;2×m2×m3;β1β2Ax̂;2×m2×m3;β2β3 · · ·Ax̂;2×m2×m3;βm1βm1+1, (3.45)

where

α = α(β1, βm1+1) = 2m2(β1 − 1) + βm1+1

and

k = K(Im1+1)

is as in Eq. (3.44). Accordingly, A
m1

x̂;2×m2×m3
can be expressed as

[Ax̂;m1,m2,m3;α]2m2×2m2 , (3.46)

where 1 ≤ α ≤ 22m2 and

Ax̂;m1,m2,m3;α =

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,m3;α

. (3.47)
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Moreover,

Vx̂;m1,m2,m3;α = (A
(k)
x̂;m1,m2,m3;α

)t, (3.48)

where 1 ≤ k ≤ 2m2(m1−1), Vx̂;m1,m2,m3;α is a 2m2(m1−1) column vector that comprises all
elementary patterns in Ax̂;m1,m2,m3;α. The ordering matrix Vx̂;m1,m2,m3 of Am1

x̂;2×m2×m3
is

now defined as

[Vx̂;m1,m2,m3;α]2m2×2m2 , (3.49)

where 1 ≤ α ≤ 22m2 . The ordering matrix Vx̂;m1,m2,m3 allows the elementary patterns to
be tracked during the reduction from A

m1

x̂;2×m2×(m3+1) to A
m1

x̂;2×m2×m3
. This careful book-

keeping constitutes a systematic way to generate the admissible patterns, and as in Sec.
3.2.2, lower-bound estimates of spatial entropy.

This simplest example is considered first to illustrate this concept.

Example 3.2.1. For m1 = 2, m2 = 3, m3 = 3, the following can be easily verified;

A2
x̂;2×3×3 = [Ax̂;2,3,3;α1]23×23 ,

where 1 ≤ α1 ≤ 26 and

Ax̂;2,3,3;α1 =
23∑

k=1

A
(k)
x̂;2,3,3;α1

,

and for fixed α1 and k the represented pattern of A
(k)
x̂;2,3,3;α1

are in the following form.

α14 α15 α16

k1 k2
k3

α11
α12 α13

×××

×××
××

×××

×××

×××

×

If the red symbol is defined equal to 1, and white symbol equals 0, then α1 = 25α11 +
24α12 + 23α13 + 22α14 + 2α15 + α16 + 1 and k = 22k1 + 2k2 + k3 + 1. Hence

Vx̂;2,3,3;α1 = (A
(k)
x̂;2,3,3;α1

)t,

where 1 ≤ k ≤ 23 and 1 ≤ α1 ≤ 26. Define

Vx̂;2,3,3;α1;α2 = (A
(k)
x̂;2,3,3;α1;α2

)t,
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where 1 ≤ k ≤ 23 and 1 ≤ α1, α2 ≤ 26 and the represented pattern of A
(k)
x̂;2,3,3;α1;α2

is

α14 α15 α16

k1 k2 k3

α11
α12 α13

×××

×××

×××

×××

α24 α25 α26

α21 α22 α23

.

Therefore, for instance,

Vx̂;2,3,3;1;1 = Sx̂;m3;2,3;11Vx̂;2,3,2;1,

and the represented patterns of Sx̂;m3;2,3;11

23×23 .

The above derivation reveals that Vx̂;2,3,3;α1;α2 can be reduced to Vx̂;2,3,2;α2 by multiplica-
tion using connecting operator Sx̂;m3;2,3;α1α2 . This procedure can be extended to introduce
the connecting operator Sx̂;m3;m1m2 = [Sx̂;m3;m1m2;α1α2

4], where 1 ≤ α1, α2 ≤ 22m2 , for all
m1 ≥ 2, m2 ≥ 2.

Definition 3.2.2. For m1 ≥ 2, m2 ≥ 2, define

(Cx̂;m3;m1m2)22m2×22m2 = (S
(r)
x̂;m3;m1m2

)22m2×22m2 , (3.50)

4Use Sx̂;m3;m1m2;α1α2
to substitute Sx̂;m3;m1m2;α1,α2

for simplicity afterward.
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where the row matrix S
(r)
x̂;m3;m1m2

of Sx̂;m3;m1m2 is defined in Eq. (3.6) and Eq. (3.7). And

Cx̂;m3;m1m2;i1i2 (3.51)

= [(Az;2×m2×2;i1)2m2×2m2 ◦ (Az;(m1−1)×m2×2)2m2×2m2 ]2(m1−1)m2×2(m1−1)m2

◦(E2(m1−2)m2 ⊗ ((A
(r)
z;2×m2×2)

(c)
;i2

)2m2×2m2 )2(m1−1)m2×2(m1−1)m2

where (A
(r)
z;2×m2×2)

(c)
;i2

is the i2-th block of the matrix (A
(r)
z;2×m2×2)

(c), (A
(r)
z;2×m2×2)

(c) is the

column matrix of A
(r)
z;2×m2×2, A

(r)
z;2×m2×2 is the row matrix of Az;2×m2×2 and Ek is the

2k × 2k matrix with 1 as its entries.

Remark 3.2.3. By a similar method, the following connecting operators can also be
defined.

Cx;m2;m1m3;i1i2

= [(Ay;2×2×m3;i1)2m3×2m3 ◦ (Ay;(m1−1)×2×m3)2m3×2m3 ]2(m1−1)m3×2(m1−1)m3

◦(E2(m1−2)m3 ⊗ ((A
(r)
y;2×2×m3

)
(c)
;i2

)2m3×2m3 )2(m1−1)m3×2(m1−1)m3

Cŷ;m3;m1m2;i1i2

= [(Aẑ;m1×2×2;i1)2m1×2m1 ◦ (Aẑ;m1×(m2−1)×2)2m1×2m1 ]2(m2−1)m1×2(m2−1)m1

◦(E2(m2−2)m1 ⊗ ((A
(r)
ẑ;m1×2×2)

(c)
;i2

)2m1×2m1 )2(m2−1)m1×2(m2−1)m1

Cy;m1;m2m3;i1i2

= [(Ax;2×2×m3;i1)2m3×2m3 ◦ (Ax;2×(m2−1)×m3)2m3×2m3 ]2(m2−1)m3×2(m2−1)m3

◦(E2(m2−2)m3 ⊗ ((A
(r)
x;2×2×m3

)
(c)
;i2

)2m3×2m3 )2(m2−1)m3×2(m2−1)m3

Cẑ;m2;m1m3;i1i2

= [(Aŷ;m1×2×2;i1)2m1×2m1 ◦ (Aŷ;m1×2×(m3−1))2m1×2m1 ]2(m3−1)m1×2(m3−1)m1

◦(E2(m3−2)m1 ⊗ ((A
(r)
ŷ;m1×2×2)

(c)
;i2

)2m1×2m1 )2(m3−1)m1×2(m3−1)m1

Cz;m1;m2m3;i1i2

= [(Ax̂;2×m2×2;i1)2m2×2m2 ◦ (Ax̂;2×m2×(m3−1))2m2×2m2 ]2(m3−1)m2×2(m3−1)m2

◦(E2(m3−2)m2 ⊗ ((A
(r)
x̂;2×m2×2)

(c)
;i2

)2m2×2m2 )2(m3−1)m2×2(m3−1)m2

Theorem 3.2.4. For any m2 ≥ 2, m3 ≥ 2 and 1 ≤ i1, i2 ≤ 22m2,

Cx̂;m3;(m1+1)m2;i1i2 = [ax̂;2×m2×2;i1iCx̂;m3;m1m2;ii2 ], (3.52)

where 1 ≤ i ≤ 22m2.

Proof. By Theorem 3.1.11 and Remark 3.1.12,

Az;m1×m2×2 = [Az;2×m2×2;i1 ◦ Az;(m1−1)×m2×2],
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where 1 ≤ i1 ≤ 22m2 . Hence, by

Cx̂;m3;(m1+1)m2;i1i2

= [(Az;2×m2×2;i1) ◦ Az;m1×m2×2] ◦ [E2(m1−1)m2 ⊗ (A
(r)
z;2×m2×2)

(c)
;i2

]

= [ax̂;2×m2×2;i1i(Az;2×m2×2;i ◦ Az;(m1−1)×m2×2)]

◦[E2m2 ⊗ (E2(m1−2)m2 ⊗ (A
(r)
z;2×m2×2)

(c)
;i2

)]

= [ax̂;2×m2×2;i1iCx̂;m3;m1m2;ii2 ]2m2×2m2

where 1 ≤ i ≤ 22m2 . The proof is complete.

Notably, Eq. (3.52) implies Cx̂;m3;m1m2;ij is

ax̂;2×m2×2;i1i2ax̂;2×m2×2;i2i3 · · ·ax̂;2×m2×2;im1 im1+1

with i1 = i and im1+1 = j. Cx̂;m3;m1m2;ij comprises all paths of length m1 + 1, that start
at i and end at j. Indeed, the entries of Cx̂;m3;m1m2 and Az;(m1+1)×m2×2 are the same.
However, the arrangements differ.

Substituting m3 for m3 +1 into Eq. (3.45) and using Eq. (3.32), A
(k)
x̂;m1,m2,m3+1;α could

be represented by

Ax̂;2×m2×(m3+1);β1β2
Ax̂;2×m2×(m3+1);β2β3

· · ·Ax̂;2×m2×(m3+1);βm1βm1+1

=

m1∏

j=1

[ax̂;2×m2×2;αjα̂Ax̂;2×m2×m3;β̂1β̂2
]2m2×2m2 , (3.53)

where 1 ≤ β̂1, β̂2 ≤ 2m2 and αj = α(βj, βj+1) and α̂ = α(β̂1, β̂2) for 1 ≤ j ≤ m1.
After m1 matrix multiplications have been performed as in Eq. (3.53),

A
(k)
x̂;m1,m2,m3+1;α1

= [A
(k)
x̂;m1,m2,m3+1;α1;α2

]2m2×2m2 , (3.54)

where 1 ≤ α2 ≤ 22m2 and A
(k)
x̂;m1,m2,m3+1;α1;α2

can be represented by

2m2(m1−1)∑

ℓ=1

K(x̂, m1m2;α1α2; k, ℓ)A
(ℓ)
x̂;m1,m2,m3;α2

(3.55)

which is a linear combination of A
(ℓ)
x̂;m1,m2,m3;α2

with the coefficients K(x̂, m1m2;α1α2; k, ℓ)
which are products of ax̂;2×m2×2;αj α̂, 1 ≤ j ≤ m1. K(x̂, m1m2;α1α2; k, ℓ) must be studied
in more details. Notably,

Am1

x̂;2×m2×(m3+1) = [Ax̂;m1,m2,m3+1;α1 ]2m2×2m2 (3.56)

where 1 ≤ α1 ≤ 22m2 ,

Ax̂;m1,m2,m3+1;α1 =

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,m3+1;α1

and

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,(m3+1);α1

= [

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,(m3+1);α1;α2

]2m2×2m2 ,
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where 1 ≤ α2 ≤ 22m2 . Now, Vx̂;m1,m2,m3+1;α1;α2 is defined as

Vx̂;m1,m2,m3+1;α1;α2 = (A
(k)
x̂;m1,m2,m3+1;α1;α2

)t. (3.57)

From Eq. (3.55) and Eq. (3.57),

Vx̂;m1,m2,m3+1;α1;α2 = K(x̂, m1m2;α1α2)Vx̂;m1,m2,m3;α2 (3.58)

where

K(x̂, m1m2;α1α2) = (K(x̂, m1m2;α1α2; k, ℓ)),

1 ≤ k, ℓ ≤ 2m2(m1−1) is a 2m2(m1−1) × 2m2(m1−1) matrix. Now

K(x̂, m1m2;α1α2) = Sx̂;m3;m1m2;α1α2

must be shown as follows.

Theorem 3.2.5. For any m1 ≥ 2, m2 ≥ 2 and m3 ≥ 2, let Sx̂;m3;m1m2;α1α2 be given as in
Eq. (3.50) and Eq. (3.51). Then,

Vx̂;m1,m2,m3+1;α1;α2 = Sx̂;m3;m1m2;α1α2Vx̂;m1,m2,m3;α2, (3.59)

or equivalently, the recursive formula

A
(k)
x̂;m1,m2,(m3+1);α1

= [
2m2(m1−1)∑

ℓ=1

(Sx̂;m3;m1m2;α1α2)kℓA
(ℓ)
x̂;m1,m2,m3;α2

]2m2×2m2 , (3.60)

where 1 ≤ α2 ≤ 22m2. Moreover, for m3 = 1,

A
(k)
x̂;m1,m2,2;α1

= [
2m2(m1−1)∑

ℓ=1

(Sx̂;m3;m1m2;α1α2)kℓ]2m2×2m2 , (3.61)

where 1 ≤ α2 ≤ 22m2 for any 1 ≤ k ≤ 2m2(m1−1) and α1 ∈ {1, 2, . . . , 22m2}.
Proof. From Eq. (3.54), A

(k)
x̂;m1,m2,(m3+1);α1;α2

can be represented as the pattern

α11 α12 α1m2

k1 k2 km2

km2(m1−2)+1 km2(m1−2)+2 km2(m1−1)

α1(m2+1) α1(m2+1) α1(2m2)

α21 α22 α2m2

α2(m2+1) α2(m2+2) α2(2m2)

××
×××

×××

×××

×××

×××

××

×××

×

×

×

×
××

×

×
××

· · ·

· · ·
· · ·

· · ·· · ·· · ·

· · ·

· · ·

· · ·

· · ·

...

...

m3 + 1 layers

(3.62)
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and A
(ℓ)
x̂;m1,m2,m3;α2

as the pattern,

α21 α22 α2m2

ℓ1 ℓ2 ℓm2

ℓm2(m1−2)+1 ℓm2(m1−2)+2 ℓm2(m1−1)

α2(m2+1) α2(m2+2) α2(2m2)

×××
×××

×××
××

××××

×

×

×
××

· · ·
· · ·

· · ·· · ·· · · · · ·

· · ·

· · ·

...

...
m3 layers

. (3.63)

From Definition 3.2.2, Sx̂;m3;m1m2;α1α2 represents the following pattern

α11 α12 α1m2

k1 k2 km2

km2(m1−2)+1 km2(m1−2)+2
km2(m1−1)

α1(m2+1) α1(m2+1) α1(2m2)

α21 α22 α2m2

ℓ1 ℓ2 ℓm2

ℓm2(m1−2)+1 ℓm2(m1−2)+2
ℓm2(m1−1)

α2(m2+1) α2(m2+2) α2(2m2)

· · ·

· · ·
· · ·· · ·· · ·

· · ·
· · ·

· · ·· · ·· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. (3.64)

Therefore, Eq. (3.60) follows from Eqs. (3.62), (3.63) and (3.64). Also, from Eq. (3.58),
equation (3.59) follows.

Next, equation (3.61) follows simply from Eqs. (3.62) and (3.64).

For any positive integer p ≥ 2, applying Theorem 3.2.5 p times allows the elementary
patterns of A

m1

x̂;2×m2×(m3+p) to be expressed as products of a sequence of Sx̂;m3;m1m2;αiαi+1

and the elementary patterns in Am1
x̂;2×m2×m3

. The elementary pattern in Am1

x̂;2×m2×(m3+p) is
first considered. For any p ≥ 2 and 1 ≤ q ≤ p− 1, define

A
(k)
x̂;m1,m2,m3+p;α1;α2;...;αq

= [A
(k)
x̂;m1,m2,m3+p;α1;α2;...;αq;αq+1

]2m2×2m2 ,

where 1 ≤ αq+1 ≤ 22m2 . Then A
(k)
x̂;m1,m2,m3+p;α1;α2;...;αp+1

can be represented as

2m2(m1−1)∑

ℓ2=1

2m2(m1−1)∑

ℓ3=1

· · ·
2m2(m1−1)∑

ℓp+1=1

(

p+1∏

i=2

K(x̂;m1m2;αi−1αi; ℓi−1, ℓi))A
(ℓp+1)
x̂;m1;m2;m3;αp+1

(3.65)

where and ℓ1 = k can be easily verified.
Hence, for any p ≥ 2, equation (3.56) can be generalized for Am1

x̂;2×m2×(m3+p) as a

(2m2)p+1 × (2m2)p+1 matrix

Am1

x̂;2×m2×(m3+p) = [Ax̂;m1,m2,(m3+p);α1;α2;...;αp+1
], (3.66)
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where

Ax̂;m1,m2,(m3+p);α1;α2;...;αp+1
=

2(m1−1)m2∑

k=1

A
(k)
x̂;m1,m2,(m3+1);α1;α2;...;αp+1

.

In particular, if α1, α2, . . . , αp+1 ∈ {2m2(s−1)+s|1 ≤ s ≤ 2m2} thenAx̂;m1,m2,(m3+p);α1;α2;...;αp+1

lies on the diagonal of A
m1

x̂;2×m2×(m3+p) in Eq. (3.66). Now, define

Vx̂;m1,m2,m3+p;α1;α2;...;αp+1 = (A
(k)
m1,m2,m3+p;α1;α2;...;αp+1

)t.

Therefore, Theorem 3.2.5 can be generalized to the following Theorem.

Theorem 3.2.6. For any m1 ≥ 2, m2 ≥ 2, m3 ≥ 2 and p ≥ 1, Vx̂;m1,m2,m3+p;α1;α2;...;αp+1

could be represented as

Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αpαp+1Vx̂;m1,m2,m3;αp+1

where 1 ≤ αi ≤ 22m2 and 1 ≤ i ≤ p+ 1.

Proof. From Eqs. (3.65), (3.58) and (3.60),

A
(k)
x̂;m1,m2,m3+p;α1;α2;...;αp+1

=

2m2(m1−1)∑

ℓ2=1

2m2(m1−1)∑

ℓ3=1

· · ·
2m2(m1−1)∑

ℓp+1=1

(p+1∏

i=2

K(x̂;m1m2;αi−1αi; ℓi−1, ℓi)
)
A

(ℓp+1)
x̂;m1,m2,m3;αp+1

=
2m2(m1−1)∑

ℓ2=1

2m2(m1−1)∑

ℓ3=1

· · ·
2m2(m1−1)∑

ℓp+1=1

(p+1∏

i=2

(Sx̂;m3;m1m2;αi−1αi
)ℓi−1ℓi

)
A

(ℓp+1)
x̂;m1,m2,m3;αp+1

=
2m2(m1−1)∑

ℓ2=1

2m2(m1−1)∑

ℓ3=1

· · ·
2m2(m1−1)∑

ℓp+1=1

(
(Sx̂;m3;m1m2;α1α2)ℓ1ℓ2(Sx̂;m3;m1m2;α2α3)ℓ2ℓ3

· · · (Sx̂;m3;m1m2;αpαp+1)ℓpℓp+1

)
A

(ℓp+1)
x̂;m1,m2,m3;αp+1

=
2m2(m1−1)∑

ℓp+1=1

(
Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αpαp+1

)
kℓp+1

A
(ℓp+1)
x̂;m1,m2,m3;αp+1

.

The proof is complete.
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3.2.2 Lower bound of entropy

In this subsection, the connecting operator Cx̂;m3;m1m2 is adopted to estimate the lower
bound of entropy and in particular, to confirm that is positive. The following notation is
used.

Definition 3.2.7. Let V = (V1, · · · , VM)t, where Vk are N ×N matrices. Define the sum
over Vk as

|V | =

N∑

k=1

Vk. (3.67)

If M = [Mij ] is a M ×M matrix, then

|MV | =

M∑

i=1

M∑

j=1

MijVj

Notably, (3.67) implies

|Vx̂;m1,m2,m3;α| =
2(m1−1)m2∑

k=1

A
(k)
x̂;m1,m2,m3;α

= Ax̂;m1,m2,m3;α.

As is typical, the set of all matrices with the same order can be partially ordered.

Definition 3.2.8. Let M = [Mij ] and N = [Nij ] be two M × M matrices; M ≥ N if
Mij ≥ Nij for all 1 ≤ i, j ≤M .

Notably, if Ax;2×2×2 ≥ A
′

x;2×2×2, then Ax̂;2×m2×m3 ≥ A
′

x̂;2×m2×m3
for all m2, m3 ≥ 2.

Therefore, h(Ax;2×2×2) ≥ h(A
′

x;2×2×2). Hence, the spatial entropy as a function of Ax;2×2×2

is monotonic with respect to the partial order ≥.

Definition 3.2.9. A P + 1 multiple index

AP ≡ (α1α2 · · ·αPαP+1) (3.68)

is called a periodic cycle if

αP+1 = α1, (3.69)

where 1 ≤ αi ≤ 22m2 and 1 ≤ i ≤ P + 1. It is called diagonal cycle if Eq. (3.69) holds
and

αi ∈ {2m2(s− 1) + s|1 ≤ s ≤ 2m2}

for each 1 ≤ i ≤ P + 1. For a diagonal cycle Eq. (3.68)

ᾱP = α1;α2; · · · ;αP

and

ᾱP
n = ᾱP ; ᾱP ; · · · ; ᾱP . (n-times)
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First, prove the following Lemma.

Lemma 3.2.10. Let m1 ≥ 2, m2 ≥ 2, P ≥ 1, AP be a diagonal cycle. Then, for any
m3 ≥ 1,

ρ(Am1

x̂;2×m2×(m3P+2)) (3.70)

≥ ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPαP+1
)m3Vx̂;m1,m2,2;α1 |).

Proof. Since AP is a periodic cycle, Theorem 3.2.6 implies

Vx̂;m1,m2,m3P+2;ᾱP
m3 ;α1 (3.71)

= (Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPαP+1
)m3Vx̂;m1,m2,2;α1 .

Furthermore, AP is diagonal and |Vx̂;m1,m2,m3P+2;ᾱP
m3 ;α1 | = Ax̂;m1,m2,m3P+2;ᾱP

m3 ;α1 lies in
the diagonal part of Eq. (3.66), with m3 + p = m3P + 2. Accordingly,

ρ(Am1
x̂;m1,m2,m3P+2) ≥ ρ(|Vx̂;m1,m2,m3P+2;ᾱP

m3 ;α1 |). (3.72)

Therefore, equation (3.70) follows from Eqs. (3.71) and (3.72). The proof is complete.

The following Lemma is useful in evaluating maximum eigenvalue of Eq. (3.70).

Lemma 3.2.11. For any m1 ≥ 2, m2 ≥ 2, 1 ≤ k ≤ 2(m1−1)m2 and α1 ∈ {(s−1)2m2+s|1 ≤
s ≤ 2m2}, if

tr(A
(k)
x̂;m1,m2,2;α1

) = 0,

then for all 1 ≤ ℓ ≤ 2(m1−1)m2 ,

(Sx̂;m3;m1m2;α1α2)kℓ = 0, (3.73)

for all α2 ∈ {(s−1)2m2+s|1 ≤ s ≤ 2m2}, such that the k-th rows of matrices Sx̂;m3;m1m2;α1α2

are zeros. For any diagonal cycle AP , let U = (u1u2 · · ·u2m2(m1−1)) be an eigenvector of
Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPα1. If uk 6= 0 for some 1 ≤ k ≤ 2(m1−1)m2,

then tr(A
(k)
x̂;m1,m2,2;α1

) > 0.

Proof. Since A
(k)
x̂;m1,m2,2;α1

can be expressed as Eq. (3.61). tr(A
(k)
x̂;m1,m2,2;α1

) = 0 if and only

if Eq. (3.73) holds for all 1 ≤ ℓ ≤ 2(m1−1)m2 . The second part of the Lemma 3.2.11 follows
easily from the first part. The proof is complete.

By Lemma 3.2.10 and Lemma 3.2.11, the lower bound of entropy can be determined
as follows.

Theorem 3.2.12. Let α1α2 · · ·αPα1 be a diagonal cycle. Then, for any m1 ≥ 2, m2 ≥ 2,

h(Ax;2×2×2) (3.74)

≥ lim
m2→∞

1

m1m2P
log ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPα1).
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Proof. First, by the methods used to prove Lemma 2.1.10, Lemma 2.1.11 and Theorem
2.1.12 in Sec. 2.1.2,

lim sup
m3→∞

1

m3
(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPα1)

m3Vx̂;m1,m2,2;α1 |))

= log ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αPα1) (3.75)

is obtained. The detailed proofs are omitted here for brevity. Now,

h(Ax;2×2×2) ≥ lim
m2→∞

1

m1m2P
lim sup
m3→∞

1

m3
(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·

Sx̂;m3;m1m2;αPα1)
m3Vx̂;m1,m2,2;α1 |))

is established. Indeed, from Eqs. (3.33) and (3.70),

h(Ax;2×2×2) = lim
m2m3→∞

1

(m3P + 2)m2
log ρ(Ax̂;2×m2×(m3P+2))

= lim
m2m3→∞

1

m1(m3P + 2)m2
log ρ(Am1

x̂;2×m2×(m3P+2))

≥ lim
m2→∞

1

m1m2P
lim sup
m3→∞

1

m3
(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·

Sx̂;m3;m1m2;αPα1)
m3Vx̂;m1,m2,2;α1 |)).

Applying Eq. (3.75) which completes the proof.

Remark 3.2.13. By the similar method, the following lower bounds of entropy can also
be estimated.

h(Ax;2×2×2)

≥ lim
m3→∞

1

m1m3P
log ρ(Sx;m2;m1m3;α1α2Sx;m2;m1m3;α2α3 · · ·Sx;m2;m1m3;αPα1).

h(Ax;2×2×2)

≥ lim
m1→∞

1

m1m2P
log ρ(Sŷ;m3;m1m2;α1α2Sŷ;m3;m1m2;α2α3 · · ·Sŷ;m3;m1m2;αPα1).

h(Ax;2×2×2)

≥ lim
m3→∞

1

m2m3P
log ρ(Sy;m1;m2m3;α1α2Sy;m1;m2m3;α2α3 · · ·Sx̂;m1;m2m3;αPα1).

h(Ax;2×2×2)

≥ lim
m1→∞

1

m1m3P
log ρ(Sẑ;m2;m1m3;α1α2Sẑ;m2;m1m3;α2α3 · · ·Sẑ;m2;m1m3;αPα1).

h(Ax;2×2×2)

≥ lim
m2→∞

1

m2m3P
log ρ(Sz;m1;m2m3;α1α2Sz;m1;m2m3;α2α3 · · ·Sz;m1;m2m3;αPα1).

Remark 3.2.14. The results in last three sections can be generated to p-symbols on
Z2ℓ×2ℓ×2ℓ such as in two dimensional case [4] and [5] and the details are omitted here
for brevity.
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3.3 Applications to 3DCNN

This section elucidates an interesting model in 3DCNN of the application of the method.
The method is elucidated by considering a0,0,0 = a, a1,0,0 = ax, a0,1,0 = ay and a0,0,1 = az,
which are nonzero; in other cases, aα,β,γ and bα,β,γ are zero. Then, the 3DCNN is of the
form as Eq. (1.41)

dui,j,k

dt
= −ui,j,k + w + af(ui,j,k) + axf(ui+1,j,k) + ayf(ui,j+1,k) + azf(ui,j,k+1).

The stationary solution to Eq. (1.41) satisfies

ui,j,k = w + avi,j,k + axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1,

for (i, j, k) ∈ Z3 as in Eq. (1.42).
Firstly, consider the mosaic solution u = (ui,j,k) to Eq. (1.42). If ui,j,k ≥ 1, i.e.,

vi,j,k = 1, then

(a− 1) + w + axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1 ≥ 0. (3.76)

If ui,j,k ≤ −1, i.e., vi,j,k = −1, then

(a− 1) − w − (axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1) ≥ 0. (3.77)

Equation (1.42) has five parameters w, a, ax, ay and az. Three procedures are adopted
to partition these parameters:

Procedure (I): The parameters ax, ay and az are initially expressed into three-
dimensional coordinates, to solve Eqs. (3.76) and (3.77), as in Fig. 3.

ax

ay

az

Figure 3: Primary partition of (ax, ay, az).

Clearly 23 octants (I)∼(VIII) exist in (ax, ay, az) three-dimensional coordinates.

Procedure (II): In each octant are 3! relations

(i) : |ax| > |ay| > |az|,
(ii) : |ax| > |az| > |ay|,
(iii) : |ay| > |ax| > |az|,
(iv) : |ay| > |az| > |ax|,
(v) : |az| > |ax| > |ay|,
(vi) : |az| > |ay| > |ax|.

(3.78)

Procedure (III): Each relations, denoted it by |a1| > |a2| > |a3|, two situations
apply

(1) |a1| > |a2| + |a3|
(2) |a1| < |a2| + |a3|. (3.79)
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However, in the (a, w)-planes, two sets of 23 straight lines are important. The first set is

ℓ+r : (a− 1) + w + axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1 = 0.

which is related to Eq. (3.76). The second set is

ℓ−r : (a− 1) − w − (axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1) = 0.

which is related to Eq. (3.77), where vi+1,j,k, vi,j+1,k, vi,j,k+1 ∈ {−1, 1} and 1 ≤ r ≤ 8.
When (ax, ay, az) lines in the open region (I)∼(VIII), (i)∼(vi) and (1)∼(2) as in Fig. 3,
Eqs. (3.78) and (3.79) are used to partition the (w, a− 1)-plane, as in Fig. 4.

w

a-1

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

[5,0]

[6,0]

[7,0]

[8,0]

[0,1]

[1,1]

[2,1]

[3,1]

[4,1]

[5,1]

[6,1]

[7,1]

[8,1]

[0,2]

[1,2]

[2,2]

[3,2]

[4,2]

[5,2]

[6,2]

[7,2]

[8,2]

[0,3]

[1,3]

[2,3]

[3,3]

[4,3]

[5,3]

[6,3]

[7,3]

[8,3]

[0,4]

[1,4]

[2,4]

[3,4]

[4,4]

[5,4]

[6,4]

[7,4]

[8,4]

[0,5]

[1,5]

[2,5]

[3,5]

[4,5]

[5,5]

[6,5]

[7,5]

[8,5]

[0,6]

[1,6]

[2,6]

[3,6]

[4,6]

[5,6]

[6,6]

[7,6]

[8,6]

[0,7]

[1,7]

[2,7]

[3,7]

[4,7]

[5,7]

[6,7]

[7,7]

[8,7]

[0,8]

[1,8]

[2,8]

[3,8]

[4,8]

[5,8]

[6,8]

[7,8]

[8,8]

ℓ+1

ℓ+2

ℓ+3

ℓ+4

ℓ+5

ℓ+6

ℓ+7

ℓ+8

ℓ−1

ℓ−2

ℓ−3

ℓ−4

ℓ−5

ℓ−6

ℓ−7

ℓ−8

c+1 c+2 c+3 c+4 c+5 c+6 c+7 c+8

Figure 4: Partition of (w, a− 1)-plane.

The symbols [m,n] in Fig. 4 have the following meanings. Consider, for example,
(ax, ay, az) lies in regions (VIII), (i) and (1) as in Fig. 3, Eq. (3.78) and Eq. (3.79).
This situation is expressed as (VIII)-(i)-(1), and considered ax < ay < az < 0 and
|ax| > |ay| + |az|. Denoted by

(vi+1,j,k, vi,j+1,k, vi,j,k+1) −(axvi+1,j,k + ayvi,j+1,k + azvi,j,k+1)
c+1 = c−8 (−1,−1,−1) ax + ay + az
c+2 = c−7 (−1,−1, 1) ax + ay − az
c+3 = c−6 (−1, 1,−1) ax − ay + az
c+4 = c−5 (−1, 1, 1) ax − ay − az
c+5 = c−4 (1,−1,−1) −ax + ay + az
c+6 = c−3 (1,−1, 1) −ax + ay − az
c+7 = c−2 (1, 1,−1) −ax − ay + az
c+8 = c−1 (1, 1, 1) −ax − ay − az

Table 1: The intersects of ℓ+i and ℓ−j .
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Then, c+8 > c+7 > c+6 > c+5 > 0 > c+4 > c+3 > c+2 > c+1 > are the intersects of ℓ+i and ℓ−j on
the w-axis displayed in Fig. 4.

With reference to the local patterns on cube-cells, +1 is represented by the symbol +
and −1 is represented by the symbol −. The 24 local patterns can be listed and ordered,
as in Fig. 5.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++++

+

++

−

−

−

−−

−

−

−

−

−

−

−

−

−−−−

−

−−

−

−

−

−

−

−

−

−

−

−

−

− 1© 2© 3© 4©

5© 6© 7© 8©

1©′ 2©′ 3©′ 4©′

5©′ 6©′
7©′ 8©′

Figure 5: Ordering of local patterns in partition (VIII)-(i)-(1).

Now, when (a−1, w) lies in region [m,n] in Fig. 4, the only admissible patterns are exactly
1©, 2©, · · · , m© and 1©′, 2©′, · · · , n©′. For instance, in region (VIII)-(i)-(1) and (w, a− 1) ∈
[4, 8] only 1©, 2©, 3©, 4© and 1©′, 2©′, 3©′, 4©′ 5©′, 6©′ 7©′, 8©′ can be produced. This fact is
equivalent to the holding of inequalities in Eqs. (3.76) and (3.77) if and only if vi,j,k,
vi+1,j,k, vi,j+1,k and vi,j,k+1 are of the form 1©, 2©, 3©, 4© and 1©′, 2©′, 3©′, 4©′ 5©′, 6©′ 7©′, 8©′.

Next, the transition matrix of local patterns in region (VIII)-(i)-(1)-[4,8] can be derived
as

Ax;2×2×2 = G⊗ E ⊗E ⊗E.

Then, according to Proposition 3.1.15, the admissible local patterns in Σ2×m2×m3 and its
corresponding transition matrices are

Ax;2×m2×2 = ⊗(G⊗E)m2−1 ⊗ (⊗E2),

Ax̂;2×m2×2 = (⊗Gm2−1) ⊗ (⊗Em2+1),

Ax̂;2×m2×m3 = ⊗((⊗Gm2−1) ⊗E)m3−1 ⊗ (⊗Em2),

as in Eqs. (3.36), (3.37) and (3.38).
Finally, the connecting operator is adopted to examine the complexity of the set of

mosaic patterns in 3DCNN. That is, the lower bound of spatial entropy in the region
(VIII)-(i)-(1)-[4,8] can be estimated.
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Proposition 3.3.1. Consider Ax;2×2×2 = G⊗ E ⊗ E ⊗ E, then

Sz;m1;m22;11 = Cz;m1;m22;11 = (⊗Gm2−1) ⊗ E,

ρ(Sz;m1;m22;11) = 2gm2−1

and

h(Ax;2×2×2) ≥
1

2
log g,

where g = 1+
√

5
2

is the golden-mean. Moreover, since

Ax̂;2×m2×m3 = ⊗((⊗Gm2−1) ⊗ E)m3−1 ⊗ (⊗Em2)

and

ρ(Ax̂;2×m2×m3) = 2m2+m3−1g(m2−1)(m3−1),

the spatial entropy can be exactly computed as

h(Ax;2×2×2) = log g

as in Proposition 3.1.15.

Proof. According to Eq. (3.37),

Ax̂;2×m2×2 = (⊗Gm2−1) ⊗ (⊗Em2+1)

is obtained. Evidently,

Ax̂;2×m2×2;1 = ⊗Em2

and

(A
(r)
x̂;2×m2×2)

(c)
;1 = (⊗Gm2−1) ⊗E.

By Remark 3.2.3, the connecting operator

Cz;m1;m22;11 = Ax̂;2×m2×2;1 ◦ (A
(r)
x̂;2×m2×2)

(c)
;1

= (⊗Gm2−1) ⊗E.

Therefore, based on Remark 3.2.13, the lower bound of spatial entropy is estimated as

h(Ax;2×2×2) ≥ lim
m2→∞

1
2m2

log ρ(Sz;m1;m22;11)

= lim
m2→∞

log 2gm2−1

2m2

= 1
2
log g.

Remark 3.3.2. For the general template A = (aα,β,γ) where aα,β,γ 6= 0, the basic set in
Σ3×3×3 must be extend to the basic set in Σ4×4×4. Then, the method described above can
be applied, as stated in Remark 3.2.14. The details are omitted here for brevity.
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