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a b s t r a c t

In this paper, we derive some less stringent conditions for the exponential and asymptotic
stability of impulsive control systems with impulses at fixed times. These conditions are
then used to design an impulsive control law for the Quantum Cellular Neural Network
chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two
chaotic systems. An active sliding mode control method is synchronizing two chaotic
systems and controlling chaotic state to periodic motion state. And a sufficient condition is
drawn for the robust stability of the error dynamics, and is applied to guiding the design of
the controllers. Finally, numerical results are used to show the robustness and effectiveness
of the proposed control strategy.

© 2010 Published by Elsevier Ltd

1. Introduction

The chaotic system exhibits unpredictable and irregular dynamics and it has been found in many engineering systems.
Interestingly, chaotic models can describe complex dynamics with only few nonlinear equations without any random
external inputs, and small differences in the initial state can lead to extraordinary differences in the system state. Since Ott,
Grebogi, and Yorke proposed theOGYmethod [1], amethod of controlling chaos, ‘controlling of chaos’ is receiving increasing
attention within the area of non-linear dynamics [2,3]. It has many applications in various systems, while it is unfavorable
inmany other cases due to its irregular behavior. Therefore, both chaos utilization and elimination are important depending
on the specific applications. Chaos control is an effective method for both chaos utilization and elimination and has been
thoroughly studied in various fields of science.
Since the seminal work of Pecora and Carroll [4], it has been an interesting and potential topic in recent years in the

study of chaos synchronization in physics, mathematics and engineering community, etc., and various effective techniques
and methods [5–11] have been proposed over the last decade to achieve chaos synchronization. Thus, as a key technique of
secret communication, chaos synchronization has become a very important goal and a subject of much on-going research.
Basically, the chaos synchronization problem means making two systems oscillate in a synchronized manner. Given a

chaotic system, which is considered as the master system, and another identical system, which is considered as the slave
system, the dynamical behaviors of these two systems may be identical after a transient when the slave system is driven
by a control input [12–17]. In the aforementioned publications regarding chaos synchronization, it is often assumed that all
the parameters of the chaotic systems are invariant and determinate, i.e., the chaotic models are well known.
The variable structure control technique is a discontinuous control strategy that involves, first, selecting a switching

surface for the desired dynamics and, secondly, designing a discontinuous control law such that the system trajectory first
reaches the surface and then stays in it forever [18–28]. Chaos control and the chaos synchronization chaotic system by
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impulsive control is ideal for designing digital control schemes where the control laws are generated by digital devices that
are discrete in time.
As numerical examples, the recently developed Quantum Cellular Neural Network (Quantum-CNN) chaotic oscillator

is used. Quantum-CNN oscillator equations are derived from a Schrödinger equation, taking into account quantum dots
cellular automata structures towhich, in the last decade, awide interest has been devoted, with particular attention towards
quantum computing [29].
This paper is organized as follows. In Section 2, chaos synchronization and chaos control of Quantum-CNN oscillators

chaotic systembyvariable structure control is considered. In Section 3, chaos synchronization and chaos control ofQuantum-
CNN oscillators chaotic system by impulse control is considered. Finally, some concluding remarks are given in Section 4.

2. Chaos synchronization and chaos control of Quantum-CNN oscillators chaotic system by variable structure control

2.1. Chaos synchronization

There are two identical nonlinear dynamical systems, and the master system controls the slave system. The master
system is given here

ẋ = Ax+ f(x) (1)

where x = (x1, x2, . . . , xn)T ∈ Rn denotes the state vector, A is a n×n coefficientmatrix, and f is a nonlinear vector function.
The slave system is given here

ẏ = Ay+ f(y)+ u(t) (2)

where y = (y1, y2, . . . , yn)T ∈ Rn denotes a state vector and u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn is a control input vector.
Our goal is to design a controller u(t) so that the state vector of the slave system (2) asymptotically approaches the state

vector of the master system (1) and finally the synchronization will be accomplished in the sense that the limit of the error
vector e(t) = (e1, e2, . . . , en)T approaches zero:

lim
t→∞

e = 0 (3)

where

e = y− x. (4)

From Eq. (4) we have

ė = ẏ− ẋ = Ae+ F(x, y)+ u(t) (5)

where F(x, y) = f(y)− f(x).
According to the theory of active control, we can use the control input vector-function u(t) to eliminate all items that

cannot be shown in the form of the error vector e. In this way, the vector-function u(t) can be determined.
u(t) = H(t)− F(x, y). (6)

And Eq. (5) is rewritten as

ė = Ae+ H(t). (7)

Eq. (7) describes the error dynamics and can be considered in terms of a control problemwhere the system to be controlled
is a linear system with a control input H(t) as the functions of the error vector e. As long as these feedbacks stabilize the
system, the error vector e converges to zero as t → ∞. This implies that the master system (1) and the slave system (2)
are synchronized finally. There are many possible choices for the control H(t). It is well known that the most distinguished
feature of the sliding mode control technique is that, when in sliding mode, the system is robust to parametric uncertainty
and external disturbances. Without loss of generality, we choose the sliding mode control law, as follows:

H(t) = Kw(t) (8)

where K = (k1, k2, . . . , kn)T is a constant gain vector,w(t) ∈ R is the control input and satisfies

w(t)
{
w+(t) s(e) > 0
w−(t) s(e) < 0 (9)

and s = s(e) is a switching surface that prescribes the desired dynamics.
This results in

ė = Ae+ Kw(t). (10)

In what follows, the appropriate sliding mode controller will be designed in terms of the sliding mode control theory.
(1) Sliding surface design: Generally speaking, the sliding surface s(e) can be defined as
s(e) = Ce = constant (11)

where C = (c1, c2, . . . , cn) is a constant vector.
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The equivalent control approach is found by recognizing that ṡ(e) = 0 is a necessary condition for the state trajectory to
stay on the switching surface s(e) = 0. Hence, when in slidingmode, the controlled system satisfies the following conditions

s(e) = 0 (12a)
and

ṡ(e) = 0 (12b)
Substituting Eqs. (10) and (11) into Eq. (12b), we can obtain

ṡ(e) =
∂s(e)
∂e
ė = C [Ae+ Kw(t)] = 0. (13)

Solving Eq. (13) forw(t) yields the equivalent controlweq(t)

weq(t) = −(CK)−1CAe (14)

where the existence of (CK)−1 is a necessary condition.
Putting Eq. (14) into Eq. (10), the state equation in the sliding mode is given as follows:

ė =
[
I− K(CK)−1C

]
Ae. (15)

Suppose that the vector K is selected such that (A, K) is controllable.
(2) Design of the sliding mode controller: Assume that the constant plus proportional rate reaching law is applied. The

reaching law can be chosen such that
ṡ = −q · sgn(s)− rs (16)

where sgn(·) denotes the sign function, and the gains q > 0 and r > 0 are determined such that the sliding condition is
satisfied and sliding mode motion will occur.
From Eqs. (10) and (11), it can be found that
ṡ(e) = I [Ae+ Kw(t)] . (17)

By Eq. (16), we have

weq(t) = −(CK)−1 [C(rI+ A)e+ q · sgn(s)] . (18)
(3) Robust stability analysis: In order to check the stability of the above controlled system,we can construct the following

Lyapunov function

V =
1
2
s2 (19)

and then, differentiation of the above expression Eq. (19) with respect to time yields

V̇ = ṡs =
∂s
∂e
ės = Cės. (20)

Substituting Eqs. (10) and (18) into Eq. (20), then we can obtain
V̇ = sC [Ae+ Kw(t)] = sC

{
Ae− K(CK)−1 [C(rI+ A)e+ q · sgn(s)]

}
= −rs2 − sq · sgn(s). (21)

Since the expression−sq · sgn(s) is always negative when e 6= 0, the inequality V̇ = ṡs < 0.
As an example, let us consider Quantum-CNN system. For a two-cell Quantum-CNN, the following differential equations

are obtained [29]:
The master system is described by:

ẋ1 = −2a1
√
1− x21 sin x2

ẋ2 = −ω1(x 1− x3)+ 2a1
x1√
1− x21

cos x2

ẋ3 = −2a2
√
1− x23 sin x4

ẋ4 = −ω2(x 3− x1)+ 2a2
x3√
1− x23

cos x4

(22)

where x1, x3 are polarizations, x2, x4 are quantum phase displacements, a1 and a2 are proportional to the inter-dot energy
inside each cell andω1 andω2 are parameters thatweigh effects on the cell of the difference of thepolarization of neighboring
cells, like the cloning templates in traditional CNNs. Let a1 = a2 = 4.9, ω1 = 1.13, ω2 = 0.85 and the gain vector
K = [0, 1, 0, 1]T. The initial values of Quantum-CNN systems are taken as x1(0) = 0.8, x2(0) = −0.77, x3(0) = −0.72,
x4(0) = 0.97, y1(0) = −0.98, y2(0) = 0.87, y3(0) = 0.92, and y4(0) = −0.93 respectively.
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Fig. 1. Time histories of states, state errors.

The slave system is described by:

ẏ1 = −2a1
√
1− y21 sin y2

ẏ2 = −ω1(y 1− y3)+ 2a1
y1√
1− y21

cos y2

ẏ3 = −2a2
√
1− y23 sin y4

ẏ4 = −ω2(y 3− y1)+ 2a2
y3√
1− y23

cos y4

(23a)
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Fig. 2. Phase portrait of Quantum-CNN by variable structure control.

A =

 0 0 0 0
−ω1 0 ω1 0
0 0 0 0
ω2 0 −ω2 0

 . (23b)

The result is shown in Fig. 1.

2.2. Chaos control

Assume that the aim is to control system ẋ = Ax + f (x) + u(t) tracking a given desired state vector y = [y1 y2 . . . yn]T,
where ẏ = Ay. Let e = x− y be the tracking error vector.
The tracking error dynamics is:
ė = ẋ− ẏ = Ae+ f (x)− u(t) (24)

where f (x) is nonlinear item vector.
The controller is designed as u(t) = H(t) + f (x) in which H(t) = Kw(t). The newly defined control signal w(t) is

determined through the sliding mode approach,

w(t)
{
w+(t) s(e) > 0
w−(t) s(e) < 0 (25)

s(e) is the switching surface and is considered as
s(e) = Ce. (26)

The reaching law assumed to be ṡ = −q · sgn(s)− rs. This design results in the following control signal.

w(t) = −(CK)−1 [C(rI + A)e+ q · sgn(s)] . (27)
It can be shown that the closed loop system will be stable for positive r and q parameters.
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Finally, let us consider our dynamic system Quantum-CNN system, Eq. (22).
The result is shown in Fig. 2 for 1-T periodic motion.

3. Chaos control and chaos synchronization of Quantum-CNN oscillators chaotic system by impulse control

3.1. Chaos control

A technique for suppressing chaos is to apply a periodic impulse input to the system [3]. Consider the system of the form
(22) and assume that the system is controlled by a periodic impulse input

u = ρ
∞∑
i=0

δ(τ − iTd) (28)

where ρ is a constant impulse intensity, Td is the periodic between two consecutive impulses, and δ is the standard delta
function. With different values of ρ and Td the controlled system can be stabilized at different periodic orbits or fix points.
Finally, let us consider our dynamic systemQuantum-CNN systemwith periodic impulse of linear feedback. The equation

considered is

ẋ1 = −2a1
√
1− x21 sin x2 − u1x1,

ẋ2 = −ω1(x 1− x3)+ 2a1
x1√
1− x21

cos x2 − u2x2,

ẋ3 = −2a2
√
1− x23 sin x4 − u3x3,

ẋ4 = −ω2(x 3− x1)+ 2a2
x3√
1− x23

cos x4 − u4x4.

(29)

Let a1 = a2 = 2.47, ω1 = 1, ω2 = 1, ρ1 = 89, ρ2 = 87, ρ3 = 91, ρ4 = 87 and Td = 0.01. The initial values of
Quantum-CNN systems are taken as x1(0) = 0.8, x2(0) = −0.77, x3(0) = −0.72, and x4(0) = 0.57 respectively.
The result is shown in Fig. 3.

3.2. Chaos synchronization

The synchronization by unidirectional/bi-directional linear couplingwith periodic impulse is studied. Two chaos systems
using bi-directional/unidirectional linear coupling with periodic impulse can be written as

ẋ = Ax+ h(x)+ u1(y− x) (30)
and

ẏ = Ay+ h(y)+ u2(x− y) (31)
where x, y ∈ Rn represent the state vectors of the chaotic systems, A ∈ Rn×n is a constant matrix, h ∈ Rn×n is a continuous
nonlinear function of x, y, u1 and u2 are constant gains of periodic impulse signals which represent the coupled parameters.
If u1 is equal zero then the systems call unidirectional linear coupling synchronization by periodic impulse. If u1 and u2 are
nonzero, the systems call bi-directional linear coupling synchronization by periodic impulse.
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Fig. 4. Time histories of states, state errors for uni-direction linear couple.

As an example, we study unidirectional/bi-directional linear coupling synchronization by periodic impulse for Quantum-
CNN chaotic system. The equations considered are

ẋ1 = −2a1
√
1− x21 sin x2 + u11(y1 − x1)

ẋ2 = −ω1(x 1− x3)+ 2a1
x1√
1− x21

cos x2 + u12(y2 − x2)

ẋ3 = −2a2
√
1− x23 sin x4 + u13(y3 − x3)

ẋ4 = −ω2(x 3− x1)+ 2a2
x3√
1− x23

cos x4 + u14(y4 − x4)

(32)
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Fig. 5. Time histories of states, state errors for bi-direction linear couple.

and 

ẏ1 = −2a1
√
1− y21 sin y2 + u21(x1 − y1)

ẏ2 = −ω1(y 1− y3)+ 2a1
y1√
1− y21

cos y2 + u22(x2 − y2)

ẏ3 = −2a2
√
1− y23 sin y4 + u23(x3 − y3)

ẏ4 = −ω2(y 3− y1)+ 2a2
y3√
1− y23

cos y4 + u24(x4 − y4).

(33)
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The initial values of Quantum-CNN systems are taken as y1(0) = −0.2, y2(0) = 0.41, y3(0) = 0.25, and y4(0) = −0.81
respectively. Let unidirectional linear coupling gain parameters ρ11 = 0, ρ12 = 0, ρ13 = 0, ρ14 = 0, ρ21 = 64, ρ22 = 54,
ρ23 = 98, ρ24 = 62 and bi-directional linear coupling gain parameters ρ11 = 32, ρ12 = 27, ρ13 = 49, ρ14 = 31, ρ21 = 32,
ρ22 = 27, ρ23 = 49, ρ24 = 31.
The result is shown in Figs. 4–5 for unidirectional linear coupling and bi-directional linear coupling, respectively.

4. Conclusions

Two chaotic Quantum-CNN systems are synchronized by three methods: unidirectional linear coupling by impulse
control, bi-directional linear coupling by impulse control and variable structure control. The chaos controls of a Quantum-
CNN system are also studied. The impulse control, and variable structure control are used to suppress chaos to fixed point
or regulation motion. Numerical simulations are used to verify the effectiveness of the proposed controllers. These chaos
synchronization and control methods can be also used for other chaotic systems.
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