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ABSTRACT

In this study, we proposed novel designs_for computational systems that use biometrics
and non-conventional imaging approachesito.capture thermal motion features of humans to
achieve real-time path-dependent and path-tndependent gait for human identification.

Feature representation is key ~to" biemetric ~recognition system. From a thermal
perspective, each person represents a distributed infrared source, the distribution function of
which is determined by shape and IR emissivity of the skin at every point. When humans
walk, the motion of various parts of the body, including the torso, arms, and legs, produces a
characteristic signature. Combined with idiosyncrasies of carriage, heat will uniquely impact a
surrounding sensor field, even while the subject follows a prescribed path.

The pyroelectric infrared (PIR) sensor is a high performance IR radiation detector and its
low cost and low power consumption make it attractive for a wide range of applications.
When the temperature changes, electric charge will built up on the sensing element by virtue
of pyroelectricity. The resulting charge translated into a current that a current-to-voltage
transductance amplifier converted to a voltage signal. By measuring the sensor response

generated by a person walking within the field of view of a PIR sensor module, we can model



this response data to a code vector that uniquely identifies the person.

We have developed two PIR feature-generating sensor systems. One system is analog,
the other digital, and both are derived from the signals generated by humans crossing the
detection areas. We successfully demonstrate that by selecting suitable sensor configurations
and feature extraction/training algorithms, the sensor systems are capable of performing

human identification.
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