
Chapter 4 

Real-time Path-dependent and Path-independent Human 

Identification Using Hidden Markov Model 
 

4.1 Introduction 

 

In the previous study (Chapter 3), we used a PIR detector whose visibility was 

modulated by a Fresnel lens array to capture an analog feature of human walking motion. The 

spectra of the sensor response data generated by a human walking along a fixed-path were 

used to distinguish individuals. In this chapter, a PIR detector array with masked Fresnel lens 

arrays is used to generate digital sequential data that can represent a human motion feature. 

This digital feature based system using PIR detectors is insensitive to the velocity over the 

angular velocities between 1.1 rad/s and 3.1 rad/s [1]. A feature model is based on the 

statistics of the on-off patterns of the sensor array for a walker who can walk at different 

speeds during the training stage.  

HMMs are a widely used tool for sequential data modeling. Although the basic theory 

and inference tools were developed in the late 1960s [2, 3], HMMs have been extensively 

applied in the last decade to such applications: speech recognition [4], DNA and protein 

modeling [5-7], handwritten character recognition [8, 9], gesture recognition [10], and 

behavior analysis and synthesis [11]. In this study, we utilize HMMs to model the digital 

features generated by a sensor module. An example sensor module with modulated visibilities 

is illustrated in Fig. 4.1. The sensor array is distributed vertically, in an expectation that each 

sensor can capture the thermal dynamics of a different part of a walker. The geometry is 

actually 1-D and the sensor is not sensitive to anything but entry and exit from the detection 

region. The sensor module can sample the IR fields produced by humans and convert the 
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pyroelectric response signals into digital sequential data. For each registered subject, an 

HMM is built during the training phase. In the testing phase, the set of trained HMMs are then 

used to estimate the identity likelihoods of a newly generated signal, for either path-dependent 

or path-independent human identification.  
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Fig. 4.1 A sensor module (Model 4M) and its visibilities that associate detection regions and 
the four sensors. 
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Fig. 4.2 The diagram of the identification process. 

 

Figure 2 outlines the identification process. It has two phases: training and testing. In the 

training phase, we construct an HMM for each registered subject. In the testing phase, the 

association likelihoods of an unknown sequence with a set of trained HMMs are estimated 

and the identity of the subject is then obtained by choosing a model with the maximum 

likelihood value.   

 

4.1.1 Hidden Markov Models (HMMs)  

 

Hidden Markov models (HMMs) can be characterized by a set of output distributions 

and a finite-state Markov chain. A first order HMM is defined by the following elements:  

M: the number of observation symbols;   

N: the number of states;   

T: the length of the observation sequence;  

1 2{ , ,..., }TS s s s= : the set of hidden states; 

1 2{ , ,..., }MV v v v= : the set of discrete observation symbols; 

{ }ijA a= : the state transition probability distribution, where 1( | )ij t ta P s j s i+= = = 1 ,i j N, ≤ ≤ ,  

, and  1 t T≤ ≤

 

 65



1

0

1

ij
N

ij
j

a

a
=

≥⎧
⎪
⎨ =⎪
⎩
∑ .                               (4-1) 

 

{ ( )}j kB b v= : the observation symbol probability distribution, where , 

, , and 

( ) ( | )j k k tb v P v at t s j= =
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{ }iπΠ = : the initial state probability distribution, where 1( )i P s iπ = = , , and 1 i N≤ ≤
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For convenience, we can compactly denote the model parameter set by ( , , )A Bλ = Π . 

Then, an HMM can be completely specified by λ .  

 For the observation evaluation, let 1 2, ,..., TO o o o= be an observation sequence where 

is the observation symbol at time t. Given a model to V∈ λ  and an observation sequence O, 

the observation evaluation problem ( | )P O λ  can be solved using forward-backward 

procedure in terms of forward and backward variables which are defined as follows: 

 

Forward procedure: 

 

Forward variable: 1 2( ) ( ... , | )t t ti P o o o s iα λ= =  

 

( )t iα can be solved inductively: 
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1. Initialization: 

 

1 1( ) ( )i ii b oα π= ,  1 i N≤ ≤ .                       (4-4) 

 

2. Induction: 
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j i a b oα α+ +
=
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Backward procedure: 

 

Backward variable: 1 2( ) ( ... | , )t t t T ti P o o o s iβ λ+ += =  

 

( )t iβ can be solved inductively: 

 

1. Initialization: 

 

( ) 1T iβ = ,  1 i N≤ ≤ .                            (4-6) 

 

2. Induction: 
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Finally, the observation evaluation can be written as 

 

1
( | ) ( ) ( )

N

t t
i

P O i iλ α β
=

= ∑ , t∀ .                        (4-8) 
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4.1.2 Model training 

 

In the training phase, the task is to find the model parameters that can fit best a set of 

training data. In our study, we use the expectation-maximization (EM) algorithm to find the 

maximum-likelihood (ML) estimate of the parameters of a HMM, given a set of observed 

feature sequences. This process is also known as the Baum-Welch algorithm. It can be 

described as follows: 

 

(i)  given an initial guess of ( , , )A Bλ = Π ; 

(ii)  the re-estimated algorithm and O are used to derive a new model ( , , )A Bλ = Π  with the 

property that ( | ) ( | )P O P Oλ λ≥ ; 

(iii)  replace λ  by λ  and repeat the re-estimation. 

In order to describe the procedure for estimation of HMM parameters, we first define 

( , )t i jζ : the probability of being in state i at time t and state j at t+1, given the observation 

sequence O and the model λ , is defined by 

 

1

1 1
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We also define ( )t iγ  as the probability of being in state i at time t, given the observation 

sequence O and the model λ ; thus we can relate ( )t iγ  to ( , )t i jζ  by summing over j by the 

following equation: 

 

1
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N

t t
j
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Using  ( )t iγ  and ( , )t i jζ , the re-estimation formulas for A, B and Π are 
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1( )i iπ γ= , 1 i N≤ ≤ .                       (4-13) 

 

The re-estimation process iterates until the increase in ( | )P O λ  is small enough. The 

Baum-Welch algorithm is guaranteed to increase ( | )P O λ  with the re-estimated A, B and Π  

until the optimal point is reached [12].  

 

4.1.3 Multiple Hypothesis Testing 

 

After the model training process, we will obtain K HMMs if there are K registered 

subjects. Therefore, for an unknown observation sequence X, we will have K hypothesis 

{ 1 2, ,..., kλ λ λ } to test. Our HMM-based identification approach adopts the ML criterion, where 

an unknown sequence X is assigned to the model with the highest testing likelihood. The 

decision rule is  

 

, arg max{ ( | )}i ii
X i p Xλ λ∈ = 1 i K, ,                   (4-14) ≤ ≤
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where iλ  is the HMM corresponding to the ith registered object. 

 

4.2 Digital Feature Generation 

 

The most important aspect of a human identification system is to choose an appropriate 

feature that can distinguish individuals. In this study, we select the fixed length binary event 

index sequence generated by a pyroelectric sensor array as the digital human motion feature. 

Here, an event is defined as the thermal flux collect by a pyroelectric detector which exceeds 

a threshold, and can be associated with some specific motions of human subjects, such as 

moving across one or several adjacent detection regions. The event signals are generated by 

pyroelectric infrared detectors with periodic sampling masks on Fresnel lens arrays.  

Fig. 4.3 shows the experiment setup. A sensor module, which contains 8 PIR detectors, is 

mounted on a pillar at a height of 80cm to sample the IR radiation from a subject. The sensory 

data were collected when different persons walked in the field of view (FOV) of sensors. The 

detector signal is converted to an event signal by signal processing techniques: matched 

filtering, threshold testing, and low-pass filtering. A threshold value has to be chosen for each 

detector, proportional to the noise level of that signal channel. If a processed signal’s absolute 

value is larger than the threshold value, the signal value is set to ‘1’, otherwise to ‘0’. The 

process of event signal generation is shown in Fig. 4.4.       
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Fig. 4.3 The experiment setup. 
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Fig. 4.4 Event signal generation. (a) The response signals of a PIR detector. (b) Filtered 
signals. (c) Digitized signals. (d) Binary signals. (e) Event signals.  
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Fig. 4.5 Two 4-bit digital features (event index sequences) generated by two subjects walking 
along the same path. 
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Fig. 4.6 The corresponding decimal sequential signals of Fig. 4.5. 
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This system was implemented using the TI’s micro-controller (MSP430149) and RF 

transceiver (TRF6901) module. The sensory data are processed on the embedded 

micro-controller and the event index sequences are transmitted to the host computer via a 

wireless channel. Fig. 4.5 illustrates two 4-bit digital features (event index sequences) 

generated by two persons. Fig. 4.6 shows the corresponding decimal sequential signals of Fig. 

4.5. It can be seen that the digital features generated by the two persons are distinctive.  

Fig. 4.7 summarizes the procedure of digital feature extraction for the real-time human 

identification systems. The length of a feature sequence for real-time identification is fixed. 

When it reaches the preset length, the system resets itself and awaits the next batch of event 

sequences. These digital sequential data can be modeled in HMMs. The HMM characterizes 

the statistics of a finite-state sequence of training. The model parameters are initialized by a 

random guess and updated by the EM algorithm described in the previous section. There are 

two important parameters for HMM training: one is the number of states; another is the length 

of training sequences. The model with more states can describe more characteristics of the 

digital feature of an individual. However, when the number of states is increased, the 

computation cost will be much higher and an over-fitting problem may occur [13]. We choose 

the state number of an HMM for each individual after testing the identification capabilities 

with respect to different state numbers. When we increase the length of the training sequences, 

the identification rate can be improved at the expense of more training time. The selection of 

length of testing sequences requires a compromise between the identification rate and 

identification time. In the path-dependent case, we set the length to 2000 for the training 

sequences, and 200 for the testing sequence. In the path-independent case, we set the length to 

3000 for the training sequences, and 500 for the testing sequence. 
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Fig. 4.7 The flow-chart diagram of digital feature extraction. 
 

 

4.3 Experimental Results for Path-dependent Recognition 

 

For the path-dependent recognition problem, the sensory data was collected while 

different persons walked back and forth along a prescribed straight path, 2.5 m away from and 

perpendicular to the sensor. The experiment setup is shown in Fig. 4.3. A sensor module, 

which contains 4 or 8 PIR detectors and Fresnel lens arrays, is mounted on a pillar at a height 

of 80 cm to sample the IR radiation from the human target. The range of vertical field of view 

of the sensor module (8 PIR detectors) is 53~136 cm from the ground. Within this range, the 

sensor module can detect IR radiation from torsos, arms, and legs of normal-height humans at 

the same time. A more detailed discussion on the sensor module location can be found in 

paper [14].  
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If the walker belongs to a predefined set of known walkers, it is referred to as closed-set 

identification. Adding a “none-of-the-above” option to closed-set identification gives open-set 

identification [15]. Fig. 4.8 (a) shows the experimental results of the verification (open-set 

identification). The digital features of five walkers were tested against one person’s HMM. It 

turns out that the person’s features can not achieve the maximum log-likelihood all the time. 

However, when we use the digital features of that person to check against all five persons’ 

HMMs (closed-set identification), the maximum likelihoods can always be achieved for that 

person’s HMM, that is, correct identification, shown in Fig. 4.8 (b). Therefore, it suggests that 

the proposed HMM approach is only suitable for the closed-set identification case.  

The poor performance of HMM approach in the verification case might be caused by the 

intrinsic statistical instability of the digital feature. The short testing sequences contain less 

statistical information and more uncertainty, whereas the HMMs, derived from much longer 

training sequences, contain enough statistical information to make reliable statistical 

inferences. Longer testing sequences might improve the system performance in verification 

and open-set identification. However, from the practical point of view it is not realistic to 

collect a long digital sequence to recognize a person. Therefore, in this paper we only 

investigate the case of using the digital feature for closed-set identification.   
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Fig. 4.10 Average path-dependent identification rates as a function of the number of persons 
for the three types of sensor modules. 
 

We assume that the mask with high spatial sampling can capture more detailed IR 

information generated by human motions. Fig. 4.9 shows two sensor modules with different 

sampling masks. Including the sensor module shown in Fig. 4.1, we have 3 types of sensor 

modules containing 4 detectors for path-dependent identification. These sensor modules with 

different spatial sampling masks are used to create detection regions of different sizes within 

the sensor FOVs. In the training stage, we constructed 10 HMMs for 10 persons. In the testing 

stage, each person was tested 20 times. The number of walkers along a fixed path to be 

identified is increased from 2 to 10 for each type of the sensor module, tested against 10 

feature models obtained from the training stage. The average path-dependent identification 

rates of the three different sensor modules with respect to the group size are shown in Fig. 

4.10. We can see that the sensor module with high spatial sampling frequency has the best 

identification performance and the average identification rates decrease when the group size 

grows from 2 to 10.  
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Fig. 4.11 Three sensor modules with 8
detection regions of the eight sensors.
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Fig. 4.12 Average path-dependent identification rates as a function of the number of persons 
for the three types of sensor modules. 

 
 

To improve the identification capability, we increased the number of PIR detectors in the 

sensor modules to sample more information in the IR field. Fig. 4.11 shows three different 

sensor modules with 8 detectors using different periodic sampling masks. With more detectors, 

we can obtain binary digital features in a higher dimension. The dynamic range of the 

observation for the HMM becomes 0~255 (8-bits). Fig. 4.12 shows the average identification 

rates of the three different sensor modules with respect to the person number. We can see that 

the model 8H has the best performance. It can achieve an average identification rate above 

90% for a small group of 10 persons.  

 

4.4 Experimental Results for Path-independent Recognition 
 

For the path-independent case, we used the same sensor setup as in the path-independent 

case. Each person in a group of 10 walked randomly inside a 9m× 9m room. We used the 

mask model 8H to capture the digital features for the path-independent identification case. 

Because of the randomness in paths, longer training sequences and testing sequences are 
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needed. Fig. 4.13 illustrates the impact of the length of training sequences and testing 

sequences on the identification rate. We can see little improvement in average identification 

rates for lengths of training data beyond 3000. For HMMs derived from training data of 

length 3000, testing sequences beyond 500 in length does not increase the identification rate. 

Therefore, for path-independent recognition we chose the length of 3000 for the training 

sequences, and 500 for the testing sequences. Table 4-1 shows the closed-set path-independent 

identification results for 10 walkers. It can be seen that in identification among 10 walkers the 

lowest identification rate is 60%, the highest is 95%, and the average is 78.5%. Fig. 4.14 

shows the average identification rates we obtained. Like in the path-dependent case, the 

identification rate drops as the size of the group increased in number of people. When the 

group size grows from 2 to 10, the average identification rate decreased from 92.5% to 78.5%. 

This human recognition system is based on the IR radiation from the human bodies. Among 

all the factors that affect the human heat radiation, the cloth that walkers wear is the most 

important one. From the initial experiment results, the system recognition capability is 

invariant to the clothes with similar fabric. However, a person wearing clothes with different 

kind of fabrics (e.g., cotton one for training and then polyester one for testing) will degrade 

the recognition rate.  
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Fig. 4.13 Average identification rates for a group of 10 as a function of the (a) training 
sequences in different length; (b) testing sequences in different length. 
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Table 4.1 Closed-set path-independent identification results for 10 walkers. 
 

Results Eve Jason Pai Bob Scott John Evan Arnak Mohan Yu 

Eve 95%   5%       

Jason  90%    20%   10%  

Pai   75% 10% 15%     20% 

Bob 5%  10% 85%    5%   

Scott     70%   15%   

John  5%    60% 10%  15%  

Evan      5% 85%    

Arnak  5% 5%  15%  5% 80%   

Mohan      15%   65%  

Yu     10%      10% 80% 
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Fig. 4.14 Average path-independent identification rates as a function of the number of 
persons. 
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