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Presented is a rapid calculation tool for the optimization of blast wave related mitigation strategies. The
motion of gas resulting from a blast wave (specified by the user) is solved by the Quiet Direct Simulation
(QDS) method – a rapid kinetic theory-based finite volume method. The optimization routine employed is
a newly developed Genetic Algorithm (GA) which is demonstrated to be similar to a Differential Evolution
(DE) scheme with several modifications. In any Genetic Algorithm, individuals contain genetic information
which is passed on to newly created individuals in successive generations. The results from unsteady QDS
simulations are used to determine the individual’s “genetic fitness” which is employed by the proposed
Genetic Algorithm during the reproduction process. The combined QDS/GA algorithm is applied to various
test cases and finally the optimization of a non-trivial blast wave mitigation strategy. Both QDS and the
proposed GA are demonstrated to perform with minimal computational expense while accurately solving
the optimization problems presented.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Recent rapid increases in urban populations, the increased fre-
quency of dense groups of city buildings, and increased use of high
powered explosives by terrorists, mean that the risk and conse-
quence of blast waves in urban regions are now more significant
than ever before. Blast wave reflection, channelling through ur-
ban corridors and propagation around buildings are all situations
where analytical solutions are limited in usefulness [1]. In such
environments, the predicted path and nature of blast waves is im-
possible to predict without the aid of experimentation or computer
simulation. Previously, significant efforts have been made towards
the prediction of blast waves in urban environments through the
use of conventional CFD [2–8]. Such simulations are often used to
aid city planners in better protecting against the threat of blast
waves. However, the expense associated with these simulations
limits their application to hypothetical predictions under ideal con-
ditions. Very few numerical routines are computationally efficient
enough to be applied in a general predictive manner. The time re-
quired for mesh generation, user input, general flow solution and
post-processing means that even a simple analysis performed us-
ing CFD can easily take hours on a single CPU. Supercomputing
facilities have become the expensive fallback when blast flow sim-
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ulations of a realistic size are needed; however their use often
remains unfeasible in practice.

A common focus for blast wave (CFD) simulations within city
environments has been its application to studies in city planning,
building design and materials safety [1,4]. In these instances, a
large number of unknown factors are assumed by a designer and
optimal design is obtained through the development of paramet-
ric studies and their outcomes [9,10]. In such studies, the outcome
of each simulation is measured through the comparison of desired
quantities (such as pressure or impulse) resulting from simulations
with different parameters. Such parametric studies, which can only
investigate a relatively small number of combinations of parame-
ters, can lead to misleading conclusions and inappropriate designs
for blast wave mitigation.

Due to the large number of variables in such parametric stud-
ies, the use of numerical optimization algorithms is very appealing
[11–14]. A common choice is the application of Genetic Algorithms
(GAs) to determine ideal configurations for any desired measure
of fitness. In a Genetic Algorithm, the various parameters factored
into the optimal design (such as structure or support placement,
size, etc.) are referred to chromosomes. Each different combination
of these chromosomes results in a unique genetic genome. Through
the careful selection of superior genetic properties and reproduc-
tion, the general level of fitness (i.e. measure of quality, related to
the desired outcome) is seen to generally increase from genera-
tion to generation. The primary drawback to such algorithms can
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be the large number of generations required before the genome
holding the ideal/optimal genetic information is determined.

In the instance of CFD simulations of blast waves through an
urban environment (or otherwise), the measure of fitness (or qual-
ity) of each genetic code is determined by applying the complete
steady/unsteady flow development and solution for each unique
genetic code (or set of structure design parameters) [11]. Thus,
the application of conventional CFD simulations to Genetic Algo-
rithms is typically limited by their computational expense [11]. In
addition, the unique nature of each genetic code means that each
simulation may require its own unique computational grid and
accordingly possess varying degrees of accuracy. Therefore, applica-
tion of Genetic Algorithms to optimization where CFD is involved
is restricted to the use of computationally efficient and accurate
gas-flow solvers. Alternatives to Genetic Algorithms are conven-
tional gradient based optimization methods, which have been ap-
plied to CFD related problems [13,14].

The Quiet Direct Simulation (QDS) method for rapid simulation
of ideal gas flows was first introduced as the Quiet Direct Sim-
ulation Monte Carlo (QDSMC) by Albright et al. [15,16] and later
extended to higher-order accuracy and renamed as QDS by Smith
et al. [5]. The QDS algorithm is based on flux calculations from
a numerical approximation of the Maxwell–Boltzmann equilibrium
particle velocity distribution function. QDS fluxes are true direc-
tional; it is possible, in any given time step, for fluxes of mass,
momentum and energy to travel from any source region to a des-
tination region, regardless of whether an adjacent interface exists
[5,17]. This feature has been shown to increase the accuracy of
flows unaligned with the computational grid [17]. This accuracy
and speed of QDS flux calculation makes it ideal for combination
with a Genetic Algorithm for high speed optimization solutions.

2. Quiet Direct Simulation (QDS)

2.1. Introduction to QDS

The QDS algorithm was originally introduced by Albright et al.
[15,16] as QDSMC, or Quiet Direct Simulation Monte Carlo. Fol-
lowing this, the QDS algorithm and its extension to second-order,
multi-dimensional flux-based schemes were developed by Smith et
al. [5] and Cave et al. The complete details are covered in [5,15,16]
and it is briefly described in the following. The normal random
variable N(0,1) is defined by the probability density:

p(x) = e−x2/2

√
2π

. (1)

By way of Gaussian quadrature approximation, the integral of
Eq. (1) over its limits can be approximated by:

∞∫
−∞

e−x2/2

√
2π

f (x)dx ≈
N∑

j=1

w j f (q j), (2)

where w j and q j are the weights and abscissas of the Gaussian
quadrature (also known as the Gauss–Hermite parameters) and N
is the number of terms. The abscissas are the roots of the Hermite
polynomials which can be defined by the recurrence equation:

Hn+1(q) = 2qHn − 2nHn−1, (3)

where H−1 = 0 and H0 = 1. The weights can be determined from:

w j = 2n−1n!√π

n2[Hn−1(qi)]2
. (4)

Eq. (2) becomes exact when the function f (x) is a linear com-
bination of the 2N − 1 polynomials x0, x1, . . . , x2N−1. Thus, in QDS
the Maxwellian distribution of velocities can be approximated with
a number of velocity “buckets” in each spatial dimension having
velocities determined of the abscissas of the quadrature, and the
fraction of cell mass carried in each bucket determined by the
weights.

2.2. QDS flux calculation

Using the weights and abscissas derived in Section 2.1, the to-
tal flux of mass, momentum and energy from a one-dimensional
source into a one-dimensional destination is given by the sum of
individual flux contributions from each “particle”:

FMASS =
N∑

J=1

F J
MASS, FMOM =

N∑
J=1

F J
MOM,

FENG =
N∑

J=1

F J
ENG, (5)

where F J
MASS , F J

MOM and F J
ENG are the individual mass, momen-

tum and energy fluxes respectively from particle J . Each of the
individual contributions (with first-order spatial accuracy) can be
described by the expressions:

F J
MASS = v J �t

�x
m J , F J

MOM = v J �t

�x
m J v J ,

F J
ENG = v J �t

�x
m J

[
1

2
v2

J + ε J

]
, (6)

where the particle mass m J , particle velocity v J and particle in-
ternal energy ε J are:

m J = ρ�xw J√
π

, v J = u + √
2σq J , ε J = (ξ − 1)σ 2

2
(7)

and ρ is the density, u is the bulk (or mean) flow velocity and
σ = (RT )1/2 in a given source cell. The total number of degrees of
freedom ξ is defined as ξ = 2(γ − 1)−1. Thus energy which should
be transported by unsimulated translational degrees of freedom (in
this case, the y- and z-directions) is accounted for as particular
internal energy. The motion of fluxes of each particle J is demon-
strated in Fig. 1. The flux FMASS given by Eq. (5) is the total flux
of mass from the source region to the destination region. This is
analogous to the True Direction Equilibrium Flux Method (TDEFM)
flux [17], which represents the analytical solution to the QDS flux
as the number of terms (N) approaches infinity [5].

2.3. Extension of QDS to higher spatial accuracy

To assist in removal of excessive numerical dissipation the orig-
inal QDS algorithm was modified to include an extension to higher
spatial accuracy. This is performed using the spatial reconstruc-
tion scheme proposed by Smith et al. [5]. The full details of the
implementation can be found in [5]; the implementation is only
discussed briefly here. The heart of the technique involves the re-
construction of primitive variables over each source cell assuming
a linear variation, i.e. u(x) = uAVG + x(du/dx)EFF where subscript
AVG is the average value of u(x) taken over the cell width, x is the
distance from the cell center, and (du/dx)EFF is an effective gradi-
ent of quantity u calculated using a slope limiting function. In this
study, the selected limiter is the Monotonized Central Difference
(MC) limiter [24]:(

dQ

dx

)
EFF

= MINMOD

[(
dQ

dx

)
C
,

α.MINMOD

[(
dQ

)
,

(
dQ

) ]]
, (8)
dx F dx B
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Fig. 1. One- (1) and two- (2) dimensional first-order accurate, true direction flux transfer for a QDS gas given a particular QDS particle and velocity. In a given time step, gas
from a source cell is able to flux to any neighbor, regardless of whether or not the respective cells share an interface [17,5]. Fluxes are carried by particles travelling with
velocities (V J )x and (V J )y , where J represents the current QDS particle ( J = 0,1,2, . . . , N) and N is the number of terms. In spatially first-order accurate, two-dimensional
flux calculations the fraction of mass from each particle to successfully reach a given destination region is a ratio of the area (V J )x(v J )x�t2/�x�y. Details on extension to
second-order spatial accuracy can be found in [15,18].
where the subscripts EFF indicate an effective gradient, while C, F
and B indicate calculation of the slope of Q using central, for-
ward and backward finite differences respectively. The parameter α
is used to control numerical dissipation and has values between
(2 > α > 0) [24]. Since QDS and all related kinetic theory based
numerical schemes (such as TDEFM and EFM) possess a large de-
gree of numerical dissipation [18], the value is set to the maximum
value of two (2).

3. Genetic Algorithm implementation

A large number of Genetic Algorithm (GA) methods have been
developed [12]. These algorithms are part of a larger family known
as Evolutionary Algorithms (EA) which also includes Genetic Pro-
gramming and Evolutionary Strategies [19]. Included within the
family of Evolutionary Algorithms are sub-families of Differential
Evolution (DE) algorithms. There are many minor differences be-
tween various methods: however, the general approach is universal
and is traditionally described in four steps:

1. Initialization – Create a population with desired (often ran-
domly assigned) characteristics. If required, one may seed this
population with a known result, which may increase the rate
of convergence towards an optimal solution.

2. Evaluation – Regardless of approach, at some stage the fitness
of each member of the population is evaluated. This indicator
is typically defined by the user and is dependent on the na-
ture of the optimization problem. Fitness may be described by
a single variable or characteristic of each member of the pop-
ulation, or may depend upon multiple characteristics.

3. Selection and reproduction:
a. Selection – The population of later generations is controlled

through the selection of parents and the reproductive al-
gorithm applied. Parents are often randomly selected from
members of the previous generation to ensure sufficient
“genetic diversity” – selection of only the fittest members
from each generation may lead to an incorrect evolutionary
state (i.e. convergence towards a local minimum). A larger
diversity helps ensure the predicted optimal state is the
globally optimal state, though typically increases the num-
ber of generations required to obtain a solution.

b. Reproduction – The characteristics (genomes) of the se-
lected parents are used to define the genomes of their off-
spring. The offspring’s genomes are calculated in two steps:
(i) through a genetic crossover, where characteristics of both
parents are combined in some fashion, and (ii) through
mutation, where the child’s genes are modified in some
manner (often a random process) to ensure that sufficient
diversity exists that the solver does not become trapped in
a local minima.

4. Termination – After a large number of generations either
(i) the average measure of fitness meets a user defined level,
or (ii) the variance of genomes is very low and the simula-
tion has reached an evolutionary “dead end”. In these cases
the generation cycle is ceased and the results are examined.

In the cases where information is required as a real, continuous
value, the families of Differential Evolution (DE) solvers [20] are
very useful. This family of solvers has been shown to be effective
on a large range of optimization problems and has been shown
to be more accurate than many other GAs, simulated anneal-
ing and controlled random search algorithms [20–22]. DE based
solvers have also been applied to optimization problems involved
CFD [11].

3.1. Conventional DE algorithm

The reproduction phase (combination and mutation) employed
by a DE algorithm is different to the conventional crossover
method applied to binary genetic forms used in existing ap-
proaches [19–21]. In a typical DE algorithm, a trial child v , in-
tended to replace a child c of the previous population, is created
using genetic information X from three separate parents (P1, P2
and P3) such that:
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Xv = X P1,g + F (X P2,g − X P3,g), (9)

where P1, P2 and P3 are unique (P1 �= P2 �= P3 �= c) and randomly
selected from the population of generation g . The mutation fac-
tor F is used to increase genetic diversity [19] (and has values
between 0 and 2) while the difference term (X P2,g − X P3,g) is pro-
portional to the two-term standard deviation as seen by child v .
Following this, a Monte Carlo based rejection–acceptance proce-
dure is used to modify Xv :

Xv =
{

Xv , R f � CR,

Xc, R f > CR,
(10)

where CR is the probability of acceptance (varying from 0 to 1).
Finally, if the measured fitness of v is found to be an improvement
over the previous member of population it will replace, the new
child is assigned the trial value Xv :

Xc,g+1 =
{

Xv , f (Xv) > f (Xc,g),

Xc,g, f (Xv) � f (Xc,g).
(11)

This conventional DE algorithm has the advantage that the pop-
ulation’s average fitness level from generation to generation must
always increase. The mutation factor F and acceptance probabil-
ity CR affect the speed and stability of the numerical scheme. Care
must be taken to ensure a balance between the rate of conver-
gence on the optimal solution and the scheme stability.

3.2. Proposed DE algorithm

The proposed algorithm aims to modify the original DE al-
gorithm based on the assumption of normal (i.e. Gaussian) dis-
tribution of genetic properties in the population. This concept is
modelled after the simulation particle creation process in a direct
molecular simulation under equilibrium conditions (such as that
employed by EPSM [18]). To demonstrate: particles in equilibrium
are assigned velocities V = U + RNσ 1/2 where V is the vector of
molecular velocities, U is a vector of mean velocities, σ is the vari-
ance of the sampled population and RN is a normally distributed
random number with a mean of 0 and variance of 1.

The proposed algorithm aims to build on the traditional DE al-
gorithm with this concept in mind. Instead of molecular velocities,
genetic traits X are assigned to children based on some mean and
variance of genetic traits from parents P . The proposed algorithm
is outlined below:

1. Three parents are selected from the population (P1, P2 and
P3). These three parents are unique (P1 �= P2 �= P3), but only
P2 and P3 are selected randomly. The parent P1 is always se-
lected as the fittest member of generation g .

2. The sample variance S2 is estimated from Parents 2 and 3 as
S2 = (X P2,g − X P3,g)

2. The employed genetic variance can be
adjusted using σ such that S2 = σ 2(X P2,g − X P3,g)

2. Only two
parents are selected for computational efficiency and must be
randomly selected (i.e. cannot involve parent P1) to, on aver-
age, obtain an accurate estimate.

3. To ensure bias towards the stronger parent, the mean genetic
trait is estimated as:

X̄ g = G f X P1,g + (1 − G f )X P2,g, (12)
where G f is a biased genetic fraction G f = F · MAX[R f ,

1 − R f ]. Here, R f is a uniformly distributed random number
and F is a constant used to further control the amount of bias
given towards the fitter parent.

4. Using this information, the genetic properties of a new child
Xc,g+1 are given by:
Fig. 2. Flowchart showing the general QDS unsteady flow solution algorithm. Bound-
ary definition, initialization and mesh generation relevant to the conditions pro-
vided (contained within the genetic information of the governing child) are applied
within the INIT() function. The flow solution is then advanced through time until a
desired flow time T is reached. A typical true direction, finite volume approach is
employed [16,15]. Fluxes are calculated from each cell to their respective neighbors
in the FLUXES() function. The fluxes are later distributed and the conserved quantity
vector updated within the STATE() function. For evaluation of fitness within the GA
algorithm, the unsteady fitness parameter is recorded at each time interval dt. The
worse level of fitness over the duration of time T is returned to the GA algorithm
for use.

Xc,g+1 = X̄ g + RN S

= G f X P1,g + (1 − G f )X P2,g + RNσ(X P2,g − X P3,g).

(13)

5. Following the traditional DE scheme, the genetic properties of
the new child Xc,g+1 are only accepted if the new genetic
properties result in a “fitter” configuration:

Xc,g+1 =
{

Xc,g+1, f (Xc,g+1) > f (Xc,g),

Xc,g, f (Xc,g+1) � f (Xc,g).
(14)

3.2.1. Initialization
During initialization, the characteristics of each child c (Xc,0)

are randomly selected over the permitted range of values. It is
important that there is enough genetic diversity in the initial pop-
ulation to ensure sufficient scope to capture to globally optimized
solution. The process of seeding, wherein one or more of the chil-
dren are given characteristics known to be close to ideal, is not
investigated here.

3.2.2. Evaluation
The evaluation of a child’s fitness involves the QDS simulation

of unsteady flow over the specified barrier geometry. The general
procedure for an unsteady QDS simulation is presented in Fig. 2
with the integration of QDS and the proposed GA algorithm shown
in Fig. 3. The fitness of each child c is measured by the maximum
recorded pressure over the duration of the blast at either (i) a sin-
gle location, or (ii) averaged over a series of specified locations.
The unsteady flow simulation is ceased after allowing sufficient
time for the pressure at the given region to have decreased well
past maximum. The worse measure of fitness recorded over flow
time F is returned to the GA algorithm for use in the selection and
reproduction phases.
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Fig. 3. Flowchart showing the general GA procedure. After initialization (within the GA_INIT function), each child c within generation g is tested for fitness within the
GA_EVALUATE_CHILD function via an unsteady QDS flow simulation. The fittest member of generation g is used together with two other randomly selected and unique
members of generation g to create the new children of each following generation g + 1 (GA_REPRODUCE).
3.2.3. Selection and reproduction
In the proposed scheme, there is always a slight bias towards

the fitter parent P1. The variable F further controls the bias to-
wards the fitter parent and performs a similar function to the vari-
able F employed in existing traditional DE schemes. The variable
σ is used to artificially create additional genetic diversity (than the
amount sampled) through mutation and plays a similar role to that
of CR employed in the traditional DE scheme. Increasing F while
decreasing σ will lead to solutions with more focus on the fittest
member of each generation, leading to rapid conversion at the po-
tential cost of robustness (i.e. locating false maxima/minima in the
solution range). Decreasing F and increasing σ leads to a more di-
verse population created during reproduction, slowing convergence
towards the optimal solution while increasing robustness. Using
this procedure, it can be shown that the average level of fitness
from generation to generation increases towards an optimal level
of fitness in a manner faster, on average, than the demonstrated
DE algorithm.

4. Results and discussion

4.1. Genetic Algorithm optimization – Ackley’s function

Ackley’s function is a continuous, multimodal test function ob-
tained by modulating an exponential function with a cosine wave
of moderate amplitude [22,23]. The minimization of Ackley’s func-
tion is a common test of robustness due to the large number of
local minima [19,22]. The function in its two-dimensional form is:

f (x, y) = 20 + exp(1) − 20 exp

(
−0.2

√
(x2 + y2)

2

)

− exp

(
1

2

(
cos(2πx) + cos(2π y)

))
. (15)

A surface plot and contour of Ackley’s function between [(−5 <

x < 5), (−5 < y < 5)] are shown in Fig. 4. The convergence to-
wards the optimal solution, as calculated using both conventional
DE algorithms [22] and proposed algorithms is also shown com-
pared in Fig. 5. To aid in the reduction of statistical scatter re-
sulting from the various stochastic processes involved, the mean
best fitness is shown over 1000 unique simulations with each us-
ing 20 children per generation over 50 generations. The param-
eters F , CR and σ can be adjusted to obtain various outcomes
for both solvers. In general, the speed of initial convergence of-
ten comes at the cost of robustness. For any given value of F , CR
and σ there is an associated convergence limit where the solver
is unable to further refine the solution – this can be seen in
Fig. 5 in both the proposed and conventional DE algorithms. For
example, when using the proposed algorithm with F = 1.5 and
σ = 1.0, there is insufficient mutation in later generations for the
solver to move away from a certain point. However, with addi-
tional genetic variation (σ = 1.5), the solver is able to continue
its convergence (at least over the range of generations shown) at
the sacrifice of the initial rate of convergence. For this problem,
optimal performance for the proposed algorithm is given when
F = 1.0 and σ = 1.0 which provides results with faster conver-
gence and accuracy after 50 generations than any conventional DE
algorithm with parameter values in the range (0.25 � F � 2.0) and
(0.2 � CR � 1.0).

4.2. Genetic Algorithm optimization – Peak’s function

Another function employed as a benchmark test is the Peak’s
function from MATLAB [25], which is:

f (x, y) = 3(1 − x)2 exp
(−x2 − (y + 1)2)

− 10

(
x

5
− x3 − y5

)
exp

(−x2 − y2)
+ 1

3
exp

(−(x + 1)2 − y2). (16)

This function is also shown in Fig. 4 and is used here to demon-
strate the proposed DE algorithm’s flexibility as a general opti-
mization tool. Over the range (−3 < x < 3), (−3 < y < 3) the
global minima is at (x, y) ≈ (0.23,−1.62) ( f (x, y) ≈ −6.551) with
another local minima at (x, y) ≈ (−1.36,0.2) ( f (x, y) ≈ −3.05).
The difference between mean best fitness and global minima is
shown in Fig. 5 for various parameters in both the proposed and
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Fig. 4. (Top) Ackley’s function (in two-dimensional form) plotted over range ([−5 < x < 5], [−5 < Y < 5]). The global minima exists at (x∗, y∗) = (0,0) with f (x∗, y∗) = 0. The
large number of local minima over the specified range makes the function useful for testing the robustness of optimization schemes [23]. (Bottom) MATLAB’s Peak function
[25] plotted over range ([−3 < x < 3], [−3 < Y < 3]). The global minima exists at (x∗, y∗) ≈ (0.23,−1.62) with f (x∗, y∗) ≈ −6.551.
conventional DE algorithms. The same trade-off between initial
rate of convergence and robustness is demonstrated for various
values of F , CR and σ . Insufficiently large values of σ result
in an increasing fraction of solutions becoming trapped in the
local minima at (x, y) ≈ (−1.36,0.2). The same trend is (gen-
erally) presented in the conventional DE solver. Over 50 gen-
erations, the proposed algorithm provides the best result when
F = 1.0 and σ = 2.0 and can be shown to provide better per-
formance when compared to traditional DE algorithms with pa-
rameter values in the range (0.25 � F � 2.0) and (0.2 � CR �
1.0).

4.3. Simulation and optimization verification – barrier design

In this study, blast wave mitigation is investigated through
(i) barrier design and (ii) barrier placement under various restric-
tions. Here we investigate two barrier designs, each with a differ-
ent number and type of variable.

4.3.1. Barrier Design A
Barrier Design A holds four (4) geometric configuration vari-

ables. This is demonstrated in Fig. 6. These variables make up the
genetic characteristics X1–X4 of each child and are (i) the primary
arm length L1, (ii) the secondary arm length L2, (iii) the primary
arm angle α1, and (iv) the secondary arm angle α2. The barrier
stem height, L3, is fixed in its location and restricted by the condi-
tion that each design uses the approximately the same total length
of material, or L1 + L2 + L3 = constant.

4.3.2. Barrier Design B
Barrier Design B has two (2) variables and is a general simpli-

fication of Barrier Design A. This is also demonstrated in Fig. 6.
In this instance, the variables that make up the genetic charac-
teristics of each child are (i) the primary arm length L1, and (ii)
the secondary arm length L2. The previous angles α1 and α2 are
fixed at 0 and 180 degrees forming a T-shaped cross section. As
with Barrier Design A, the height of the stem of the barrier L3
is restricted (L1 + L2 + L3 = constant). In both designs, blasts are
modelled through the inclusion of a small, high temperature re-
gion at the location L S = 0.5L where L is the length of the en-
tire simulation region. The radius of the high temperature region
was 0.02L with a temperature one hundred times greater than
ambient conditions, resulting in a very large, strong blast wave
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Fig. 5. Convergence towards the global minima for (top) Ackley’s function, and (bottom) MATLAB’s Peak function. Both the conventional DE algorithm and the proposed
algorithm are presented for various values of F , CR and σ with the average taken over 1000 unique runs of 50 generations with each containing 20 children.
propagating through the surrounding regions. All simulations are
two-dimensional simulations of height H = 0.5L. Each simulation
employed a Cartesian grid with 20,000 (200 by 100) rectangular
cells. The maximum length of material permitted in each case was
L1 + L2 + L3 = 0.3H . The barrier was placed at location LB = 0.7L
and pressure readings taken at location L P = 0.9L. In all cases, the
ambient ideal inviscid gas is at rest with temperature T and a spe-
cific gas constant of R . All simulations are advanced in time up
to a maximum flow time F of F (RT )0.5 L−1 = 0.4. The fluxes from
each cell are distributed to the nearest surrounding 8 cells only
through the restriction of the kinetic CFL number, given in each
cell as:

CFL = MAX

[MAX(v X
J )�t

�x
,

MAX(vY
J )�t

�y

]
. (17)

The time step is adjusted to ensure that the largest CFL number at
any point in the simulation region is CFL = 0.75. It is emphasized
that this CFL is not for stability but rather to maintain physical
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Fig. 6. Barrier Design A (top, left) and Barrier Design B (top, center) for simple optimization verification and simulation domain showing blast source, barrier and gauge
placement (top, right). (Bottom) Convergence of the fittest and mean fittest solution predicted using the proposed DE algorithm with F = 1.5, σ = 1.0.
realism (accuracy) in the results [15,16,18]. Neumann boundary
conditions are applied for the atmospheric boundaries while sim-
ple reflective conditions are applied to body surfaces.

For the purpose of demonstrating the flow solving capacity of
QDS, sample unsteady flow contours for a randomly selected bar-
rier configuration are presented in Fig. 7. As a result of the large
temperature ratio across the blast source, a blast wave (shock
wave) is seen to propagate outwards from the blast source in a ra-
dially symmetric manner. The interaction of the shock wave with
the barrier results in a reflected shock. The reflected shock prop-
agates back towards the source region and later recombines with
the original blast wave.

The convergence towards the correct optimal wall design is
shown in Fig. 6. Results are shown for several simulation runs
(runs A through D) with varying random initial conditions. Con-
vergence is shown over 20 generations with 10 children in each
using parameter values F = 1.5 and σ = 1.0. Pressure contours of
the optimal barrier shape (i.e. a straight wall) are shown in Fig. 7
at various flow times. This result graphically confirms the conver-
gence shown in Fig. 6. Despite being trivial in nature, the test
was important in verifying the accurate nature of the combined
QDS/GA method prior to a less trivial CFD optimization problem.

4.4. Blast wave mitigation optimization through barrier placement

The optimization of a blast wave mitigation strategy through
optimal placement of several barriers is investigated. The genetic
characteristics in this case are the locations of two walls, L1 and
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Fig. 7. (Top) Unsteady flow development over a barrier of genetic configuration (L1/LT = 0.307, L2/LT = 0.225, L3/LT = 0.468). (Bottom) Unsteady flow development for the
resulting optimal design (a simple wall). Contours of pressure are shown at flow times of f (RT )0.5 H−1 = 0.08,0.16 and 0.24. Since the QDS solver is an Eulerian flow solver,
a taller barrier between the source and the pressure gauge is (mathematically) equivalent to placing the pressure gauge at a location further from the source.
L2, as shown in Fig. 8. These variables are further governed by
the rules that (i) each must fall within the limits LMIN = 0.6L and
LMAX = 0.9L, and (ii) they cannot geometrically interfere with each
other (i.e. they must not coexist in the same region of space). Each
barrier has a width of WBARRIER = 0.02L and height of HBARRIER =
0.3H . The building surface is located at LBLG = 0.95L and the blast
source is placed at L S = 0.5L. The radius of the blast is identical to
previous test cases (0.02L) with a temperature 100 times that of
the surrounding region.

Determining the optimal location for blast barrier placement is
guesswork when performed by human experts: the flow of blasted
gas in complex urban environments is very difficult to predict.
An original barrier placement configuration was chosen arbitrar-
ily under the assumption that (i) a barrier placed as close to the
blast source as possible, and (ii) a barrier placed as close to the
target structure as possible (i.e. L1 = 0.6L, L2 = 0.9L), would pro-
vide optimal protection. The two mobile barriers are identical, with
heights HBARRIER = 0.3H and width WBARRIER = 0.02L. The unsteady
flow field development resulting from the initial configuration is
shown in Fig. 9.

The optimal configuration, as calculated using the proposed
Genetic Algorithm, placed the barrier locations at approximately
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Fig. 8. Optimization for barrier location in a blast wave mitigation scenario. (Top) Computational domain for the mitigation scenario: the target structure is placed LSOURCE

from the blast source with barriers of height HBARRIER and width WBARRIER located between LMAX and LMIN in front of the target structure. (Bottom) Convergence of fittest
and mean fitness solutions for four unique runs of the modified DE algorithm using F = 1.5 and σ = 1.0 with 10 children in each generation.
L1 = 0.69L and L2 = 0.8L. The convergence towards the optimal
result is also shown in Fig. 8 for several runs (runs A through D)
using parameter values F = 1.5 and σ = 1.0. The pressure contours
resulting from this configuration is shown in Fig. 9. The closer
proximity of the barriers, combined with sufficient distance from
the structure, results in lower instantaneous pressures acting on
the pressure gauges P1–P4 placed at 0.1H , 0.3H , 0.5H and 0.7H
respectively. This trend is demonstrated in Fig. 10.

To confirm the correct identification of the optimal result, a
parametric study was conducted. A large number (2500) of sim-
ulations with values of L1 and L2 ranging from (0.75 < L1 < 0.9)

and (0.65 < L2 < 0.73) were conducted. For each configuration,
the maximum recorded average pressure (over gauges P1–P4) was
recorded. The resulting data showed that the optimization routine
has successfully predicted the best barrier placement configura-
tion. The parametric study also revealed (i) the worst possible
placement configuration is both barriers located in close proxim-
ity to the target structure, and (ii) configurations where a barrier
is placed at 0.7L and the second barrier is placed anywhere in the
space between results in a generally good outcome.
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Fig. 9. Pressure contours showing unsteady flow development for the multi-barrier optimization problem at flow times of T (RT )0.5 H−1 = 0.24,0.36 and 0.48. (Left) Barrier
placement configuration is L1 = 0.6L and L2 = 0.9L. These placements were chosen by an assumption that (i) a barrier as close to the blast as possible, and (ii) a barrier
as close to the building as possible, would provide maximum protection. (Right) Barrier placement configuration is the calculated optimal configuration of L1 = 0.69L and
L2 = 0.8L. The optimal configuration was based on the minimal instantaneous average pressure over the building surface measured by four (4) pressure gauges over the time
frame T (RT )0.5 H−1 = 0.6.
5. Conclusion

Presented is a modified form of a Differential Evolution (DE) al-
gorithm combined with the rapid Quiet Direct Simulation (QDS)
flow solver. The proposed Genetic Algorithm is demonstrated in
the solution of a standard optimization benchmark – minimiza-
tion of Ackley’s function – and then applied to various blast wave
optimization scenarios. The optimal design of a barrier (with sim-
ple design parameters) under the constraint of constant material
quantity is demonstrated. Finally, a blast wave mitigation opti-
mization problem with several mobile barriers is solved with non-
trivial results. The optimal solution is confirmed through a para-
metric study, demonstrating the outcome of the combined QDS/GA
method and providing additional information necessary for an ef-
fective barrier placement strategy.

The developed Genetic Algorithm rapidly converges towards op-
timal solutions while possessing sufficient mutation to prevent
capture in local minima. The combined optimization/unsteady flow
problems converge to an optimal result in approximately 1 hour on
an ordinary single CPU (∼ 3 GHz) with approximately 18 seconds
required per unsteady flow simulation. Future efforts include the
combination of more realistic three-dimensional blast simulations
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Fig. 10. (Left) Traces from pressure gauges P1–P4 placed on the target structure surface at y = 0.1H , 0.3H , 0.5H and 0.7H respectively. (Right) Trace of average pressure
over the target structure. Results are shown for the optimal barrier placement configuration (L1 = 0.69L, L2 = 0.8L) and for the guessed optimal configuration (L1 = 0.69L,
L2 = 0.8L).
and optimization, together with the application of Graphics Proces-
sor Units (GPU) to aid in the efficient and rapid solution of blast
wave optimization problems.
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