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Patterns Generation Problems in Two and
Three-dimensional Lattice Models

Student: Yin-Heng Lin Advisor: Dr. Song-Sun Lin

Department of Applied Mathematics
National Chiao Tung University

Abstract

This dissertation investigates,itwo" and three-dimensional patterns generation
problems. Both in two and three-dimensienal cases, an ordering matrix for the
set of all local patterns is estdblished o derive airecursive formula for the ordering
matrix for a larger finite lattice. For a given admissible set of local patterns, the
transition matrix is defined and the recursive formula of high order transition ma-
trix is presented. Then, the spatial entropy is obtained by computing the maximum
eigenvalues of a sequence of transition matrices.." The connecting operators are used
to verify the positivity of the spatial.entropy, which is important in determining the
complexity of the set of admissible global patterns. Moreover, trace operator can
be also introduced to give a good estimate of the upper bound of spatial entropy. In
three-dimensional case, applications to three-dimensional Cellular Neural Networks
is presented. The results are useful in studying a set of global stationary solutions
in various Lattice Dynamical Systems and Cellular Neural Networks.
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1 Introduction

Lattices are important in scientifically modelling underlying spatial structures. Inves-
tigations in this field have covered phase transition [14], [15], [39], [40], [41], [42], [43],
[50], [51], [52], [53], chemical reaction [9], [10], [27], biology [11], [12], [24], [25], [26], [36],
[37], [38] and image processing and pattern recognition [19], [20], [21], [22], [23], [28], [32],
[33]. In the field of lattice dynamical systems (LDS) and cellular neural networks (CNN),
the complexity of the set of all global patterns recently attracted substantial interest. In
particular, its spatial entropy has received considerable attention [1],[2], [3], [4], [5], [6],
(71, 18], [16], [17], [18], [31], [34],[35], [44], [45], [46], [47], [48], [49].

The one dimensional spatial entropy h can be found from an associated transition
matrix T. The spatial entropy h equals to log p(T), where p(T) is the maximum eigenvalue
of T.

In two-dimensional situations, higher transition matrices have been discovered in [35]
and developed systematically [4] by studying the patterns generation problem.

This study extends our previous work [4]. For simplicity, two symbols on 2 x 2 lattice
Zsyxo are considered. A transition matrix in the horizontal (or vertical) direction

aix Q2 a1z Qa4
A1 Q22 A23 Q24
AQ - y ( 1. 1)
agyp azz Aaz3 as4
aq1 Q42 Q43 Q44

which is linked to a set of admissibleilocal patterns on Zo - is considered, where a;; € {0,1}
for 1 <i,7 < 4. The associated vertical (or horizontal) transition matrix B is given by

biy " bia biz by
boi Thag bag' by
By = 1.2
s b B s (1-2)
bt hag a3 by
As and B, are connected to each other as follows.
bir bi2 | bar by
big big | baz by Az Agp
Ay = = ’ ’ , 1.3
2 bs1 b3z | ba1 b2 A2;3 A2;4 ( )
bsg b3y | baz by
and
a1l Qaiz | G21 A22
13 (14 | Q23 A24 Boq Bao
By = = ’ ’ . 1.4
? az1 Qa2 | @41 Q42 {32;3 B2;4} ( )
a33 (34 | @43 Q44

Notably if Ay represents the horizontal (or vertical) transition matrix then By repre-
sents the vertical (or horizontal) transition matrix. Results that hold for A, are also valid
for By. Therefore, for simplicity, only A, is presented herein.

The recursive formulae for n-th order transition matrices A,, defined on Zs, were

obtained [4] as follows



bi1Ana bidAn barAng banAno
bisAns biaAna bazAns bauAna

Ay = 15
i bs1Api b32Ane binAng baAno (1.5)
b33An;3 b34An;4 b43An;3 b44An;4
whenever y y
. n;1 n;2
An B |: An;3 An;4 :| 7 (16)
for n > 2, or equivalently,
_ balAn;l ba2An;2
An+1;a - |: ba?,An;?, ba4An;4 ) (17)

for o € {1,2,3,4}. The number of all admissible patterns defined on Z,,,, which can be
generated from A, is now defined by

Con(Ag) = [A7 (1.8)
= the summation of all entries in 2" x 2" matrix A™!. '
The spatial entropy h(As) is defined as
1 1
h(Ay) = lim —logl,.(Ay) = lim — log |A™!|. (1.9)

m,n—oo TN m,n—oo MMN,

The existence of the limit (1.9) hasbeen showsirin [4], [18], [35]. When h(Ay) > 0, the
number of admissible patterns grows. exponentially.with the lattice size m x n. In this
situation, spatial chaos arises. When 'A(Ag)'= 0, pattern formation occurs.

To compute the double limit-in"(1.9), 7= 2 can-be fixed initially and m allowed to
tend to infinite [35] and [4]; then-the Petron-Frobenius theorem is applied;

1
lim P log |A7=ti="log p(A,,), (1.10)
which implies
1
h(Ag) = lim —log p(A,), (1.11)
n—oo M

where p(M) is the maximum eigenvalue of matrix M. A,, is a 2" x 2" matrix, so computing
p(A,,) is usually quite difficult when n is larger. Moreover, (1.11) does not produce any

1
error estimation in the estimated sequence —log p(A,,) and its limit h(Ay). This causes

a serious problem in computing the entropy. However, for a class of A,, the recursive
formulae for p(A,) can be discovered, along with a limiting equation to p* = exp(h(Ay)),
as in [4].

This study takes a different approach to resolve these difficulties. Previously, the
double limit (1.9) was initially examined by taking the m-limit firstly as in (1.10). Now,
for each fixed m > 2, the n-limit in (1.9) is studied. Therefore, the limit

1
lim — log |A™ ! (1.12)

n—oo M,
is considered. Write
(1.13)

AZ@ — |: Am,n;l Am,n;2 :| )

Am,n;3 Am,n;4

2



The investigation of (1.12) would be simpler if a recursive formula such as (1.7) could
be found for A,, ... The first task in this study is to solve this problem. For matrix
multiplication, the indices of A,.., a € {1,2,3,4} are conveniently expressed as

An'll An'12

A, = ; : ) 1.14
|i An;21 An;22 ( )

Then

om— 1

A i = ZAmW (1.15)

where
Agi)na = AN'jljzAn;JéJB T An;jmjm+1> (1'16)
k_1+22"” — 1), (1.17)

and

=201 — 1) + Jma1- (1.18)

A&,’i}n;a in (1.16) is called an elementary pattern of order (m,n), and is a fundamental
element in constructing A,, .. in (1.15). Notably the elementary patterns are in lexico-
graphic order, according to (1.17). As in [4], the following m-th order ordering matrix.

Xm n;1 Xm n;2
Ko = i S 1.19
CARTN (1.19)
is represented to record systematically these elementary patterns, where
Xiumia = (Agr]j,)n;a)igkgwnfl (1.20)

is a 2"~! column vector.
The first main result of this study is to introduce the connecting operator C,,, and to
use it to derive a recursive formula like (1.7) for Agi,)n;a. Indeed,

Cm;ll C’m;12 C’m;13 C'm;14
C1m;21 Cm;22 Cm;23 C1m;24

C, = 1.21
Cm;?)l Cm;32 Cm;33 C1m;34 ( )
C'm;41 C’m;42 C’m;43 C'm;44
[ Sm;ll Sm;12 Sm;21 Sm;22
— Sm;13 Sm;14 Sm;23 Sm;24 (1 22)

Sm;?)l Sm;32 Sm;41 Sm;42
_Sm;33 Sm;34 Sm;43 Sm;44

A m—2
C... = i1 Q32 o ® B2;1 32;2
it ;3 Qg Bo.s Bay
- 2x2/ 9gm—1yom—1 (123)
o E 2 2 a1 (2
m— m—
2 az; Q4 gm—1y9gm—1

3
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is a 27! x 27! matrix where Ej.; is the k x k full matrix; ® denotes the Kronecker
product, o denotes the Hadamard product and the product & which involves both the
Kronecker product and the Hadamard product, as stipulated by Definition 2.1.2.

In Theorem 2.1.4, C,,.;; is shown to be a;,i,Qigiy - * - Qirniysy, With 43 =7 and i1 = 7.
Therefore, all admissible paths of A, from ¢ to 5 with length m are arranged systematically
in matrix C,,.;;. Now, the recursive formula is

2m71 2m71
D (Sma )t A r Y (Sma2)iAb
k — _
Agn,)n—l—l;a = 2lm—}1 217;—11 ) (]- 24)
> Smsas) A s > (Smiat) AL
=1 =1

form>2 n>2 1<k<2™!'and 1 <a<4. (1.24) is the generalization of (1.7).
The recursive formula (1.24) immediately yields a lower bound on entropy. Indeed,
for any positive integer K and diagonal periodic cycle 815 - - - Bk Bk +1, where 3; € {1,4}

and Br1 = B,

1
h(A2) > W log p(Sm;ﬁlﬁQSm;ﬁQﬁs e Sm;ﬁKﬁKH)' (1’25)

Equation (1.25) implies h(As) > 0, if a diagonal periodic cycle of (513, - - - Bk 31 applies,
with a maximum eigenvalue of Sy,.5,3, - - Sm.s. s that greater than one. This method
powerfully yields the positivity of spatial éntrepy, which is hard in examining the com-
plexity of patterns generation problems.

However, the subadditivity ofsI',, ,.(As) is known:to imply

1
R(A;) € =—log T, o (A 1.26
(2)_mn0g nlAs) (1.26)
as in [18]. Consequently, (1.8), (1.10).and (1.26)dindicate an upper bound of entropy as
1
h(As) < —log p(Ay), (1.27)
for any n > 2.
However, the Perron-Frobenius theorem also implies
1
lim sup - log tr(A™™1) = log p(A,), (1.28)

where tr(M) denotes the trace of matrix M [29], [30]. Therefore, (1.28) implies

1
h(Ay) = lim sup — log tr(A71). (1.29)

m,n—oo 11T

In studying the double-limit of (1.29), for each fixed m > 2, the n-limit in (1.29)
1
lim sup — log tr(A™1) (1.30)
n—oo N

is first considered. (1.30) can be studied by introducing the following trace operator

Cm'll Cm'22
T,, = ’ 2| 1.31
|: Cm;33 C'm;44 :| ( )

4



Then, a recursive formula for tr(A") can be verified

tr Xom 2.1
tr(A™) = T2 : (1.32)
t’f’Xm72;4
!
for n > 2, where tr(X,n0) = (trAyrf,)n;a)tlngzm,l and |v| = Zvj for vector v =

j=1
(v1,- -+, u)". Consequently, (1.29) and (1.32) yield
1
h(As) = lim sup - log p(T),). (1.33)

Notably, for a large class of Ay, the limit sup in (1.28), (1.29), (1.30) and (1.33) can
be replaced by limit. See section 2.2 for details.

Now, (1.33) can be applied to find the upper bounds of entropy. For example, when
Ay is symmetric,

1
h(Az) < o log p(Tam), (1.34)

for any m > 1. Since
T, <B, (1.35)

can be shown for any n > 2. Generally, (1.33) and (1.34) yield better approximation than
(1.11) and (1.27).

Moreover, this dissertation develops @lgeneral method to investigate three-dimensional
pattern generation problems, extending other studies [4] and [5] to the three-dimensional
case. It focuses on ordering matrices of patferns and on the connecting operator in the
three-dimensional case. The trace operator has been-described elsewhere [8]. This work
is motivated by 3DCNN, so it ista major-tool to study global patterns in 3DCNN.

Three-dimensional pattern generation preblems are considered initially. Let S be a
finite set of p > 2 colors, where Z3 denotes the integer lattice of R3. Denote, U : Z* — S,
a global pattern by U(aq, ag, a3) = U asas-' Lhe set of all patterns with p colors in a
three-dimensional lattice is expressed as X3 = §%° = {U|U : Z° — S}. The set of all
local patterns on Z,,, xm,xms 15 denoted by

Zmlxmgxmg = {U|Zm1><m2><m3|U S Zg}

where Zi, xmyxms = {(01, 0, 3)] 1 < oy <my, 1 <i <3} is an my X mg X mg finite
rectangular lattice. For simplicity, two colors on the 2 x 2 x 2 lattice Zsyoxo are considered
here. Given a basic set B C Yoyox2, the spatial entropy can be defined as

B = lim 0L (B) (1.36)

mi,mz2,m3—00 mimeomms

where Iy, ximgxms (B) 18 the number of distinct patterns in X, xmy xms (B) and X, xmo xms (B)
is the set of all local patterns on Z,,, xm,xms, Which can be generated from B, as described
elsewhere [18]. Six different orderings

[ = [ = 2 - 3
yl 21 = 0] - 3
] B =[] - 2
[z = [ = B - 2
gl - 21 = B - [
2 Bo= 2 - [



are obtained and the ordering matrix Wy, oo for Yaoyaxo can be introduced according to
the different ordering [w]. Without loss of generality, Xoyox2 is considered
===, ===l sl =l J=si=_l==)=_ly =T -}

9-09-05-00-9
70907009
70905009
70909009

g @ (1.37)

g

A0 EHUGED ARE0 W0ED

EENCEEENEE
asaw
w
m

where

and the other cases are similar.

One of the main results is the construction of szmxms from Xoyox2, where X2xm2xm3
represents the ordering matrix of 3oy, xms according to [Z]-ordering. It can be addressed
in the following three steps.

Step I: Apply [z]-ordering to Z1xm,x2

214 | ... ]2k | .. [2m22m,

1] 3 | ... [2k1| ... |2m3[2my1

y

and introduce ordering matrix Xoy e for 3os.,, <o as in Theorem 3.1.1. By Theorem
3.1.8, the transition matrix A, .oxmixs can be obtained from

A95;2><mz x2 = (A:c;2><(m2—1)><2)22(m2tl)X22(7n2—j,1) o (E22(M2*2) & Agc;2><2><2)7

® is the tensor product and o isithe Hadamard prodiict, where E,. is the 2% x 2% matrix
with 1 as its entries, as in Eq. (3:29).2 00 [

Step II : Convert [z]-ordering into [:&]—orderihg on Zixmyx2 Using

mytl [mpt2| ... |mytk| ... |2m,

12 k|.. m

and introduce the ordering matrix Xy, x2 for Yoy m,x2 as in Theorem 3.1.4. The associ-
ated transition matrix Az.oxm,x2 is given by

__ ot
A:E;2><m2><2 - ]P)x;zxmzXQAx;2><m2><2]P)x;2><m2><2>

where P,.om,x2 1s the permutation matrix as in Theorem 3.1.10.

Step III : Define [Z]-ordering on Zj«m,xms a8

(m3-1)ma+1 | (ms-1)my+2 msmy-1 msm,
z
my+1 |myt2| ... 2mp-1| 2m,
1 2 mp- 1 m;




and introduce ordering matrix X, xms fOr Xaxm, xms as in Theorem 3.1.5. The recursive
formula for the transition matrix A;.oxm,xms can be obtained by

A§c;2><mz xXm3 (A:?:;2><m2 x (mz—1) )2m2(7n3*1) xgma(m3z—1)

O(E2m2(m372) ® A:?:;mez ><2)

as in Theorem 3.1.11
Theorem 3.1.13 enables the maximum eigenvalue A;:2 g, ms Of Az.2xmyxms to be com-
puted, to yield the spatial entropy,

l )\56 mao,m
h(B) — Lim M
m2,m3—00 moms

However, some estimates of lower bound of spatial entropy A(B) can be made using the
connecting operator. Then, for fixed my, my > 2, the ms-limit in Eq. (1.36) is studied:

1
lim — log |AS |. (1.38)

m3—o00 M T;2XmaXms

. my . . . . .
The recursive formula of AT, . in mg is considered. Accordingly, the next task is to

investigate Eq. (1.38). According to Egs. (3.46) and (3.47),

mi = [AA ] m m
T;2XmaXms Zyma,ma,m3;a |22 X2M2
omo(my—1)
= § : (k)
Ai;ml,mg,mg;a i A:?:;ml,mz,mg;oc
k=1
k . .
where A% is called an elementary pattérn of order (mq, ms, m3) and is a funda-

T3my,m2,ms3;o
mental element in constructing Azswians msia- Yain: me,ms 15 defined as

Vi;ﬂll,mz,m3 = [Vi;m17m27m3;a]’

(k)

_ t
‘/:c;ml,mg,mg;oc - ( i;ml,mg,m:;;a)

as in Eqgs. (3.48) and (3.49), which specifies systematically these elementary patterns. The
connecting operator Cg.my.mym, is introduced as in Definition 3.2.2, and used to derive a

: (k) ) .
recursive formula for Ai;ml,mz,(m3+l);a1;a2 and Ai;mhmz,mg;ocz as in Theorem 3.2.5
%;m17m27m3+1;a1;a2 = S'%;m3§m1m2;a1a2%§m17m27m3§a27

where Cs.pgimims = st The recursive formula Eq. (3.60) yields a lower bound on

Tym3zymimsa’
entropy

h(Azox2x2) (1.39)

Z lim 108; p(S:?:;m3;m1m2;a1a2 S:?:;mg;mlmg;aga3 e Si;m3;m1m2;apa1)
ma—oo MMy P

such as in Theorem 3.2.12 and which implies h(A;.2x2x2) > 0 if a diagonal periodic cycle
is applied with a limit in Eq. (1.39) that exceeds 0. This method powerfully yields

7



the positivity of spatial entropy, which is useful in evaluating the complexity of patterns
generation problems.

The method is very effective in elucidating the complexity of the set of mosaic patterns
in 3DCNN. A typical 3DCNN is of the form

duijk
—g = WigkTwt > Gapof Wiragiski) T D Dapalivagisii(1.40)
a8l <1 ol |8l <1

where (7,7, k) € Z3, f(u) is a piecewise-linear output function, defined by
1
v=flu)=5(lut+ 1] = Ju—1).

Here, A = (aqap,) is a feedback template, a spatial-invariant template; B = (b, 3,) is a
controlling template, and w is called a biased term or threshold. To elucidate the method,
consider nonzero apoo = @, @1,0,0 = Gs, G010 = Ay, Goo1 = A, and zero other a, 3., and
ba,p~- Therefore, Eq. (1.40) can be rewritten as

du,- i
d—Z’k = —Ujjr+ W+ af(ui,j,k) + axf(ui—i-l,j,k) + ayf(ui,j-i-l,k) + az.f(ui,j,k-i-l)' (1-41)

The quantities u; j represent the state of cell at (7,7, k). The stationary solution @ =
(@i ;x) of Eq. (1.41) satisfies

Ui jk = W+ QV; jk + Quligdlig ot Gy Vij+1k + Q50 k41, (1.42)

where v = f(u), which is very impgortant instudying 3SDCNNs: their outputs v = (v, 1) =
f(1u;,) are called patterns. A mosaic solution w satisfies |@; ;x| > 1 and its corresponding
pattern v is called a mosaic pattern here |Gk > 1 for all (i, j, k) € Z®. Among the sta-
tionary solutions, the mosaic solitions 'are stable and' are crucial to study the complexity
of Eq. (1.41). Equation (1.42) has five parameters w, a, a,, a, and a,. a, < a, < a, <0
and |a,| > |a,| + |a.| are considered to-elucidate application of our work. In particular,
region [4,8] in Fig. 4 in Sec. 3.3 is considered: the transition matrix can be written as

Appxoxo=GROEQRFEQE,

11 11
where G = 1 O} and F = 11|
Then, Steps (I), (II) and (III) yield the aforementioned admissible patterns in Xy, sms;
the corresponding transition matrix can be derived as in Proposition 3.1.15.

Step (I) =>As2xmyx2 = ®(G ® E)™7! @ (RE?),
Step (II) = A:?:;2><m2><2 = (®Gm2_l) ® (®Em2+1)7
Step (ITI) = Asoxmyxms = @((@G™ ) @ E)™ 7! @ (9E™).

The complexity of the 3DCNN model, as in Eq. (1.41), can be examined using the
connecting operator defined in Sec. 3.2. Since the connecting operator

mo—1
Cz;ml;m22;11 = Sz;ml;m22;11 = (®G 2 )® E7
the maximum eigenvalue can be exactly computed as

mo—1

p(SZ;m1;m22;11) =29
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, Where g = 1+_2\/5 is the golden-mean, as in Proposition 3.3.1. According to Eq. (1.39),
the lower bound of spatial entropy in the region (VIII)-(i)-(1)-[4,8] can be estimated

. 1 1
h(Azoxax2) > mlzlinoo 2y 1og p(Szimyima2i11) = 2 logg.
Moreover, in this case, spatial entropy can be solved exactly from the maximum eigenvalue
of Az:oxmyxmg. SiNce

g(mz—l)(mrl)’

_ 2m2+m3—1

p(Ai;2><mzxm3)

the spatial entropy is

. P AA;2
h(Ax;2><2><2) :mQIT}@gn%o ( :;n;:h;z:mB)

=logyg

as in Proposition 3.1.15.

In summary, in two-dimensional case, this study yields lower-bound estimates of en-
tropy like (1.25) by introducing connecting operators C,,, and upper-bound estimates of
entropy like (1.34) by introducing trace operators T,,. And in three-dimensional case,
an ordering matrix for the set of all local patterns is established to derive a recursive
formula for the ordering matrix for a larger finite lattice. For a given admissible set of
local patterns, the transition matrix is defined and the recursive formula of high order
transition matrix is presented. Then,the spatial entropy is obtained by computing the
maximum eigenvalues of a sequence: of transition matrices. This approach accurately and
effectively yields the spatial entrgpy.

The rest of this dissertation is arganized as follows. Section 2 derives the connecting
operator C,,, which can recursively reducehigher order elementary patterns to patterns of
lower order in two-dimensional lattice models:=Then, the lower-bound of spatial entropy
can be found by computing the maximum eigenvalues of the diagonal periodic cycles of
sequence Sp,..3. Moreover, the trace operator T,, of C,, is addressed. The entropy can
be calculated by computing the maximum eigenvalues of T,,. When A, is symmetric, the
upper-bounds of entropy are also found. Finally, briefly discusses the theory for many
symbols on larger lattices. In Section 3, in three-dimensional lattice models, a recursive
formula for the ordering matrix Xoym,x2 for Xoyxm,x2 can be derived from Xoyxoxo. The
ordering [z] is converted to [z]. Then, a similar recursive formula is constructed for
ordering matrix XQszxms from ngmxg. Then, the recursive formula for the associated
high order transition matrices Az.oxm,xms can be obtained from A;.9y242. Moreover, the
connecting operator Cs.,,.m,m, can be defined, which can recursively reduce elementary
patterns of high order to patterns of low order. Then, the lower-bound of spatial entropy
is determined by computing the maximum eigenvalues of the diagonal periodic cycles
of sequence Si.mgimimsias- Finally, an example of the application of our main results to
3DCNN is presented.



2 Two-dimensional Pattern Generation Problems

2.1 Connecting Operators
2.1.1 Connecting operators and ordering matrices

This section derives connecting operators and investigates their properties. For clarity,
two symbols on 2 x 2 lattice Zyyo are examined first. Section 2.3 addresses more general
situations. . -

Let Ay and By be defined as in (1.1)~(1.4). The column matrices Ay and By of A,
and By are defined by

aijp Qg1 | 12 G922 - -
lfgz _ | @ an |az as | _ { {12;1 {12;2 ] (2.1)
13 23 | A14 Q24 A2;3 A2;4
az3 43 | A34 Q44

and
bi1 bo1 | b1z ba ~ ~
= b3i bai | bsa  bao {32-1 B2-2}
B g == ~ ~ 22
27 | bz bog | bia b Baz Bay (22)
bsz baz | baa bus
, respectively.

For matrices of higher order n > 234, A, frand A, 1., are defined as in (1.5)~(1.7).
For matrix multiplication, the indicespofsAs:, are conveniently expressed as

An'll An'12
3 - i e 2.3
l: An;21 An;22 :| ( )
Clearly, A,.. = A,.j,j,, where
o = Oé(jl,jg) — 2(]1 — 1) +]2 (24)

For m > 2, the elementary pattern in the entries of A" is represented by

An;j1j2 An;jzj:; e An;jmjm+1v

where j; € {1,2}. A lexicographic order for multiple indices
Jm1 = (J1j2* JmIms1)

is introduced, using

X(mi) =14 2" (js = 1). (2.5)
s=2

Now,
AR o = Angiiin Ansings * * Anjmmsn (2.6)

where
a = a(ji, jmy1) =201 = 1) + jmt1 (2.7)

and

k= x(Jmt1) (2.8)
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is given in (2.5). Notably, (2.5) and (2.8) do not involve j,,+; but (2.7)does.
Therefore, A" can be expressed as

m o __ Am,n;l Am,n;2
An n |: Am,n;?) Am,n;4 :| 7 (29)

where
2m71

Ao = Y AW (2.10)
k=1
Furthermore,
X = (Agyli,)n;a)igkgmfl- (2.11)
1<k <omt X 18 a 2m=1 column-vector that consists of all elementary patterns in
Ao The ordering matrix X, ,, of A is now defined by

X o Xm,n;l Xm,n;2
m,n .
Xm,n;3 Xm,n;4

The ordering matrix X,,, allows the elementary patterns to be tracked during the
reduction from A]" , to A7'. This careful book-keeping provides a systematic way to
generate the admissible patterns and later, lower-bound estimates of spatial entropy.

The following simplest example is studied first to illustrate the above concept.

(2.12)

Example 2.1.1. For m = 2, the following can €asily be verified;

2
An;ll + An;lQAn;21 An;llAn;12 + An;l2An;22

A2 = , 2.13
" An;21An;11 n An;22An;21 An;21An;12 + Ai;22 ( )
and (1) (2)
A2,n;1 = Ai;ll? A2,n;1 “ An;l2An;21>
Agr)zﬂ = An;llAn;127 Ag?y)%Q = An;l2An;22a (2 14)
Agr)z;i% = An;21An;11= A;?r)z;?) = An;22An;217
Agy)w = An;21An;12a A;?r)z;él = Aiaz-
Therefore,
[ A2 [ A1 An g ]
X el = n;11 7 X o = n;1141n,12 :
2l L An;12An;21 ] 2,m:2 L An;l2An;22 )
(2.15)
[ An'21An'11 ] [ An'21An 12 ]
KXo = | i fmit | x, = | P2
23 L An;22An;21 ] 2mid L Ai;22
Applying (1.7), and by a straightforward computation,
A2
Xpirg = ntL 2.16
i [ Anir12An 1,21 ( )

5%1/13”1 + biobis A0 A s b11b12 A1 An2 + b12b14 Ay Ay ]
| bisb11ApsAna + bi1abis Ay 4 Ass bisbiaAn3An2 + 5%4/12“4

b2lb31Ai;1 + baobss A0 Ays ba1bso A1 Ao + baobsa Ay Ayy ]
i bagbs1 Ap.sAna + basbss AysAsis basbsa A3 Ao + 524534/13“4

11



Clearly, the jij» entries of Ai+1;11 and A,41.12A4,+1,01 In (2.16) consist of entries of
Xono in (2.14) with o = a1, j2) in (2.4). Moreover, the terms in (2.16) can be rearranged
in terms of X5 ,., by exchanging the second row in the first matrix with the first row in
the second matrix in (2.16) as follows.

bfl bi2b13 17 Ai;l [ biibiz  bi2bia An;lAn;2 ]
L b21b31 b22b33 1L An;2An;3 ] L b21b32 b22b34 1L An;2An;4 ]
(2.17)
bigbir  D1abi3 An;3An;1 bi3bio b%4 An;3An;2
L L bagbs1  baabss 1L An;4An;3 1 L basbza  baabsa 1L A%A i
Applying (1.1), (1.2) and (2.1), (2.17) can be rewritten as
[ [ CL%;l 12021 17 Ai;ll 11 11012 Q12022 17 An;llAn;12 17
| G13G31 Q14Q41 | | Api2An 1 [ G13@32 Q14G42 | | An12An22 ]
[ A21011 Q22G21 11 An;21An;11 1 1 21012 a%g 17 An;21An;12 ]
| | @23G31 G24G41 | | ApaAnn ] [ Q23@32 Q24G42 | | Ai;m
_ (32;11 o /:12;11)X2,n;1 (32;11 S /:12;12)X2,n;2 } (2 18)
(B2;12 © A2;11)X2,n;3 (32;12 o A2;12)X2,n;4
Therefore, after the entries of Xy ,41, as in (2.17) or (2.18) have been permuted,
Xont1,1 can be represented by a 2 x.2'matrix
% X 11 X 1.
Xont1:1 = P(Xoutia) = XZ,n-H,Ll Xz,n+1,1,2 ] ’ (2.19)
2,n+171;3 2,n+1;14
where
XQ,n—I—l;l;l = 52;11X2,n;17
X Hi0s—a95119X 9 1.
2,n-+1;1;2 52,12 2,n;2 (220)
X2,n+1;1;3 - S2;l3X2,n;3>
X2,n+1;1;4 = 52;14X2,n;4
and -
52;11 = B2;11 o {12;11 = 02;11,
52,12 2;11 © 412,12 C2,127 (2‘21)

52;13 = B2;12 o /}2;11 = 02;21,

52;14 = B2;12 o A2;12 = 02;22,

The above derivation indicates that X5 ,11., can be reduced to X33 via multiplica-
tion with connecting matrices Cs,o3. This procedure can be extended to introduce the

connecting operator C,, = [ Cy.0p |, for all m > 2.
Before C,, is introduced, three products of matrices are defined as follows.

Definition 2.1.2. For any two matrices M = (M;;) and N = (Ny,;), the Kronecker product

(tensor product) M@ N of Ml and N is defined by

For anyn > 1,
AN"=NN®- - -®N,
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n-times in N.
Next, for any two m x m matrices

P = (P;) and Q = (Qy))
where P;; and @Q);; are numbers or matrices, the Hadamard product P o Q is defined by
PoQ= (Pz‘j : Qij)u (2.23)

where the product P;;-Q;; of Pi; and Q;; may be a multiplication between numbers, between
numbers and matrices or between matrices whenever it is well-defined.
Finally, product @ is defined as follows. For any 4 x 4 matriz

my; Miyz MM21 Ma2

my3 Tyg M3 Mog My, My
M, = = ’ ’ 2.24
2 mg3y Mgz M4 Ma2 [ M2;3 M2;4 } ( )
mgzs T34 M43 Maa
and any 2 X 2 matrix
| NN,
N = [ N, N, } , (2.25)

where m;; are numbers and Ny, are numbers or matrices, for 1 < 4,5,k <4, define

muNy mip Ny Lanoi N1 mga Ny
3 N pmyaNg, msz N3 mgyNy
mzNy  mza Ny g Ny myoNo
m33 Ny miza Ny myzN3  myy Ny

Mo®N = (2.26)

Furthermore, for n > 1, the n + 1.th 'ovder of transition matriz of My is defined by
Mpt1 = QME = MHEM® - - - @M,

n-times in My. More precisely,

S M. AM"_l M. AMn—l
MnH:Mg@(@Mg—l):{ 210 (OMG™) My o (3M )}

Mag o (®M5™') Moy o (OM51)

mlan;l leMn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4 o Mn+1;1 Mn+1;2

- - 9
m31Mn;l m32Mn;2 ‘ m4an;1 m42Mn;2 Mn+1;3 Mn+1;4

(2.27)
m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4

where

M, = &Mj ' = { Mt Moo ] .

M,.s M.y

Here, the following convention is adopted,

®M8 == ngg.
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Definition 2.1.3. For m > 2, define

C1m;11 Cm;12 Cm;13 C1m;14 Sm;ll Sm;12 Sm;21 Sm;22

(Cm — C'm;21 Cm;22 Cm;23 C'm;24 — Sm;13 Sm;14 Sm;23 Sm;24 (228)
Cm;31 Cm;32 Cm;33 Cm;34 Sm;31 Sm;32 Sm;41 Sm;42 ’
C'm;41 C’m;42 C’m;43 C'm;44 Sm;33 Sm;34 Sm;43 Sm;44

where

m—2
. A1 Qa2 A B2;1 B2;2
e = <{ Qa3 Qa4 ] ° <® [ Bz By ] ) )
’ ’ 2x2/ gm—1ygm-1 (2.29)
ais Q23
o (E2m2><2mz X ({ Q35 aug }))27n1x2m1 .

Simalarly, for By, define

Um;ll Um;12 Um;13 Um;14 Wm;ll Wm;12 Wm;21 Wm;22

Um — Um;21 Um;22 Um;23 Um;24 — Wm;13 Wm;14 Wm;23 Wm;24 (230)
Um;31 Um;32 Um;33 Um;34 Wm;31 Wm;32 Wm;41 Wm;42 ’
Um;4l Um;42 Um;43 Um;44 Wm;33 Wm;34 Wm;43 Wm;44

where

Uiy = <{ bay  bas } o <® { Aga Agg }m_z) )
bag ba4 A2§3 A2;4 2x2/ 9gm—1yom—1 (231)
e
b3ﬁ b4,6 om—1yom—1

Sm = [Sm;ag] and Wm = [Wm;ag].
Now C,,4+1 can be found from C,, by atecursive formula, as in (1.7).
Theorem 2.1.4. For any m > 2 and 1 T a3 <X 4,
(0% C1m'1,6 (O C1777,'26
Critag = Lt 2 , 2.32
s |: aa3Cm;3ﬁ aa4CM;4ﬁ ( )

and b, U, be, U,
Unitias = | 00, ml8 Taz2mi26 } 2.33
hed [ basUm;?)ﬁ ba4 Um;4ﬁ ( )

Proof. By (2.27),

N PP By o (®BY2) Bago (B2
B™ 1 _ B B™ 2y 2;1 202 3 ; ~2 B .
& 2 2®(® 2 ) |: Bg;g o (®B;n 2) 32;4 o (®B72n 2)

Therefore,
Cm—l—l;a,@ = (B2;a o (®B§n_l)) o (Egmfl wom—1 & A2;ﬁ)

[ @a1(By1 0 @BY ) aaa(Bas 0 @B ) i
7 3 - 7 - - E m— m— A .

| @a3(Baz 0 @By’ %) Gg4(Bay 0 By ?) 0 (Egm-1xgm-1 @ Azp)

_ aal[(Bz;l o @B;n_?) o (Eszzxszz &® /;12;5)] aa2[(32;2 o (?]Bg;nﬂ) o (E2m7zx2m72 2 {12;5)

| @a3[(Bag 0 ©B5 ) 0 (Eym-2xgm-2 ®@ Azpg)]  @aa[(Bya 0 @B57?) 0 (Egm-2,9m-—2 ® Agg)]

aalcm;lﬁ aa2Cm;26
i aa3Cm;3ﬁ aa4Cm;46
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A similar result also holds for U,,..g; the details are omitted here. The proof is complete.
O

Notably, (2.32) implies C,,.;5 1S @i inQigiy -+ * iy With 43 = @ and 4,1 = 7. Cpyj
consist of all words(or paths) of length m starting from 7 and ending at j. Indeed, the
entries of C,, and B,,., are the same. However, the arrangements are different. C,, can
also be used to study the primitivity of A, n > 2, as in [6].

That the recursive formula (1.24) holds remains to be shown. Indeed, in (2.6) substi-
tuting n for n + 1 and using (1.7),

Am n+1a
= Ant1igo Anttijags At Ljmim
” (2.34)
o H bailAn;ll bai2An;12
bai3An;21 bai4An;22

where o; = (s, jir1), for 1 < i < m. After m matrix multiplications are executed in
(2.34),

k k
(k) _ Ain,)n—l—l;a;l Agn,)n—l—l;aﬂ
Apnita =1 & 5) (2.35)
Am,n+1;a;3 Am,n+1;a;4
where
om— 1
AN s = Z K(m;a, Bk, DAY, (2.36)

is a linear combination of A g With the coefficients K (m; a, B; k, 1) which are products
of by,j,1 <1< m. K(m;« ﬁ % , ) must be stidied i more details.

Note that
A e Am,n+1;1 Am,n+1;2 (2 37)
n+1.7 ‘A A .
m,n+1;3 m,n+1;4
r 2m71 om— 1 -
E : (k) § :
Am,n—i—l;l Am n+1;2
= 2m71 2m 1
E : (k) § :
Am,n+1;3 Am n+1;4
L k=1 .
2m 1 (k 2m 1 (k 2m71 (k‘) 2m 1 (k
L An;; n+1;1;1 L An;; n+1;1;2 ]g:l1 A?]z,)n-i-lﬂ;l L An]v; n+1;2;2
2m 2m 2m= 2m
_ k:ll Am n+1;1;3 k= 11 Am n+1;1;4 k=1 Am,n+1;2;3 k= 11 Am n+1;2;4
- om— (k) om 2m7 (k) om
k=1 Am n+1;3;1 k=1 Am n+1;3;2 k=1 Am,n+1;4;1 k=1 Am n+1;4;2
2m71 (k) om— 1 (k) 2m71 (k‘) om— 1 (k)
k=1 m,n+1;3;3 k=1 m,n+1;3;4 k=1 m,n+1;4;3 k=1 m,n+1;4;4
Now, X, n+1:0:8 is defined as
_ (A ¢
Xm,n-i—l;a;ﬁ - (Am,n—i-l;oc;ﬁ) : (238)

As in (2.17), the entries of X, ,,+1.o are rearranged into a new matrix

X _ X _ ,n+1;051 m,n+1;a;2
mn+l;a = P( m,n—l—l;a) = X . (239)
m,n+1;0;3 ;<m7n+l;a;4
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From (2.36) and (2.38),
Xm,n—i—l;oe;ﬁ = K(m7 Q, ﬁ)Xm,n;ﬁ (240)
where
K(m;a, 8) = (K(m;a, Bk, 1)), 1 <k, 1< 2™

is a 2™~ x 2™~ matrix. Now, K(m; a, 3) = Sp.ap must be shown as follows.

Theorem 2.1.5. For any m > 2 and n > 2, let Sy.ap be given as in (2.28) and (2.29).
Then,

K(m7 «, ﬂ) = Sm;a,@v
1.e.,
Xm,n—i—l;oe;ﬁ = Sm;aﬁXm,n;ﬁa (241)
or equivalently, the recursive formula (1.24) holds. That is,

gm—1 om—1
Z (Sm;Oll)klAs?l%),n;l Z (Sm;a2)klA£7?,n;2
A1(’rlj,)n+1;a = 2lm:}1 2{:,11 . (242)
Z (Sm;a3)klA£7?,n;3 Z (Sm;a4)klA£7?,n;4
=1 =1
Moreover, forn =1,
2m—1 2m~1
Z (Sm;al)kl Z (Sm;a2)kl
Agi,)&a = 2l;}1 2{:.11 (243)
Z (Sm;a?))kl Z (Sm;a4)kl
=1 =1

forany 1 <k < 2™ and a € {1,2,3,4}.

Proof. The result is proven by the induction on m.

When m = 2, and o = 1, (2.41) was proven as in Example 2.1.1. The case with
a = 2, 3 and 4 can also be proved analogously; the details are omitted.

Now, (2.41) ia assumed to hold for m; the goal is to show that it also holds for m + 1.
Since

Am—l—l — A AT — An-‘rl;l An+1;2 Am,n—i—l,l Am,n+1;2
1 — a4l 1= )
nt et An+1;3 An+1;4 Am,n+1,3 Am,n+1;4

(2.11) implies

X _ An-i—l;le,n—i-l;l X _ An+l;1Xm,n+1;2
m+1n+1;1 — A X ) m+1n+1;2 — A X )
L n+1;23m,n+1;3 | n+1;2Am,n+1;4
_ An+1;3Xm,n+1;l _ An+1;3Xm,n+l;2
X d X
m+lntl3 = | 4 X , an mtlntlid = | 4 X .
L n+1;43Am,n+1;3 | n+1;4Amn+1;4
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For @ = 1, by induction on m,

(An+1;1P(Xm,n+1;l)> An+1;2P(Xm,n+1;3))t

[ bllAn;l bl2An;2 ]
L b13An;3 bl4An;4 ]
[ b21An;l b22An;2 ]
| L b23An;3 b24An;4 ]

Sm;lle,n;l

L Sm;13Xm,n;3

Sm;31Xm,n;1
L Sm;33Xm,n;3

b11.Smi11 An1 X1 + 0129m:13An2 X n:3
| b13Smi11 An;3 Xmn:1 + 014aSm:13 404X 03

b215m;31An;1Xm,n;l + b22Sm;33An;2Xm,n;3
L b235m;31An;3Xm,n;l + b24Sm;33An;4Xm,n;3

Sm;12Xm,n;2

Sm; 14Xm,n;4 ]

Sm;32Xm,n;2
Sm;34Xm,n;4 ]

Hence X,,4+1,+1,1 can be represented by a matrix

Xm+1,n+1;1 = P(Xm+1,n+1;1)

bllsm;ll b12Sm;13

L b2ISm;31 b22Sm;33 1L
b13Sm;1l bl4Sm;13

L b23Sm;3l b24Sm;33 1L

Once again, (1.1), (1.2) and (2.1) can besed t6 recast the matrix X, 1 i1

allcm;ll CL12Cm;21 X
m~+1,n;1
i CL13Cm;31 CL14Cm;41 i
a'21Cm;11 a'22Cm;21 X
m~+1,n;3
L a'23Cm;31 a'24Cm;41 i

An;le,n;l
An;2Xm,n;3 5|

An;SXm,n;l
An;4Xm,n;3 o

b11Sm;12
I b21.Sm;32

bl3Sm;12

5 0335532

=

ClnCm;m
L a13Cm;32

21 Cm;12

L a230m;32

Xm—i—l,n-l—l;l,l Xm+1,n+1;l,2
Xm+1,n+l;1,3 Xm+1,n+1;l,4

b12Sm;14
b22Sm;34 11

bl4Sm;l4
b24 Sm;34 1L

a12Cm;22

a14Cm;42 i

022Cm;22

024Cm;42 i

According to Theorem 2.1.4, the above matrix becomes

Cm—l—l;lle—l—l,n;l Cm+1;12Xm+1,n;2
Cm+1;21Xm+1,n;3 Cm+1;22Xm+1,n;4

|

Sm—l—l;lle—l—l,n;l
Sm+1;13Xm+1,n;3

b11Sm12A4n1 Xmn2 + b125m:14An0 Xm na
b13Smi12An:3 X m 2 + 014Sm14Ana X nia |

b215m;32An;1Xm,n;2 + b22Sm;34An;2Xm,n;4
b23Sm;32An;3Xm,n;2 + b24Sm;34An;4Xm,n;4 ]

An;le,n;2
An;2Xm,n;4 ]

An;3Xm,n;2
An;4Xm,n;4 ]

Xm+1,n;2

Xm+1,n;4

Sm+1;12Xm+1,n;2 :|

Sm+1;14Xm+1,n;4

The cases with o = 2,3 and 4 can also be considered analogously (2.41) follows.
Next, (2.42) follows easily from (2.35), (2.36) and (2.41).
Equation (2.43) remains to be shown. If the 2 x 2 matrix

Al;l A1;2
A1;3 A1;4

|

11
11

} (2.44)

is introduced, then the previous argument also hold for n = 1. Hence, (2.43) holds. The

proof is complete.
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For any positive integer p > 2, applying Theorem 2.1.5 p times permits the elemen-

tary patterns of A7, to be expressed as the product of a sequence of S,.5,5,,, and the

elementary patterns in A". The elementary pattern in A", is first studied.

n-+p
For any p > 2 and 1 < ¢ < p— 1, define
A(k) A(k)
A% _ m,n-+p;e;01;62;+ 38431 m,n+p;o;81;82;+ 3852 (2.45)
m,n+p;a; 081382538 A(k) A k) : :
m,n+p;c;B1;62;++58¢;3 m,n+p;o; 0150825 30q54

Then

2m71 2m71 P
k Iy
A1(%,)n+p;a;51;ﬁ2;~~;ﬁp - Z T Z (H K(m; Bi-1, Bi; li—1, li))Ain}L;gp, (2-46)

L=1  l=1 i=1

where By = a and [y = k can be easily verified. Therefore, for any p > 1, a generalization
for (2.37) can be found for A™, as a 2PT! x 2P matrix

n—+p
ntp = [Amanrp;oc;BuBzm;ﬁp} (2.47)
where
gm—1
_ (k)
Am,n+p;a;ﬁ1;ﬁzm;ﬁp = Z Am,n;a;ﬁl;ﬁz~~~;ﬁp- (2_48)
k=1

In particular, if a; 31, B2+, 8, € {LAkithen Ay, nipiai6:6,--;6, lies on the diagonal of
AT in (2.47).

n—+p

Now, define )
k
Xm,”+p§a§ﬂl§,82§'”§ﬁp =P (Am,n—l—p;a;ﬁl;ﬁg;m;,Bp)t‘ (249)

Therefore, Theorem 2.1.5 can be_generalized to

Theorem 2.1.6. For any m > 2, n.> 2 and p. =1,

XonntpiasBiifa iy = OmiafiOmibiBe *** OmiBy—18pXm,nif, (2.50)
where a, f; € {1,2,3,4} and 1 < i < p.
Proof. From (2.46), (2.40) and (2.42),

2m71 2m71 P

(k) _ ) ) (tp)
At ooy = Z o Z (H K(m; Bi1, Bi; lizv, li))AmI:n;ﬁp
Li=1 =1 i=1
2m71 2m71 P

— Z e Z (H(Sm;ﬁi,l,@i)liflli)Ag{:zﬂﬁp

li=1 =1 i=1

2m71 2m71
_ (lp)
- c > (St iot (S )ints ++ (Smiy8)ty11y Anrncs,
=1 =1
2m71
(lp)
= Z (Sm;ﬁoﬁl SM;5152 T Sﬂl;ﬁpflﬁp)l()lpAmljn;ﬁp
I—
2m71
_ IS IS IS A(lp)
= (St Swspna Sy, Jkty Aprnis,
ly—
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is derived. By (2.49), then

_ (AR)
Xm,n+p;a;,@1;ﬁ2;--- iBp — (Am,n+p;a;,61;ﬁ2;--- ;ﬁp)t
2m—1
_ § : (p) ¢
- ( (Sm;ozﬁl Sm;mﬂz o .Sm;ﬂp—lﬂp)klpAmﬁn;ﬂp)
Ip=1

= Pm;af Sm;ﬁlﬂz e 'Sm;ﬁp—lﬂpXm,n;ﬂp'

The proof is complete.
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2.1.2 Lower bound of entropy

In this subsection, the connecting operator C,, is employed to estimate the lower bound
of entropy, and in particular, to verify the positivity of entropy.
First, recall some properties of I';,, ,, and spatial entropy.
'), satisfies the subadditivity in m and n:

Loitmom < Loy nDimams (2.51)
and
Fm,nl—i-ng S Fm,nlrm,nm (252)
or equivalently,
[T < JAT AT (2.53)
and
for positive integers m,n, my, ny, mo and ny. Here
11
we[1 ] 255
is applied.
The subadditivity property implies
. 1 1 .
lim supi=—+¢ log JATH < —=log |[AP™| (2.56)
m,n— Rt Dq

for any p and ¢ > 2. Therefore,

1
h(As) = lim ==log|A™|

mn—001Inn

exists, and equals

1
inf — log |AP7Y. 2.57
p}?ﬂpq og Ay | (257)

In particular, h(Ay) has an upper bound
1
h(Az) < p_q log \AZ_I\ (2.58)

for any p and ¢ > 2.
Similarly, when A, is horizontal (or vertical) transition matrix for any m > 1 and
q=2

1 1
limsup —log |A)'| < —log |A7']. (2.59)
n q

Hence, the spatial entropy is h,,(As) on an infinite lattice Z,,11x00 (0T Zooxm+1) and
hm(As) = 1i 11 |Am|—'f11 |AT| (2.60)
m(A2) = lim —log |AT| = inf - log |A7]. -

For the proof of the above results, see [18].

20



Furthermore, by Perron-Frobenius theorem,

1
lim - log |AT| = log p(A,,). (2.61)
Therefore, for any n > 2
1
h(As) < - log p(A,,). (2.62)

For a proof of (2.61), see [4], [35].
The following notation is adopted.

Definition 2.1.7. Let X = (X1, -+, Xu)!, where X;, are N x N matrices. Define the
summoation of X by

N
X =) X;. (2.63)
k=1

If Ml = [M;;] is a M x M matrix, then

M M
IMX| =) M;X;. (2.64)
=1 j=1
Note that, (2.63) implies
om—1
‘Xm7n§a| = Z Agr]i)n;a F— Am,n;a- (265)
k=1

As usual, the set of all matrices with the saine order-can be partially ordered.

Definition 2.1.8. Let M = [M;;] and N'=-[N,;] be two M x M matrices, M > N if
Mij Z Nij fO’f’ all 1 S Z,] S M.

Notably, if Ay > Al then A, > A/ for all n > 2. Therefore, h(As) > h(A}). Hence,
the spatial entropy as a function of A, is monotonic with respect to the partial order >.

Definition 2.1.9. A K + 1 multiple index

Bx = (8152 - BrBrc+1) (2.66)
is called a (periodic) cycle if
Bri1 = b (2.67)
It is called a diagonal cycle if (2.67) holds and
By e {1,4} (2.68)

foreach1 <k < K+1.
For a diagonal cycle (2.66), denote

Bi = B B+ s B (2.69)

and B o B
Br = Br; Brs - -+ 5 Br. (n times) (2.70)
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First, prove the following Lemma.

Lemma 2.1.10. Let m > 2, K > 1, Bg be a diagonal cycle. Then, for anyn > 1,
p(Aan+2) 2 p(‘(Sm;[ﬂﬁQ Sm;ﬁzﬁs T Sm;5K5K+1)nXm,2;51 |) (2’71)

Proof. Since By is a periodic cycle, Theorem 2.1.6 implies

Xm,nK-l-?;ﬁ_}é = (Sm;51525771;ﬁ253 e 'Sm;ﬁKﬁKﬂ)nXm,?;ﬁr (2'72)

Furthermore By is diagonal, and X, k42,50

= Aok 12,87 lies on the diagonal part as
in (2.47) with n 4+ p = nK + 2, therefore

P(ATk42) = p(|Xm,nK+2;B_}L< )- (2.73)

Therefore, (2.71) follows from (2.72) and (2.73).
The proof is complete. O

The following lemma is valuable in studying maximum eigenvalue of
(Sm;ﬁ1ﬁ2 T Sm;ﬁKﬁK+1)nXm,2;ﬁ1 in (2.71).

Lemma 2.1.11. For anym > 2, 1 <k <2™1 and a € {1,4}, if
tr(AY, ) =0, (2.74)
then for all 1 <1< 2m1,
(Sm,a1)r =0 and (Smiaa)w = 0, (2.75)

i.e., the k-th rows of matrices Sy,.g1°and Sy,.qq e zeros. Furthermore, for any diagonal
cycle Bi, let U = (uq, us, - - - , ugm=1) [be lan eigenvector of
Sy B2 Smifaps * Smiprprs of Uk Z Oyfor some < k < 2™ then

(A% > o) (2.76)

M, 2500

Proof. Since A%, can be expresséd as in (2.43). Therefore, tr(A(k) ) = 0 if and only if

m,2;a m,2;a
(2.75) holds for all 1 <1 < 2m=1The second part of the lemma follows easily from the
first part.

The proof is complete. O

By Lemma 2.1.10 and Lemma 2.1.11, the lower bound of entropy can be obtained as
follows.

Theorem 2.1.12. Let 5105 Bk [1 be a diagonal cycle. Then for any m > 2,

h(Az) > %bg P(Smips 82 Smipas * * * Smifacr)- (2.77)
and ]
"(A2) 2 —-108 p(Wini, 5. Winisgoga =+ Wi ). (2.78)
In particular, if a diagonal cycle 5102 - - - Bk B1 exists and m > 2 such that

p(SM;51525M;5253 T SM;5K51) > 1,

or
p(Wm;ﬁlﬁQWm;ﬁ253 T Wm;ﬁKﬁl) >1
then h(Ag) > 0.
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Proof. First, show that

1 . n
h’(A2) > W lim sup (log p(|(Sm;5152 Sm;ﬁQﬁS e Sm;ﬁKﬁl) Xm,2;51 |) (279)

n—oo

Indeed, from (1.11) and (2.71),
) = i

= lim —————log p(Al"
i 5 2 08P Ase)

log p(Ank+2)

> lim sup E(log P (Smipr82 * Smiprepr)" Xm2i:1))-

Now, the following remains to be shown

o .
lim sup ﬁ(log p(|(Sm;ﬁ1ﬁz T Sm;ﬁxﬁ1) Xm,2:61 |) = log p(Sm;ﬁlﬁz T Sm;ﬁxﬁ1)’ (2’80)

n—oo

Since X, 0.8, = (Afjj,’m)t, if tr(AﬁS?z;ﬁl) = 0 then Lemma 2.1.11 implies the k-th row
of S8, 1s zero which implies that the k-th row of (Sy.8,8, - - Smigrs )" 1s also zero for
any n > 1.

If tr(Ag?zﬁl) =0forall 1 <k <2™!' then S,.44 =0. (2.80) holds trivially.

Now, assume that 1 < k' < 2™ ! exists'such, that tr(AgfL:%;ﬁl) > 0. Define
X = (A;ﬁ:%,ﬂl)t a3 (Xb i 7XM)7 (281)

where tr(Agfg;ﬁl) >0 for 1 < k'S M <2758 Then p(X;) >0 for 1 < j < M.

Let M be the M x M sub-matrix-of Sp:s:s * - #Sm:s, from which the k-th row and

k-th column have been removed whenever tr(Af:?z; 51) =0for1<k<2m 1
Clearly, R
|(SM;5152 T SM;5K51)nXm72;51| = |MHX|> (2'82)

and
P(Smipiga *** Smipresr) = p(M). (2.83)
The proof of (2.80) comprise three steps, according to

(i) M is primitive,
(ii) M is irreducible, and
(iii) M is reducible.

(i) M is primitive. Then by Perron-Frobenius Theorem the maximum eigenvalue p(M)
of M is unique with maximum modulus, i.e.

p(M) = A1 > [As], (2.84)
for all 2 < j < M, where )\; are eigenvalues of M. Moreover, a positive eigenvector

vi = (v1, 09, -+, vp)t is associated with Ay [29], [30]. Furthermore, Jordan canonical
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form theorem states that a non-singular matrix P = [P,;|y«am exists, such that the
real Jordan canonical form of M is

D VR | R 0

R Jo -0

M = PMP! = e . (2.85)
0 - or

where J,,, 2 < k < g are real Jordan blocks and the associated eigenvalue A; of
Jy, satisfies (2.84). Moreover, the positivity of eigenvector vy implies that P can be
chosen such that

M
d pi=1 (2.86)
=1

and
P >0 (2.87)
for all 1 < j7 < M. Therefore, by (2.86)
IM"X| = [PM"X| = |PM"P~'PX|
= |(PMP~1)"PX| = |[M"PX|
M

M
=MD P+ 0 X))
= =1

where
Tt (2.88)
for all 1 < j < M, by (2.84).
Hence, by (2.87) and (2.88),
1 A
lim - log p(IM"X|) = log A;. (2.89)

Combining with (2.82), (2.83) and (2.89), (2.80) follows.

M is irreducible.

If M is irreducible but imprimitive, then k > 2 exists, such that
A= [da| == > |

for all 5 > k. Then, by applying a permutation, M can be expressed as

0 Moy 0 --- 0
0 0 My --- 0
M= | & o | (2.90)
0 : 0 Mp_1x
| My O 0
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and,

My 0 0

. 0 My - 0
M= . T ], (2.91)

0 0 M,

where M; = M j 41 My jro- -+ M;_y; is primitive with the maximum eigenvalue A},
see [29], [30]. Hence, by the same argument as in (i)

1 N
lim —log p(|M"™* X]) = A7,
n—oo N,

(2.80) follows.
(iii) M is reducible.

In this case, by applying a permutation, M can be expressed as a block upper
triangular matrix:

M11 M12 Mlk
0 Mo -+ - M
M — 22 _ 0 (2.92)
0 0 - el ...
0 0 -+ 0 My

where M;; is either irreducible or zero. Furthermore,
b
a(M) = Jo(M,,),
j=1
where o(M) and o(M;;) are"the sets of eigenvalues of M and M;, respectively. In
particular, 1 < j < k exists, such that
p(My;) = p(M) = Ay (2.93)

[29], [30]. Therefore, applying (2.83), (2.93) and the same argument as in (ii) yields
(2.80).

The proof is complete.

U
Definition 2.1.13. Let D denote the set of all diagonal cycle:
D= {102 BrBr+1|B1P2 - BrBi 1 satisfies (2.67) and (2.68)},
define )
h (A2> = sup —K log p(Sm;ﬁlﬁQ Sm;ﬁzﬁs T Sm;ﬁKﬁl)‘ (294)
m>2,6182-Br+1€D T
and ]
h; (A2) = sSup —— log p(WM;ﬁlﬁ2Wm;ﬁ2ﬁ3 T WM;5K51)' (2'95)

m>2, By-BreD MK
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Then Theorem 2.1.12 implies

Knowing whether the equality holds for A, is of interest, since h,(Ay) and h.(A,) are
more manageable than h(Ajy). However, a class of Ay has been found for what equality
(2.96) holds; details can be found in Example 2.1.14. of the next subsection.
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2.1.3 Examples of transition matrices with positive entropy

In this subsection, various examples are studied to elucidate the power of Theorem
2.1.12 in verifying that the entropies are positive. First, Golden-Mean type transition
matrices are studied.

Example 2.1.14. (A) Golden-Mean type

When two symbols on two-cell horizontal lattice Zs.; and vertical lattice Zo are
considered and both transition matrices are given by golden-mean type, i.e.,

11
H12V1:[1 O:|7

then the (horizontal) transition matrix As on Zsys is

1 110
1010
B2=11 100 (2.97)
0000
as in [46]. Verifying L
]Bg = AQ = BQ = Ag. (298)
is also easy. Furthermore, for any n.>.2,
A, B, A, 0
A Bl R EC, 0 C, O
Ant1 = { O B, B, 0 0|’ (2.99)
0O 0 0 0
where )
n Bn
with C,, = B,," and A, = A, i.e., A, are symmetric for all n > 2.
Moreover, the following two properties hold:
(i) For any m > 2,
Cm;ll = Am—la (2100)
where
A = { aiidir Q12021 } ’ (2.101)
13031 014041
and
(i) for any m > 2,
L log (B 1) < B(B) < - Tog p(A,) (2.102)
- g Am-1) > 2) > m 2 P(Ay, ). .
Therefore,
h(Ag) = hi(Ag) > 0. (2.103)

The numerical results appears in Example 2.2.12.

27



(B) Simplified Golden-Mean type.

Consider

A, =

—_ = =

11
00
00

o O O

: (2.104)
0000

(2.104) cannot be generated from one-dimensional transition matrices H; and Vi,
as in the Golden-Mean type (2.97). Equation (2.104) is obtained by letting a3 =
aszs = 0 in the Golden-Mean type (2.97). (2.98) is easily verified, and for any n > 2,

A, 0
A = A 00 (2.105)
LT AL, O 0 0 '

0 0 0 0

Furthermore, (i), (ii) and (2.103) hold as in (A).
(C) Generally, if A, satisfies the following three conditions
(C1) By = Ay,
(C2) ay; =1 if Ay #0for 1 < j <4,
(C3) g2;1 > Ay for 1 < j <4,

then (i), (ii) and (2.103) hold. The matrices Ay, which satisfy (C1), (C2) and (C3)
can be listed as

1L T (B
1 0 923 0
1296 By SN (2.106)
e Ol 0O
and
1 1 1 1
1 1 923 (24
| a1 am | (2.107)
1 ass as3 au
where a;; is either 0 or 1 in (2.106) and (2.107).
Notably, if (C2) and (C3) are replaced by
(CQ)’ Qg5 = 1if Ag;j % 0 for 1 S] < 4,
(C3) Agy > Ay for 1 < j <4,
then for any m > 2,
Cm;44 - Am—l (2108)
with
A = Q41014 Q42024 (2.109)
Q43034 Q44044

and property (ii) and equation (2.103) hold.
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In Example 2.1.14, the diagonal parts As, or Ay, are dominant. In this case, only
Cin:11 or Chpag 1s required to apply Theorem 2.1.12. In contrast, when Ay and Ay, are no
longer dominant as in the following examples, Ay and Ass can complement each other
to establish that the entropy is positive.

Example 2.1.15. (A) Consider

0110
1010
Ay, = 11001 (2.110)
0000
that (2.98) holds can be verified and
0 1 10
C2;11—l1 0}702;22—[1 0}
11 00
Therefore,
11
So;1452,41 = { 11 }
and "
h(As) > =log 2.
(B) Consider
0 .1 170
EeQ 401
Ay = 1 _ohp 1 (2.111)
11T 1 0
Then verifying
0110 0110 0110
1011 ~ 1 001 ~ 1101
Be=lpor 1| Bm1 10| ™A= 10
0110 1 110 01 10
is simple.
Furthermore,
01 10
Conr = 10| Copo = 0 1
10 0 1
Co33 = 011" Couq = 10
and
01 10
U2;11_ 1 0 ) U2;22_ 0 1 )
10 01
U2;33_ 1 1 ) U2;44_ 1 O



Now, for any diagonal cycle, By - - - Bk 81, p(S2.8.8, - - S2.8.8) = 1, h(Ay) > 0 cannot be
established.

However,

1 1
Wi WonaWam = Upi UspaUsizs = [ 10 }

which implies

h(Ag) > = log g,

=

where 1
g= 5(1+\/5) (2.112)

is the golden mean, which is a root of A2 — X\ — 1 = 0.
This example demonstrates the asymmetry of Ay and By in applying Theorem 2.1.12,
to verify the entropy is positive. Both C,, and U,,, are typically checked for completeness.

Example 2.1.16. Consider

1111
0001
Ay = 000 1 (2.113)
1 000
Then it is easy to check that
2 0 G 0
W2;11W2;14W2;41 — { B0 :| ) S3;44 = |i 0 0 :| 9
and
G 0.0 0
el O8G0
SEl g g0 |
00 0 0
where
11 10
G—{lo}andel—{oo}. (2.114)
Therefore,
h(Ay) > {11 211 1l } 1l
max{-log2,—logg,—1lo = —logg.
Example 2.1.17. Consider
0111
1000
Ay = 100 0 (2.115)
1000
Then
0110
1100 ~ ~
B2: 101 0 :AQaHdBQZAQ.
0000
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Therefore

0 11]_
02711—|:1 1]:G

Furthermore,
Cin=G®e0G

and
Coma = G’ ® (®(e1 ® G')™71)

can be proved, and which implies

1 1
3 log p(Comn1) = 3 log g. (2.116)
for all m > 1. Hence, h(Ay) > 1logg. Moreover, in Remark 2.2.10 (ii), it can be shown

that h(As) = 2logyg
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2.2 'Trace operators T,,

The preceding section introduces connecting operators C,,, which can be used to find
lower bounds of spatial entropy. This section studies the diagonal part of C,,, which can
be used to investigate the trace of A7'. When A, is symmetric, Ty, gives the upper bound
of spatial entropy.

The trace operator is defined first.

Definition 2.2.1. For m > 2, the m-~th order trace operator T,, of Ay is defined by

CYm'll C1m'22 Sm'll Sm'l4
T, = i 22| | O = 2.117
|: Cm;33 C'm;44 :| [ Sm;41 Sm;44 :| ( )

where C,.; is as given in (1.23) or (2.29).
Similarly, the m-th order trace operator T, of By is defined by

Ui U W11 Wi
m |i Um;33 Um;44 Wm;41 Wm;44 ( )

where Uy,.;; s as given in (2.31).
The relationships between the trace operator T,,, T;n and A,,, B,, are given as follows.

Theorem 2.2.2. For any m > 2,

i A @21 1 [ Q12 Q22
E m— m— E m— m—
222 A8y G4y 2 can 2 | @32 Q42 |
Tm = (Bm)gmxgm o N - ) ) (2119)
E2m—2 x2m—2 ® Z;i Ziz E2m—2><2m72 ® Z;i Zii
and
[ bll b21 ] [ b12 b22 ]
E2m72 xm—2 ® i b31 b41 | E2m72 xm—2 ® i b32 b42 ]
T;n = (Am)QmXQm e} ) . ) ) . (2120)
blg bgg b14 b24
E2m72 xm—2 ® i b33 b43 ] E2m72 xm—2 ® i b34 b44 ]
In particular,
T, <B,, and T,, < A,,. (2.121)
Proof. By (2.117) and (2.29),
E2m72 xom—2 ® Z;i Zii E2m72 xom—2 ® Z;z ij
T, = (Bm)wwm © ]
E2m72 x2m—2 ® Z;z Zzi E2m72 x2m—2 ® Z;i Zzi

A similar result also holds for T/ . Hence, (2.121) follows immediately.
The proof is complete. O
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Notably, the trace operator T,, (or T ) preserves all periodic words a;,;,@iyis * - -

(biyigbigis =+~ binipery) With 4, pq = 4y of length m systematically as B, (or A,,).
The traces of the elementary patterns are defined accordingly.

Definition 2.2.3. Form,n > 2 and 1 < a < 4, define
tk) = tr(A(k) ),

m,n;x m,n;o

tr(XmJl;Oé) = (tgi,)n;a)lﬁkﬁwnfl’
and
tm,n = (tT(Xm,n;l)v tT(Xm,nA))tv

which are 2% and 2™ vectors, respectively.

Note that

m m—1 k m—1 k
tr(An ) = tr(Zi:l Ain,)n;l + Zi:l AT(n,)nA)
= |tr(Xmmna)| + [tr(Xmna)|

[

First prove that T,, can reduce the traces of higher-order to lower-order.
Proposition 2.2.4. Form > 2 and n > 2,
tn+1 = Imtmn
Proof. By Theorem 2.1.5, it is easy to see
tr(Xpn+1:1) Gt (X, n1) + Cro2tr (X nia)

tr (Xm,n+1;4) C’m;33tr()(m,n;l) + Cm;44tr (Xm,n;4)

Then, (2.126) follows immediately.
The proof is complete.

Repeatedly applying Proposition 2.2.4 yields tlhe following result.
Theorem 2.2.5. Form > 2 andn > 1,

tr(As) = [T tm2]

= D |SmsmSmimss  Smipubein M Xm 28,00

Bre{1,4}
Proof.
tr(A7')
277L71 277171 277L71 277L71
= Z tT(Ag"f,)n;l;l) + Z tr(Agi,)nﬂA) + Z tT(Affb,)nA;l) + tT(AS;)nA;D
k=1 k=1 k=1

k=1
= |tr(Xm,n;1;1)| + |t7’(Xm7n;1;4)| + |tr(Xm,n;4;1)| + |t7’(Xm7n;4;4 |

ai7rlim+1

(2.122)
(2.123)

(2.124)

(2.125)

(2.126)

(2.127)
(2.128)

= [tr(Sma11 Xmmn—11)| + [tr(SmaaXmmn—1.4)| + [t7(Smar Xemn—1.1)| + [t7(Smaa Xmn—1.4)]

= |Tmtm,n—1 ‘ )

here Theorem 2.1.4 is used.
Reduction on n, yields
tr(A™) = | T %t 0|
Finally, (2.128) follows from (2.117) and (2.124).
The proof is complete.
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The following lemma is needed to show (1.33).

Lemma 2.2.6. Let V,, be a nonnegative eigenvector of T,, with respect to the maximum
eigenvalue p(T,,). If p(T,,) > 0, then

<Vm7tm,2> > 07
where { , ) denotes the standard inner product of C*".

Proof. Let V,, = (uy, - ,up,uy, -+ ,uy,) be a nonnegative eigenvector of T,,, where
M = 2m1 Since p(T,,) > 0, by Lemma 2.1.11, if ux > 0 (or uj > 0) then tr(Asn)2 1) >0
(or tr(A,(n)2 .1) > 0). The result follows by (2.124).

The proof is complete. O

Now, (1.33) can be proved.

Theorem 2.2.7. For any m > 2,

1
lim sup — log tr(A]") = log p(T,,), (2.129)
n—oo N
and 1
h(As) = lim sup - log p(T),). (2.130)

Furthermore, if A, are primitive for all p,>.2, then limsup in (2.129) and (2.130) can
be replaced by lim, i.e.,

lim Elogtr(Am) logp(T,,) (2.131)
and 4
h(As)i=. lim = log p(T,,). (2.132)
Proof. By Perron-Frobenius theorem, for all n > 2, we have
1
lim sup p logtr(A)") = log p(A,,). (2.133)

Therefore, by (2.133) and Theorem 2.2.5, we have
.1 1 1
h(Ay) = lim —log p(A,) = limsup — log tr(A}") = lim sup — log | T}t 2|
n—oo 1 n,m—oo 1M n,m—oo 1M

By Lemma 2.2.6 and by argument used to prove Theorem 2.1.12,

lim sup — log|T tm.2| = log p(Ty,) (2.134)

n—~o0

can be shown, and (2.129) and (2.130) follow immediately.
When A,, are primitive for all n > 2, (2.131) and (2.132) follow.
The proof is complete. O

Now, the symmetry of A, is established to be able to be inherited by the higher order
matrices.
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Proposition 2.2.8. If A, is symmetric, then A, is also symmetric for each n > 3.

Proof. The proposition is proven by induction on n.

Let Ml = My M, be a square matrix and M;, 1 < i < 4, all be square matrices.
M; M,
Then, the transpose matrix M’ of M is
M," Mt
t_ 1 3
M = { o, ] .

Therefore, M is symmetric if and only if
Mlt = Ml, Mgt = M2 and M4t = M4.
In particular, A, is symmetric if and only if
A;;l = Ag;l, Ag;3 = AQ;Q and Ag;4 = A2;4. (2135)
Now, A, is assumed to be symmetric, such that
Since
An+1;a = [Az;a]2x2 o [

(2.135) and (2.136) imply

An;l An;2
An;S An;4 7

t _ t _ t _
A = Anvrn, AL = Apigrand Ay = A

Hence, A, is symmetric.
The proof is complete. O

Now, upper estimates of spatial.entropy-fi(As) are obtained when A, is symmetric.

Theorem 2.2.9. If A, is symmetric then-for-any m > 1,
1
h(Asg) < om log p(Tam). (2.137)

Proof. By Proposition 2.2.8, A?™ is symmetric for any m > 1. The symmetry of A*™
implies that all eigenvalues of A?™ are non-negative. Hence,

p(An)>™ = p(AZ™) < tr(A2™), (2.138)
On the other hand, the subadditivity of (2.58) implies

h(Ag) < ——————log |AZ™F|. 2.139
(89) € s log [437] (2.139)
Therefore, (2.138), (2.139) and (2.127) imply
1
h(Ay) < lim ——————log |A2™F| = i log p(A2™
(A2) < lim (12mk+1)n og [A™| fggo 5 10g p(A,")
< lim log tr(AX™) = lim —— log T4 *tom 2|
n—oo 2Mmmn n—o0 2mn
< %logp('lbm).
The proof is complete. O
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Notably, T,, (or T/ ,) yields a better estimate than B,, (or A,,) whenever

holds.

h(Ag) < —log p(T,,) (2.140)

1
m

Remark 2.2.10. (i) The problem in which A, are primitive for alln > 2 has already

(i)

been investigated [6]. In [6], various sufficient conditions have been found to ensure
that A,, are primitive for alln > 2. Notably, limit in (2.131) and (2.152), instead of
limsup in (2.129) and (2.130), causes A,, to have a unique mazimum eigenvalue with
a mazimum modulus. Therefore, A,, may be imprimitive but (2.131) and (2.152) still
hold. For example, Golden-Mean type and simplified Golden-Mean type in FExample
2.1.14 are imprimitive but (2.181) and (2.132) still hold. The remaining matrices
of these A,, are primitive if their rows and columns with zero entries are removed.

In general, limsup cannot be replaced by limit. For example, consider

01 11
1000
Aa=1100 0 (2.141)
1000
Further computation shows that
P:II‘Qm—i—l =0
and ) ; )
T. — | (®@G @e)iZyed e1 ® (@(G ®e)™ ™)
T e ® (S Rier )=y e1® (V(G ®e)™ ™)
) 0 1 10
for allm > 1, where G = [1 1} and e; = [0 0}.
Therefore, p(Tams1) = 0. Furthermore, it can be shown that
p(Tom) < g™+ g™t (2.142)

Combining (2.116) and (2.142), h(As) = $logg. Hence (2.130) holds only for
limsup. Unlike (2.62) this example demonstrates that (2.140) does not hold for any
n =2m+ 1. This phenomenon is a disadvantage in determining the upper estimate
of entropy associated with replacing A, with T,,.

Example 2.2.11. Consider

Ay =

O O =
OO O =
OO O =
O = =

which was studied as in Example 2.16. Now, A, is asymmetric. Furthermore,

tr(Ai) =3
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can be obtained for all n > 2. Hence, (2.138) and then (2.137) fail when m = 1. However,

G 0 00
10 e 00
Css=1 09 o 00|
0 0 0O
11 10 Jo0 0 \
where G = [1 0},61 = {O 0} and 0 = [0 0]. Hence tr(A}) grows at least

exponentially with exponent p(G) = g, the golden-mean.
Whether (2.137) holds for some m > 2 is of interest.

Example 2.2.12. Consider the Golden-Mean type

Ag

O ==
o, O
S O ==
o O OO

which was studied as in Example 2.1.14. A, is symmetric, so the numerical results can

be obtained as follows.

T

P(Ap_1)™

T

P

T

p(Am)E

[
= © 00 o otk w3

— = =
U W N =

—_
D

1.3415037626
1.3804413572
1.4041128626
1.4201397131
1.4316975290
1.4404277508
1.4472546963
1.4527395436
1.4572426033
1.4610058138
1.4641976583
1.4669390746
1.4693191202
1.4714048275
1.4732476160

1.5537739746
1.4892228485
1.5069022259
1.5017251916
1.5035148094
1.5028716910
1:5031163748
1.5030208210
1.5030591603
1.5030435026
1.5030500001
1.5030472703
1.5030484295
1.5030479329
1.5030481473

1.5537739740
1.5370592754
1.5284545258
1.5233415461
1.5199401525
1.5175154443
1.5156994341
1.5142884861
1.5131606734
1.5122385423
1.5114705290
1.5108209763
1.5102644390
1.5097822725
1.5093605030

Notably, both p(Ay)= and p(Tay)2n are monotonically decreasing in m. In contrast,
1 1 . . . . 1 .
p(A,,—1)m and p(Ty,41)2»F1 are monotonically increasing in m, that p(Ts,,)z= gives
1
better upper bound than p(A,,)m. That p(Taps1)71 are lower bounds is conjectured.
If they were, then p(’]I‘m)% would yield a very sharp estimates.
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2.3 DMore symbols on larger lattice

As mentioned in the introduction, many physical and engineering problems involve
many (more than two) symbols and larger k x k lattices, where k > 3. Therefore, the
results found in the previous sections must be extended to any finite number of symbols
p > 2 on any finite square lattice Zg;xo, 1>1, Where

o] — k if kis even
] 2k—2 if kisodd

. The results are only outlined here, and the details are left to the readers. Proofs of

theorems are omitted for brevity.
For fixed p > 2 and [ > 1, denote by
12

qg=7p". (2.143)

The horizontal and vertical transition matrices are given by

a1 Gr2 0 G142
a a A a 2
A = | T " (2.144)
Qg2 Qg2o - Qg2 42
and
bi1 bz v, by g2
b b 5 D
B, -3 N (2.145)
bq2’1 bq272 o e bq27q2
respectively.
Now, Ay and B, are related to each other by
A2;l A2;2 . A2;q
As. As. cee A
A2 _ 2,‘q+1 2,.q+2 2.,2q (2'146)
A2;¢1(q—1)+1 T ce Az;qz
where
ba71 ba,2 e ba,q
ba ba . ba
Az = o . ay (2.147)
ba,fI(q—l)-H ba,q(q—1)+2 s bqu
and
BQ;I 32;2 e B2;q
Bs. Bs. .o B
]B2 _ 2,'q+1 2,.q+2 2'72[1 (2148)
B2;q(q—1)+l T te BQ;q2
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where

Qa1 Q2 e Qe q
aa,q—i—l aa,q+2 e a'oc,2q

B2;a - . . . . s
aavq(q_l)—"_l aayq(q_1)+2 T a/a7q2

(2.149)

respectively, where 1 < av < ¢?. The column matrices 2&; and I/BE, A, and By are defined
as in (2.1) and (2.2). For higher order transition matrices A,, n > 3, are defined as

An;l An;2 e An;q

An;q+l An;q+2 o An;2q

Apga-0+1 Ang-1g+2 - Ang2

where
ba,lAn—l;l ba,2An—1;2 e ba,qAn—l;q
ba,q+1An—1;q+1 ba,q+2An—1;q+2 e ba,2qAn—1;2q
An;a = . . .

bavg(a-1) 114019111 Dagg-+24n-19(0-1+2  bag2Ang

Rewriting the indices of A,,., as follows, facilitates matrix multiplication.

An;ll An;12 s An;lq
An;21 An;22 i - An;2q
An;ql An;q2 ¥ - An;qq

Clearly, A,. = A,.j,j,, Where

a = a(ji, j2) = q(jr — 1) + jo.
For m > 2, the elementary pattern in the entries of A" is given by

An;jljzAn;jzjs o 'An;jmjm+17
where j, € {1,2,---,q}.
The lexicographic order for multiple indices

Jmir = (g2 JmIm+1)
is introduced by
X(Jmi) =1+ ¢" (i —1).

1=2
Specify "
A =A

m,n;a n§j1j2An§j2j3 e An;jmjm+1>
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where o = a1, jmr1) satisfies (2.153) and k& = x(J,41) is as given in (2.154). Based on
this arrangement, A" can be written as

Am,n;l Am,n;2 Tt Am,n;q

m Am,n;q—l—l Am,n;q+2 T Am,n;2q
An - . . . )

Amma-1+1 Amna@-r2 - Ammg?

where

m—1

Am,n;a = qz Agrli)n'a'
k=1 h

Moreover, X, n.a = (AP ), where 1 < k < ¢™ ! and Xommna 18 @ ¢™ 1-vector that
comprise all elementary patterns in A,, ... The ordering matrix X,,, of A" is now
defined as

Xm,n;l Xm,n;2 e Xm,n;q
Xm,n;q—l—l Xm,n;q+2 e Xm,n;2q

Xm,n = . . . ’
Xmmiglg-D+1 Xmmigg-0D+2 **° Xmnig?

and X, »4+1,3 can be reduced to Xy .5 by multiplication with connecting matrices Ci,.q 3
The connecting operator C,, is defined as follows.

Definition 2.3.1. For m > 2, define

Cm;l,l C'm;1,2 B, - Cm;l,q2
C — Cm;2,1 Cm;2,2 M Cm;2,q2
Cm;q2,1 Cm;q2,2 Y Cm;rﬂq2
Sm;l,l T Sm;l,q Sm;q,l e Sm;q,q
Sm;l,q(q—l)Jrl e Sm;l,q2 Sm;qvq(q—l)Jrl e Sm;qu
Sm;q(q—1)+1,1 T Sm;Q(q—l)Jqu Sm;q271 T Sm;q27q
Sm;q(q—1)+1,q(q—1)+1 T Sm;q(q—l)Jrl,q2 Sm;qzvq(q—l)ﬂ T Sm;q27q2

(2.155)
where
Cm;oc,ﬁ = ((BQ;a)qu @) (®B72n_2)q><q)qul qu,1 O (Eqm72><qm72 ® AQ;Q)qulxqul. (2156)
Like Theorem 2.1.4, Cy,11,0,3 can be obtained in terms of Ciy,.5 g.

Theorem 2.3.2. For anym > 2 and 1 < o, 3 < ¢

a:1Cm;1, Aa:2Cmi2,8 v 0aiqCmigp
Uasq+1Cmiq11,8 Uasq+2Cmiq12,5 o 0;2¢C0mi2q,6
Cm—l—l;a,,@ = . . .
Uasq(q-1)+1Cmige-1)+1,8  Qasg(g-1)+2C0mig(a-1)42,8 ***  Aai2Cmig2
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Denote by

i (k)
Am,n—l—l;a;l
A(k) . Am,n+1;a;q+1
m,n+1l;ac — .
(k)
Am7n+1;a;q(q—l)+1

and X, itas = (A% ) where A
n+1050 m,n+1;0;8 m,n

Theorem 2.1.5 can be generalized to the following theorem.

(k)
Am,n+1;a;2
k

Am,n+1;a;q+2

(k)
m,n+1;a;q(q—1)+2

A(k)

m,n+1;a;q

Ak

m,n+1;a;2q

k)

m,n+1;a;q2

(@

t1.asp 15 @ linear combination of Ap iy

Now,

Theorem 2.3.3. For anym > 2 andn > 2, let Sy,.0.3 be as given in (2.155) and (2.156).

Then Xmnt1:0:8 = Smia,3Xm,nip-
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3 Three-dimensional Patterns Generation Problems

3.1 Ordering Matrices and Transition Matrices

This section describes three-dimensional patterns generation problems. Here, mq, ma,
ms > 2 are fixed and indices are omitted for brevity. Let S be a set of p colors, and
Zn, xmyxms be a fixed finite rectangular sublattice of Z3, where Z* denotes the integer
lattice on R3 and (mq, my, m3) a three-tuple of positive integers. Functions U : Z* —
S and Uy scmgxms © Limyxmaxms — O are called global patterns and local patterns on
Zin, xcmsy xms Tespectively. The set of all patterns U is denoted by 33 = 8% such that >3
is the set of all patterns with p different colors in a three-dimensional lattice. For clarity,
two symbols, § = {0, 1} are considered. Let x, y and z coordinate represent the 1st-, 2nd-
and 3rd-coordinates respectively as Fig. 1.

z

A

\
<

X

Figure 1: Three-dimensional coordinate system.

Six orderings |w| ordering are represented as Eq. (3.1)

2] (A=) - 3]

s

z| — =

2]« A7 - 2] (3.1)
9 : 2 = B8 = [1

[ B o= 2] = [

On a fixed finite lattice Z,, xmyxms, an ordering [w] : [i] > [j] > [k] is obtained on
Zi, cmy xms» Which is any one of the above orderings on Z,,, swm, xms

Yo(aq, ag, a3) = mymy(a; — 1) + my(o; — 1) + o,

where 1 < oy < my and 1 < ¢ < 3. The ordering [w] on Zy,, xmyxm; €an now be applied
t0 iy xmaxms- Indeed, for each U = (Uayanas’) € Sy xmgxms, define

VoU) = Yuimymams(U)

m; My my

_ Q00,0
= 1+ Z Z Z Uy apazWmi,mj,my

a;i=1a;=1a,=1

where

;0,0 o 2mimjmk—ww(al,a27a3)
mg,mg, My T

—  gmpmy(mi—ai)+my(m;—oy)+(me—ag)

1Use Ua;asas tO substitute a, ay,as for simplicity afterward.
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U is referred to herein as the 1, (U)-th element in ¥, «m,xms by ordering [w]. Identifying
the pictorial patterns using v, (U) is very effective in proving theorems since computations
can now be performed on 1),,(U). For instance, the orderings on Zsy 2 can be represented
as Fig. 2.

-l
n-9g- 0
-
o/
E
(1):[z]-ordering (4):[&]-ordering
:[y]-ordering yj]-ordering
(3):[z]-ordering (6):[2]-ordering

Figure 2: The orderings of Zoyoxo.

3.1.1 Ordering matrices

The cube Z,,,, xmyxms can be decomposed by m,-many (mo-many and ms-many) parallel
2-dimensional rectangles in Zj sy (Lrpsrsins ANd Zp, sm,x1). Any patterns U =
(Uayanas) € Limyxmaxms Can be decgomposed accordingly. For example, in [z]-ordering,
define the a;-th layer of rectangle as

Zoyimyxms = 11, ag, a3)|1 < ap <mp, 1 < ag < ma}.
Pattern U in «;-th layer is assigned the number
m2 m3
. 1,as,
o =1+ Z Z Uayonaz Ty f;fﬁfly (3.2)
az=1 az=1

where ) oo = 2memsmmsle—h=as - Ag denoted by the 1 X my X mg pattern

Uay1ms | Uai12ms e Uaymams
xlengg'ia =
e
Uay12 Uay22 ce Uayma2
Uay11 Uy 21 ce Ueymal

In particular, when my = 2 and m3 = 2, as denoted by T1x2x2;,, , where

o = 14 22011 + 2%Un 12 + 2Uay21 + Uay22 (3.3)
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and

x = | U112 | Uy 22
1x2x2;1 = 4y - )
1 o1 Uay 11 | Ua,21

where a; € {1,2}. A 2 x 2 x 2 pattern U = (Unyasas) can now be obtained from the
[z]-direct sum of two 1 x 2 x 2 patterns using [z]-ordering:

Tiyig
Tiy D x4y

T2x2x2:i140

where i,, as in Eq. (3.3) and a; € {1,2}. Therefore, the complete set of 2° patterns in
Yoxaxa 18 given by a 16 x 16 matrix Xoyoxs = [xilif] as its entries in
OGN OO OASE OreE

59605069
19803009
19505060,
10800090, %

- where

g (3.4)

000 EUEE @REA d0ED

EECYN=Y
Baaa
w
-

That | B,
is easily verified, and local patteriis in Yo, 0.9 @re thus counted by going through each
row successively in Eq. (3.4). Correspondingly, X,.94o can be referred to as an ordering

matrix for Xoy0x2. A 2 X 2 X 2 pattern can also be regarded as an [z]-direct sum of two
1 X 2 x 2 patterns using [Z]-ordering,

=>

Tosox2iniy = Tiyi, = i, DTG

where
by = 14 2° + 22 +2 + € {1,2}
loy = Uaq11 Ua;21 U112 Ua 22, 1 ) .

The ordering matrix Xy o2 can be represented as
OeOs IS8 0P SIE8

-0 2-0 3-0 30
4-0 @-0 -0 @0
3-0 2-0 53-02-0
-0 -0 &0 @R
LI

BREE ANEN ADED ANRD
28 %
CILAL L

EYEYEIED

|

2Use z4,4, to substitute z;, ;, for simplicity afterward.

where
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Now,

where

Ua(d3,) = 24 (1 — 1) + i

can be verified. Similarly, a 2 x 2 x 2 pattern can also be viewed as a [y]-direct ([y]-direct)
and [z]-direct ([Z]-direct) sum of 2 x 1 x 2 and 2 x 2 X 1 patterns:

Yj1je

Yjis

Zk1 ko
Pl ks

Y1 @ Yjas
yjl S yj'z’
Zktl @ Zk?27
fol ® foz’

Jon = 14 22U10y1 + 2%Utay2 + 2Uoay1 + Usas,
Jon = 14 22U10y1 + 2%Unay1 + 2Uiay2 + Usas2,

koy =1+ 23U11a3 + 22U12a3 + 2U9104 + U2204,

~

ka3 =1+ 23“11013 + 22“21&3 + 2u12a3 + U203

as € {1,2}, (3.5)
ay € {1,2},
as € {1,2},
as € {1,2}.

A 16 x 16 matrix Yoxoxo = [Yjija] OF Zoxoxa = [Zkik,] can also be obtained for Xoyoxo,

such that Yoyoxo =

9999

DIIé
=

4

Ao _

Ry Ry T Ry Ty Ty (i Sy iy
]
ki

or Zoxax2

 OEES DO OEOE

PEE!
B

=

¥

¥

[

DO

/-
B

¥

¥
=

LN
a

¥

%
S8

%
58]

=
7
==

B39G @290 G99 BReQ

%
58]

5
s/ [ £
=]

=
58]

)
B
B

where

mnaa

pER @
BEQw

s JBE BE

CIEE)

EICIE
GEGIE
LETIE)

The relationship between Wyyo,o must be studied, where W € {X|Y,Z, XY, Z}
Before the relations are explained, the column matrix and the row matrix are must be
given. Let A = [a;;] be a m? x m? matrix, the column matrix A© of A is defined as

A©)

p
A

A(C)

| “T(m—1

)ym+1

Ay
Ao
4

(m—1)m+2
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A1 A2¢ o Qe

A((NC) _ A(m+1)a A(m+2)a ot A@2m)a

A(m—1)m+Da  A(m—1)m+2)a  *°° Om2q

where 1 < a < m2.
The row matrix A" of A is defined as

Al AY) e AR
A(r) Ag) LA
A — mt +2 o el (3.6)
(r) (r) (r)
A(m 1)m+1 A(m Dm+2 147712
Qa1 Qa2 o Qam
Ao (m Qo(m o Go2m
A . (m+1) ' (m+2) (2m) 7 (3.7)
Ao((m—1)m+1)  Qa((m—1)m+2) *°° Gam?

where 1 < o < m?. Hence, based on some observations, Xsyax2 can be represented in
terms of y;,;, as

X2><2><2 = Yé?gxz' ! (38)

r () 9 r $ > (r
Furthermore, Yoy o490 = X2><2><27 Lyyoxa = X2x2x27 Xogoxo = szzxza Yoxoxo = Z2><2><2 and
Z = Y( ") can also be obtained:The-remainder of this subsection addresses the
2X2%2 2X2X2

construction of ngmzxm from Xoioyo 1n the following three steps, where ngmzxmg rep-
resents the ordering matrix of Yoy, xims @ceording to [z]-ordering generated from oy oyo.
Step I : Apply [z]-ordering to Zjxm,x2 using

2 4 .. | 2k e |2mp2| 2my
1| 3| ... |2k1| .. |2my3|2my1 (39)

y

and introduce ordering matrix Xoym,x2 for Xoxm, x2-

Step II : Convert [z]-ordering into [Z]-ordering on Zjy,m,,x2 by

mytl|myt2| ., |mytk| ... |2m,

‘ 12| k.. |m (3.10)

and introduce ordering matrix Xy, x2 for Yoy, x2.
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Step III : Define [z]-ordering on Zjym,xms DY

(msDma+1| (meDmo+2) - imamy-1| m3my
z
m2+1 m2+2 21’1’12-1 21'1'12
1 2 mz-l m,

and introduce ordering matrix Xoym, xms f0T Loxims xms -
To introduce Xoym,x2, define

Yoxmax2ijijodmg =  Y2x2x2i152 DY2x2x2;52js D * - BY2x 25251y — 1 jimg
= Yi @yjz@"'@yjm2>

(3.11)

(3.12)

where 1 < j, < 2% and 1 < k < my. Herein, a wedge direct sum @& is applied to 2 x 2 x 2

patterns whenever they can be attached to each other.
Now, Xoxm,x2 can be obtained as follows.

Theorem 3.1.1. For any my > 2, Youmyx2 = {Yjrja...imy » Where Yj j, _j,.. is given in Eq.
(3.12). Furthermore, the ordering matriz Xowmyxa = ([Yjija..gm,) Which is a 22™2 x 2%™2

matrix can be decomposed into following matrices
Xoxmote = [Xoxmox2:i)22 x 22
where 1 < j; < 2%, For fized ji, j2, ven s di € 304 2,5 0524}
Xoxmax2ij1joie T AP IR X2 1 ik s 1 )22 22
where 1 < jry1 < 2% and k € {1,2)+5:.my — 2} For fived ji, jo,*+ , Jms—1,
Xoxmax2ijigagmg—1 = [Y2xmax2ij1da.-jmg—15mp |22 %22
WHETe Yosmyx2:jija...jm, 15 defined as in Eq. (5.12).

Proof. From Eq. (3.5), Uayasas can be solved in terms of j,,, yielding

jocg - 1
Ulasl [ 93 I,
i — 1 — 231
. Jas lagl
Ulagz = | 92 I,
. 3 2
 Jas — L= 2%U10,1 — 2%U10y2
U201 = [ 9 ]7
= o, —1—23 — 22 -2
U052 = Jao Uianl Uian2 U091 5

where [ ] is the Gauss symbol. Equations (3.13)-(3.16), yield the following table.

Jep |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
U1 |0 00O OO O0OO0OO0OT1 1T 1 1T 1 1 1 1
a2 |00 00O 1 1 1 10 0 0 0 1 1 1 1
U1 |00 110 01 1 0 0 1 1 0 0 1 1
U2 |0 1 01 01 01 0 1 0 1 0 1 0 1
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For any my > 2, we have

m2
gt = 1 Y (22027020 Ty g 920m2me2)yy ),

as=1

m2
'émg;2 =1 + Z (22(m2—a2)+1u2a21 + 22(m2—a2)u2a22).

as=1
From the above formulae,
Iy +1;1 = 22(im2;1 - 1) + 2“1(m2+1)1 + Ui (mg+1)2 + L,
bmat12 = 22 (imgs2 — 1) + 2Un(my41)1 + Un(mat1)2 + L.

Now, by induction on my the theorem follows from the last two formulae and the above
table. The proof is complete. O

Remark 3.1.2. By the same method, the following relations can be derived. The details
of the proof are omitted here for brevity.

X2><2><mg 22X2><m3;klk‘z...k‘m371k)m3]22m3 x 22m3

Yimixoxe = [Ty X2X 23142 . dmy —19m,; Jozmi s 92my

Zml x2x2 =X

22x2Xm3;klkg...kmg,lkmg]z%"s x22m3
o 2.A' 3 z s ]22m1 % 922mq
M XX 250122 25tmy =1tmq

[
[
Y2><2><mg = [
[
[

Z2><m2 X2 y2><m2X2;3152...3m2_13m2]22m2 x 22m2

Next, [z]-ordering is convertedinto-fz]-ordering for Z ., 2. Since Zjxm,x2 = {(1, as, a3) :
1 <ag <mgy, 1 < az <2}, the position (as, ag)ds‘the a-th in Eq. (3.9), where

a=2ay—1)+ a;z. (3.17)
In Eq. (3.10), the position of (1, as, a3) is the a-th, where
& =ma(az — 1) + as.

The relation

or

and

1 < k < my is easily verified.
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Now, the ordering [Z] in Eq. (3.10) on Zjxm,x2 can be extended t0 Zjymyxms by Eq.
(3.11). For a fixed my, [Z]-ordering on Zjxm,xms 1S clearly one-dimensional; it grows in
the z-direction. Given ordering Eq. (3.11) on Zjymyxms, f0r U = (Uayasas) € Doaxmexms,
denoted by

mz Mg
ey = 1+ E E ualoQaS2m2(m3—as)+(m2—az)’

az=1 az=1

where a; =1, 2,
lpf(U> - 2m2m3(%1 - 1) + %2.

Now, let ; ; = U = (Uayaza3), yielding the new ordering matrix ngmQXQ = ["%2xm2x2;%1%2]
for ¥oymyx2. The relationship between Xoy, <2 and ngmz <2 1s established before X2xm2xm3
is constructed from ngwxg for mg > 3.

A conversion sequence of orderings can be obtained from Egs. (3.9)-(3.10). Where Py
represents the permutation of Ny, = {1,2,--+,2my} such that P(k + 1) = k, Pi(k) =
k + 1 and the other numbers are fixed. Py is also the permutation on Zjy,,x2 such that
it exchanges k and k+1 while keeping the other positions fixed, i.e.,

k+1][ -] r [ ][k

—

k|- : k1

Clearly, equation (3.9) can be converted into Eq. (3.10) in many ways using the
sequence of Pj. A systematic approach is proposed here.
Lemma 3.1.3. For my > 2, equation (3.9) €an be. converted into Eq. (3.10) using the

ma(mao—1)
2

(P2P4'"P2m2—2)(P3P5"'P2m2—3>"'
(Pk‘Pk‘-i-Q Tt P2m2—k) — (Pm2—1Pm2+1)Pm27

following sequences of permutations successtvely

(3.18)

Proof. When my = 2 and 3, verifying that Eq. (3.18) can convert Eq. (3.9) into Eq.
(3.10) is relatively simple.
When mgy > 4, and for any 2 < k < my, applying

(P2P4"'P2m2—2)(P3P5'"P2m2—3)"'(PkPk+2"'P2m2—k)

to Eq. (3.9), yields two intermediate cases:
(i) when 2 <k < [%2],

k+1| 43| - [3k—=1| - o s e ook, k1| oo |2ma— 1] 2mg

(3.19)
| 9 2 k+2 | k+4 k+20| --- coe pma-sbel o f2me—k-2fom, — k
)
where 0 < ¢ < my — 2k.
(ii) when [%] +1<k<my—1,
P EREEE TPEN T R EE MRS B s Pma =1 2m,
(3.20)
1 2 Eo1 k k4+2]| o Bmg—
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When k& = my in Eq. (3.20), equation (3.10) holds. Equation (3.19) and Eq. (3.20)
are established by mathematical induction on k. When k=2, verifying that Eq. (3.9) is
converted into

3 5 o Dmy — Bmy — 1 2m,

1 2 4 c Py — Dy — 4

by PoPy- - Pop, o is relatively easy such that Eq. (3.19) holds for k=2. Next, assume
that Eq. (3.19) holds for & < [%]. Then, by applying Piy1Piis- - Pom,—x—1 to Eq.
(3.19), equation (3.19) can be verified to hold for k£ + 1 when k41 < [%2] or becomes Eq.
(3.20) when k + 1 > [%2]. When k > [%2] + 1, Piy1Piy3- - Pomy—p—1 is applied to Eq.
(3.20). Equation (3.20) can also be confirmed to hold for k£ + 1. Finally, equation (3.10)
is concluded to hold for & = ms. The proof is thus complete. O

Based on Lemma 3.1.3, Xaxm,x2 can be converted into ngmxg as follows. Let

1000
P=1ol o0l (3.21)
0001
and for 2 < 7 < 2my — 2, as denoted by
Popmy.s =2hi-1 @ P @ Tgpuy -1,
where [} is the k x k identity matrix. Moreover, let
Pooxmox2 = (Pamyalormit === Pamyim, —2) (3.22)

.. (P2m2;k 1 E P2m2;2m2—k) R (P2m2;m2)’
2 < k < mgy. Then, the following theorem holds.
Theorem 3.1.4. For any my > 2,
X2Xmgx2 = PZ;QXm2X2X2><m2><2]P)m;2><m2><2- (3.23)

Proof. From Eq. (3.17), in Zjym,x2 the position (as, as) is the a-th in Eq. (3.9), where
a = 2(ay — 1) + az. Define

ga =1 + 2u1a2a3 + U205003 9

1</ly,<4and 1< a<2my. For U = (Unyasas) € Loxmyx2, irom Theorem 3.1.1 it can
be denoted by Yaxmyx2:j1ja...jm, a0d by Eq. (3.5) for fixed 1 < ap < my:

Jos = 14 2%Ui0p1 + 2%Uay2 + 2Usay1 + Uzay2,

where 1 < j,, < 16. Accordingly, y;,, can be represented by yr,,, ,s,,, and the relation
1s

Y Y2 Ys Ya Yir Y12 Y21 Y22
Ys Yo Yt Y8 _ | Y13 Y14 Y23 Y2
Yo Yo Y1 Y12 Y31 Y32 Ya1 Y42
Y13 Y4 Y15 Yie Y33 Y34 Y43 Yaa
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Therefore, from Eq. (3.12) patterns in ordering matrix Xox,,,x2 can be specified by

Yaxmox2ijijo-jmy = Yi D Yjp D D Yjpn,
Yerts D Yzt © -+ D Ytopy_1t0m,
= Yot lop,-

Forany 1 <k <2my — 1,

P 1 X0my x2 Pomayik

= Py ilVtsts. 111 2y | Pomoi

= [yelzz..zkﬂzk...zzmz]
is easily verified, such that Py, exchanges ¢; and (11 in Xoym, 2. Therefore, Eq. (3.23)
follows from Eq. (3.22) and Lemma 3.1.3. O

Now, according to Theorem 3.1.4,

X2><mz x2 = I:x2><m2 ><2;2122]7

1< %1, %2 < 2my. From some observations as Eq. (3.8), ngmzxg can be represented as
Zosmax2:ki ke, Where 1 < Ky, ko < 22™2 The [#]-expression

X2><m2><2 Z2><m2><2 (324)

for oym, x2 enables ngm2xm3 to be constructed for Xoxm,xms. Indeed, for fixed my > 2
and ms > 2, let

Loxmaxmainia — F2xmaXmaikikg.. kmg
= Zoxmax2ikika DE2x a2 kiaks D+ B22xma x2ikimy 1 kmg - (3.25)
Therefore, by a similar argument as was used to establish Theorem 3.1.1 the following

theorem holds for ngmzxm, the detailed-proofs are omitted for brevity.

Theorem 3.1.5. For fixred mo > 2:and for anyms > 2, the ordering matriz ngmzxmg
with respect to [T]-ordering can be expressed. as

X{f;Qsz Xms3 — [X2><m2 Xmg;k1]2m2 X2M2

where 1 < ky < 22™2. For fivred 1 < ky, ko, -+ -, k; < 2%2m2,

X2><m2><m3;k1k2mkl = [X2><m2Xmg;klkzmklkl+1]2m2 X 2m2

where 1 < kypq <222 and 1 <1 < ms3 — 2. For fized ki, ko, -+, kpmy_1,

X2><m2><m3;k1k2"'km371 = [Z2><m2><m3;k1k2...km3]7
WheTe Zasmyxmsikika..kmy 15 givEN by Eq. (8.25).

Remark 3.1.6. Similarly, according to other orderings, the following relations can be
derived

X2><m2 xms Y2xmaxms;jija.. ]m2]2m2m3 x2mams3

A

Ym1><2><m3 m1><2><m3,k‘1k2 ke ]2m1m3 X2m1m3

M2 x 2M1M2

Ymi xms X2;71]2...

[
k .
le X2xXm3 = — [Iml X2XM33i1%2.. zm1]2m1m3 x2m1m3
Loy xcma 2 [ 1y )2
& ]

Z7’”1 XmaX2 m1 ><m2><2;21%2 2M1m2 x2m1me .
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3.1.2 Transition matrices

Based on the definitions of the ordering matrices XQXm2><m3 for Yoy m,xms having been
defined, high order transition matrices Az.9xm,xm; can now be derived from A, .0x0x2. As
in the two-dimensional case [4], a basic set B C Yayox2 is assumed to give. Define the
transition matrix Ay.oxoxo = Agaxaxa(B) by

Ax;2><2><2 = [ax;2><2><2;i1i2]24><24a (3-26)
where

if T € B,

Ag:2x2x 20119 1
=0 otherwise.

(3.27)

Then, the transition matrix Ag.oxm,x2 is a 22m2 % 22m2 matrix with entries ax;mezxg;mf,
where

Ar2xmox2sivip  —  Qy;2xma x235152...ms

mo—1

= H Qy;2x 2% 23 kg1 * (3.28)
k=1

Before A.2xm,x2 is introduced, three products of the matrices are defined as follows.

Definition 3.1.7. For any two matrices Ml = (M;;) and N = (Ny,;), the Kronecker product
(tensor product) M @ N of M and Nyis defined by

M@ N = (14,;N).

For anyn > 1,
QN" =N@N®- -+ ® N,

n-times in N.
Next, for any two m x m matrices

P = (P;) and Q = (Qy))
where P;; and @Q;; are numbers or matrices, the Hadamard product P o Q is defined by
PoQ= (Pz‘j : Qij)a

where the product P;; - Qi; of P;j and Q;; may be a multiplication of numbers, of numbers
and matrices or of matrices whenever it is well-defined.
Finally, product @ is defined as follows. For any 4 x 4 matric

mi1 MMiz Ma1 Mg
| Mg MMaa Moz Moy o M2;1 M2;2
M, =
m31 M3z 141 Ty2 M2;3 M2;4
m3zz 134 M43 MMyq

and any 2 X 2 matrix

M N
=[5 )

3Use Az:2x2x 23111, tO substitute agz.ox2x2:i,,i, for simplicity afterward.
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where m;; are numbers and N, are numbers or matrices, for 1 < 1,3,k <4, define

mu N1 miaNy moi Ny mgaNo
mi3Ng  miaNg mozN3 mgsNy
mz1 N1 m3aNy mg Ny myaNy
m33N3 m3g Ny my3N3 mgygNy

M,®N =

Furthermore, for n > 1, the n + 1-th order of transition matriz of My is defined by
M, 41 = OMj = Mo@Mo® - - - @My,

n-times in My. More precisely,

A A M. AMn—l M. AMn_l
M, 41 = Mo® (M5 1) = [ 210 (M5 ™) 9.2 0 (®M57) }

Mgz o (8M5~1)  May o (&M51)

mlan;l m12Mn;2
m13Mn;3 ml4Mn;4
m31Mn;1 m32Mn;2
m33Mn;3 m34Mn;4

m21Mn;1 m22Mn;2
Moz Mz moaMny | { Myi1a Mpiio ]
m41Mn;1 m42Mn;2 Mn+1;3 Mn+1;4
m43Mn;3 m44Mn;4

where

M, = &M; ! = { M M2 } .

M5 M4
Here, the following convention is adopted,
M) = E,.
where where Eq 1s the 2 X 2 matriz. with-Ias=its entries.
Theorem 3.1.1, yields results for Azoxmexa @s T, in Theorem 3.1 in [4]. Indeed,

Theorem 3.1.8. Let A,.ox0x2 be a transition matriz that is given by Eq. (3.26) and Eq.
(3.27). Then, for high order transition matrices Ag.oxmyx2, Mo > 3, the following three
equivalent statements hold:

(1) Agoxmyxa can be decomposed into my successive 4 x 4 matrices

Ax;2><m2><2 - [A:c;2><m2 ><2;j1]4><4>

where 1 < 51 < 16. For fivzed 1 < jq, J2, ..., Ji < 16,

Al‘;2><7m X2i4152--Jk [A:L‘;2><m2 ><2§j1j2---jkjk+1]4><4’

where 1 < jry1 <16 and 1 < k <my — 1. For fized j1, 72, -, jmo—1 € {1,2,...,16},

Al‘;2><7m X2:152--Jmg—1 — [ay;QXTrm X2;j152--Jmq ]4><4’

WHETE Ay23my x2;1ja...gmy 15 defined in Eq. (3.28).
(1I) Starting from

Ax;2><2><2 = [Ax;2><2><2;j1]4><4
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and
A:v;2><2><2;j1 = [ay;2><2><2;j1j2]4><47
formg > 3, Agoxm,x2 can be obtained from Ag.ox(m,—1)x2 by replacing Agoxoxo:;, with

(Ax;2><2><2;j1)4><4 o (Ax;2><2><2)4><4~

(III) For mg > 3,

Agc;2><m2><2 = (Ax;2><(m2—l)><2)22(ﬂ12*1)><22(M2*1) o (EQZ(WZ*Z) ® A9c;2><2><2)7 (329)
where Eq. is the 28 x 2% matriz with 1 as its entries.

Proof. (I) The proof involves simply replacing Xosm,x2;j1jo..jr a0d Yoxmyx2ij1ja..jmy DY
Az2xmax2:j1jo..je a0d Qy:2x1ma X251 2.y in Theorem 3.1.1, respectively.

(IT) follows directly from (I).

(1) follows from (I); Apoxmyx2 = [Awaxmex2y)s 1 < j1 < 2% (1) yields the following
formula;

Aw;2><m2><2 = [ay;2><2><2;j1j2Ax;2><(m2—1)><2;j2]
= (Ax;2><(m2—1)><2)22(ﬂ12*1)><22(M2*1)®[E22(M2*2) X Aac;2><2><2]~
The proof is complete. 0
Remark 3.1.9. As stated in Remark 3.1.2, the following formulae apply

A:f:;2><2><m3 [az;2><2Xm3;k1k2...km3,1km3]227”3 x22m3
Ay;ml x2x2 = [ax;ml><2><2;i1i2...iml-1im1]22’”1 x 22m1
Ag};2><2><m3 = [a2;2><2>(m3;];;1];:2...I;:m?)flicm:s]227”3 x22m3
Az?m1><2><2 = [ai";ml x2x2;21%2...5m1,1%m1]22'”1 x 22m1
A2;2><mg X2 [ag;gxmz X251 52--Jmy—1Jmy ]22m2 x22m3 -

Now, the transition matrix Aj.oxm,x2, With respect to the ordering matrix szwxg
can be obtained. Additionally, by using Theorem 3.1.4 yields

Theorem 3.1.10.
_ ot
A§c;2><m2><2 — IP)93;2><m2><2Agc;2><m2><2IP)90;2><m2><2-

Proof. The proof involves simply replacing ¥2xm,x2:5: G2y by @y:2xmox2:1 G2y DL Theo-
rem 3.1.4. O

Theorem 3.1.5 yields transition matrix Az.oxmgxms from Az.oxm,x2. Equation (3.24)
yields the transition matrix

A§c;2><m2><2 = [A:f:;2><m2><2;k1] (330)
and
Afc;2><m2><2;k1 = [a'z;2><m2><2;k1k2]- (331)

Therefore,
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Theorem 3.1.11. Let Azoxm,x2 be a transition matriz given by Eq. (3.30) and Ejq.
(3.81). Then, for high order transition matrices Az.oxmyxms, M2 > 3, we have the follow-
ing three equivalent statements hold,

(I) Azoxmyxms can be decomposed into mg successive 2™ x 2™ matrices:

A:ic;2><m2 Xms3 — I:Af%;2><m2 Xmg;k1]2m2 X2M2

where 1 < ky < 222 For fived 1 < ky, ko, ..., ky <2272,

Ai;2><m2><m3;k1k2...kg = [Af;mezXmg;klkg...kekg+1]2m2 X2M2

where 1 < ko <222 and 1 < 0 < ms — 2,

Ai;QXmngg;klkz...km:;,l = [az;2><m2Xmg;klkg...km3]2m2 xX2M2
where 1 < ky,, < 2% and by Eq. (3.25)

m3—1

a'z;2><m2><m3;k1k2...km3 - H a’Z;2Xm2><2;k‘ek)[+1'
(=1

(II) For any ms > 3, Azoxmyxm, can be obtained from Azoxm,x(ms—1) by replacing
A:?:;2><m2><2;k1 with

(Ai;2><m2 x2:k1 )2m2 x2m2_ O (Ai;nmg xz)zw X 22

(I11) Furthermore, for ms > 3,

A:?:;2><777,2><mg = (AlﬁﬂxmzX(m3—1))2m2(m371)><2m2(m371) (3 32)
O(E2m2(m3—2) Y A:?:;2><m2 ><2)'

The proof closely resembles that of Theorem 3.1.1 and Theorem 3.1.8. Details of the
proof can be omitted since obvious and repeated.

Remark 3.1.12. As in Remark 3.1.6, the following formulae are obtained

Am;2><m2><m3 = [ay;2><m2Xmg;jljz...jm2]2m2m3 x2ma2m3
Ag};ml X2xms3 [a'ému><2><m3;k1k2...km3]2m1m3 X 2m1m3
Ay;ml X2xXm3 [am;ml ><2><m3;i1i2...im1]2mlm3 x2m1m3
A"_ pum— ~ el “ T 1N m1m
2;m1 Xmag X2 [ay;mlxm2x2;]1]2...]mZ]2 1m2 x2m1m2
AZ§T'"b1><mz><2 = [a’:?:;ml X Mo ><2;2122...§m1]2m17”2 X2M1me .

Finally, the spatial entropy h(B) can be computed from the maximum eigenvalue
)\:E;Q,mz,mg of Ai‘;QXmQXm3- Indeed,

Theorem 3.1.13. Let A\;.2m,.ms be the mazimum eigenvalue of Az.oxmyxms, then

1 )\56 mo,m
h(B) = lim 8/ 2mams
m2,m3—00 moimsg

(3.33)
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Proof. By the same arguments as in [17], the limit Eq. (1.36) is well-defined and exists.
From Az.2xmgxms, for me > 2 and ms > 2,

D'gimi xma xms (B) = Z (Agé;;zxmﬂw
1<i,j<2mam3
~1
- ‘( g;gxmzxm3>|‘
As in the one-dimensional case,
mi1—1
10g|( :?:;2><m2><m3)|

mi1—00 ml

= log )\i‘;Q,mg,m:;a

as in for example [4]. Hence,

h(B) _ lim 108 I'.1my xma xms (B)
mi1,mz2,m3—00 my1me1ms
_ lim 1 lim log F56;7711 XmaXms (B))
m2,m3—o0 119713 M1—00 my
_ lim 10g >‘50;2,m27m3
m2,m3—00 meoms

The proof is complete. O

Remark 3.1.14. Let A\y.2.momss Mg 2.ms s Ayima2ims > Azimamo,2 O Az mo.2 be the maz-
imum eigenvalue of Ayoxmyxms, Agimixaxmss Byumixaxms s Dzimixmax2 ANA Ay xmyx2 TE-
spectively. Then,

h(B)e= N limps o AR 2mams
m2,m3—00 Moms

— hm lOg )\QQm1727m3
mi,m3—00 mims

_ lim 10g Ayimi,2,ms
mi1,m3—00 mims

_ lim log )‘2;m17m272
mi,m2—00 mime

- hm lOg )\z;ml,mg,2
mi1,m2—00 mq1Mmeo

The detailed proofs are as above.
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3.1.3 Computation of ), , and entropies

The last subsection provided a systematic means of writing down Agz.oxmyxms from
Ajoxoxe. As in a two-dimensional case [4], a recursive formula for Az.om,ms can be
obtained in a special structure. An illustrative example is presented in which Az.oxm,xms
and A;:2m,.ms can be derived explicitly to demonstrate the methods developed in the
preceding subsection. More complete results will be presented later.

Let

11 11
G:{lo]and E:Egz[l 1], (3.34)
and
A9c;2><2><2 =GREFRFERE. (335)

Proposition 3.1.15. Substitute A,.oxax2 into Eq. (3.34) and Eq. (3.35). Then,

(1) Apoxmexz = (G ® E)™ ! @ (QE?), (3.36)
(1) Aspxmoxz = (®G™ ) @ (RE™H), (3.37)
(119)  Aszxmyxm, = SUSIE™ R ® £)™ 1 @ (QE™). (3.38)

Furthermore, for the mazimum eigenvalueNes moims 0f As.2xmsxmy, the following recursive
formulae apply:

A2, m Srin IR 39 s (3.39)
and
Ais2mams+1 = 20" A2,mo.ms (3.40)
for ma, m3 > 2 with
Ai;2,2,2 = 239- (3-41)
The spatial entropy is
h(Ax;2x2x2) =logy, (3-42)

L5 the golden-mean.

where g =~

Proof. The proof is described only briefly, and the details are omitted for brevity.
(i) can be proven by Theorem 3.1.8 and induction on my. Indeed, by Eq. (3.29),

(Agi2x2x2)axa © (Ey2 @ Agoxaxa)axa
(GOERER@E);uoc(EQER(GRIERE®E))ixu
(GoE)R(EoE)® (EoG)® (Fyxao (E®E® E))axs
= GIERGRERQEQE.

A9c;2><3><2 =
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Assume that Ao (m,—1)x2 = (G ® E)™? @ (®FE?). Then by Eq. (3.29) again,

ASE 2Xmax2 — ( x;2X (ma—1) ><2) ((®E2(m2_2)) & Aac;2><2><2)
= (@G E)™?® (®E ))g2ma-2xg2ma-z 0 ((RE*™72)) @ (G ® E® E ® E)gamy—2,52my-2
= (®(G®E)™ @ (E® E))yma—2,g2ms-2
o ( (E & E)m2_2 ® (G & E) &® (E (029 E>>227n272x22m272
=Q®[GoE)® (EoE)™ @ (E0G)® (Eo(E®E® E))
=(GRE)?Q (G FE)®(E®E)
= (G E)™ @ (RE?).

(ii) The following property of matrices is required and detailed proofs are omitted: For
any two 2 x 2 matrices A and B,

P(A® B)P = B® A, (3.43)

where P is given by Eq. (3.21). Equation (3.37) is proven by induction on ms. When
mo = 2, by Theorem 3.1.10,

A§c;2><2><2 = Ptm;gxgnggc;2><2><2Px;2><2><2

(P4;2)tA:E;2><2><2P4;2
(LRPRL)((GRE)2(E®E))(l,® P® 1))
G®(P(EQE)P)®E

= GREQFEQLH

by Eq. (3.43).
Now, Eq. (3.37) is assumed t0 hold for my.= 1,

Ag oy (my )52 EARE™=2) QARE™).
Then

Am ;2Xmg X2
t
- ]P):v 2><m2><2A96;2><m2><2]P)x;2><m2><2

- [(P2m2,2p2m2;4 o 'P2m2;2m2—2)(P2M2;3P2m2;5 o 'P2M2;2m2—3) e (P2m2;mz)]t
A:tr;2xrn2><2[(P2mz;2p2mm4 o 'P2m2;2m2—2)(P2m2;3P2m2;5 o 'P2m2;2m2—3) o (P2m2;M2)]

= (P2m2;m2) e (P2m2;3p2m2;5 . 'P2m2;2m2—3)[(P2m2;2p2m2;4 o 'P2m2;2m2—2)
(® (G E)"™' @ (VF?))(Pamy2Pomaia -+ Pomaoma—2)] (Poma:3 Pamass - Pomaiama—3) -+ (Pomims )

= (Pomzims) ** (PamaaPomass * ** Pomaiom,—3)[G @ (®(G @ E)™ 2 @ (®E?)) ® E]
(P2m2;3P2M2;5 o 'P2M2;2m2—3) e (P2M2;m2)

= G @ {(Papmy—1)ma—1) -+ (Pams—1)2Po(ma—1):a - = Pa(imy—1):2(ms—1)-2) [(G @ E)™71]
(Pams - 0 2 Po(my—1)4 -+ Pagmy—1)2(ma—1)-2) = (Pa(ma—1)mp—1)} @ E

=G® ( z;2x (ma— 1)><2Ax;2><(m2—1)><2P:c;2><(m2—1)><2) QLK

=G @ Azoxmoe—1)x2 @ F

=G ® (®G™?) ® (QE™))® E

= (®G™) @ (®E™*).

(iii) For a fixed ma, these results are proven by induction on m3 > 2. Assume that Eq.
(3.38) holds for mg — 1;

Ajosmyx(ms—1) = @((@G™ 1) ®@ E)™ 7 @ (QE™).
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Then, by Eq. (3.32),

A§c;2><mz><mg = AgAc;2><m2><(m3—1) o ((®Em2(m3_2)) ® AgAc;2><mz><2)

= @((@G™ M e E)™ g ((eG™) @ (:E™H))
= (@™ 1) @ E)™ 1 @ (QFE™).

[@((®G™ ™) © B)™72 @ (9E™)] o [(@E™™7) © (2G™ ") @ (9E™ )]

For the maximum eigenvalue Az.2m, ms, €quation (3.41) is easily verified. Equation

(3.39) is established for fixed ms using Eq. (3.38), yielding

A:%;ZX(mg—l—l)xmg = ®(<®Gm2) ® E)m3_1 ® (®Em2+1)
(G ® (®Gm2—l) ® E)ms—l ® (® Elm2 ® E)’

which implies
o m3—1
)\:?:;2,m2+1,m3 - 29 )\50%277”27777«3’

see [13], [29] and [30].
Similarly, for a fixed my, equation (3.40) is proven using Eq. (3.38) again:

A:f:;2><m2><(m3+1) = ®((®Gm2—1> & E)mB &® (®Em2)
= ®((®Gm2_1> ® E) ® A")A3;2><1’)’L2><1’)’L37

which implies

— mo—1 .
)\:2;2,m2,m3+1 —i 2g A£§27m27m3'

Finally, equation (3.42) follows from Eqs<(3.39), (3.40) and Theorem 3.1.13. The proof

is thus complete.
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3.2 Connecting Operator

This section introduces the connecting operator and employs it to derive a recur-
sive formula between an elementary pattern of order (mj, ma, mg + 1) and that of order
(mq, mg, mg). It is also adopted to obtain a lower bound on entropy.

3.2.1 Connecting operator in z-direction

This subsection derives connecting operators and studies their properties. For brevity,
only the connecting operator in the z-direction is discussed but the other cases are similar,
and will be considered in the following Remarks. For clarity, as in the former section, two
symbols on lattice Zyyoxo are examined first.

According to Theorem 3.1.11, the transition matrix Az.oxm,xms can be represented as
As2smy xmsay Where 1 < o < 22m2 ig g 2m2(ms—1) 5 om2(ms=1) matrix,

For matrix multiplication, the indices of A;.2xm,xms are conveniently expressed as

A:?:;2><m2 xm3;11 A:?:;2><m2 xXm3;12 Tt A:?:;2><m2 Xmgz;12™2
A:?:;2><m2 xm3;21 A:?:;2><m2 Xm3;22 Tt A:?:;2><m2 Xmgz;22™M2
Af;szQ xmg;2"™21 Af;szQ Xmg;2™22 "¢ Af;szQ Xmg;2"22Mm2

Clearly, Azoxmyxmsa = Az2xmaxms:p e, Where o = a0y, o) = 2™(8, — 1) + [2. For

my > 2, the elementary pattern in the entsies of A% . is given by

Afc;2><m2Xms;ﬁlﬁQAi;2><m2><m3;ﬁ2ﬁ3 i, A:%;2><m2><m3;ﬁm1ﬁm1+1
where . € {1,2,---,2™} and 1< < my +1: A lexicographic order for multiple indices
[m1+1 = (61/62 o /Gm1/6m1+1) 18 introduced, USiIlg
mi
K (I, 41) = Vi 20357 (3, — 1), (3.44)
r=2
Now, Agf;l,m%mg;a can be represented by
Ai;QXmQXmg;ﬁlﬁzAQ;QXmQXmg;ﬁz,@g T Af;szQ Xmg;,@ml,@m1+17 (345)
where
o= a(ﬂlaﬂmlﬂ) = 2" (61 - 1) + Bmi+1
and
k= ’C(]Tm-i-l)
is as in Eq. (3.44). Accordingly, AT%, ., ., can be expressed as
[Ai;ml,mg,m:g;abm? X2™M2 (346)
where 1 < a < 2?2 and
gmag(m1—1)
k
Ai;m17m27m3;a = Z A;;3n17m27m3;a‘ (347)
k=1
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Moreover,
k
‘/i'§m17m27m3§0‘ = (A(()Aj;znl,mz,mg;a)t’ (348)

—1 . -1 1
where 1 < k < 2m2(m-1) Viimimamsia 18 @ 2m2(mi—1) column vector that comprises all
. . . m .
elementary patterns in Az, mymsa- Lhe ordering matrix Vi, mo ms Of A:?:;2><m2><m3 is
now defined as

[vﬂ?;ml,mmms;a]2m2 X 2M2 (349)

where 1 < a < 222, The ordering matrix Va:mi1,ma.ms allows the elementary patterns to
be tracked during the reduction from A’} ) to AT This careful book-

Z;2Xma X (ma+1 T;2Xma Xms*
keeping constitutes a systematic way to generate the admissible patterns, and as in Sec.

3.2.2, lower-bound estimates of spatial entropy.
This simplest example is considered first to illustrate this concept.

Example 3.2.1. For m; = 2, my = 3, mg = 3, the following can be easily verified;
AZoyans = [As23 3008508,
where 1 < oy < 2% and

23

" § : (k)
Ai;2,3,3;a1 = A:e;z,3,3;a1=
k=1

and for fired oy and k the represented pattern'of A;’%g’g;al are in the following form.

aqq a2 Q13

k1 ks ks

14 15 16

If the red symbol is defined equal to 1, and white symbol equals 0, then oy = 2°aq; +
240412 + 23a13 + 220414 + 20(15 + a6 + 1 and k = 22]{71 + 2]{32 + ]fg + 1. Hence

_ 2(k) t
Vfc;273,3;al - (A:?:;273,3;o¢1> )

where 1 < k <23 and 1 < a; < 2°. Define

_(A®R) t
%;2,3,3;0{1;0@ - (A:?:;2,3,3;a1;a2) )
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where 1 < k <23 and 1 < aq, s < 2% and the represented pattern of A% 18

%;2,3,3;a1;02

X X X
X X X
X X X
Qny Qo Q23
X X X
Qg Qg5 Qo6
aq Q2 Q13
k1 ko ks
Qg Qs Q16

Therefore, for instance,
‘/;%;273,3;1;1 = Sﬁ;m3;273;11‘/j;2,372;1a

and the represented patterns of Simg:2.3.11

ARARRARRILE T2 TR
AL IURILA T ST e R
- R S B N Y-y
ARARILRARE it T P AR
AMARKRRRRLE TR TRARE
AR ARARILRLR LR AR]

R P R R R
AR LRARLRARLRAR

23 %23 -

The above derivation reveals that V5.2 3 3.4,.4, can be reduced to V;.2 3 9.4, by multiplica-
tion using connecting operator Si.ms:2 3:a1as- Lhis procedure can be extended to introduce
the connecting operator Si.mamims = [Stimsimima:aran ], Where 1 < ag, g < 22™2 for all
mq Z 2, mo Z 2.

Definition 3.2.2. For mqy > 2, mg > 2, define

(Cfﬂ;mf,;ml mao )22m2 x22ma = (S;T;Bng;mlmg )22’”2 x22m2 , (35(])

4 . . . . . .
Use Siimgimimaiaras t0 substitute Szimg:mimasar,a, for simplicity afterward.
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where the row matriz S\ of Stmgimims 1S defined in Eq. (3.6) and Eq. (3.7). And

T3m3;m1m2

sz:;mg;mlmg;iliz (351)
= [(Az;2><m2 ><2;z‘1)2m2 x2m2 O (Az;(ml—l)xm2x2)2m2 ><27”2]2(M1*1)M2 x2(m1—1)mgy

O(Ez(’"r?)mz ® ((Aggmzxz)g)zmz x2mM2 )2(’”1*1”’12 x 2(m1—1)mgy

where (Aggxmw).@ is the ig-th block of the matrix (Ag%meXQ)(C), (Aggxmw)(c) is the

322
~ (r) (r)
column matriz of Ao, xar ALovmyxa

2k % 2F matriz with 1 as its entries.

is the row matriz of A,oxm,x2 and Ej is the

Remark 3.2.3. By a similar method, the following connecting operators can also be
defined.

Cm;m2;m1m3;i1i2
- [(Ay;2><2><m3;i1)2m3 x2m3 O (Ay;(ml—l)x2><m3)2m3 ><2m3]2(m171)m3 «9(m1—1)mg

O(EQ(M1*2)M3 ® ((Ag(;%xzxm3);(ic2)>2m3 ><2”13)2(M1*1)MS x 2(m1—1)m3

Ch;m3;M1mz;i1i2
- [ Aé;m1><2><2;i1)2ml x2m1 O (Aé;mlx(mg—l)x2)2m1 ><2m1]2(m2*1)7n1 x 2(ma—1)my

O(E2(m2*2>m1 ® ((Ag;,r)nlr><2><2);(’icg))2m1 x2™M1 )2(7"2*1%”1 x 2(mg—1)my

Q

Y3m1;m2ms;ilie

O(Ez(w*?)ms ® ((Ag%x2xm3);(icg))2m3 ><2'”3)2(M2*1>ms x2(mg—1)m3

—~

A:E;2><2><m3;i1 )2m3 x2m3 O (Ax;ZX (m2—1)xms3 )2m3 X27n3]2(m2*1)m3 x2(ma—1)mg

CA;Mz;M1m3;i1i2
- [ Ag};m1><2><2;i1)2m1 x2m1 O (Ag;ml ><2><(m3—1))2m1 ><2m1]2(m3*1)m1 x2(mg—1)my

O(E2(m3—2)m1 ® ((Ag;znl X2X2);(Z.c2))2m1 x2mM1 )2(m371)m1 x2(m3—1)mq

Cz§m1§m2m3§i1i2
= [(Afc;2><m2 ><2;z‘1)2m2 x2m2 O (Aﬁc;2><m2><(m3—1))2m2 ><27”2]2(MS*1)M2 x 2(mg—1)mgy

0(Egtms-2my @ ((Agémgm)g)zm x2m2 ) (mg ~1)ms (3 ~1yms
Theorem 3.2.4. For any ms > 2, mg > 2 and 1 < iy, iy < 22m2
Climai(mi+ymasivia = [;2xmox25i1i Caimaimimaiis )] (3.52)
where 1 < ¢ < 22m2,

Proof. By Theorem 3.1.11 and Remark 3.1.12,

Az;mlxmgx2 - [Az;2><m2><2;i1 o Az;(ml—l)xmgx2]a
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where 1 < i; < 222, Hence, by

Ci;m3§(m1+l)7712;i1i2

[(AZ;2><m2><2;i1) © Aznm Xm2><2] © [Ez(mlfl)mz ® (Ag%xmz xz),(zcz)]
= [%;2Xm2x2;i1i(Az;2Xm2x2;i o Az;(ml—l)xmz xz)]

o[ Bz @ (Bt -2ms ® (A a) )]

322

- [ai;2><m2><2;i1iCi;m3;m1m2;ii2]27”2><2m2

where 1 < ¢ < 2%™2, The proof is complete. O
Notably, Eq. (3.52) implies Cimgimims;ij 1

3;2xma x 25i1i2 Ba;2xma X 2i2i3 Q52X ma X 2im imy +1

with 41 = ¢ and 4,11 = J. Ciimgimims:ij comprises all paths of length m,; + 1, that start
at ¢« and end at j. Indeed, the entries of Csmyimim, and A.(m;41)xmox2 are the same.
However, the arrangements differ.

Substituting mg for ms +1 into Eq. (3.45) and using Eq. (3.32), AW

Zymi,me,ma+1;a could
be represented by

Ag25ma x (ma+1);61 82 A:2xma x (ma+1);828s * * * As2xma x (ms+1):Bmy By 11
mi

- H[a':?:;2><m2 X2?aj6‘Afc;2><m2Xmg;ﬁ132]2m2 X 2M2 (353)
J=1

where 1 < 34, B < 2™ and a; =a(0;, Bila ) landva'= a(ﬁl,@) for 1 < j <mjy.
After m; matrix multiplications have been perforined as in Eq. (3.53),

(k) — 14
Afﬂ;ml,mz,m:a-i-l;al . [A:%;ml,m27m3+1;a1;a2]2m2 X2m2, (3‘54)
where 1 < ay < 22™2 and Ag;)mmzvm i o, CATL be represented by
gma(my—1)
N ¢
Z K(&, mima; aya; k7€)A§:;3’n1,m2,m3;a2 (3.55)
=1
. . . . . J4 . . ~
which is a linear combination of Aé;)mhm%mm% with the coeflicients K (&, myma; ayan; k, £)

which are products of z2xmyx2ia;a, 1 < J < my. K(&,mima; arag; k, £) must be studied
in more details. Notably,

my _
#2xma X (mz+1) [Ai;m17mz,7713+1;a1]27”2 x2m2 (3-56)
where 1 < aq < 222,
gmag(my—1)
A _ (k)
Tymi,me,m3+la1 — Z:m1,mo,m3+1;01
k=1
and
omg(mi—1) gmg(my—1)
(k) _ § ’ (k)
Z Ai;ml,M27(M3+1);a1 - [ Ai;m1,m27(m3+1);a1;a2]2m2X2m2’
k=1 k=1
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where 1 < ag < 222, Now, Vi, ma.matLiaras 18 defined as

V}c;m1,m2,m3+1;a1;a2 = ( :g;?nl,mz,mg—i-l;al;ag)t‘ (3-57)
From Eq. (3.55) and Eq. (3.57),
Viimy ma.ms+Liagias = K(Z, mama; a102) Vi, ma.ms:as (3.58)
where
K(Z, mimsg; ajae) = (K(Z, myme; ajae; k, 0)),
1<k (< gm2(mi=1) g g gma(mi—1) y 9ma(mi—1) matrix. Now
K(f, mme; 041042) = Stimamimaiaras
must be shown as follows.
Theorem 3.2.5. For any my > 2, mg > 2 and mg > 2, let Simgmimaiaras D€ giVEN aS N
Eq. (3.50) and Eq. (3.51). Then,
V}g;ml,mz,mg-i-l;al;az = Szf:;mg;mlmz;alaz‘/:f:;ml,mz,mg;ag7 (3-59)
or equivalently, the recursive formula
A®

#;ma,me,(m3+1);o0

gma(m1—1)
! 4
= [ Z (S£§m3§m1m2§a1062)keA.’(f:;)Tnl,mQ,mggag]2m2 X2M2 (360)
(=1

where 1 < oy < 222 Moreover,-for. ms = 1,

9ma (m1 1)
k
A:(%;an,m2,2;a1 = [ Z (Sﬂ%;m3;m1mz;a1az)kf]2m2 x2M2 (3-61)
=l

where 1 < ay < 22™2 for any 1 < k < 2m2mi= gnd oy € {1,2,...,27m2},

Proof. From Eq. (3.54), AW can be represented as the pattern

yma,ma,(m3+1);a1 ;00

X X X X mg + 1 layers

X X
az(mny/i‘z(mr}/ s Qa(2my)

Qi Qi o QXimy

ka ks e Fom,

/"1"/l 29+ Fma my 1)
/dl(mﬁ»y'{l(mﬁ»y/'“ Q1 (2my) (3 62)
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and A as the pattern,

T3m1,Mm2,m3; ;a2

mg layers

Qa1 [e55) s Q2my

0 0 Cing

/{z<mz+yfv/z(m,+9/--- 2 (2m,)

(3.63)
From Definition 3.2.2, Si.mgmimseiaias represents the following pattern
Qg1 [e B Qo
A ly 4
st =241 Ly (g ~2914 [e—
/JZ(MH»I) @a(my \})/ s S 00(2my)
any agy .. Oy
k1 [ o - Ky
/((](mﬁp/ll(mz 7/ ol 1 @2me) . (3 64)

Therefore, Eq. (3.60) follows from Eqgs. (3:62),.(3.63) and (3.64). Also, from Eq. (3.58),
equation (3.59) follows.
Next, equation (3.61) follows simply from Egs:(3.62) and (3.64). O

For any positive integer p > 2, applying Theorem 3.2.5 p times allows the elementary
patterns of A%xmx (ma+p) 1O be expressed as products of a sequence of Si.nymimasasasis
and the elementary patterns in A75 . The elementary pattern in A;’"_gxm2x(m3 p) 18

first considered. For any p > 2 and 1 < ¢ < p — 1, define

A(k)
&yma,ma,m3+p;a1;a;..;aq
(k)
[Afﬂ;rm,mz,m3+p;a1;az;...;aq;aq+1]2m2 X272
2mo (k)
where 1 < agyq <27 Then Az7, o oipariass. a,,, Canl be represented as
gma(my—1) gmg(mi—1) oma(my—1) p+1
o . . (Zp+l)
E E s E (H K(I, mimea; 0100 gi—la gi))A:?:;m1;m2;m3;ap+1 (365)
lo=1 l3=1 lpr1=1 =2

where and /1 = k can be easily verified.

Hence, for any p > 2, equation (3.56) can be generalized for Agéxmgx(mg Lp) S 2
(2m2)pPFL 5 (2m2)PHL matrix
;r:éxmzx(m3+p) = [A:?:;nn,m27(m3+p);a1;az;...;ap+1]7 (366)
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where

9(m1—1)mg
_ (k)
Ai;ml,mz,(m3+p);a1;a2;...;o¢p+1 - Ai;ml,m27(mg+1);a1;ag;...;ap+1'
k=1
In particular, if oy, ag, . . ., app1 € {272 (5—1)+s]|1 < 5 < 272} then Az, moy,(ms-+p)iassan:..sapii
. . mi :
lies on the diagonal of AT, . ., in Eq. (3.66). Now, define
Vs = ( (k)
Zymi,m2,m3+p;a1;02;...;0p4+1 m1,m2,m3+p;a1;02;..
Therefore, Theorem 3.2.5 can be generalized to the following Theorem.
Theorem 3.2.6. For any my > 2, my > 2, m3 > 2 and p > 1, Vi, imamstpasians..iapi
could be represented as
Sf;ms;mlm%alaz Sﬂ?;m:’,;mlmz;azas U Sf;ms;mlm%apapﬂ vfﬁ;ml,mmms;apﬂ
where 1 < o; <22™ and 1 <i<p+1.
Proof. From Egs. (3.65), (3.58) and (3.60),
(k)
Zymi,m2,m3+p;a1;02;...50p+1
gmg(my1—1) gmg(my—1) gmg(my—1) P
_ o . . (p+1)
= E E T E (H K (Z; mamg; o0 4, gi))A@;m17m27m3;ap+l
lo=1 l5=1 lpr1=1" =2
gmg(my—1) gma(mi—1) oma (mg —1) p+1
— (Zp+l)
- § : E § : (H(Sﬁ%;m:ﬁmlmz;ai&ai)&'71&')A:?:;ml,mz,mg;ap+1
lo=1 l3=1 Lpr1=1 [
gmg(m1—1) gmg(m1—1) omg(mq—T)
- Z Z T Z ((S@%m%mlmz%alaz)flfz(Si‘;ma;mlmz;azocg)fzﬁa
t=1 l5=1 lpp1=1
. (SA ) ) (Cp+1)
&;masmime;apap i1 Mplp+1 ) A iime ma,ma;ap i1
gma(mi—1)
— (SA S. ... S, ) (lp+1)
= &ma;mima;onag P Ema;mime;azas Zmaimima;apap1 ) kg, Aame ma,mssonp
lpr1=1
The proof is complete. 0
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3.2.2 Lower bound of entropy

In this subsection, the connecting operator Cz.ng:m,m, 1s adopted to estimate the lower
bound of entropy and in particular, to confirm that is positive. The following notation is
used.

Definition 3.2.7. Let V = (Vi,---, Vi)', where Vi, are N x N matrices. Define the sum
over Vi, as

N
VI=> Vi (3.67)
k=1

If M = [M;;] is a M x M matrix, then

M M
MV =) MV,

i=1 j=1
Notably, (3.67) implies
o(m1—1)mg
_ } : (k) _
|‘/Y53;m17m2,m3§0l| - Ai;ml,mg,mg;a - A:?:;ml,mg,mg;a~
k=1

As is typical, the set of all matrices with the Same order can be partially ordered.

Definition 3.2.8. Let M = [My] and DN = [N;;] be two M x M matrices; M > N if
Mij Z Nij fOT all 1 S Z,j S M.

Notably, if Ax;gxgxg 2 A;c;2><2><27 then Aﬁ:;ZXmngg 2 A;%;2><m2><m
Therefore, h(Az.2x2x2) > h(A;;2X2X2). Hence, the spatial entropy as a function of A,.0x2x2
is monotonic with respect to the partial-order >

, for all my, mz > 2.

Definition 3.2.9. A P + 1 multiple index
Ap = (- -apapyy) (3.68)
is called a periodic cycle if
ap41 = A1, (3.69)

where 1 < a; < 2%™2 and 1 < i < P+ 1. It is called diagonal cycle if Eq. (3.69) holds
and

a; € {2M(s—1)+ sl <s<2m2}
for each 1 <i < P+ 1. For a diagonal cycle Eq. (3.68)
ap = Qq;Q;- - ;Qp
and

OZPn = Q{ip’ OZP’ L 70{7P (n-tlmeS)
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First, prove the following Lemma.

Lemma 3.2.10. Let m; > 2, mo > 2, P > 1, Ap be a diagonal cycle. Then, for any
ms Z 1;

p(AT ) (3.70)

Z;2xma X (m3P+2)

> p(|(Sx;mg;m1mz;a1a2Sx;Ma;mlmz;azocg Sx;m3;m1m2;apap+1) Vx;Ml,M272;al :

Proof. Since Ap is a periodic cycle, Theorem 3.2.6 implies

‘/:?:;ml,mg,mgP-l—Za’me;al (371)
m,
= (Sﬁc;ms;m1m2;a1a2 Sfc;ms;m1m2;a2a3 T Sfﬂ;ms;m1m2;apap+1) Sv:%;ml,m%?;ar
Furthermore, Ap is diagonal and |Vi.m, memsP+2:apm3:01] = Adimy me.msP+2:apm3 0, li€S 1N

the diagonal part of Eq. (3.66), with ms + p = m3P + 2. Accordingly,

p(Ag;L;n,mz,mgP+2) > p( | Vi;m1,m27m3P+2;a’Pm3 o |) (3-72)

Therefore, equation (3.70) follows from Eqs. (3.71) and (3.72). The proof is complete. [
The following Lemma is useful in evaluating maximum eigenvalue of Eq. (3.70).

Lemma 3.2.11. For anym; > 2, mg > 2,1 <k <20m=Ym2 gnd oy € {(s—1)2"2 451 <
s < 2m2} if
tr(AY

Ty i, 2500

)=0;
then for all 1 < £ < 20m—1mz

(Si;m3;m1mz;a1az)kl =0, (3.73)

forallag € {(s—1)2M2+s|1 < s < 2™}, such that the k-th rows of matrices Sz.my.myma:aas
are zeros. For any diagonal cycle Ap, let U = (ujug - -+ Ugmy(m,-1)) be an eigenvector of
Sﬂ?;ms;mlmz;ala2Sf;ms;mlmQ;Oeas te 'Sfﬁ;ms;mlmmapar If U, 7£ 0 fOT’ some 1 < k < 2<m1_1)m2;
then tr(A(k) ) > 0.

2;m1,me,2;00

Proof. Since AY can be expressed as Eq. (3.61). tr(A(k) ) = 0 if and only

Tym1,me,2;001 Tym1,me,2;001
if Eq. (3.73) holds for all 1 < ¢ < 2(mi—1)m2 The second part of the Lemma 3.2.11 follows
easily from the first part. The proof is complete. O

By Lemma 3.2.10 and Lemma 3.2.11, the lower bound of entropy can be determined
as follows.

Theorem 3.2.12. Let ajg - - - apaq be a diagonal cycle. Then, for any my > 2, my > 2,

h(Azox2x2) (3.74)

> lim
ma—o00 1M1y P

10g p(S:?:;mg;mlmg;alocg S:?:;mg;mlmg;agag e Si;mg;mlmg;apa1)~
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Proof. First, by the methods used to prove Lemma 2.1.10, Lemma 2.1.11 and Theorem
2.1.12 in Sec. 2.1.2,

lim sup _(10g /0(| (S:?:;M3;m1m2;a1az Sﬂ”c;m3;m1mz;aza3 T S:?:;ma;mlmz;ocpal)mg Vi'§m17m272§0¢1 |))
ms—oo 113

= 10g p(Sf;ms;mlmQ;MQQ Sf;ms;mlmQ;QQQS e Sﬂ?;m:’,;mlmz;apal) (375>

is obtained. The detailed proofs are omitted here for brevity. Now,

) ) 1
h(Aw;2><2><2) > lim lim sup (IOg p(|(Sf;m3;m1m2;alaz Sﬂ?;m:’,;mlmz;aza:’, T
ma—00 MiMa P ma—oo M3

S )™ Vs )
Tymz;mime;apal Tyma,me,2;0q

is established. Indeed, from Eqs. (3.33) and (3.70),

1
h(A,. = li —1 Agosmox(m
( ,2><2><2) leLgILOO (m3P+2)m2 ng( 12Xma X ( 3P+2))
. 1 m
= lim log p(Af;éxmz x (m3P+2)>

m2m3—0o0 1 (mgP —+ 2)m2

. . 1
> mlzlgloo myme P lirILIg,l—SEop E(log p(|(S§c;m3;m1m2;a1a2 Sﬂ?;m:’,;mlmz;aza:’, T
Sfﬂ;m?);mlmz;apal )m3%5m17m272§al D)
Applying Eq. (3.75) which completes the proof. O

Remark 3.2.13. By the similar method, the following lower bounds of entropy can also
be estimated.

h(Am;2><2><2)

lim
ms—oo M1 Mms P

h(Ax;2><2><2)

A%

log p(S$§m2;m1m3§041042S-'E§m2§m1m3§a20ls e Sw;mQ;mlms;aPal)'

lim
m1—0o0 1M m2P

h(Agc;2><2><2)

lim
ma—o0 Moz P

h(Ax;2><2><2)

lim
m1—0o0 1M m3P

h(Am;2><2><2)

> lim
m2—00 m2m3P

v

log p(Sﬂ;m3;m1m2;O¢1@2 S@;ma;mlmz;fm% T Sﬂ;m3;m1m2;apa1)'

A%

log p(Sy§m1;m2m3;a1a2 Sy;ml;m2m3;azas e Sﬂ?;ml;QO:’,;aPOél)'

v

log p(Sé;mg;mlmg;alocz Sé;mg;mlmg;aza;g e Sé;mz;m1m3;apa1)~

log p(Sz;ml;mzmg;alocz Sz;ml;mzmg;a2a3 e Sz;ml;m2m3;apa1)~

Remark 3.2.14. The results in last three sections can be generated to p-symbols on
Zoysorxae such as in two dimensional case [4] and [5] and the details are omitted here
for brevity.
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3.3 Applications to 3DCNN

This section elucidates an interesting model in 3DCNN of the application of the method.
The method is elucidated by considering ag o0 = a, a1,00 = @z, ao,1,0 = ay and app1 = a.,
which are nonzero; in other cases, a3, and b, g, are zero. Then, the 3DCNN is of the
form as Eq. (1.41)

dum,k
dt
The stationary solution to Eq. (1.41) satisfies

= —wjp+w+ af(wijr) + aof(Wisr k) + ayf(Uije1e) + aaf(Wije)

Ui jk = W+ AV 5k + AzVig1jk T AyVij+1k + A2V 5 k41,

for (i,7,k) € Z* as in Eq. (1.42).
Firstly, consider the mosaic solution u = (u; ;%) to Eq. (1.42). If u;;, > 1, ie.,
Vijk = 1, then

(@ — 1) +w+ ayvit1 jk + ayvi 116 + a0 j k11 > 0. (3.76)

If wijr < —1,1e., v;jr = —1, then
(@ —1) —w — (agVig1,jk + QUi j41k + A0 jk41) > 0. (3.77)
Equation (1.42) has five parameters w, a, a,, a, and a,. Three procedures are adopted

to partition these parameters:

Procedure (I): The parametérs a, gy anda, are initially expressed into three-
dimensional coordinates, to solve"Eqs. (3!76) and (3.77), as in Fig. 3.

Ay
Figure 3: Primary partition of (a,, ay, a,).

Clearly 2% octants (I)~(VIII) exist in (a,, a,, a,) three-dimensional coordinates.

Procedure (II): In each octant are 3! relations

@) ¢ oJas > oyl > Jaal,
i) ¢ laol > las] > g,
i) ¢ Jayl > oo > s,
. 3.78
V) : layl > Jas| > laal, (3.78)
) ¢ olad > ol > g,
) ¢ Jas] > layl > gl

Procedure (III): Each relations, denoted it by |ai| > |as| > |as|, two situations
apply

(1) faa| > |ag| + [as]

@) lar| < las] + |as]. (3.79)
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However, in the (a,w)-planes, two sets of 23 straight lines are important. The first set is

AN

r ot (a=1) +w+ agvivi ik + a1k + @Gk = 0.

which is related to Eq. (3.76). The second set is

f; . (CL — 1) —w — (CLI’UZ'+1,]'7]§ + QyVi 41,k + CLZ’lJi,j7k+1) =0.

which is related to Eq. (3.77), where vii1jk, Vij+1.h Vijes1r € {—1,1} and 1 < r < 8.
When (ay, ay,a,) lines in the open region (I)~(VIII), (i)~(vi) and (1)~(2) as in Fig. 3,
Egs. (3.78) and (3.79) are used to partition the (w,a — 1)-plane, as in Fig. 4.

a-1

[818]
[7.8] [8.7]
[6.8] i 8,6
[5.8] 16,71 [7.6] [8,5]
[4.8] [5.7] [6}6] [7,5] [8.:4]
[3.8] [4.71 S 156 [6.5) 1741 X 831
[2.8] [3.7] [4.6] [55] [6:4] [7,3] [8.2]
181 Y1271 51361 X 451 W 4N 1631 X 1721 X 18,13
2 o [L6] [2.5] [3.4]
/[0.6) [1,5) [2.4] 3
p [0,5] [71,4] [2.3]
I~ [0.4] [1.3] [2
¢ [0.3] [1,2]
“ [0,2] [1
Lo

Figure 4: Partition of (w,a — 1)-plane.

The symbols [m,n] in Fig. 4 have the following meanings. Consider, for example,
(ay,ay, a;) lies in regions (VIII), (i) and (1) as in Fig. 3, Eq. (3.78) and Eq. (3.79).
This situation is expressed as (VIII)-(i)-(1), and considered a, < a, < a, < 0 and
laz| > |ay| + |as|. Denoted by

(Vit1,jk» Vij1 ks Vijkt1) | —(@QaVit1 ik + i1k + Q205 5 k+1)
cof =cg (—1,-1,-1) az + ay + a,
cy =c5 (—1,-1,1) az + a, — a,
cy =cg (—1,1,-1) Ay — ay + a,
cr=cy (—1,1,1) Ay — Gy — a,
cf=c; (1,-1,-1) —a, +a, +a,
cd=c3 (1,-1,1) —a; +a, —a,
o =cy (1,1,-1) —a; — ay + a,
s =cf (1,1,1) —y — Gy — Q,

Table 1: The int

ersects of (] and ;.
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Then, ¢ > ¢f >c¢f > ¢ >0>c¢f >cy >c3 >cf > are the intersects of £ and £; on
the w-axis displayed in Fig. 4.

With reference to the local patterns on cube-cells, +1 is represented by the symbol +
and —1 is represented by the symbol —. The 2% local patterns can be listed and ordered,
as in Fig. 5.

- + - +

| | |

S+ - + — /-;—- + + -+
- 0 9 ) )

- + - +

| | | |

e e T

+ — —

|

— + — -- 4+ — [ — —_ - —
oy + o gy + @

+ - + -

I I

— —+ — -+ o — — [
- @/ - @/ o @7 - @/

Figure 5: Ordering.of local patterns in partition (VIII)-(i)-(1).

Now, when (a—1, w) lies in region [m,n}fu-Fig-4, the only admissible patterns are exactly
D,®, -, @and O, @, -, @' For‘instance, in'region (VIII)-(i)-(1) and (w,a —1) €

[4,8] only D, @,3), @ and @', @', B);@'®5® @',®' can be produced. This fact is
equivalent to the holding of inequalities in Eqs. (3.76) and (3.77) if and only if v; j,

Ui—l—l,j,kv Ui,j-l—l,k and Ui,j,k-l—l are Of the fOI'IIl @7 @7 @7 @ and ®/7 @/7 @/7 @/@/7 @/®/7 @/'
Next, the transition matrix of local patterns in region (VIII)-(i)-(1)-[4,8] can be derived
as

Appxoxe=GREQFEQE.

Then, according to Proposition 3.1.15, the admissible local patterns in Xo,,,,xm, and its
corresponding transition matrices are

A:c;2><m2><2 = ®(G X E)m2_1 & (®E2),
A:?:;2><m2><2 - (®Gm2_1) X (®Em2+1),
A:/%;2><m,2><m,3 = ®((®Gm2_1) & E)m3_1 ® (®Em2),

as in Eqgs. (3.36), (3.37) and (3.38).

Finally, the connecting operator is adopted to examine the complexity of the set of
mosaic patterns in 3DCNN. That is, the lower bound of spatial entropy in the region
(VIII)-(i)-(1)-[4,8] can be estimated.
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Proposition 3.3.1. Consider Ayoxox0 =GR E® E® E, then

—1
Sz?m1§m22;11 = Cz;m1;m22;11 = (®Gm2 )® E,

mo—1

/)(SZ;mumﬂ;ll) =29

and
1
h(Az2xox2) > 3 log g,
where g = 1+_2\/5 1s the golden-mean. Moreover, since
A:)A:;2><m,2><m,3 = ®((®Gm2_1) ® E)m3_1 & (®Em2)
and
P(As2xmyxms) = 272~ glma=Dma=1),

the spatial entropy can be exactly computed as
h(Am;2><2><2) =logyg
as in Proposition 3.1.15.
Proof. According to Eq. (3.37),
Agosmaxa = (G2 )® (RE™)
is obtained. Evidently,
A%, x 2.1 = QB
and
(Aol = (BG™ ) @ .
By Remark 3.2.3, the connecting operator

_ (r) (c)
CZ;m1;mz2;11 - A:%;2Xm2x2;1O(Ag@;2Xm2x2);1

= (®G™ ) ®F.
Therefore, based on Remark 3.2.13, the lower bound of spatial entropy is estimated as

h(Agaxax2) > lim ﬁlogp(Sz;ml;mﬂ;n)

mg— 00

. mg—1
= lim les29™— gg
M —00 ma2
_ 1
= ;logyg.

O

Remark 3.3.2. For the general template A = (aqp-) where ag g, # 0, the basic set in
Yiax3x3 must be extend to the basic set in Xyxaxq. Then, the method described above can
be applied, as stated in Remark 3.2.14. The details are omitted here for brevity.
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