

國 立 交 通 大 學

資訊科學系

碩 士 論 文

有效率的系統晶片後端設計變更方塊式繞

線器

An Efficient Tile-Based ECO Router for SoC Designs

研 究 生：李建毅

指導教授：李毅郎 博士

中 華 民 國 九 十 三 年 十 月

有效率的系統晶片後端設計變更方塊式繞線器

An Efficient Tile-Based ECO Router for SoC Designs

研 究 生：李建毅 Student：Jian-Yin Li

指導教授：李毅郎 Advisor：Dr. Yih-Lang Li

國 立 交 通 大 學
資 訊 科 學 研 究 所
碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

Oct 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年十月

 I

有效率的系統晶片後端設計變更方塊式繞線器

學生：李建毅 指導教授：李毅郎 博士

國立交通大學 資訊科學系 碩士班

摘 要

由於製程與電路設計技術顯著的進展，設計複雜度達到數百萬閘級，而系統單晶片的

設計需求更使得晶片複雜度提高與不同設計種類如混合訊號與高頻電路佈局的整合複雜度

提高。這些對佈局最佳化都帶來了新而嚴酷的挑戰。延遲與雜訊的最佳化往往決定一個設計

的成功與否，而增加導線尺寸與加大導線間間距普遍的被應用來解決這兩個最佳化的問題。

在設計流程的後端裡，經常須要執行後端設計變更(ECO)繞線來作延遲和雜訊的最佳化。而

先前設計裡已存在龐大數目的障礙物與為因應不同雜訊與延遲問題而衍生各式各樣的設計

規則使得 ECO 繞線變得非常困難。與網格式繞線器相較，非網格式繞線器更能夠克服前述

問題的瓶頸。為了能夠快速執行數百萬閘級設計與系統單晶片的 ECO 繞線，論文中我們建

置了一個有效率的方塊式點對點繞線器。

 雖然方塊式繞線器在非點格式繞線器中擁有較簡單的繞線圖形，但是隨著晶片複雜度

的增加，其繞線圖形複雜度也增加至百萬以上的節點數目，因此有效簡化在繞線時所處

理的繞線圖形節點複雜度可大幅提高執行效率。在本論文中，我們提出兩種方法來加快

方塊式繞線器的執行效率。第一種是繞線圖形節點的簡化。我們提出兩種方法不但可以

減少方塊碎裂的情形，進而提高了繞線的執行效率而且不會因簡化繞線圖形而犧牲繞線

品質。第二種是 ECO 全域繞線。我們提出不同的繞線資源評估方式以適用 ECO 繞線問

題的特質，此外也提出由擴展繞線與全域細胞內部導線路徑重組與全域細胞重新規劃的

繞線流程，除了保證一定可以找到存在的繞縣路徑外，也由於限制了繞線搜尋的範圍，

更可大大減少所需的繞線時間，不過會付出降低一些繞線品質的代價。實驗結果顯示，

簡化繞線圖形可減少繞線時間約 40%;而進一步應用 ECO 全域繞線更可大幅減少繞線時

間至 85%左右。

 II

An Efficient Tile-Based ECO Router for SoC Designs

Student: Jian-Yin Li Advisor：Dr. Yih-Lang Li

Department of Computer and Information Science

National Chiao Tung University

ABSTRACT

Remarkable advances in the process and circuit designs bring crucial challenges for

optimizing the layout of a multi-million gate design. Moreover, introducing System On a

Chip (SOC) design methodology greatly increases the design complexity and the layout

integration complexity of various Intelligent Properties (IPs). Delay and noise optimization

are dominant factors to succeed in the design, where wire sizing and spacing are widely used

for solving the problems respectively. Engineering Change Order (ECO) routing is frequently

requested in the later design stage for the purpose of delay and noise optimization. ECO

routing is very difficult as a result of huge existing obstacles and the requests for various

design rules. Gridless routers are more applicable to overcome the problem barrier than grid

routers. Therefore, we develop an efficient tile-based point-to-point router for the ECO

routing of multi-million gate designs in this thesis.

Although tile-based routers have less number of nodes of routing graph than grid routers

and connection-based routers, as the design complexity increases, the number of nodes of

tile-based routing graphs have grown over thousand millions for SOC designs. We can reduce

the complexity of tile-based routing graph to promote routing performance. In this thesis, we

propose two methods to promote routing speed of the tile-based router. The first is Routing

Graph Reduction. We propose two methods, i.e., redundant tiles removal and neighbor tiles

alignment, to reduce the complexity of tile-based routing graph. It diminishes tile

fragmentation as well as reduces the routing time without sacrificing routing quality. The

second is ECO Global Routing. We propose different resource estimation scheme from that

used by general global routing to reflect the characteristics of ECO routing problem. Also, we

propose an ECO routing flow, including extended routing and GCell restructuring and

rescheduling, to guarantee to find a feasible solution if there exists such a solution. By

 III

limiting the searching scope of ECO routing, ECO global routing improves a lot the routing

speed at little expense of routing quality. Experimental results show that routing graph

reduction can decrease the routing time by 40% and ECO global routing with routing graph

reduction can further decrease the routing time up to 85% or so.

 IV

Acknowledgements

I am deeply grateful to my advisor, Dr. Yih-Lang Li for his continuous guidance, support,

and ardent discussion throughout this research. His valuable suggestions help me to complete

the thesis. Also I express my sincere appreciation to all classmates in my laboratory for their

encouragement and help.

This thesis is dedicated to my parents and my families for their patience, love,

encouragement, and long expectation.

 V

Contents

Abstract (in Chinese).. I

Abstract (in English)... II

Acknowledgements...IV

List of Figures ..VI

List of Tables...VII

1 Introduction ... 1

1.1 ECO Routing.. 1

1.2 Gridless router.. 2

1.3 Our approach.. 6

2 Tile-Based Router.. 8

3 Routing Graph Reduction (RGR)...12

3.1 Redundant Tiles Removal...12

3.2 Neighbor Tiles Alignment..18

4 ECO Global Routing...29

 4.1 Global Routing Graph..30

 4.2 Extended Routing and GCell Restructuring and Rescheduling.................................36

 4.2.1 Extended Routing...38

 4.2.2 GCell Restructuring and Rescheduling..41

5 Experimental Results..45

6 Conclusions..48

Bibliography..49

 VI

List of Figures

1.1 Connection graph.. 3

1.2 Tile-based graph.. 5

1.3 ECO routing flows.. 6

2.1 Tile plane examples.. 9

2.2 Tile propagation.. 11

3.1 Redundant tiles.. 14

3.2 Enumeration order... 14

3.3 Remove the redundant space tiles... 16

3.4 Result of Redundant Tiles Removal... 16

3.5 Remove the redundant space tiles... 17

3.6 Neighbor Tiles Alignment.. 19

3.7 Result of Neighbor Tiles Alignment.. 19

3.8 Illegal alignment... 21

3.9 Four shrinking cases... 23

3.10 Shrinking Case (1).. 24

3.11 Shrinking Case (2).. 25

3.12 Shrinking Case (3).. 26

3.13 Shrinking Case (4).. 27

3.14 Final Result of Routing Graph Reduction.. 28

4.1 GCell and Global Routing Graph... 31

4.2 Internal edges.. 32

4.3 (a) A path across a GCell without obstacles.

(b) A path across a GCell with existing obstacles... 35

4.4 Tile propagation in the active GCell .. 35

4.5 Tile propagation status.. 37

4.6 GCell’s location.. 39

4.7 Extended Routing.. 40

4.8 GCell Restructuring.. 42

4.9 GCell ReScheduling.. 43

 VII

List of Tables

5.1 The number of tiles in corner stitching planes...44

5.2 The pre-process time before routing..44

5.3 Apply Routing Graph Reduction...46

5.4 Apply Routing Graph Reduction and ECO Global Routing..46

 - 1 -

Chapter 1

Introduction

1.1 ECO Routing

In the era of deep submicron (DSM) technology and SoC design, multi--million gate

designs bring new challenges for layout optimization, where interconnect optimization

becomes a dominant factor with the trend of ongoing shrinking in the device size, wire width

and wire space. To solve the excesses of delay and noise, wire sizing and wire spacing have

been surveyed [1]. It needs different design rules on critical or sensitive nets.

ECO (Engineering Change Order) routing, most likely a point-to-point routing operation, is

a common request in the later design stage to optimize delay and noise or to complete an

imperfect layout. ECO routing is complicated especially at top level of an SoC design. Three

facts result in this predicament. The first is that ECO routing has to face a lot of

interconnections produced by P&R (Place and Route) tools. Besides, ECO routing is unable

to utilize the hierarchical structure, which can enormously diminish the preprocessing time,

i.e., flattened traverse is necessary for ECO routing. The last is that ECO routing is unable to

accede to the original routing environment, which forces ECO routing to extract its own

database from the beginning. Only the designs migrated from different technology using

existing mask layout or importing a hard IP will suffer from the incompatibility, however,

layout migration and IP reuse have been common for current designs.

 - 2 -

1.2 Gridless Router

For a design with several hard IPs created under different routing environments, it has been

beyond the power of grid router. Moreover, applying different design rules for separate ECO

routings requires more routing flexibility. Gridless router undoubtedly conforms to these

requirements. A straightforward realization of gridless router is using fine uniform grids, i.e.,

manufacturing grids. Figure 1-1(a) shows a layout with two obstacles, and S and T are routing

terminals. Figure 1-1(b) shows the approach by fine grids. Although it can accommodate

various routing rules, the induced huge graph of a big design is infeasible because it costs lots

of memory and searching time. To reduce the routing graph, gridless routers have been well

studied and developed [2]-[15] where connection graph and tile graph are the most popular

models. Zheng[5] constructed connection graph by extending lines through the boundaries of

all obstacles until intersecting with other obstacles or boundaries of routing region, as shown

in Figure 1-1(c). But it is expensive to pre-construction and representation. Cong[5, 6, 7]

presented a connection graph implicitly which extending lines may pass through obstacles, as

shown in Figure 1-1(d). Cong’s graph is built efficiently and guarantees find an optimal path

although it has more nodes and edges than Zheng’s. But it needs additional query operation

for the legality of next move, and when the design has many layers and has complicated

layout, the number of nodes of the graph is still much.

 - 3 -

(a) (b)

(b) (d)

Figure 1-1. Connection graph

 - 4 -

Tile-based graph [9]-[15] is another approach, where the routing region and obstacles are

divided into space tiles and block tile respectively with corner-stitching data structure[16].

Figure 1-2 (a) shows the horizontal tile plane where each tile is the maximum horizontal strip

and Figure 1-2 (b) shows the vertical tile plane where each tile is the maximum vertical strip.

A space tile corresponds to a node of the routing graph and there exists an edge between two

nodes if the related space tiles are adjacent, as shown in Figure 1-2 (c) and (d). Searching in

tile graph is usually faster because the number of nodes of the routing graph is mush lesser

than Zheng and Cong’s graph and each tile has four corner pointers to stitch its four corner

neighbors such that query operations are very efficient. Main query operations in maze

routing are neighbor finding and area enumeration whose complexities are O(n) where n is

the number of tiles. Actually their average complexities are much lesser than n because the

operations are used locality since maze routing is to propagate node by node. The major

drawback of tile-based approach is that it takes more time to build corner-stitching tile planes

for all routing layers compared with connection graph approach. It can be improved by

computational geometry method [17]. In [15], Xing applied a piecewise linear cost model to

guide the maze operation and guaranteed to find an optimal path.

 - 5 -

(a) Horizontal tile plane (b) Vertical tile plane

(c) Corresponding routing graph (d) Corresponding routing graph

Figure 1-2. Tile-based graph

 - 6 -

1.3 Our Approach

Both connection graph and tile-based approaches can find an optimal path for an ECO

point-to-point routing, but considerable runtime for a big design is not practical. For example,

a chip-set design can produce several hundred millions of tiles for one routing layer. A fast

and near optimal path of an ECO routing is much more practical for multi-million gate

designs.

In this thesis, we focus on the ability of routing multi-million gate designs. We apply

tile-based approach in our research due to the smaller number of nodes in the routing graph

and efficient corner-stitching data structure. We propose two methods to promote routing

speed of the tile-based router. The first is Routing Graph Reduction (RGR). It diminishes tile

fragmentation as well as reduces the routing time without sacrificing routing quality. The

second is ECO Global Routing. It improves a lot the speed of the routing at little expense of

routing quality. Figure 1-3 shows our ECO routing flow. We will explain each stage in the

following Chapters. Chapter 2 presents the review of the tile-based router. The Routing Graph

Reduction and ECO Global Routing are proposed in Chapter 3 and Chapter 4. Experimental

results are reported in Chapter 5. Finally, we give conclusion in Chapter 6.

 - 7 -

Figure 1-3. ECO routing flows

 - 8 -

Chapter 2

Tile-Based Router

The tile-based routers have been well studied and developed to find a tile-to tile path in tile

graph [9]-[15]. We apply Dion’s approach [13] to establish our tile-based router and give a

brief review in this chapter.

 First we build corner-stitching tile plane for each routing layer. A tile plane can be built in

maximum horizontal or vertical strip. The preferable routing direction of a metal layer is the

same as the tile-stripped direction of that layer. The obstacles in tile plane are the over-sized

raw objects by (ws + ww/2- 1/2), where ws is the wire space of current net to all objects of the

same layer and ww is the wire width. It guarantees the centerline of a wire can pass through

any space tile without violating design rules. For multi-layers routing, two tiles on adjacent

layers can be connected if the legal via region exists inside their intersection area. The legal

via region is extracted in a similar concept to the wire plane, i.e., the via region is the region

where the center point of a via can be placed. Via size, via enclosing rules for adjacent metal

layers are the sizing factors of via region extraction. Figure 2 shows a tile plane exmaple.

Figure 2 (b) shows the Metal2 tile plane and Figure 2 (d) shows the Metal3 tile plane. Figure

2 (f) shows the Via2 tile plane.

 - 9 -

(a) Metal2 layer (b) Metal2 tile plane

(c) Metal3 layer (d) Metal3 tile plane

 (e) Metal2 & Metal3 layer (f) Via2 tile plane

Figure 2-1. Tile plane examples

 - 10 -

Point-to-Point router consists of two stages: tile propagation and path construction. A tile

can propagate to its neighbor space tile of the same layer or adjacent layer if there is a via

region connecting these two space tiles. Tile propagation applies pre-defined cost function to

guide the path searching, and then finds an optimal list of free tiles. For multi-layer routing,

the tile list may contain tiles of different layers. Path construction constructs a

minimum-corner path passing through the tile list.

Tile propagation records the path node whenever entering a new tile. The path node is the

equipotential minimum cost segment from source. The path node of a tile is linked to the path

node of its previous tile by a backward pointer. The path node is used to estimate the path cost

and the cost to target. The start point can be a point, an edge, or a shape. The router will find a

minimum cost path to connect two shapes if selected objects are shapes. Figure 2-2 shows an

example of tile propagation. The source terminal tile S propagates into its three neighbor

space tiles, say C1, C2, and C3, by their relative path nodes P1, P3, and P3 that are pushed into a

priority heap, say Hp. The path node with minimum cost is then popped from Hp after S

completes its propagation. This process repeats until target terminal tile T is visited and the

path cost is lesser than other path nodes in Hp. Therefore, we can find the optimal tile list by

the backward pointer. If Hp becomes empty before T is visited, there is no feasible path from S

to T.

 - 11 -

Figure 2-2. Tile propagation

 - 12 -

Chapter 3

Routing Graph Reduction (RGR)

Tile propagation, the way of tile-based router to find a routing path, explores to reach the

target all possible ways over the tiles of the same layer and across neighboring layers.

Generally, the tile planes of a design with many existing obstacles are fragmented. This

phenomenon increases the computation complexity of tile propagation. We propose two

methods, i.e., redundant tiles removal and neighbor tiles alignment, to diminish tile

fragmentation as well as to reduce the tile-propagation time in this thesis.

3.1 Redundant Tiles Removal

By observing the tile propagation, we found that further propagations of many paths are

terminated because those paths enter a space tile that has no exit for further propagation. And

most of the cases, the routing graph consists of many connected graphs rather than a

connected graph. Those connected components not containing the terminals to be routed will

not be visited during tile propagation. Such space tiles do not contribute to routing rather than

increases tile fragmentation problem. The basic concept of redundant tiles removal is to

remove these tiles.

 - 13 -

We define some terminologies used in this thesis as follows:

Definition 3-1. (essential/redundant tile) If a space tile can contribute to further propagation,

we call it an essential tile, otherwise, we call it a redundant tile.

Definition 3-2. (essential/redundant connected component) We call the connected component

of the routing graph containing the terminals to be routed an essential connected component,

and the others redundant connected components.

Definition 3-3. (conjunct tile) A tile, A, is referred to a conjunct tile of a tile, B, if tile

propagation, from A to B, on the same layer or across adjacent layer is feasible.

Definition 3-4. (one-conjunct) A space tile is said to be one-conjunct if it has only one

conjunct tile.

Definition 3-5. (0-conjunct) A space tile is said to be 0-conjunct if it has no conjunct tile.

Obviously, the redundant tiles are the one-conjunct space tiles and the 0-conjunct space tile

related to a node of a redundant connected component. We show redundant tiles, T1, T2, and

T3, in Figure 3-1 that shows a simple tile plane of a metal layer. Tiles T1 and T3 are the

one-conjunct space tiles and tile T2 is a 0-conjunct space tile. Note that T3 is accessible from

only one tile of other layer through the via region. If T3 can be accessible from more than two

tiles of other layer through the via region, it is an essential tile.

 - 14 -

Block Tile : 10 Space Tile: 16

Figure 3-1. Redundant tiles

Figure 3-2. Enumeration order

Block Tile Space Tile Via Region

 - 15 -

The corner-stitching data structure provides fast neighbor finding and area enumeration

operations, so we can efficient to check neighbor space tiles and via region of a space tile.

Also we know that the enumeration operation visits each tile exactly once, as shown in Figure

3-2. Therefore, we can remove the redundant tiles by examining one-conjunct and 0-conjunct

space tiles within an enumeration operation over the whole tile plane. It is worth to note that

we only change the redundant space tiles to be block tiles without merging them with their

neighbors to preserve maximum horizontal strip during enumeration, as shown in Figure 3-3.

Merging during enumeration may disorder the enumerating order. After the completion of

enumeration operation, we reconstruct the tile plane to preserve the maximum horizontal or

vertical strip, as shown in Figure 3-4.

There is one situation worth of paying more attention to deal with during redundant tile

removal process. Figure 3-5 (a) shows such a situation. Initially, tiles T1 and T2 are essential

tiles. After removing redundant tile T3, T2 becomes a redundant tile. Also T1 becomes a

redundant tile after removing T2. This process is illustrated from Figure 3-5 (b) to Figure 3-5

(d).

Before applying redundant tile removal process, there are 10 block tiles and 16 space tiles

in Figure 3-1. The redundant tile removal diminishes the tile fragmentation such that the final

layout only contains 6 block tiles and 13 space tiles, as shown in Figure 3-4.

 - 16 -

Figure 3-3. Remove the redundant space tiles

Block Tile : 6 Space Tile: 13

Figure 3-4. Result of Redundant Tiles Removal

 - 17 -

Figure 3-5. Remove the redundant space tiles

 - 18 -

3.2 Neighbor Tiles Alignment

When we construct tile plane for a metal layer, the plane is sliced along the direction of

metal layer’s preferred routing direction so as to produce a maximum unidirectional strip. We

illustrate the tile fragmentation problem using the maximum horizontal strip tile plane. Such a

tile plane has the following characteristics: the top and bottom boundaries of the union area of

those tiles that belong to a connected component on the same layer are flat, however, its left

and right boundaries are often ragged. Ragged boundaries induce tile fragmentation. The

basic idea is to shrink space tiles to flat the ragged border such that their neighbor block tiles

can merge.

Figure 3-6 shows such an example. Tiles T4 and T5 are shrunk, and, meanwhile, tiles T1

and T2 are enlarged such that they can merge to a tile, where A and B are the reduction regions,

a leftward shrinking is applied to T4, and a rightward shrinking is applied to T5. Figure 3-7

shows an advanced tile de-fragmentation if the left edges of tiles T3 and T4 have been aligned

and the right edges of tiles T5 and T6 also can be aligned.

 - 19 -

 Reduction regions

Figure 3-6. Neighbor Tiles Alignment

Figure 3-7. Result of Neighbor Tiles Alignment

Block Tile Space Tile Via Region

 - 20 -

Note that not all space tiles can be shrunk. If we want to shrink a space tile, say T1, so as

to merge with other tile, say T2. Only the shrinking that preserves the following two properties

is feasible.

Property 1. Shrinking will not obstruct an existing path from T1 to its neighbor tile of the

same layer, say T3. Figure3-8(a) shows an illegal shrinking that does not preserve this property.

In Figure 3-8(a), there is an original routing path between tiles T1 and T3, however, this path

will disappear if we perform a leftward shrinking on T1 to align with T2.

Property 2. Shrinking will not obstruct an existing path from T1 to other tile of adjacent layer.

This property requires there exists no via region overlapping with the reduction region. In

Figure 3-8(b), a leftward shrinking on T1 will wipe out a routing path connecting to adjacent

layer.

 - 21 -

Figure 3-8. Illegal alignment

Block Tile Space Tile Via Region

 - 22 -

Before introducing shrinking process, we first define some terminologies as follows.

• l(Ti)/r(Ti): the x-coordinate value of tile Ti’s left/right edge.

• RLS(Ti)/RRS(Ti): the leftward/rightward shrinking on Ti.

• l(RLS(Ti))/r(RLS(Ti)): the stop/start position of a leftward shrinking on Ti.

• l(RRS(Ti))/r(RRS(Ti)): the start/stop position of a rightward shrinking on Ti.

• Nrt(Ti): the rightmost top neighbor of tile Ti.

• Ntr(Ti): the topmost right neighbor of tile Ti.

• Nlb(Ti): the leftmost bottom neighbor of tile Ti.

• Nbl(Ti): the bottommost left neighbor of tile Ti.

We list in Figure 3-9 four shrinking cases during enumeration to discuss how to decide if a

shrinking on a space tile is feasible. We refer the active tile, Ta, as the space tile currently to

be processed. The reason why we only process space tiles is that shrinking unnecessary space

region will not reduce routability nor produce incorrect routing result. On the contrary,

shrinking block tiles may produce a path across existing blockages. These cases are

differentiated by Ta’s top and bottom neighbors.

 - 23 -

Figure 3-9. Four shrinking cases

 - 24 -

Case (1): Nrt(Ta) is a space tile and the candidate to be shrunk. The goal is to perform an

RLS(Nrt(Ta)), where l(RLS(Nrt(Ta))) = r(Ta) and r(RLS(Nrt(Ta))) = r(Nrt(Ta)). To preserve

Property 1, there can not exist a top or bottom neighbor space tile of Nrt(Ta), say T1,

such that l(RLS(Nrt(Ta))) ≤ l(T1) < r(RLS(Nrt(Ta))). Figure 3-10(a) shows a legal

shrinking, while Figure 3-10(b) shows an illegal shrinking.

Figure 3-10. Shrinking Case (1)

 - 25 -

Case (2): Nrt(Ta) is a block tile and Ta is the candidate to be shrunk. The goal is to perform an

RLS(Ta), where l(RLS(Ta)) = l(Nrt(Ta)) and r(RLS(Ta)) = r(Ta). To preserve Property 1,

there can not exist a bottom neighbor space tile of Ta, say T1, such that l(RLS(Ta)) ≤

l(T1) < r(RLS(Ta)). Figure 3-11(a) shows a legal shrinking, while Figure 3-11(b)

shows an illegal shrinking.

Figure 3-11. Shrinking Case (2)

 - 26 -

Case (3). Nlb(Ta) is a space tile and the candidate to be shrunk. The goal is to perform an

RRS(Nlb(Ta)), where l(RRS(Nlb(Ta))) = l(Nlb(Ta)) and r(RRS(Nlb(Ta))) = l(Ta). To

preserve Property 1, there can not exist a top or bottom neighbor space tile of Nlb(Ta),

say T1, such that l(RRS(Nlb(Ta))) < r(T1) ≤ r(RRS(Nlb(Ta))). Figure 3-12(a) shows a

legal shrinking, while Figure 3-12(b) shows an illegal shrinking.

Figure 3-12. Shrinking Case (3)

 - 27 -

Case (4). Nlb(Ta) is a block tile and Ta is the candidate to be shrunk. The goal is to perform an

RRS(Ta), where l(RRS(Ta)) = l(Ta) and r(RRS(Ta)) = r(Nlb(Ta)). To preserve Property 1,

there can not exist a top neighbor space tile of Ta, say T1, such that l(RRS(Ta)) < r(T1)

≤ r(RRS(Ta)). Figure 3-13(a) shows a legal shrinking, while Figure 3-13(b) shows an

illegal shrinking.

Figure 3-13. Shrinking Case (4)

 - 28 -

In order to keep correct enumeration order, we just shrink tiles during enumeration. After

finishing enumeration, we reconstruct the tile plane to preserve the maximum horizontal strip.

Figure 3-14 shows the final result of the tile plane in Figure 3-1, whose total number of tiles is

26, after removing redundant tiles and aligning neighbor tiles. The numbers of block tiles and

space tiles decrease to 3 and 7, respectively. Compared with the tile plane in Figure 3-1, the

total number of tiles after applying routing graph reduction decreases by over 50%.

Block Tile : 3 Space Tile: 7

Figure 3-14. Final Result of Routing Graph Reduction

 - 29 -

Chapter 4

ECO Global Routing

 We present a method to diminish tile fragmentation in previous chapter. It reduces the

tile propagation time without sacrificing routing quality. On the contrary, if the routing speed

is a more important factor, we can improve a lot the speed of the routing at little expense of

routing quality by introducing global routing concept. We apply global routing to reach this

goal in this section. Global routing is used to guide the detail routing, and the routing resource

on a layer is the major factor to estimate the routability of a routing region. However, it is

quite different for an ECO routing because there are lots of existing obstacles. Therefore, the

strategies used for an ECO global routing must also be different from those for block- or chip-

level routing.

In Section 4.1, we introduce the global routing graph and the ECO global routing. In

Section 4.2, we introduce two methods used to help ECO global routing finish the routing

when initial global routing result can not guide detailed routing to find a feasible path.

 - 30 -

4.1 Global Routing Graph

We partition the entire layout into several global cells (GCell) shown in Figure 4-1(a).

The GC(i,j) is defined as the GCell at i-th column and j-th row. A global routing graph G(V,E)

constructed by GCells is drawn in Figure 4-1(b). Each partition corresponds to a node and

there exists an edge between two nodes if their related partitions abut. The V(i,j) is defined as

the vertex at i-th column and j-th row. Besides, each vertex has six internal edges, nw, ws, se,

en, ns, and ew, as shown in Figure 4-2(a). The nw edge represents the connectivity between

the partition’s north and west boundaries. The connectivity of an internal edge is either

connected or disconnected. A connected nw edge of a partition, say Pi, stands for that there

exists a routing path across Pi, that connects Pi‘s north and west neighboring partitions. For

example, if V(i,j)’s internal edge nw is disconnected, there is no path connecting nodes

V(i,j+1) and V(i-1,j), as shown in Figure 4-2(b). All internal edges are set to be connected

initially. We will discuss the internal edges more in chapter 4.2.2.

 - 31 -

(a)

(b)

Figure 4-1. GCell and Global Routing Graph

 - 32 -

(a)

(b)

Figure 4-2. Internal edges

 - 33 -

Traditionally, each edge eij between vertices vi and v j has a capacity to represent the

number of horizontal tracks or vertical tracks available between the corresponding GCells, but

this does not provide enough information for ECO routing. A large amounts of existing

obstacles fragment available routing regions, so it is often hard to find a straight path across a

GCell and the path may be zigzag. Figure 4-3 shows this phenomenon. Via regions play an

important role to find a path across a GCell. If a GCell has more via resources, it is easy to

find a path passing through it. We estimate via resources by the total area of via regions that is

a fast calculation by enumerating space tiles of the via tile planes. Via capacity, VC, of a

GCell is defined as

VC= VA/A,

where VA is the total area of via region of the GCell, and A is the area of the GCell. We assign

each vertex in G a cost, c, that is inverse proportion to VC. Cost c is defined by a piecewise

linear function as

where t is a threshold, and k is an amplification scalar. By experimental observations, it is

hard to get a path through the GCell when VC <0.01, so we amplify the cost by multiplying a

scalar. Also, we assign each edge of G a length cost, lc, to reflect the net timing factor.

 1/VC if VC＞ t
 c =
 k/VC if VC≦ t

 - 34 -

We apply the Dijkstra’s algorithm in G to find the minimum-cost path connecting two

terminals to be routed. We call the GCells on the minimum-cost path active GCells, and the

other idle GCells. The nodes of G(V,E) are also referred to active nodes and idle nodes in the

same way as their corresponding GCells. The further propagation out of active GCells is

prohibited. To reserve the paths propagating into idle GCells, each idle GCell stores those

paths entirely entering its region in its own idle-path heap. In Figure 4-4, GC(i,j) is an active

GCell, while GC(i-1,j) is not. The path node p1 can propagate to tiles T2 and T3 at p2 and p3,

respectively. Since p3 entirely enters an idle GCell, p3 is inserted into the idle-path heap of

GC(i-1,j).

 - 35 -

Figure 4-3. (a) A path across a GCell without obstacles.

(b) A path across a GCell with existing obstacles.

Figure 4-4. Tile propagation in the active GCell

 - 36 -

4.2 Extended Routing and GCell Restructuring and Rescheduling

In this section, we describe the solution to the problem when the router cannot find a

feasible path along the active GCells. We use Figure 4-5 to illustrate the routing failure.

Figure 4-5(a) shows the active GCells of a global routing from s to t. Figure 4-5(b) shows the

propagation status, the darker GCells stand for the visited GCells. A visited GCell that does

not contain a path passing through itself is called a blocked GCell. Therefore, GC(1,6),

GC(1,5), GC(1,4) GC(1,3), GC(2,3), GC(3,3), and GC(4,3) are visited GCells, and GC(4,3) is

a blocked GCell. We can image that there is a wall blocking all the paths in GC(4,3) to

propagate to next GCell, GC(5,3). We propose two methods to solve this problem. The first is

to expand the searching scope around the blocked GCell, called extended routing. The second

is the GCells restructuring and rescheduling. Based on previous routing result, we restructure

the internal edges of visited GCells and then reschedule a new set of active GCells by

performing a new global routing.

 - 37 -

 (a)

(b)

Figure 4-5. Tile propagation status

 - 38 -

4.2.1 Extended Routing

As mentioned in chapter 4.1, since there are lots of existing obstacles for ECO routing, the

path is usually zigzag, as shown in Figure 4-6(a). Assume that there is a wall above the zigzag

passage, as shows in Figure 4-6(b). If the active GCell is located as Figure 4-6(c), the tile

propagation can pass through it. On the contrary, if the active GCell is located as Figure

4-6(d), it will become a blocked GCell. We can not prohibit such an infeasible partition since

we do not know where the walls are before detailed routing.

Extended routing is to expand by a half of GCell width the searching scope around the

blocked GCell. The tile propagation starts from the path nodes in the idle-path heaps of those

idle GCell around the blocked GCell. For example, GC(4,3) is the blocked GCell in Figure

4-7(a), and the searching scope is expanded around GC(4,3). The path nodes in the idle-path

heaps of GC(4,4) and GC(4,2) will be popped up for further propagation. Extended routing

increases the possibility to connect the two active GCells neighboring the blocked GCell.

Figure 4-7(b) shows a successful connection between GC(3,3) and GC(5,3).

 - 39 -

Figure 4-6. GCell’s location

 - 40 -

 (a)

(b)

Figure 4-7. Extended Routing

 - 41 -

4.2.2 GCell Restructuring and ReScheduling

Whenever a blocked GCell appears, we apply extended routing to pass through the blocked

GCell until the final feasible path is found or the extended routing fails. If extended routing

still can not pass through the blocked GCell, we reschedule the active GCells to find another

path. Before rescheduling the active GCells, we have to modify the internal edges’

connectivity states of the active nodes to reflect the blocked information between GCells. In

Figure 4-8(a), GC(i,j) is the blocked GCell. It is obvious that there is no path that passes

through GC(i,j) and connects from GC(i-1,j) to GC(i+1,j) and GC(i,j+1). It is very easy to

determine the internal edges’ connectivity states of the active nodes. Assume that we want to

know the connectivity states of the internal edges of the node GC(i,j) and the routing direction

through GC(i,j) is from left to right, we only have to check the idle-path heaps of GC(i,j+1)

and GC (i,j-1). If the idle-path heaps of GC(i,j-1) and GC(i,j+1) are empty, the connectivity

states of edges nw and ws should be disconnected. Meanwhile, we can set the connectivity

state of edge ew to be disconnected if GC(i,j) is a blocked GCell. Figure 4-8 shows an

example of routing failure, where the connectivity states of edges nw and ew are set to be

disconnected.

After restructuring the internal edges, a new global routing is performed using the visited

GCells as the start vertexes, as shown in Figure 4-9(a). Based on the updated connectivity of

internal edges, the result of the new global routing will not select the blocked channel. The

new active GCells are idle GCells before, and those that are adjacent to old active GCells may

have nonempty idle-path heap. We pop up these nonempty idle-path heaps to proceed new tile

propagation. In Figure 4-9(b), GC(3,2), GC(3,1), GC(4,1), and GC(5,1) are new active GCells,

and GC(3,2), which is adjacent to old active GCell, GC(3,3), must have a nonempty idle-path

heap.

 - 42 -

The GCell restructuring and rescheduling may be repeated several times during tile

propagation. In Figure 4-9(c), tile propagation stops again at GC(4,1). So we restructure and

reschedule active GCells, as shown in Figure 4-9(d). The path nodes in the idle-path heaps of

GC(4,2) may come from GC(4,3,),GC(4,1), and GC(3,2), and they will be popped up for

further propagation. It is worth to note that when we reschedule the active GCells, the number

of the active GCells will increase. The worst case is to make all the GCell active and tile

propagation will be over the whole tile plane. Therefore, we can guarantee to find a feasible

solution if there exists such a solution. Moreover, even though the worst case happens, the

routing speed will not drop off greatly because most already visited routing regions will not

be visited again as a result of good routing resource estimation.

Figure 4-8. GCell Restructuring

 - 43 -

(a)

(b)

Figure 4-9. GCell ReScheduling

 - 44 -

(c)

(d)

Figure 4-9. GCell ReScheduling

 - 45 -

Chapter 5

Experimental Results

We have implemented a tile-based ECO router with all enhanced algorithms in this thesis

using C++ language. We tested a test case from a real VLSI desgin on a 2.4GHz Pentium4 PC

with 1GB Ram and performed p2p routings using metal2 and metal3 layers.

Table 5.1 shows the number of tiles of metal2 and metal3 layers in the corner stitching

planes. The results without routing graph reduction are listed at the second column, and the

third column is obtained after applying routing graph reduction. The number of tiles decreases

by 57%. We list the pre-process time before routing in Table 5.2. The construction time of

corner-stitching planes is listed at the second column and the time performing RGR is listed at

the third column.

Table 5.1. The number of tiles in corner stitching planes

Origin After RGR Layer

#Block

Tiles

#Space Tiles # Block Tiles #Space Tiles

Met2 1067179 973528 470325 380798

Met3 591120 541706 289144 218444

Total 3173533 (C1) 1358711 (C2)

Reduction rate 0.571

※ Reduction rate: (C1-C2)/C1

Table 5.2. The pre-process time before routing.

Pre-process CS Plane Construction (Tcs) RGR (Trgr)

Time (second) 21.656 5.889

 - 46 -

We performed seven p2p routings using three methods to get the routing statistics,

including the routing time (tile propagation time), wire length and the number of vias. In table

5.3, the second column is for pure tile propagation, and the third column for the case of

applying routing graph reduction. When applying routing graph reduction, the routing time

improve about 50%, as shown in column T1. Besides, it requires additional pre-process time.

Hence, the total improve rate is about 40 % as shown in column T2. The wire length and the

number of via are almost the same.

Table 5.4 shows the case of applying routing graph reduction and ECO global routing, and

the right two items in the second column show how many times the extended routing and

GCell restructuring and rescheduling are performed. Compared with pure tile-based router,

the cost time decreases about 80-90%, as shown in column T3. However, the wire length

increases by 3~30%, as shown in column W. The wire length is much longer for TEST5

because the start terminal is located on a very density region. Therefore, the global router is

hard to find a good global path.

 - 47 -

Table 5.3. Apply Routing Graph Reduction
Pure tile-based router Apply RGR

Test

name

RT

(Ta)

WL

(Wa)

#Vias

(Va)

RT

(Tb)

WL

(Wb)

#Vias

(Vb)

T1(%)

T2(%)

TEST1 128.3 12035.07 480 65.8 12035.08 480 48.7 44.2

TEST2 82.6 11553.93 478 41.8 11553.96 478 49.5 42.3

TEST3 73.9 11399.45 394 38.3 11399.48 394 48.2 39.4

TEST4 65.3 9667.94 398 33.1 9667.97 398 49.3 40.3

TEST5 52.2 11194.86 508 26.5 11194.92 508 49.7 38.0

TEST6 121.5 12618.18 498 64.4 12618.21 498 47.0 42.2

TEST7 147.1 11732.99 502 75.6 11733.03 502 48.7 44.7

※T1 : (Ta-Tb)/Ta, T2 : (Ta-(Tb+Trgr))/Ta

※RT : routing time(second) , WL: wire length(um)

Table 5.4. Apply ECO Global Routing with Routing Graph Reduction.
Apply RGR +ECO Global Routing

Test

name

RT

(Tc)

WL

(Wc)

#Vias

(Vc)

#ER #GCRS

T3(%) W (%) V(%)

TEST1 8.56 12497.55 184 0 0 88.7 3.8 -61.6

TEST2 4.62 12607.58 530 1 0 87.2 9.1 10.8

TEST3 4.28 12173.36 536 0 0 86.2 6.7 36.0

TEST4 4.62 10687.03 416 4 4 83.9 10.5 4.5

TEST5 5.29 14437.81 588 4 2 78.5 28.9 15.7

TEST6 5.56 13533.45 516 0 0 90.5 7.2 3.6

TEST7 6.92 13097.15 262 1 0 91.2 11.6 -47.8

 ※ The global routing partitions the layout to 28x28 GCells and each GCell’s width is about 122 pitches.

 ※ ER : Extended Routing, GCRS: GCell restructuring and rescheduling

 ※ RT : routing time(second), WL: wire length(um)

 ※ T3 : (Ta-(Tc+ Trgr))/Ta , W : (Wc-Wa)/Wa , V: (Vc-Va)/Va

 - 48 -

Chapter 6

Conclusions

In this thesis we presented two methods to promote routing speed of the tile-based router.

The first is routing graph reduction. By redundant tiles removal and neighbor tiles alignment, it

diminishes tile fragmentation as well as reduces the routing time without sacrificing routing

quality. The second is ECO global routing. It improves a lot the speed of the routing at little

expense of routing quality. Also we proposed a routing flow, including extended routing and

GCell restructuring and rescheduling, to incrementally expand ECO routing regions when

global routing can not guide detailed routing to find a feasible path. Experimental results

show that routing graph reduction can save routing time by about 40%, while ECO global

routing with routing graph reduction can further reduce routing time up to 85% or so.

 - 49 -

Bibliography

[1] J. Cong, L. He, C.-K. Koh, and P. Madden, “Performance optimization of VLSI

interconnect layout,” Intergr. VLSI J., vol. 21, no. 1–2, pp. 1–94, Nov. 1996.

[2] T. Ohtsuki, “Gridless routers—New wire routing algorithms based on computational

geometry, in Proc. Int. Conf. Circuits and Systems, pp. 802809, May 1985.

[3] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through

polygonal obstacles in O(n(log n)) time,” in Proc. 3rd Annual Symp. Computational

Geometry, 1987, pp. 251–257.

[4] Y. Wu, P. Widmayer, M. Schlag, and C. Wong, “Rectilinear shortest paths and minimum

spanning trees in the presence of rectilinear obstacles,”IEEE Trans. Computers, vol.

C-36, no. 1, pp. 321-331, 1987.

[5] S.Zheng, J.S. Lim, and S. Iyengar, “Finding obstacle-avoiding shortest paths using

implicit connection graphs,”IEEE Trans. Computer-Aided Design, vol. 15, no. 1, pp.

103-110, Jan. 1996.

[6] J. Cong, J. Fang, and K. Khoo, “An implicit connection graph maze routing algorithm

for ECO routing,” in Proc. Int. Conf. Computer-Aided Design, pp. 163167, Nov. 1999.

[7] J. Cong, J. Fang, and K. Khoo,“DUNE: A multilayer gridless routing system with wire

plan-ning,”in Proc. Int. Symp. Physical Design, Apr. 2000, pp. 1218.

 - 50 -

[8] J. Cong, J. Fang, and K. Khoo,“DUNE - A multilayer gridless routing system,”IEEE

Trans. Computer-Aided Design, vol. 20, no. 5, pp. 633-647, May. 2001.

[9] M. Sato, J. Sakanaka, and T. Ohtsuki, “A fast line-search method based on a tile

plane,” in IEEE Int. Symp. Circuits and Systems, pp. 588591, May 1987.

[10] A. Margarino, A. Romano, A. De Gloria, F. Curatelli, and P. Antognetti, “A

tile-expansion router,”IEEE Trans. Computer-Aided Design, vol. CAD-6, pp. 507517,

July 1987.

[11] R. Eric Lunow, “A Channelless, Multilayer Router,”in 25th ACM/IEEE Design

Automation Conference, pp. 667 - 671, 1988.

[12] L.-C. Liu, H.-P. Tseng, and C. Sechen, “Chip-level area routing,” in Proc. Int. Symp.

Physical Design, pp. 197204, Apr. 1998.

[13] C. Tsai, S. Chen, and W. Feng, “An H-V Alternating Router,” IEEE Trans.

Computer-Aided Design, vol. 11, pp. 976–991, Aug. 1992.

[14] J. Dion and L. M. Monier,“Contour: A tile-based gridless router,”Western Research

Laboratory, Palo Alto, CA, Research Report 95/3.

[15] Zhaoyun Xing and Russell Kaog, “Shortest Path Search Using Tiles and Piecewise

Linear Cost Propagation,”IEEE Trans. Computer-Aided Design, vol. 21, no. 2, pp.

145158, Feb. 2002.

 - 51 -

[16] J. K. Ousterhout, “Corner Stitching: Adata-structuring technique for VLSI layout

tools,” IEEE Trans. Computer-Aided Design, vol. CAD-3, pp.87–100, Jan. 1984.

[17] Preparata Franco P. & Shamos Michael Ian, “ Computational geometry : an

introduction”, Springer-Verlag, New York ,1985

