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Abstract

In recent years, photonic crystal fibers (PCFs) have attracted a lot of attention for
their particular tailorable optical properties, such as wide-band single-mode
transmission, high nonlinearity with small core area, and zero or flattened dispersion
in optical communication window etc. Because of their holey cladding, a full-vector
numerical analysis is needed to predict their actual optical properties accurately. In
this thesis, the finite element method is employed to simulate and study the optical

properties of various PCFs.
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Chapter 1 Introduction

1.1 Motivation of This Thesis

Photonic crystal fibers ( or holey fibers) consisting of a central defect
region surrounded by multiple air holes running parallel to the fiber axis
have attracted a lot of research interest in recent years. Due to the array-like
arrangement of the air-hole cladding, the holey structure of PCFs can
provide more design flexibility than conventional fibers. It can be tailored
for wide-band single-mode transmission, for high nonlinearity with small
core area, or for zero or flattened dispersion in the optical communication
window. Because of the large index difference between the cladding and the
core, the scalar approximation for weakly guiding is not applicable and the
full vector formalism is needed. Further more, owing to the curved structure
of air holes, a numerical algorithm with high accuracy is also needed.

The Finite Element Method (FEM) has become the trend of numerical
simulation for studying the mode properties and propagation characteristics
of waveguides with arbitrary cross section shapes. In contrast, for the Finite
Difference Method (FDM), since the element mesh is rectangular, for
structures with curved shapes one has to increase the number of grid points
in order to achieve the specified accuracy. If the structure is large or
complicated, this will result in much computational efforts. On the other
hand, the finite element method permits users to choose the shape of mesh
(e.g. triangular or curvilinear) and the order of interpolation functions
according to the requirements. When the FEM is adopted, the triangular
meshes can be utilized to match the curved boundary better than the
rectangular meshes utilized in finite difference. Besides, one can refine the
mesh in a specific region rather than in the whole region. The user also can
impose high order interpolation functions to reach fast convergence of the
solution. All of the above procedures of the finite element method can be
introduced to attain higher accuracy with fewer unknowns. These are what
FDM cannot easily achieve.

In this thesis, the CT/LN edge element is applied in the simulation. The

mathematical formulation will be described first. Then, the dispersion



property, leakage loss, and the birefringence of holey fibers will be studied

and some simulation works will be compared with the published results.

1.2 Introduction to The Photonic Crystal Fibers

Photonic crystal fibers (PCFs) have in recent years attracted much
scientific research and technological development interest. Generally
speaking, PCFs may be defined as the optical fibers in which the core and/or
the cladding regions consist of micro structured air holes rather than
homogeneous materials. The most common type of PCFs, which were first
fabricated in 1996 [J. C. Knigh, 1996], consists of a pure silica fiber with an
array of air holes extending along the longitudinal axis. Later on, the PCFs
fabricated from other host materials [K. M. Kaing, 2002] or with
incorporated sections of doped materials have been demonstrated. A
considerable amount of modeling and experimental efforts have also been
put into the design and fabrication of circularly symmetric PCFs with radial
layers of alternating index contrasts [G. Ouyan , S. G. Johnson].

Traditional optical fibers are limited to rather small refractive index
difference between the core and the cladding (about 1.48:1.46). For
photonic crystal fibers, this refractive index differences is significantly
larger (1.00:1.46), and can be tailored to suit particular applications. It is this
flexibility combined with the ability to vary the fiber geometry that enables
the enhanced performance of the photonic crystal fibers. The PCFs can be
designed to satisfy many specific purposes. For example, they can be single-
mode over an extremely broad wavelength range, can support larger or
smaller mode field diameters, can meet specific dispersion requirements,
can increase or decrease nonlinearity, and can be highly birefringent for
achieving improved polarization control.

For conventional optical fibers, the electromagnetic modes are guided
by total internal reflection in the core region where the refractive index is
raised by doping the base material. In PCFs, two distinct guiding
mechanisms are possible: index guiding and band gap guiding. The guiding
mechanism of index guiding fiber, also named as holey fiber, is similar to
that of conventional fiber. It features a solid core surrounded by a regular

array of microscopic holes extending along the fiber length. The solid core



can be viewed as a defect within the surrounding periodic structure formed
by the regular array of air holes. The holey structure acts as the cladding to
confine the fundamental mode within the core of fiber, while allowing the
higher order modes to leak out of the core. The confinement arises because
the periodic holey structure creates an effective index difference between
the core and the surrounding material. On the other hand, the band gap
guiding fibers, also termed as hollow core fibers, are constructed with a
hollow core surrounded by a periodic structure of air-holes. The periodic
structure generates a photonic band gap. When the light frequency is located
within the band gap, the light can be confined in the core region and
propagates along the fiber. In this study, the characteristics of holey fiber
will be addressed.

Over the last seven years the PCFs have rapidly evolved from scientific
curiosity to commercial products manufacturing and are sold by several
companies. A central issue of PCFs from the early days to the present has
been the reduction of optical loss, which initially was several hundred
dB/km even for the simplest PCF design. Through the improved control
over the homogeneity of the fiber structures and the application of highly
purified silica as the base material, the loss has been brought down to a level
of a few dB/km for the most important types of PCFs. The current world
record is 0.37 dB/km [K. Tajima, 2003]. Thus, with respect to the optical
loss, PCFs have undergone an evolution similar to that of standard fibers in
the 1970s. Their application potentials have also increased accordingly. For
some types of PCFs, the loss figures are still substantial and more work is
definitely required. However, for many applications the optical loss has
ceased to be a decisive barrier to the practical application of PCFs.

PCFs are most commonly fabricated by hand-stacking an array of doped
or undoped silica capillary tubes or solid rods into the desired pattern, fusing
the stack into a preform , and then pulling the perform to a fiber at a
temperature sufficiently low (~1900°C) to avoid the collapse of the holes.
The vast improvements of the fabrication process made in recent years have
not only served to bring down the optical loss, but have also greatly
increased the diversity of the fiber structures available to the designer.
Consequently, new PCF designs appear continuously, and it will probably

take a few more years before the field can be said to have matured.



1.3 The Need of Full Vector Formulation

The scalar approximation of the wave equation is adequate for weakly
guiding problems. But when the index difference between the cladding and
core is large enough such as in PCFs, the x, y, z field components are no
longer independent, and will be coupled together. Therefore, the scalar
approximation is no longer valid. This idea can be explain clearly with the
following mathematical description.

VxVxE-n’k’E =0 (1.1)

In the above vector wave equation, n=n(X, y) is the transverse dielectric
profile, and k is the wave vector in free space. The double curl E can be
written as:

VxVxE=V(VInn’-E)-V’E  (1.2)

The E field of the j-th eigen mode of wave guide is express as:

E (x,y,7) = (€} (x,y)x+e! (x,Y)y+ €' (x,y)2) -exp(iBz) (1.3)

By applying eq. (1.2) and (1.3) to eq. (1.1), the following three coupled

full-vector equations can be obtained as follow

2 _2 - 2 2
[V_;_B;ﬁnz]e’f:_}i[e% dnn”  yonn, g 4
kK> k - g~ 5, 1897 | 'oy
2 .2 #, 2 2
[th _% a3 jy=k_21% o} algxn rel 611;; 1 (1.5
2 2 . 2 2

For a weakly guiding wave-guide, the index difference between the core
and cladding is very small and hence the right hand side of eq. (1.4) to eq.
(1.6) can be neglected. These become the well known scalar Helmholtz
equations. The filed components in X, y, z directions are all independent in
this case.

For wave-guide with large index difference, such as photonic crystal
fibers, the coupling among the three polarization field components through
the boundaries should be taken into consideration. Therefore, the full-vector
wave equation is demanded for calculating precise modal fields and

propagation constants. Note that there is no TE or TM mode in this case.



Chapter 2 The Finite Element
Method

2.1 The Finite Element Procedure

There are two approaches of finite element formulation. One is the
variationl method, and the other is the Galerkin’s method (or the weighted
residual method). For the variational method, one should first determine the
functional of the governing equation, and the solution corresponding to the
equation should be the one which makes the variation of the functional to be
zero. In this thesis, the variational method will be introduced. On the other
hand, the Galerkin’s method needs a set of test functions to perform the

projection. For more details, the readers may refer to [J. F. Lee, 2002].
2.2 The Variational Method

The vector wave equation can be written as
Vx([pl[s]' Vx®)-K[q][s]P =0 (2.1)

where k,1s the wave vector in the free space, and @ is either the E field or
the H field.

For the E field
. 0 B
[pl=| 0 np, O
0 0 m,
(e, 0 0
[q]=] 0 ¢, O
i 0 0 ¢,
For the H field



w, 00
[ql=] 0 n, O

L0 0,

e, 0 07
[p]=| 0 ¢, O

0 0 g,

Here

S .S

20 0

SX

S S

[s]=] O £ 0 is the PML matrix

All the [p], [q], [s] are in the tensor form.

The functional of the vector wave equation eq. (2.1) is given as

F=[[I(Vx®)"- ([pl[s]'Vx®)-ki[q]ls] -] dx dy (2.2)

where Qis the computational area .
When the whole area is divided into elements, F can be expressed as the
summation of the integration over each element
F=> [[l(Vx$)" - (plls]'Vx¢)-Kl[alls]¢" - ¢l dx dy
i Qi
where Q. is the i-th elementarea .

Here, ¢ is the field within each element, which is of the form

9. U g}
¢=\9,|=| W4} |-exp(=jB-2) (2.3)
6. BN} {4}

the {U} and {V} are the vector edge interpolation functions, and {N} is the
nodal vector interpolation functions listed in Table 1. The {¢ }and{@.} are
the edge and nodal variable for each element respectively.

The variation oF of the functional F is given as



SF (@)= [[ 66" IV x(plls] 'V x §) ~ k,’$1dQ ~ [ 66" -[nx ([ql[s]V x $)ldT

where I is the outward boundary of the regionQ, n is the outward unit
normal vector. When ¢ is the solution of 6F =0, the following relations are

satisfied:
[Vx([p]Is]'Vx) =k, 4]=0  (2.4)
[nx([q][s]VxP)]=0  (2.5)
eq. (2.4) is the vector wave equation. This proves the solution of JOF =0 is
also the solution of vector wave equation.

By applying eq. (2.3) to the functional F , taking the first variation of F,

and setting oF =0. The following matrix equation can be obtained:

K, 0|14 a2 M, M, &,
{0 0]@ v, my, e

Sy

€re

[K.]= ZJ‘I( kéqx

_ 5,8, 0{U} a{U}T_ 8,8, 0{V} o{V}'
“s, o0y oy s, Ox 0x

5,8, o{U} 6{V}' bp o a{v} o{uy’
‘s 0y 0Ox ‘s, Ox

z z

S, T 2 8,8 T
{UH{U} +koqy?{V}{V}

Sy y

) dxdy

M 1= 3 [ p, 225 {UHUY +p, 4 {V} (V)" dndy

O{N}'
ox

ofN}"

T _ 8,8«
[M,]=[M,] —gjej( P, 1Y)

) dxdy

S8,
+p, S {V}

X



5,8, O{N} o(N}' 5,8, O{N} o{N}'
[MZZ]ZZe:[j(pX oy o P e o

2 5y8x T
-koq, o {N}{N}") dxdy

z

2.3 The Hybrid Edge/Nodal Element

Various types of finite element methods have been developed for the
full-vectorial analysis of guided-wave problems. An important issue for
full-vectorial finite element analysis is the existence of spurious modes.
Spurious modes are numerical solutions of the vector wave equation without
physical meaning. The scalar finite elements are not sufficient to solve all
electromagnetic problems, because spurious modes would arise in the
solution of the vector wave equation if the wrong differential form is used to
approximate the electric-field vector. Early thinking about spurious modes
attributed this problem to a deficiency in imposing the solenoidal nature of
the field in the approximation process. A series of papers, beginning with
Konrad [A. Konrad, 1976] and followed by [M. Hara, 1983] expounded this
idea. Many researchers have been influenced by the notion that spurious
modes are caused by the non-solenoidal nature of finite element
approximation procedures. Yet, the early thinking is wrong. The true reason
of spurious modes is the incorrect approximation of the null space of the
curl operator [M. Hano, 1984]. It has been shown that the hybrid edge/nodal
vector elements with triangular shape imposing the continuity of the
tangential field but leave the normal component discontinuous are very
useful for eliminating the spurious solutions.

In the method employed in this thesis, the word “hybrid,” means the order
of interpolation functions is mixed. As for the term “edge/nodal,”, the
former indicates a set of vector interpolation functions locate at the edges of
the elements and are responsible for the transverse field interpolation, and
similarly, the latter indicates another set of vector interpolation functions
locate at the nodes of the elements and are responsible for the longitudinal
field interpolation. Recently, curvilinear hybrid edge/nodal elements are

introduced in the simulation of photonic crystal fibers [M. Koshiba et al.].



The virtue of this kind element lies in the fact that they can match the
curved boundary better than rectangular ones with more accuracy and fewer
unknowns.

In our study, the CT/LN (constant tangential, linear normal and linear
nodal) rectilinear element [M. Koshiba et al., 2000] is used for the
simulation work. Fig.1 shows the CT/LN element which is composed of an
edge element with three tangential variables, ¢, to ¢, based on constant
tangential and linear normal vector interpolation functions, and a linear
nodal element with three axial variables, ¢, to ¢, . The tangential
component of a specific CT/LN interpolation function is constant along one
edge of the triangle element and is zero along the other two edges, while the
normal component is a linear function along the three edges.

For elements with 2D triangular shapes, the Cartesian coordinate, x and y,
in each element can be approximated with the linear local coordinate

functions Li( 1=1,2,3), as shown in Fig.2.

x=L,x,+L, x, +L; x;
y=L y+L, y,+L;y,

Here x, and y, are the Cartesian coordinates at the nodal points within

each element. Note that the relation between the local coordinates is defined
as L, +L,+L;=1. For 2D problem, L, , L, are usually selected as

independent variables. The transformation for differentiation is given by

2] Jo
oL _ ox
o
oL, dy

9
:{Xl —X3 Y _Y3} 0x
X7X3 Y273 i
oy

Where [J] is the Jacobian matrix. The transformation relation for integration

of a function f(x,y) is given by



11-L,

[[reeyydxdy=[ [£(Ly, Ly, L) I, Ly, L )| dL, dE,

where |J| is the determinat of the Jacobian matrix and is called Jacobian.
The following numerical integration can be applied directly to above

integration

7
Hf(xay) dx dy:z VVif(Lli’L2i’L3i)|J(Lli’L2i’L3i)|
=

e 1=

1
2

Where subscript i denotes the quantity associated with the sampling point 1
(1=1 to 7), and the local coordinates, L,,L,,,L, are presented in Table 2

10



Table 1. Interpolation functions

Edge i (Ui, V) Nodal {0} {N}
CT/LN Linear
|J|1|V1L3|1(LIVZL2 _LZVtLl) ¢zl Ll
¢t2 |J|2|VIL1|2(L2VtL3 _L3vtL2) ¢22 Lz
2 |J|3|VtL2|3(L3VtL1 —-L\V,L;) 9.5 Ly

Table 2. Values of weighting coefficients and local coordinates

W, L, By L,
0.225 a, a, a, .- %
0.13239415 a, a, a a, =0.05971587
0.13239415 a, a, a, a, =0.47014206
0.13239415 a, a a, a, =0.79742669
0.12593918 a, aj aj a, =0.10128651
0.12593918 as a, as
0.12593918 as as a,

11



Fig. 1 The basis functions of the CT/LN element.
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Point Local coordinate (L,,L,,L;)

1 (1,0,0)
2 (0,1,0)
3 (0,0,1)
4 (0.5, 0.5, 0)
5 (0,0.5, 0.5)
6 (0.5, 0, 0.5)

Fig. 2 The local coordinate of a element.
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Chapter 3 The Perfectly Matched
Layers

3.1 Introduction to PML

The perfectly matched layer (PML) is an artificial medium which serves
as an absorbing boundary condition (ABC). This absorbing boundary
condition holds great promise for truncating the mesh efficiently in the
numerical computation for EM wave problems. It can absorb radiation wave
almost without reflection at the absorber interface for arbitrary angle,
wavelength and polarization of incidence. In addition, it is also valid for any
linear lossy or anisotropic media [F. L. Teixeira, 1998]. Because of the
reflectionless, it is termed as “‘perfectly matched layer,”.

The idea of PML was originally proposed by Berenger for FDTD
simulation [J. P. Berenger, 1994]. He used the so called “split field,”
formalism, in which, for example, H,is decomposed into H,, and H,,. This
leads to a modified version of Maxwell equations, where the introduction of
the split fields provides extra degrees of freedom that can be used to achieve
a perfect reflectionless match at the absorber interface. This is fairly a
revolution, since it was quickly shown that the PML outperforms other
previous known boundary conditions.

In the subsequent years, there are many different interpretations about the
physical meaning of PML . Chew et al., indicated that the Berenger’s PML
can be derived from a more general way base on the concept of complex
coordinate stretching [W. C. Chew et al., 1997], in which the PML can be
regarded as a regular isotropic medium but with a complex thickness. Sacks
et al., [Z. Sacks, 1995] revealed that the PML also can be considered as an
anisotropic medium. In fact, Chew’s and Sacks’ statements are equivalent
mathematically [F. L. Teixeira, 1998].

Here, we adopt anisotropic PML in our simulation because in finite

element analysis, it is convenient to specify the material parameters (i.e.

14



permittivity & permeability) of the PML.
3.2 The Concept of PML

The concept of PML is shown as follow

for a plane wave

-jkonz

v

One can apply the following coordinate transformation to z
zZ—>7= jsz(z') dz’'
0
where s, (z') is so called complex stretched variable [W. C. Chew et al.,

1997].

Considering the following structure

core | cladding PIVIL

) | =p = - ||wal

We can let s, (z)=1 in non-PML region, and s, (z)= 1- j¥c in PML
region. In consequence, Z = z (real) in non-PML region, and Z= z - j*c*z
(complex) in PML region.

This implies that the propagation wave would be absorbed in the PML
region. Base on this idea, after a series of transformations, the permittivity

and permeability tensors in the PML can be expressed as [F. L. Teixeira,
1998]:

zPML = (det?)’l [§ P S]

;PML = (detg)il[g'; -S]

Note that the intrinsic impedance of the PML region is equal to that of the

15



non-PML region, namely, impedance match. So no reflection occurs at the

absorber interface.

also S = xx(—) + j/j/(i) + éé(L) is a diagonal tensor, and
s s, s

x y z
-
(detS) =5, 5,5,
The specification of s _, §,,s, are shown in Fig. 3,

where

Here
p is the distance from the PML interface, and t is the thickness of PML.

The attenuation of the field in PML regions can be controlled by choosing
the value of o, appropriately.

16
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Fig. 3 The specification of s in the PML.
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3.3 Solution Issues

In order to reliably predict the features of HFs, the full vector formulation
is applied. Because of the losses resulted from the air holes and the finite
transverse extent of the confining structure, the effective index is a complex
value and its imaginary part is related to the losses. This is termed as a leaky
mode. In order to evaluate propagation losses of leaky modes, an anisotropic
perfectly matched layer (PML) is employed as an absorption boundary
condition at the computational window edges.

How to solve the large sparse generalized eigen value problem to get the
leaky mode solution is an important issue in finite element procedure.
Recently, Koshiba et al., employed the imaginary-distance beam
propagation method (ID-BPM) based on the FEM to deal with the
leaky-mode problems [K. Saitoh et al., 2002]. On the other hand, Selleri et
al., used the Arnoldi method based complex modal solver to obtain several
eigen-modes directly [S. Selleri et al., 2001]. The ID-BPM starts the
propagation with an initial approximate field and the field evolves into the
exact eigen-mode after propagating a long distance. The drawback of this
method is that it’s time consuming to achieve high accuracy and only one
mode can be obtained each time. On the contrary, solving the eigen-value
equation directly is much simpler than the ID-BPM method. For this reason,
we use a modified Matlab built-in eigen-solver based on Arnoldi algorithm
to treat this problem.

The propagation loss of leaky mode is defined as

7
_219 2% ] (dB/m)
In(10) A

Fig. 4 shows the cross section of the HF surrounded by the PML regions

with thicknessd ,. Here x and y are the axes of the transverse plane, z is the

propagation direction, and W and W, are the half computational window

18



size respectively. The PML parameter S is complex for the leaky mode

analysis, which is given as:
S =1-ja

The parameter s controls the attenuation of the field in the PML region

through the choice of the appropriate value of « with the parabolic profile

2
a = amax [ﬁJ ;
dp

where p is the distance in the PML region from its inner interface.

Consider a PCF with two ring air holes with hexagonal (or triangular )
lattice arrangement, as shown in Fig. 4, the hole pitch A=2.3 wm, silica

index = 1.45, air filling ratio % =05, d,=23 um, w,=w, =7 um, and

operating wavelength A =1.5 um. Because of the six-fold symmetry of this
PCF, for the fundamental mode, one-fourth of the fiber cross section
combined with proper boundary conditions is taken into computational
region. Fig.5 to Fig.8 are the E field distributions for x component, y
component, z component and transverse component respectively. Fig.9 and
Fig.10 are the effective indices and propagation losses compared with the
published results respectively [K. Saitoh et al., 2002].

19



A

v

A
v

Fig. 4 The computational window of the PCF.

20



um

um

Ex

Wavelength :1.5 um
a/d=0.5

4 6 8 10
um
Fig. 5 The E, field.
Ey
Wavelength :1.5 um
a/d=0.5
1 1 1
6 8 10
um

Fig. 6 The £, field.

21



um

Ez

Wavelength :1.5 um
a/d=0.5

D O

Fig. 7 The E. field.

Et

Wavelength :1.5 um
a/d=0.5

10

um

Fig. 8 The transverse field.

10

um



()
1.45

| &

1.43

Re [ nesr |

1.42

1.41]

1.40

(b)

145

144

1.43¢

Effective index

142+

1411

|
0.5 1.0 1.5 2.4

Wavelength | jum)|

Two-ring air holes

—o— 0.5
—s— 0.6

d/a=0.5

d : Hole diameter
a: Lattice constant

d/a=0.6

14

0.5 1 15 2
Wawelength um

Fig. 9 The effective index of two-ring air holes.

(a) Published result in [K. Saitoh et al., 2002].

(b) Our simulation result.

23



—~
QD
=

Propagation loss [dB/m]

o 05 10 15 10
Wavelength [pum]

(b)

dB/m Propagation Loss for Two-ring air hole
lo T T T T T T T

10 ¢ i 4

Loss

10°} 1

10+ -

10 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Wavelength um

Fig. 10 The propagation loss of two-ring air holes.
(a) Published result in [K. Saitoh et al., 2002].

(b) Our simulation result.

24



Chapter 4 Optical Properties of
PCFs

4.1 Endless Single Mode

The picture in fig. 11 shows the structure of a typical holey fiber. In [T. A.
Brinks, 1997], the fiber was reported to be single mode over a remarkably
wide wavelength range, form 458 to 1550 nm at least, and it is confirmed
numerically that HFs are endless single mode for d/A <=0.43 [M. Koshiba,
2002]. The cladding effective index, which is a very important design
parameter for realizing a single-mode HF, is defined as the effective index
of the infinite photonic crystal cladding if the core is absent. Unlike
conventional fibers, the effective index of the HF cladding is very sensitive
to the wavelength, and has to be estimated for different frequencies by
finding the fundamental space filling mode (FSM) of a cladding unit cell,
which is shown in Fig. 12.

Just like conventional fibers, the effective index of the HF guided mode is
between the core index and the effective index of the cladding. Fig. 13 (b)
shows our simulation results for the fundamental mode of the PCF, and Fig.
13(a) is the published results with the same structure parameters as in (b).
Fig.14 (a) shows the published result of the effective index for the
fundamental guided mode and cladding with pitch = 2.3 gm, hole diameter
= 0.6 um. Fig.14 (b) shows the simulation result. The lowest solid line is the
cladding effective index, the middle is the fundamental mode effective index,
and the user is the core index. We can find that this structure support single
mode propagation because only one effective index is found in the region
between the core index and the cladding effective index. Fig.15 shows the
dispersion curve for different air hole diameters with a fixed pitch of 2.3 um .
One can see that, as the hole diameter increasing, the dispersion zero point
shifts to the higher frequency range, and the slope of their linear part is

approximately preserved.
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Here, the group velocity dispersion is defined as
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Fig. 11 The endless single mode fiber.

— Unit cell for FSM

Fig. 12 Unit cell for FSM estimation.
(a)

27



] o

=] [« s =]
) = o =] -]

] ] -] ] Q o
o o o o o

(2]

(b)
incident wavelength 632 .8nm neff 1.4479
10r
8| o & ™ o e o e|n=
pitch=2.3um /
B o3 o] o [l o ¥
4 o o SN fa} o
2 H o o ful J.J( {-‘E_:'ﬂ'{;-:--:‘\'l',cl" x\ﬁ\\ﬂ ah— n=1.45
TR
i Hl"’r_}ﬁf}‘_\ o 1 .z":l
ol o o | @My ks, { o o
=
WNSEREET o
A H ! ek b
3 o o [nl | @\M_,x@ J [nl
e
-4 { o e " e " o
-B o =) o Ll 2 o
i °] an3=018
urr
_-“:' 1 1 1 1
-1d 5 a 5 10
um

Fig. 13 Contour plot of the fundamental mode in the PCF

(a)

(a) Published results [M. Koshiba, 2002]

(b) Our simulation results

28



1460 == -~ - T yepryepupe ]

¢ cone index

-

P
=
L
n

1.450

Effective index

1445

]
-

-
- =

c.ladding effective index

core index

1.458 -
1.456 -
1.454 neff of guided mode
1.452

1.45F
neff of cladding
1.448
1.446

1.444 -

1442

Y

pitch=2.3 um

1.44 ‘ : ‘
2

9 10

pitch/wavelength

Fig. 14 Effective index of the guided mode of the PCF

(a) Published result [M. Koshiba, 2002]

(b) Our simulation result

29



geometrical dispersion curves a=0.2um
ps/nm/km ‘ ‘ ‘ —— a=0.25um
! ! ! -9~ a=0.3um
AOp === . . T a=0.35um
: : -©- a=0.4um
2000088 - TG A T - —£- a=0.45um
Dg “( :
| |
o) E—— N ! o _____
20F---—-—-——--
B R 4 o A
B0 - - - - WA
80 - - - - __*%
AQOF - - -
T |

1
0.5 1 1.5 2 2.5 3
wawvelength (um)

Fig 15. Our simulation of dispersion curves for a fixed pitch with
different air filling ratio a

30



4.2 Mode Classification

When higher order modes or polarization properties are considered, the
full vector approach is crucial for assessing the true behavior of
electromagnetic waves in complex wave-guiding structures such as PCF. It
is well known that the PCF is often strongly multimode in the visible and
near-infrared regions when the filling factor is large enough. This may lead
to a number of intermodally phase-matched nonlinear processes. As a
consequence, it is necessary to investigate the modal properties of PCFs
including their degeneracy, classification, and so on.

Some studies have discussed the mode properties of PCFs [M. J. Steel et
al., 2001], and the classification and degeneracy properties of higher-order
modes were discussed further in [R. Guobin et al., 2003]. It is shown that
the mode classification of a PCF is similar to that of a step-index fiber,
except for modes with the same symmetry as the PCF. When the doublet of
the degenerate pairs both have the same symmetry as the PCF, they will be
split into two non-degenerate modes.

In the scalar approximation, the characteristics of polarization in the PCF
are hidden. With the full vector aroach, the vector modal behavior of the
PCF can be predicted. From the theory of group representations, the
symmetry of a waveguide controls several important characteristics of the
modes of the waveguide [T. P. White et al.,, 2002]. Determining the
symmetry type of a particular waveguide enables one to classify the possible
modes in terms of mode classes, and to predict the mode degeneracies
between mode classes. Further, from the azimuthal symmetries of modal
electromagnetic fields of a mode class, one can specify a minimum sector of
waveguide cross section, together with associated boundary conditions for
this sector, which is necessary and sufficient for completely determining all
the modes of that mode class.

If a uniform wave-guide has n-fold symmetry and also possesses

precisely n reflection planes spaced azimuthally by z radians, it is said to
n

have C, symmetry. For the triangular lattice PCF, it has six-fold rotation

symmetry and % reflection symmetry, so the point group is C, . PCFs
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with the C,, symmetry possess the following properties: all the modes can
be divided into eight classes according to the minimum sector and boundary
conditions. As shown in Fig. 16, class p = 1,2,7,8 are non-degenerate, which
exhibit full waveguide symmetry, i.e. C,, symmetry, while class p=3, 4
and p=5, 6 are degenerate pairs, and they exhibit full waveguide symmetry
in combination.

Table 3 lists the first 14 modes of PCF (with pitch =2.3 um, air filling
ratio =0.8, and wavelength = 0.633 um) with effective index, mode class,
degeneracy, computation error, and label published in [R. Guobin et al.,
2003]. Fig. 17 to Fig. 23 shows the field distribution of these modes. Fig. 24
to Fig. 28 show the fundamental mode and some higher order modes
simulated respectively by using the minimum sector with specific boundary

conditions belonging to the mode class listed in Table 3
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Fig. 16 Minimum sectors for waveguides with C, symmetry, the modes of

waveguides are classified into eight classes (p=1, 2, 3, ...8). Solid lines
indicate PEC boundary condition, and dashed lines indicate PMC boundary
condition [R. Guobin et al., 2003].

Table 3 Mode classes of the triangular-lattice PCF [R. Guobin et al., 2003].
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Fig. 18 (a) TE,, mode (b) HE,, mode [R. Guobin, 2003].
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Fig. 19 (a) HE,, mode (b) TM,,

Fig. 20 (a) HE,,, mode (b) EH,,
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Fig. 21 (a) EH,, mode (b) HE,,, mode [R. Guobin, 2003].
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Fig. 22 (a) HE,, mode (b) HE,, mode [R. Guobin, 2003].
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Fig. 23 (a) EH,, mode (b) EH,, mode [R. Guobin, 2003].
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4.3 Dispersion Flattening

Controlling the chromatic dispersion in optical fibers is a very important
problem for communication systems. In both linear and nonlinear regimes,
or for any optical systems using ultra short soliton-pulse propagation. In all
cases, the almost-flattened fiber-dispersion behavior becomes a crucial
issue.

The most appealing feature of photonic crystal fibers is their high
flexibility based on the particular geometry of their refractive index
distribution. This fact allows us to manipulate the geometrical parameters of
the fiber to generate enormous variety of different configurations.

The form of dispersion relation of guided mode for PCFs is very sensitive
to the 2D photonic crystal cladding. For this reason, one can expect to
control, at least to some extent, the dispersion properties of guided modes
by manipulating the geometry of the cladding. It was soon realized that the
PCF exhibited dispersion properties very different than those of
conventional fibers. As an example, some PCF configurations presenting
zero dispersion point bellow that of slica at 1.3 ggn [D. Mogilevtsev, 1998;
P. J Bennet, 1999], and some others showing flattened dispersion (one point
of zero third-order dispersion) or near zero ultra-flattened dispersion (one
point of zero fourth-order dispersion) profiles [A. Ferrando et al., 2000].
Since the number of different photonic crystal configurations is significant,
one can deduce that it must be possible to elaborate a procedure to tailor the
dispersion of the PCF modes in an efficient way. A systematic approach to
design the dispersion properties of the PCF using a systematic procedure has
been already suggested in [A. Ferrando et al., 2001]. The analogous design
details of dispersion flattened or dispersion compensation for triangular
lattice PCFs and high-index-core bragg fibers were also proposed in [A.
Ferrando et al., 2000], and the dispersion properties of square lattice PCF
were discussed recently [A. H. Bouk 2004].

Fig. 29 and Fig. 30 show two sets of PCF geometrical dispersion curves:
A. Different pitches with a fixed air filling ratio.

B. Different air filling ratios with a fixed pitch.
In set A, for different pitches, the dispersion zero point would shift and the

slope of each curve in the linear region is different. In set B, for different air
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filling factors, the curves are shifted and the slope of their linear part is
approximately preserved.

Fig. 31 shows the idea of dispersion flattening design. The line with open
circle is the opposite sign of the material dispersion curve, the line with
open diamond is the geometrical dispersion curve, and the triangle is the
total dispersion, which is defined as

D ~=Dg - (-Dm)

The key factor to achieve the flattened dispersion curve is the control of
the slope of the linear part Dg. The sign changed material dispersion -Dm is
a smooth and almost linear curve in most of the infrared region. It is clear
from Fig. 31 that if the linear part of geometrical dispersion can be set to be
parallel with the material dispersion, therefore the total dispersion will
achieve an ideal perfect flattened behavior.

The strategy to obtain such a behavior is then straight forward. It can be
started by determining the slope of material dispersion curve at some
specific wavelength. In the region where the material dispersion curve is
smooth, the slope is approximately the same for a reasonably wide
neighborhood around the specific wavelength. Once the slope of the Dm is
fixed, we can change the pitch and the air hole diameter with a fixed air
filling factor to obtain a Dg curve having a linear region with the same
given slope of Dm, as shown in Fig. 29. If both the linear part of material
and geometrical dispersion curves overlap in a specific wavelength region,
then the dispersion flattened curve can be obtained in the overlapping
region.

After that, we can fix the pitch and change the air hole diameter to get a
shifted curve, as shown in Fig. 30. Then different widths of flattened region

can be obtained.
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4.4 Birefringence

For conventional polarization-maintaining fibers, the birefringence is made
elasto-optically by incorporating different materials close to the core which
generate stress when the fiber cools down during the drawing process. The
birefringence can also appear due to non-circular core symmetry.

High Birefringence fibers serve as polarization-maintaining fibers (PMFs).
In standard fiber transmission systems, imperfections in the core-cladding
interface introduce random birefringence that leads to light being random
polarized. In PMFs, the problems of random birefringence are overcome by
deliberately introducing larger uniform birefringence throughout the fiber.
Current PMFs, such as bow-tie and panda fibers [K. H. Tsai, 1991], achieve
this goal by applying stress to the core region of the standard fiber, creating
a modal birefringence up to 5-10™* [K. Tajima, 1989].

It is well known that PCFs have more flexibility than conventional
fibers in the design of optical fiber properties. According to the recent
literature, for PCFs, high birefringence can be produced by the combination
of asymmetric core and large core-cladding index contrast [I. K. Hwang,
2004], air holes of two sizes around the fiber core [T. P. Hansen, 2001], and
asymmetry obtained by selective filling of air holes with polymer [C.
Kergage, 2002]. To-date, the birefringence is reported to be about one order
of magnitude lager than conventional fibers, and the largest one is
about 3.7-10”[A. O. Blanch, 2000].

In this section, we try to induce high birefringence by incorporating
elliptical air hole that has not been proposed in the literature. Two aroaches
are considered:

A. Different ellipticity (e) with fixed A and fixed major axis.

B. Different stressing factor for an initially given PCF with pitch A

and circular air hole diameter d.
For case A, as shown in Fig. 32, the ellipticity e (<=1) is defined as the ratio
of the minor axis to the major axis, d is defined as hole diameter, and A 1is
defined as the pitch or hole-to-hole distance. Table 4 shows the

birefringence for e = 0.5 and e= 0.3 with A=2.32 wm and major axis 7=
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2.088 um at A =1.51 m. For case B, another parameter, s (<=1) is

defined as the stressing factor. As illustrated in Fig. 33, for a typical PCF
with circular air holes, when a horizontal stress is alied to the PCF, the
horizontal dimension of the structure would be scaled by s and the vertical

one would be scaled by 1/s. Table 5 shows the birefringence with s = 0.6
and pitch =2.3 zm at A =1.51 m. Form Table 4 and Table 5, it seems

that class A possesses higher birefringence than class B. But it is still

smaller than 107
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Table 4. Birefringence of class A PCF.

A=2.32 um, ¥,=2.088 um, A=15um

E Neft-x Neft-y Birefringence
0.5 1.419747033737480 1.419076938826004 6.70 exp(-4)
0.3 1.425759459962646 1.425236286662941 5.23 exp(-4)

Table 5. Birefringence of class B PCF.

S=0.6, A=2.32 um, A=15pm

D Neff-x Neff-y Birefringence
2.088  1.382123939764951 1.382074588315252 4.932 exp(-5)
1.624  1.404978688533360 1.404917171090318 6.151 exp(-5)
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4.5 Additional Simulation

For the first time, we also study the dispersion property of square-lattice
PCF with elliptical air holes, which is shown in Fig. 34. The elliptical air
holes of this structure are formed by stressing the circular air holes with

different stress factor s, which is defined as

Here d’ and d’ are the minor axis and the major axis respectively.
X y 1 p y

Another parameter, the air filling ratio a, which stands for the size of the air
holes is given as

pod

A

Fig. 35 shows the dispersion curve for different s with fixed pitch 2.32 ym .
In this case, the dispersion slope is positive. Fig.36 shows the dispersion
curves with the pitch fixed to 1 #m, and the dispersion slope turns to be
negative, thus we can utilize the negative dispersion slope in the dispersion
compensation design. Besides, from Fig. 35 and Fig. 36 one can find that
the value of dispersion is larger for a large air filling factor a. These two
properties are consistent with the case in the square-lattice HF with circular
air holes [A. H. Bouk et al., 2004]. What makes difference for this elliptical
air holes assisted structure is the vertical dispersion offset. If the air filling
ratio a is fixed, the dispersion curve with smaller s moves to higher region.
With the stress factor s, designers can have more degrees of freedom to

control the dispersion curves in a specific region.
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Conclusion and Future Work

In this work, a simulation tool for studying the modal properties of optical
wave-guides with arbitrary cross-sections has been developed based on the
finite element method using CT/LN edge element. In the previous sections,
we discuss the optical properties of HFs and demonstrate some simulation
results. Finally, for the first time, we discuss the dispersion characteristics of
square-lattice HFs with elliptical air holes. It is shown that besides the air
filling ratio a, the designer can have one more degree of freedom to control
the dispersion curve in a specific region by tuning the stress factor s.

For the following days to come, we will continue to work on modifying
the code with the use of higher order elements to get fast-converged
solutions with fewer unknowns. Moreover, if the optical properties of the
wave-guides with longitudinal-variant cross-sections are desired, then the
method in this study is not applicable anymore. For this reason, we still need
to combine the use of the finite element method with the beam propagation
method (BPM) to obtain a complete analysis.

Recently, the combination of the finite element and the genetic algorithm
(GA) has been demonstrated for obtaining the optimization design of the
PCF dispersion property [Emmanuel Kerrinckx, 2004]. We believe that a lot
of research efforts still needed in this field. Actually an evolutionary
programming algorithm has been developed for the design of fiber gratings
in our group. So how to combine the FEM with the optimization algorithm

efficiently will be an interesting issue for us to investigate in the future.
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