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ABSTRACT
In recent years, the development of machine learning techniques has provided an

effective avenue for classification problems. However, when learning from
imbalanced data, the traditional methods have poor predictive ability to identify
minority instances. This problem is of crucial importance since it is encountered by a
large number of domains of great environmental, vital or commercial importance such
as fraud detection, text mining, spami detection, medical diagnosis and fault
monitoring/inspection. In this study, we propose novel methods called “Granular
Computing” models to tackle class imbalance problems.

Granular computing, which. is oOriented towards representing and processing
Information Granules (I1Gs), is a computing paradigm that embraces a number of
modeling frameworks. GrC imitates human instincts of processing information and is
becoming a very important issue for computer science, logic, philosophy and others.
When describing a problem which involves incomplete, uncertain, or vague
information, we human beings tend to shy away from numbers and use aggregates to
ponder the question instead. We are forced to consider 1Gs which are collections of
entities arranged together due to their similarity, functional adjacency and
indistinguishability. GrC model not only can remove unnecessary details and provide
a better insight into the essence of data, but also effectively solve class imbalance

problems.

This study aims to develop two kinds of GrC models, “Knowledge Acquisition
via Information Granulation” (KAIG) model and “Information Granules based
method” (IG based method), for dealing with discrete and continuous data,
respectively. In both models, the homogeneity index (H-index) and the



undistinguishable ratio (U-ratio) are successfully introduced to determine a suitable
level of granularity (i.e. determine suitable number of 1Gs). Fuzzy Adaptive
Resonance Theory (Fuzzy ART) neural network is utilized to construct IGs. In
addition, we propose the concept of “sub-attributes” to describe granules and tackle
the overlapping among granules in KAIG model. In IG based method, data

characteristics are employed to represent IGs. The main objectives of this study are:

1. Develop a KAIG model to construct 1Gs, and to discover knowledge from IGs.
Seven data sets from UCI data bank (including one imbalanced diagnosis data), are
provided to evaluate the effectiveness of KAIG model. By using different
performance indexes, Overall Accuracy, G-mean and ROC curve, the experimental
results comparing with C4.5 and Support Vector Machine (SVM) demonstrate the
superiority of our method.

2. Apply KAIG model to solve class imbalance problems in industrial engineering
related areas. First, KAIG model is utilized to improve the classification
performance of a dynamic scheduling system within a simulated Flexible
Manufacturing System environment.: Second, a real case of cellular phones
inspection is provided to :llustrate the excellent ability of KAIG model in
identifying rare defective products. In‘addition, KAIG model can reduce redundant
test items and shorten inspection time. For.imbalanced data, these applications
show KAIG model can dramatically increase Negative Accuracy (the capability of

detecting minor instances) without losing Overall Accuracy.

3. Propose 1G based method to deal with continuous imbalanced data. In this method,
different data characteristics and their combinations are employed to denote
constructed 1Gs. Then we build a classifier from these representatives of 1Gs. An
actual medical diagnosis data of diabetes is used to evaluate the effectiveness of
this method. Compared with traditional techniques, the proposed method is shown

to be superior for learning on imbalanced data.

Key words: Granular computing, Information granulation, Class imbalance problems,

Fuzzy ART neural network, Knowledge acquisition, Machine learning.
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CHAPTER 1

INTRODUCTION

1.1 Research Motivations

When learning from imbalanced/skewed data, which almost all the instances are
labeled as one class while far few instances are labeled as the other class, traditional
machine learning algorithms such as Neural Networks (NN), Decision Trees (DT),
and Support Vector Machines (SVM) tend to produce high accuracy over the majority
class but poor predictive accuracy over the minority class. This minority class is
usually the important one, like illness patients of medical diagnoses examples or
abnormal products of finished-goods inspection.data. This study tries to solve these
Class Imbalance problems which caused by.skewed data distribution.

There are two motivations why we propose the Granular Computing (GrC) to
tackle class imbalance problems”The first one_is-human instinct (Zadeh, 2001). As
human beings, we have developed a granular view of the world. When describing a
problem or making decisions, we tend to shy away from numbers and use aggregates
to ponder the question instead. This is especially true when a problem involves
incomplete, uncertain, or vague information. It may be sometimes difficult to
differentiate distinct elements, and so one is forced to consider “information granules”
(IG) which are collections of entities arranged together due to their similarity,
functional adjacency and indistinguishability (Bargiela and Pedrycz, 2003; Castellano
and Fanelli, 2001; Yao and Yao, 2002; Zadeh, 1979). A typical example is the theory
of rough sets (Walczak and Massart, 1999).

The process of constructing IGs is referred to as information granulation. This

was first pointed out in the pioneering work of Zadeh (1979) who coined the term



‘information granulation’, and emphasized the fact that a plethora of details does not
necessarily amount to knowledge. Granulation serves as an abstraction mechanism for
reducing an entire conceptual burden. The essential factor driving the granulation of
information is the need to comprehend the problem and have a better insight into its
essence, rather than get buried in all the unnecessary details. By changing the size of
the IGs, we can hide or reveal more or less details (Bargiela and Pedrycz, 2003).
Granular Computing (GrC) is oriented towards the representation and processing of
1Gs.

The second motivation is about the behavior of data. In many practical datasets,
such as medical/diagnosis, inspection, fault monitoring and fraud detecting data, the
normal group and abnormal group are considered separate populations. Taguchi and
Juoulum (2002) thought every abnermal condition (or a condition outside “healthy”
group) is considered unique, since.the occurrence of such a condition is different.
Tolstoy’s quote in Anna Karenina: ““All-happy families look alike. Every unhappy
family is unhappy after its own fashion” is-also noted to illustrate their opinions
(Taguchi and Juoulum, 2002). From the observations of practical data, we can clearly
find the normal group (i.e. healthy patients, good products) look alike while the
abnormal group (i.e. sick patients, defective products) are unique. If we construct 1Gs
by the similarity of numerical data, the amount of IGs in normal group will be
remarkably smaller than the size of normal numerical data. In other words, if we
consider 1Gs instead of numerical data, it might increase the proportion of abnormal

data and improve imbalanced/skewed situation of data.



1.2 Research Objectives

The purpose of this study is to develop two Granular Computing models to deal
with imbalanced/skewed data. These two models can extract knowledge from 1Gs and
are developed for discrete and continuous data, respectively. The main issue needed to
tackle is how to measure and represent IGs if we want to acquire knowledge from IGs.
In this study, we use Fuzzy Adaptive Resonance Theory (Fuzzy ART) neural network
to construct IGs. The two indexes, the homogeneity index (H-index) and the
undistinguishable ratio (U-ratio), are presented to measure IGs. In the first proposed
model called “Knowledge Acquisition via Information Granulation” (KAIG), the
concept of “sub-attributes” is presented to describe granules, and to tackle the
overlapping among granules. In the second. proposed approach called “Information
Granules based method”, we try:to userdifferent data characteristics such as mean,
median, quartiles, minimum, maximum and combinations of them to represent 1Gs.

Then, we extract knowledge from these I1Gs:

The KAIG model is designed for discrete imbalanced data. We will evaluate
KAIG model by using UCI data and make a comparison between KAIG model and
traditional knowledge acquisition algorithms which operate with numerical data. In
addition, KAIG model is applied to deal with class imbalance problems in a dynamic
scheduling problem within a simulated Flexible Manufacturing System. Besides, this
study developed a feature selection procedure integrated the proposed KAIG model to
find key test items and shorten inspection time. A real case of mobile phone
inspection in Taiwan was used to evaluate effectiveness of the proposed procedure.

We also show advantages and benefits of this procedure.

The 1G based method is proposed to deal with continuous imbalanced data. The

experimental results will be compared with cluster-based sampling method and

3



original machine learning techniques. Finally, an actual medical diagnosis data of

diabetes is employed to illustrate the superiority of our method.

1.3 Framework and Organization

In practical application of machine learning (or data mining), class imbalance
problems are emerging issues. According the report of available researches, sampling
and moving decision threshold are widely used methods to tackle this problem. This
study developed two kinds of GrC model, which is also new topic in information
processing, to solve the class imbalance problems. The developed models will be

compared with previous techniques. The research framework is shown in Figure 1.1.

This study is organized as follows. Chapter 1'presents the research motivations
and objectives. Chapter 2 is the-literature review of related researches toward granular
computing, class imbalance problems, “inductive- learning and feature selection
techniques. Chapter 3 proposes two GrC methodologies. In this chapter, we use Fuzzy
ART neural network to construct IGs, present “H-index & U-ratio” to determine the
suitable level of granularity, and develop the concept of “sub-attributes” and “data
characteristics” to describe I1Gs. In chapter 4, several data sets from UCI machine
learning group are provided to illustrate and evaluate the effectiveness of our
methodologies. Chapter 5 describes the applications of KAIG model in dynamic
scheduling system within a simulated FMS. In Chapter 6, we develop a KAIG model
based feature selection procedure to reduce test items and shorten inspection time in
mobile phone manufacturing. Chapter 7 provides a case study of diabetes diagnosis
by using IG based method. Finally, conclusions and future works are described in

Chapter 8.
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CHAPTER 2

RELATED WORKS

2.1 Granular Computing

Humans have a remarkable capability to perform a wide variety of physical and
mental tasks without any measurements and any computations, such as driving,
parking, cooking, and playing computer game. We human beings use perceptions of
direction, speed, time and other attributes of physical/mental objects, instead of
numerical data. Basically speaking, reflecting the limited ability of human brains,
perceptions are inaccurate. In more concrete terms, perceptions are granular. It means
that the boundaries of perceived classes are unsharp; and the values of attributes are
granulated (Zadeh, 2001). For example, the:granules of temperature might be labeled
very cold, cold, warm, hot, very-hot, etc.-The computation theory of perceptions (CTP)
is inspired by the marvelous human ability. And; GrC belongs to related research
areas of CTP.

GrC is quickly becoming an emerging conceptual and computing paradigm of
information processing (Bargiela and Pedrycz, 2003). It is a superset of the theory of
fuzzy information granulation, rough set theory and interval computations, and is a
subset of granular mathematics. GrC as opposed to numeric computing is
knowledge-oriented. Numeric computing is data oriented. The main issues
(Castellano and Fanelli, 2001) of granular computing are how to construct the IGs,
and to describe 1Gs. One particular question that arises is how to determine the level
of granularity. If we want to acquire knowledge from 1Gs, we must try to solve these
three questions which will be discussed in sections 3.1~3.3.

In the issue of constructing IGs, there are many approaches, such as the Self



Organizing Map (SOM) network (Bortolan and Pedrycz, 2002), Fuzzy C-means
(FCM) (Castellano and Fanelli, 2001; Bargiela and Pedrycz, 2003b), rough sets,
shadowed sets (Bargiela and Pedrycz, 2003a) used to do this. Because IGs exist at
different levels of granularity, we usually group granules of similar “size” (that is
granularity) in a single layer. If more detailed processing is required, smaller 1Gs are
selected. Figure 2.1 illustrates this concept of granularity. At the lowest level, we are
concerned with numeric processing. This is a domain completely taken over by
numeric models, such as differential equations, regression models, neural networks,
etc. At the intermediate level, we see larger 1Gs (viz. those embracing more individual
elements). The top level is solely devoted to symbol-based processing, and as such
invokes well-known concepts of Petri nets, qualitative simulation, etc (Bargiela and

Pedrycz, 2003a).

In the issue of represntting 1Gs and determiningthe level of granularity, Bargiela
and Pedrycz (2002) proposed the “hyperbox™ and “inclusion & compatibility” to
measure 1Gs. However, these researches:focused on how to construct IG, how to
describe 1G and how to measure IG, individually. We need an advanced/integrated
mechanism to imitate human ability of processing information, such as extracting

knowledge from IGs and making decision based on them.

high
Granularity

low

Figure 2.1 An information-processing pyramid (Bargiela & Pedrycz, 2003)



2.2 Class Imbalance Problems

Learning from imbalanced/skewed data is an important topic and rises very often
in practice. In such kind of data, one class might be represented by a large number of
examples while the other is represented by only a few. Many real world data have
these characteristics, such as fraud detection, text classification (Chawla et al., 2002&
2004) telecommunications management, oil spill detection, risk management, medical
diagnosis/monitoring, financial analysis of loan policy or bankruptcy (Batista et al.,
2004; Chawla et al., 2004; Grzymala-Busse et al., 2004) and protein data (Provost and
Fawecett, 2001). Traditional classifiers seeking an accurate performance over a full
range of instances are not suitable to deal with imbalanced learning tasks (Batista et
al., 2004; Chawla et al., 2004; Guo and, Viktor, 2004; Japkowicz and Stephen, 2002)
since they tend to classify all data into.the majority class, which is usually the less
important class. Therefore, these traditional algorithms often produce high accuracy
over the majority class, but poor predictive accuracy-over the minority class.

To cope with imbalanced data“sets, ‘there are some methods proposed in
literatures. There are two major groups of techniques designed to address class
imbalance. The first group consists of supervised techniques that usually include five
approaches: (1) undersampling, methods in which the minority population is kept
intact, while the majority population is under-sampled, (2) oversampling, methods in
which the minority examples are over-sampled so that the desired class distribution is
obtained in the training set (Batista et al., 2004; Chawla et al., 2002; Guo and Viktor,
2004), (3) cluster based sampling, methods in which the representative examples are
randomly sampled from clusters (Altincay and Ergun, 2004), (4) moving the decision
threshold, methods in which researchers try to adapt the decision thresholds to impose

bias on the minority class (Chawla et al., 2002; Huang et al., 2004; Jo and Japkowicz,



2004) and (5) adjust costs matrices, methods in which the prediction accuracy is
improved by adjusting the cost (weight) for each class(Cristianini and Shawe-Taylor,
2000).

The second large class of techniques for detecting rare events involves an
unsupervised framework, i.e. outlier detection or one-class classification (Manevitz
and Yousef, 2001). Initially, minority examples are completely ignored and a model is
trained by using all examples from the majority class (target class). Then, the outliers
are detected as the data points with low probability of occurrence, small number of
neighboring examples. In addition, SVM is usually used to tackle class imbalance
problem (Wu and Chang, 2005).

These techniques have some disadvantages (Altincay and Ergun, 2004). For
example, the computational load is-increased and.overtraining may occur due to the
replicated samples in the case of over-sampling. Under-sampling does not take into
account all available training data which-corresponds to loss of available information.
Huang et al. (2004) thought these supervised-methods lack a rigorous and systematic
treatment on imbalanced data. Moreover, the one-class classification methods only
consider majority examples. It might miss some beneficial decision information of

minority examples.

2.3 Fuzzy ART Neural Network

Fuzzy ART is one of clustering techniques and also the most recent adaptive
resonance framework that provides a unified architecture for both binary and
continuous valued inputs. Fuzzy ART clusters vectors based on two separate distance
criteria, match and choice. For input vector | and category j, the match function is

defined by



s,()=" " (2.1)

where w; is an analog-valued weight vector associated with cluster j. A denotes
the fuzzy AND operator, (p AQ); =min(p,,q;), and the norm || is defined by
[pl=2_Ipi[.

The choice function is defined by

T,()= (2.2)

where « is a small constant. Increasing « biases the search more towards clusters

with large w;. Each input vector is assigned to the category that maximizes T, (1)

while satisfying S;(1) > o, where,the vigilance o, is a constant, 0< p <1. The

topological structure of the Fuzzy ART architecture is shown in Figure 2.2.

F2 (cluster‘units)

@ @ @ O @ < Reset
F1 (input units) | X |
W & ©» O @
IT IT IT T IT Pl Comparator

Figure 2.2 Topological structure of the Fuzzy-ART
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2.4 Inductive Learning Methods
2.4.1 Decision Tree

The decision tree method is one of the most popular knowledge acquisition
algorithms, and has been successfully applied in many areas. Decision tree algorithms,
such as ID3 and C4.5, were originally intended for classification purposes. The core
of C4.5 contains recursive partitioning of the training examples. Whenever a node is
added to a tree, some subsets of the input features are used to pick the logical test at
that node. The feature that results in the maximum information gain is selected for
testing at that node. In other words, the algorithm chooses the “best” attribute to
partition the data into individual classes at each node. After the test has been
determined it is used to partition:ithe examples, and the process is continued
recursively until each subset contains :examples of one class or satisfies some
statistical criteria (Su and Shiue; 2003).

In this study, See5 (C4.5 commercial version) software was utilized to construct
a decision tree. In See5 there are two parameters that can be tuned during the pruning
phase: the minimal number of examples represented at any branch of any
feature-value test; and the confidence level of pruning. In order to avoid the
occurrence of overfitting and generating a simple tree, 2 was set as the minimum

number of instances at each leaf, and the confidence level for pruning was set at 25%.

2.4.2 Back-propagation Neural Network

Neural nets have been wused widely in pattern recognition, function
approximation, optimization, and clustering. Generally speaking, neural nets can be

classified into two categories, feed-forward and feedback networks. In this study, the
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feed-forward network, shown as Figure 2.3, was employed because of their superior

ability of classification.

The back-propagation learning algorithm (Rumelhart & McClelland, 1986) is the
best known training algorithm for neural networks and still one of the most useful.
This iterative gradient algorithm is designed to minimize the mean square error
between the actual output of a multilayer feed-forward perceptron and the desired
output. According to the rule of thumb and reports of available published papers, the
number of hidden layers should be one or two. The back-propagation algorithm
includes a forward pass and a backward pass. The purpose of the forward pass is to
obtain the activation value and the backward pass is to adjust weights and biases
according to the difference between the desired and actual network outputs. These two
passes will go through iteratively until=the-hetwork converges. The feed-forward

network training by back-propagation can be summarized as the following steps:

Step 1: Select an architecture
Step 2: Randomly initialize weights
Step 3: While error is too large
For each training pattern (presented in random order)
Step 3.1: Select training pattern and feedforward to find actual network output
Step 3.1.1: Apply the inputs to the network

Step 3.1.2: Calculate the output for every neuron from the input layer,
through the hidden layer(s), to the output layer

The output from neuron j for patternp is O,; where

1

OPi (nEtJ) = 1 —net; (23)

and

net, :bias+zk:Opijk 2.4)
k ranges over the input indices and W, is the
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weight on the connection from input k to neuron j.

Step 3.2: Calculate errors and backpropagate error signals
Step 3.2.1: Calculate the error at the outputs

The output neuron error signal & is given by

pj
Gy = (T - 0) x0x(1-0y) (2.5)
where T ; is the target value of output neuron j for

pattern p and O ; is the actual output value of output
neuron j for pattern p.

Step 3.2.2: Use the output error to compute error signals for pre-output
layers

The hidden neuron error signal & ; is given by
95 =0, (1—0pj);5pkwkj) (2.6)

where dgaristthe error signal of a post-synaptic
neuron k and-W,. is, the weight of the connection
from hidden neuron j to the post-synaptic neuron k.

Step 3.3: Adjust weights
Step 3.3.1: Use the error signals to compute weight adjustments

Compute weight adjustments AW, at time t by

AW ()=1x6,; xO, +ax AW ;(t-1) (2.7)

where 7 is the learning rate and o« is the
momentum coefficient (« €[0,1]).

Step 3.3.2: Apply the weight adjustments
Apply weight adjustments according to

W, (t+1) =W, (t) + AW, () (2.8)

Step 4: Evaluate performance using the test data set

13



Inputs Outputs

Figure 2.3 The back-propagation neural network structure

2.4.3 Rough Sets

The rough sets theory was introduced by Pawlak (1985) to deal with imprecise or
vague concepts (Swiniarski and Skowron,,2003; Walczak and Massart, 1999). Rough
sets deal with information represented by-atable called the information system which
contains objects and attributes.- An information system is composed of a 4-tuple as

follows:

S=(U.QV,T) (2.9)

where U is the universe, a finite set of N objects {x1,x2,....Xn}, Q is a finite set of

attributes, V =u,,V,, where Vg is a value of attribute g, and f :UxQ —V isthe

0Q
total decision function called the information function such that f(x,q) eV, for
every qeQ, xeU.Foragiven subset of attributes Ac Q the IND(A)

IND(A) = {(x,y) eU :foralla e A, f(x,a) = f(y,a)} (2.10)

is an equivalence relation on universe U (called an indiscernibility relation).

Some of the information systems can be designed as a decision table
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Decision table=(U,CuUD,V, f) (2.11)

where C is a set of condition attributes, D is a set of decision attributes,

V=u V, , where Vq is the set of values of attribute qeQ , and

geCuD Y q !

f:Ux(CuD)—V is a total decision function (decision rule in a decision table)

suchthat f(x,q) eV, forevery qeQ and xeV.

For a given information system S, a given subset of attributes AcQ
determines the approximation space AS = (U,IND(A)) in S. For a given AcQ
and X cU (a concept of X), the A-lower approximation AX of set X in AS and

A-upper approximation AX  of set X in AS are defined as follows:

AX ={xeU:[x], c X}=ufe A Y c X}, (2.12)
AX ={xeU :[X], nX #@}= U eA:Y N X =2} (2.13)

where A" denotes the set of all equivalence classes of IND(A). The process of
finding a set of attributes smaller than the‘original one with the same classificatory
power as the original set is called attribute reduction. A reduct is the essential part of
an information system (subset of attributes) which can discern all objects discernible
by the original information system. By means of the dependent properties of the
attributes we can find a reduced set of attributes, providing that by removing the

superfluous attributes there is no loss in classification accuracy.

2.4.4 Support Vector Machines

SVM is a powerful learning method and often employed to tackle class
imbalance problems (Wu and Chang, 2005). SVM learns a decision boundary

between two classes by mapping the training data (through kernel functions) onto a
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higher dimensional space, and then finding the maximal margin hyperplane within
that space. Finally, this hyperplane can be viewed as a classifier. Figure 2.4 illustrates

the concept of feature mapping and two-class separation.

Feature space
Input space A
1 put sp < Pos example %
@ Neg example .
Hyperplane®> &
& <><> —> <> % Support vector
Kernel o T
%) N
<& @5 O <& function
O o < o 2 R
% .
rgin

[
> »

Fig. 2.4 The operations of Support Vector Machine
Consider a classifier, which uses a hyperplane to separate two class of patterns
based on given examples S = {xi Yi }inzl, yi e {—1,+1}. The hyperplane is defined by

(w,b), where w is a weight®vector and-b" a'bias. Let w,and b, denote the

optimal values of the weight vector and bias.'Correspondingly, the optimal hyperplane

can be written as
Wy X+b, =0 (2.14)
To find the optimum values of w and b, it requires to solve the following

optimization problem.

w,b,&

min %WTW+CZ§i
i=1

Subject to VW g(x;) +b) 2 1=, (2.15)
¢ =0

where & is the slack variables, C is the user-specified penalty parameter of the error

term (C >0),and ¢ isthe kernel function.

In this research, we used the LIBSVM (version 2.8), which is an integrated tool
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for support vector classification and regression, and is available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm. We used the standard parameters of the

algorithm. All optimal parameters can be automatically generated in this program and

the default kernel function is Radial Basis Function (RBF).

2.5 Feature Selection From Imbalanced Data

Reduction of pattern dimensionality via feature selection belongs to the most
fundamental steps in data processing (Swiniarski and Hargis, 2001). A large feature
set often contains redundant and irrelevant information, and can actually degrade the
performance of the classifier (Oyeleye and Lehtihet, 1998). The main purpose of
feature selection is to remove irrelevant or redundant attributes and improve the
performance of classification.

Feature selection is often applied in‘pattern classification, data mining, as well as
in machine learning. Among many. feature selection methods, GA, rough sets and
neural networks have attracted much attention, and have become popular techniques
for feature selection. However, when these methods are applied to imbalanced data, it
usually suffers from some drawbacks, such as ignoring the minority examples and
viewing them as outliers. It was reported (Batista et al., 2004; Chawla et al., 2004)
that these methods seeking an accurate performance over a full range of instances are
not suitable to deal with imbalanced learning tasks since they tend to classify all data
into the majority class, which is usually the less important class. This is because
typical classifiers that are designed to optimize overall accuracy without taking into
account the relative distribution of each class.

Rough sets emerged as a major mathematical tool for discovering knowledge and

feature selection (Walczak, B. and D. L. Massart, 1999). One of the fundamental
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principles of a rough set-based learning system is discovering redundancies and
dependencies between the given features of a problem to be classified. A reduct
generated by the rough sets approach is defined as the minimal subset of attributes
that enables the same classification of objects with full attributes. When applying
rough sets in practice, its computational complexity increases dramatically with the
growth of the data. In addition, the deterministic mechanism for the description of
error is very simple in rough sets. Therefore, the rules generated by rough sets are
often unstable and have a low classification accuracy (Li and Wang, 2004).

Feature selection with neural networks can be thought of as a special case of
architectural pruning (Reed, 1993), where the input features are pruned rather than the
hidden neurons. Su et al. (2002) attempted to determine the important input nodes of a
neural network based on the sum'of absolute"multiplication values of the weights
between the layers. They (Su et. al., 2002) proposed an algorithm to remove
unimportant input nodes from a trained-back-propagation neural network (BPNN).
The essence of this method is to ‘compare.the multiplication values of the weights
between the input-hidden layer and the hidden-output layer. Only the multiplication
weights with large absolute values are kept and the rests are removed. The equation

for calculating the sum of absolute multiplication values is defined as follows.
NOdei = ZM” ijk (214)
]

where W; is the weight between the ith input node and the jth hidden node, and V,,

is the weight between the jth hidden node and the kth output node. Then, we must set
a threshold to remove the irrelevant input nodes. The threshold should be determined
by the user to obtain a suitable number of input nodes. Unfortunately, the training of
neural networks when using imbalanced data is very slow (Bruzzone and Serpico,

1997).
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Another common understanding is that some learning algorithms have built-in
feature selection, for example, 1ID3 (Quinlan, 1986), FRINGE and C4.5 (Quinlan,
1993). Almuallim and Dietterich (1994) suggested that one should not rely on ID3 or
FRINGE to filter out irrelevant features. There are some cases in which ID3 and
FRINGE miss extremely simple hypotheses. In addition, the negative examples of
imbalanced data might be removed in the pruning phase of the tree construction.

In other words, when faced with imbalanced data, the performance of feature
selection tools drops significantly (Akbani et al., 2004). Pendharkar et al. (1999)
mentioned that the ratio of the number of objects belonging to positive and negative
examples impacts upon effective learning. If the data set contains many positive
examples and very few negative examples, there is a bias in the discriminant function
that the technique will identify, and-it therefore follows that this bias results in a lower
reliability of the technique. An-and Wang (2001) suggested to balance the data by
sampling. However, this is sometimes-not-feasible due to there being so few negative

examples.
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CHAPTER 3

PROPOSED GRANULAR COMPUTING MODELS

In this chapter, we propose two kinds of GrC model, “Knowledge Acquisition via
Information Granulation” (KAIG) model and IG based method, to tackle class
imbalance problems. The KAIG model is suitable for dealing with discrete data and
the 1G based method is designed for continuous data. These two approaches can
improve classification performance by controlling the reduction of unnecessary
details.

In both of proposed models, Fuzzy ART (Adaptive resonance theory) neural
network is utilized to construct:'IGs. The two. indexes, the homogeneity index
(H-index) and the undistinguishable ratio (W-ratio); are developed to determine a
suitable level of granularity. In KAIG.-model, the concept of “sub-attributes” is
presented to describe 1Gs and tackle the overlapping among granules. In IG based
method, we propose three strategies which utilize different data characteristics and

their combinations to represent IGs.

3.1 Construction of Information Granules

In this study, the Fuzzy ART is utilized to construct 1Gs. ART is a well
established neural network theory developed by Carpenter et al. (1991). The ART
network is also a famous method of clustering. Instead of clustering by a given
number of clusters, it assigns patterns onto the same cluster by comparing their
similarity. The detailed algorithm of Fuzzy ART <can be found in

(Serrano-Gotarredona et al., 1998).
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The major difference between ART and other unsupervised neural networks is
the so called vigilance parameter (o) which is viewed as a granularity and can be
adjusted by the users to control the degree of similarity of patterns placed on the same
cluster. In an ART, the degree of similarity between a new pattern and a stored pattern
is defined. This similarity, compared to o, is a measure to ensure whether the new
pattern is properly classified or not. The other unsupervised learning neural networks
which do not implement vigilance may cause a significantly different input pattern to
be forced into an inappropriate cluster. In contrast to some other cluster methods, an
ART network will not automatically force all input vectors onto a cluster if they are
not sufficiently similar. This is the reason why the ART network is employed in this
study to construct the 1Gs.

There are three similar ART.‘architectures, -namely ART 1, ART 2, and Fuzzy
ART. ART 1 is designed for binary-valued input patterns, and ART 2 is for
continuous-valued patterns. Fuzzy tART -is—-the ‘most recent adaptive resonance
framework that provides a unified architecture for both binary and continuous valued
inputs. There are several factors that motivated us to use Fuzzy ART, and they are as
follows (Burke and Kamal, 1995):

(1)Unlike ART1, Fuzzy ART does not require a completely binary representation of
the parts to be grouped. In addition, Fuzzy ART possesses the same desirable
stability properties as ART1 and a simpler architecture than that of ART2.

(2)ART2 can experience difficulty in achieving good categorizations if the input
patterns are not all normalized to a constant length. However, such normalization
can possibly destroy valuable information. Besides, there is a serious dependency
of classification results in the case of ART1 on the sequence of input presentation.

As aresult, the Fuzzy ART network is employed to construct IGs in this study.
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3.2 Selection of Granularity

Selecting an appropriate size of IGs is a difficult task. Enough background
knowledge is required to determine how similar objects should be gathered together to
form one IG. An objective index is needed to select the appropriate similarity of
granules. We propose H-index and U-ratio to solve this problem.

The basic assumption of the H-index is that the classes of objects should be equal
if their values of attributes are sufficiently similar. This implies that we always make
the same decision under a similar condition. Because we form granules by the
similarity of objects, the objects in the same granule should have the same class. The
H-index is used to measure the consistency of the class of the objects in one 1G. The

H-index is defined as

b
H —index = nm 3D

where n represents the number of all‘objects-in one granule, m is the number of all
IGs and i isthe amount of objectspassessing the majority class.

For example, Table 3.1 shows one IG involving five objects (n=5). There are 4
condition attributes (namely A, B, C and D) in the iris data. The decision attribute
(class) of the first 4 objects is “versicolor”, but the last one has a different decision

attribute, “setosa”. In this example, “versicolor” is the majority classand i=4. The

H-index of this IG is g )

Table 3.1 The information granule- iris example

Condition attributes Decision attribute
A B C D (Classes)
5.8 2.7 4.1 1 versicolor
6.2 2.2 45 15 versicolor
5.6 2.5 3.9 1.1 versicolor
5.9 3.2 4.8 1.8 versicolor
5 3.3 1.4 0.2 setosa
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Table 3.2 The undistinguishable information granule
Condition attributes
A B C D
54 | 22 | 39 | 12 versicolor
6.8 | 34 | 56 | 24 virginica

Decision attribute

Another index for selecting similarity is the U-ratio. In the preceding example,
“versicolor” is the majority of the classes. Therefore, it is assigned to be the class of
this IG. If there is another granule described as Table 3.2, and we are unable to
distinguish the class of the IG, then we call that granule an “undistinguishable

granule.” The U-ratio is defined as

. u
U —ratio = — 3.2
- (32)

where u represents the number of undistinguishable granules
and m represents the quantity:of all granules.

This index is to calculate;the ‘proportions of ‘undistinguishable granules to all
granules. If there are ten granules ‘and two. of them are undistinguishable granules,
which means u isequal to 2and m isequal to 10, then the U-ratio is equal to 0.2.

By using these two indexes, we also need a “granularity selection criteria” to
determine the similarity of the 1Gs. In the present study, the larger the H-index the
better it is, because it means that more objects in one IG possess the same class. There
IS no need to set up the index to a fixed value. The size of the index depends on the
domain knowledge or how large an error you can tolerate. On the other hand, the
U-ratio is the opposite. As far as the U-ratio is concerned, the smaller the better. It’s
difficult to process an undistinguishable granule, so we need to view them carefully.
However, we try to avoid this situation by setting the U-ratio as small as possible. In

other words, if we select a specific similarity where the H-index is larger and the
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U-ratio is smaller, then this similarity is the best solution.

3.3 Representation of Information Granules
3.3.1 The Concept of “Sub-attributes”

In KAIG model, we propose the concept of “sub-attributes” to represent 1Gs.
First, we utilize hyperboxes to represent 1Gs (Pedrycz and Bargiela, 2002). For
example, a hyperbox [b] defined in R" is fully described by its lower (b~) and
upper corner (b*), where b~ and b* are vectors in R". An important and
frequently used universal set is the set of all points in the n-dimensional space. This

set is denoted as R". Using b~ and b™ we can express the hyperbox as

[b]=[b",b"] Consider two IGs (hyperboxes) A=[a] and B=[b] defined in RZ.

More explicitly, we follow a full notation-[a] =[a ,a"] and [b]=[b",b"]. These

two granules are described as Table 3.3.

Table 3.3 Two IGS represented by hyperbox form

ttributes X, X,
IGs
A {aj.a'} | {a.a,}
B {b b’} | {by.b,}

As Figure 3.1 shows, there are overlaps between two granules A and B. This
makes it difficult to handle by knowledge acquisition tools. This is because most of
knowledge acquisition algorithms are not designed to deal with 1Gs, especially when
overlapping occurs between granules. Unfortunately, the overlapping situation always
happens in real world. In this study, we introduce the concept of “sub-attributes” to
tackle the problem of overlaps between granules.

We can explain this idea of “sub-attributes” by using Figure 3.1. In axis X1
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(attribute 1), the overlapping part of two granules are separated into overlapping part

([b,,a,]) and non-overlapping parts ([a,,b;] & [a,,b]). These sub-intervals,

[a;,b/], [b/,8] & [a,b/], are named as Xii, Xi2, Xi3 which are so called

“sub-attributes.” The binary variable which is employed to be the values of

sub-attributes represents whether an IG contains these sub-intervals or not. The results

of rewriting the 1Gs by using sub-attributes can be found in Table 3.4. We divide the

original attribute X, into sub-attributes X,,, X,,, X,; and attribute X, into

X,, X,, X,. Then, these two granules are rewritten by replacing the original

attributes with sub-attributes. By introducing the concept of sub-attributes, we can

easily extract knowledge from the granules even if the overlapping situation always

exists.
X, A
b, T
. B
a, T
b, T A
a, T+
—1 I I >
al b al b; X
Figure 3.1 The overlap between 1Gs
Table 3.4 The 1Gs with sub-attributes
Original attributes X, X,
Sub-attributes X, X, X5 X, X, X 5
IGs [a,.b7]1 | [b),a'] | [a7,b'] | [a;,b;] | [b;,28;] | [a;,b;]
A 1 1 0 1 1 0
B 0 1 1 0 1 1
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The concept of “sub-attributes” can maintain the complete characteristics of data.
The IGs with addition of sub-attributes are suitable for all knowledge acquisition
algorithms. It is not required to adjust the computational architecture of these
algorithms. However, too many sub-attributes may be generated in the situation of
natural overlapping which the values of the condition attributes are continuous and
diverse. Therefore, as we often do in data preparation phase of data mining, we
suggest descretizing data before implementing KAIG model to control the number of

sub-attributes.

3.3.2 Using Data Characteristics to represent 1Gs

As mentioned above, too many sub-attributes will increase computational
complexity. In order to avoid this.situation, we propose another idea which uses data
characteristics to describe 1Gs. .Unlike' “sub-attributes” which use intervals to
represent 1G, we utilize different data—points. such as mean, median, maximum,
minimum, and quartiles to describe1Gs.in 1G-based method. Three IG representation
strategies are provided. In strategy 1, we utilize single value, mean and median, to
describe 1Gs. The strategy 2 uses double-value combinations of data characteristics,
Q1+Q3 and Maximum+Minimum. In strategy 3, we employ triple-values

combinations, Q1+Median+Q3 and Maximum+Mean+Minimum.

3.4 Proposed Methodologies

This section summarizes the procedure of two proposed GrC models. First, we
address how the 1Gs are formed from numerical data. Secondly, H-index and U-ratio
are introduced to determine the level of granularity which can be used to construct
IGs in Fuzzy ART. Then, we try to describe IGs and extract knowledge from them.

3.4.1 The KAIG Model
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Figure 3.2 shows the proposed KAIG model. We summarized KAIG model by
the following steps:
Step 1: Information Granulation

In step 1, we use Fuzzy ART to construct 1Gs. But, first thing we need to
determine is to select the suitable level of granularity (vigilance). The IGs are formed
by the selected granularity. The initial value of granularity is set 1 and then decrease
gradually until find one satisfying criteria of H-index and U-ratio. The found suitable

granularity is employed to construct IGs.

Numerical data

Select the level of granularity |

!

Check granularity~JNot satisfied
by using H-index
U-ratio

Information granulation Satisfied

A
Information granules representation (Sub-attributes)

v

| Knowledge acquisition |

Knowledge rules

Figure 3.2 Knowledge Acquisition via Information Granulation (KAIG) model

Step 2: Information Granules Representation

IGs are represented in a suitable form that can be handled by knowledge
acquisition tools. As mentioned in section 3.2.3, these formed 1Gs are described in
hyperboxes. Then, the sub-attributes are applied in these IGs to solve the problem and
finally we can extract knowledge from these 1Gs.
Step 3: Knowledge Acquisition

After describing 1Gs appropriately and tackling the overlapping situation, we can

27



use knowledge acquisition tools to extract knowledge rules from the granules. In this
study, we will compare three famous data mining algorithms, C4.5, Rough sets and

back-propagation neural network, to evaluate their effectiveness in KAIG model.

3.4.2 The IG based Method

In KAIG model, we use “sub-attributes” to describe IGs and solve the
overlapping situation effectively. However, when dealing with continuous data, KAIG
may generate so many sub-attributes that increase the computational complexity of
knowledge acquisition algorithms. The same situation may occur while the
discretization algorithms dividing the continuous attribute’s value into too many

discrete intervals. Therefore, we propose the IG based method in this section.

In this method, the “information granulation” process is the same with KAIG
model. Only one difference is the description of 1Gs. This method utilizes data
characteristics to denote IGs without using sub-attributes. This IG based method
follows the three steps described as bellow. We adopt three strategies which are listed
in Step 2 to describe 1Gs. They are different combinations of data characteristics
(mean, median, quartiles, maximum & minimum), single-value, double-value, and
triple-value strategies. Then we can build a classifier from these data characteristics.

Step 1: Information Granulation
Step 2: 1G Representation: Data Characteristics
Strategy 1- Single value: Mean, Median.
Strategy 2-Double values: Max+Min, Q1+Q3
Strategy 3-Triple values: Max+Mean+Min, Q1+Median+Q3

Step 3: Knowledge Acquisition

CHAPTER 4
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NUMERICAL EXAMPLES

In this chapter, several data sets from UCI data bank are employed to illustrate
our models and evaluate the effectiveness. Besides, some imbalanced data sets are
provided to demonstrate the superiority of our methods in solving class imbalance
class problem by using the indexes, Overall Accuracy, G-mean and Receiver

Operation Characteristic (ROC) curve.

4.1 Performance Measures

Before implementing, we should discuss the effectiveness of performance index
in class imbalance situation. The easiest way to evaluate the performance of classifiers
is based on the confusion matrix described as Table 4.1. TP, FP, TN and FN are
defined as bellows.

TP: the number of True Positive examples

FP: the number of False Positive examples

TN: the number of True Negative examples
FN: the number of False Negative examples

Traditionally, the performance of a classifier is evaluated by considering the overall
accuracy against test cases. However, when learning from imbalanced data sets, the
measure is often not sufficient. For example, it is straightforward to create a classifier
having an accuracy of 95% in a domain where the majority class proportion
corresponds to 95% of the examples, by simply forecasting every new example as
belonging to the majority class. Another fact is the metric considers different
classification errors to be equally important. But as we know, a highly imbalanced
class problem does not have equal error costs that favor the minority class, which is

often the class of primary interest. Therefore, following the available studies (Batista
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et al., 2004; Estabrooks et al., 2004; Guo and Viktor, 2004; Provost and Fawcett, 2001;
Radivojac et al., 2004), we use Overall Accuracy (including Positive Accuracy and
Negative Accuracy), G-Mean and Receiver Operation Characteristic (ROC) curve to

evaluate our KAIG model. The G-mean is defined as

\/ Positive Accuracy x Negative Accuracy 4.2

where Positive Accuracy and Negative Accuracy are calculated as TP/(FN+TP) and
TN/(TN+FP). This measure is to maximize the accuracy on each of two classes while
keeping these accuracies balanced. For instance, a high Positive Accuracy by a low

Negative Accuracy will result in poor G-mean.

Table 4.1 Confusion matrix for binary class problem

Predicted Positive

Predicted Negative

Actual Positive

TR«(the number. of
True Positive)

FN (the number of
False Negative)

Actual Negative

FP (the number of
False Positive)

TN (the number of
True Negative)

Another index is ROC curve, whichis:a technique for summarizing a classifier’s
performance over a range by considering the tradeoffs between TP rate and FP rate.
The TP rate and FP rate are calculated as TP/( FN+TP) and FP/( FP +TN). We use
the term ROC space to denote the coordinate system used for visualizing classifier’s
performance. In ROC space, TP rate is represented on the Y axis and FP rate is
represented on the X axis. Each classifier is represented by the point in ROC space
corresponding to its (FP rate, TP rate) pair. A ROC analysis also allows the
performance of multiple classification functions to be visualized and compared
simultaneously. The area under ROC curve (AUC) represents the expected
performance as a single scalar. The AUC has a known statistical meaning: it equals to

the Wilconxon test of ranks, and is equivalent to several other statistical measures for
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evaluating classification and rank models (Hand, 1997).

4.2 Implementation of KAIG Model
4.2.1 lllustrative Example

We apply the KAIG model to the well-known data set, iris. It is comprised of 150
examples. We rearrange it randomly and divide it into two subsets, training set (100
objects) and test set (50 examples). We will illustrate the process of KAIG step by
step.

Step 1: Information Granulation

We input the 100 training examples to the Fuzzy ART to form 1Gs. We set the
parameters of Fuzzy ART « =0.01 and g =1. The number of IGs varies with the
different level of similarity (vigilanee). In this study, similarity value varies gradually
from 1 to 0. The similarity 1 represents the numerical data. Next, we need to
determine which similarity is suitable by-the-H-index and the U-ratio. The H-index
is “the larger the better’ and the U-ratio.is ‘the smaller the better’. In Figure 4.1, we
can find more than one similarity that satisfies this criterion. These similarities are
0.95-0.8 and 0.7-0.55, where H-index = 1 and U-ratio = 0. Their performances of
classification, as described in Figure 4.2, are equal to each other. All classification
accuracies are equal to 100%.

When the performances are equally good, the amount of granules becomes
another criterion for selecting the similarity. In this study, we use IGs instead of
numerical data to acquire knowledge and make decisions. If the smaller similarity is
selected, the lesser the amount of granules will be dealt with. This smaller amount of
granules may save some training time during the building of the model. Therefore, we

select a similarity of 0.55 and the amount of granules is 3.
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Figure 4.1 The H-index and U-ratio of the iris data
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Figure 4.2 The performance of classification (Iris data)

Step 2: Representing the 1Gs

We describe these 3 granules in hyperboxes form and they are shown in Table
4.2. L, represents the lower bound of attribute values, and U, represents the upper
limit of attribute values in the i-th granule. Take granule #1 for example, it contains 33
objects. In condition attribute A, the minimum is 4.4 and the maximum is 5.7. We
utilize the low limit and upper limit to describe all examples in the same one granule.
Granule 1 possesses the same class, setosa. Granule 2 contains 33 examples which are

of the same class, versicolor. Granule 3 is comprised of 34 examples which have the
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same class, virginica.

Table 4.2 The 1Gs with the similarity of 0.55.

Condition attribute Classes (No. of examples)
No. of granules i =
A B C D setosa |versicolor| virginica
L 4.4 2.3 1 0.1
#1 - 33 0 0
U, 5.7 4.2 1.9 0.6
L 5 2.2 3 1
#2 2 0 33 0
U, 6.8 3.4 5.1 1.8
L 5.6 2.2 4.8 1.4
#3 & 0 0 34
Us 7.9 3.8 6.9 2.5

Next, the original attributes are divided into several sub-attributes. Table 4.3
shows the 1Gs and their sub-attributes. The four original condition attributes (A, B, C,
D) are divided into 17 sub-attributes (A1, ..., D4).-These 17 sub-attributes are used as

the inputs for the operation of knowledge acquisition-algorithms.

Step 3: Knowledge Acquisition

The rough sets method can be utilized to remove superfluous sub-attributes and
to acquire knowledge. The theory of rough sets emerged as a major mathematical tool
for discovering knowledge. A fundamental principle of a rough set-based learning
system is to discover redundancies and dependencies between the given features of a
problem to be classified (Mitra et al., 2002). In the rough set method, a reduct is the
minimal subset of attributes that enable the same classification of objects with full
attributes. All results of rough sets are operated by Rosseta software. Readers can find
additional information on the theory of rough sets in the references (Hu et al., 2002;
Walczak and Massart, 1999). The knowledge rules extracted by rough set method are
listed as follows:

Rule 1: IF B4=1 THEN Class= setosa;
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Rule 2: IF D2=1 THEN Class= versicolor;
Rule 3: IF B4=0 AND D2=0 THEN Class= virginica;

These knowledge rules can be translated as follows:

Rule 1: ATTRIBUTE B (3.8,4.2] THEN Class= setosa;

Rule 2: ATTRIBUTE De (1.01.4] THEN Class= versicolor;

Rule 3: ATTRIBUTE B¢ (3.8,4.2] AND ATTRIBUTE D¢ (1.0,1.4]
THEN Class= virginica;

These knowledge rules are applied to test the remaining 50 examples. Table 4.4 is the
minimal reduct of the testing granules. The sub-attributes of testing granules, B4 and
D2, are put into these extracted knowledge rules. The predicted decisions are fully
equal to the true ones. Therefore, the classification accuracy is 100%.

In this illustrative example, we reduce some unnecessary detailed information by
acquiring knowledge from 1Gs, but the classification accuracy remains high. Also, the
knowledge rules for decision-making are fewer than: those extracted from numerical
data, which may save the response time of a-decision; Table 4.5 shows the comparison

of classification performances.
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Table 4.3 The 1Gs with sub-attributes

Original
attributes A B C
Al | A2 | AB| A | A5 | Bl | B2 | B3| B4 | Cl|C2|C3|C4 | D1l | D2 | D3 | D4 Classes
Sub-attributes | 4.4- | 5- | 5.6- | 5.7- | 6.8- | 2.2- | 2.3- | 34- | 3.8- | 1- 3- |1 48-|51-]01-| 1- | 14-| 18-
50 | 56 | 57 |68 |79|23|34|38]42 |19 |48 51|69 |06 |14 | 18| 25
Granule No.1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 setosa
GranuleNo.2 | 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 | versicolor
GranuleNo.3 | O 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 virginica
Table 4.4 The minimal reduct of 1Gs for testing
B4 D2 Classes
IGsNo- 3842 1-1.4-| | Predicted True
#1 0 setosa setosa
#2 1 versicolor versicolor
#3 0 virginica virginica
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Table 4.5 The comparison of processing with information granules and numerical data

Methods

Rough Sets

KAIG

Data type

Numerical data
(Similarity=1.0)

Information granules
(Similarity=0.55)

Classification Accuracy

100% |

98%

100% | 100%

No. of rules

16

3

Table 4.6 The background of five data sets

Data set Title No. of instances No of attributes Value of attributes Class distribution
Wisconsin Diagnostic 683 9 (remove first . Benign (65.5%)
WDBC Breast Cancer (699 minus 16 missing.data) | attribute-*‘'1D”) All discrete Malignant (34.5%)
Unacceptable (70.023 %)
Car Evaluation i Acceptable (22.222 %)
CE Database 1728 6 All discrete Good (3.993 %)
\ery good (3.762 %)
: : . Low (32.45%)
TAE Tea‘?\'/g?@?(iﬁta”t 151 5 1}%’;2&‘;&“5 Medium (33.11%)
High (34.44%)
. . . Class 1 (42.03%)
BUPA BUPA liver disorders 345 6 All continuous Class 2 (57.97%)
Class 1 (33.15%)
WINE Wine recognition data 178 12 All continuous Class 2 (39.89%)
Class 3 (26.96%)
PIMA | Pima Indians Diabetes 768 8 All continuous | Healthy (65%)
Diabetic (35%)
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4.2.2 Evaluation of KAIG Model
To evaluate the effectiveness of the KAIG model, five data sets which come

from databank of UCI machine learning group (http://www.ics.uci.edu/~mlearn/) are

considered in this section. Table 4.6 provides brief explanation about the data
background, including data size, number of features, data characteristics
(binary/continuous), and defined classes. Before implementing, we divide all data sets
into training set and testing set with the proportion of 3:1.

With the help of the H-index and the U-ratio shown in Figure 4.3, we can find
the suitable similarity of these data sets. According to these determined similarities,
numerical data is transformed into IGs by Fuzzy ART. Then, three famous knowledge
acquisition algorithms, neural network (BP), decision tree (C 4.5 algorithm) and the
rough set method, are utilized. Rrofessional 1 PLUS is employed to build neural
network in this study. The optimal.neural network (BP) parameter settings, structure
and learning iterations shown in Table 4.7 are-obtained by trial and error. See5 (C4.5
commercial version) software was utilized to-construct a decision tree in this study.
The inputs and outputs of decision tree and the rough set method are condition

attributes and defined classes respectively.
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Figure 4.3 The H-indexes and U-ratios of five data sets

The comparisons of implementation results are provided in Table 4.8. Except
WDBC, KAIG model has better classification performances in the other five data sets
than those of traditional methods which use numerical data. In average, the
classification accuracy increases 2.33% and the number of rules is reduced by 48.67%
compared with traditional methods. In KAIG model, we can use different kind of

knowledge acquisition tools and the results will be different. The classification
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accuracy averagely increases 0.86%, 2.238%, 1.182% by applying Rough sets, C4.5
and BP, respectively. In addition, C4.5 has fewer number of knowledge rules (12 rules
in average) than those of Rough sets (84.8 rules in average). Therefore, C4.5 is more

suitable to be employed in KAIG model than the other two methods.

Table 4.7 The setting of parameters in neural network (BP)

Data Set Data type Structure | Learning rate | Momentum | Iterations

Numerical 9-11-1 0.2 0.9 20000

WDBC
Granule(0.85) | 90-160-1 0.2 0.9 20000
CE Numerical 6-9-1 0.2 0.9 10000
Granule(0.95) | 21-35-1 0.3 0.9 20000
TAE Numerical 5-6-1 0.2 0.9 20000
Granule(0.85) | 69-120-1 0.2 0.9 20000
Numerical 6-5-1 0.3 0.8 30000

BUPA
Granule(0.85) | 26-31-1 0.2 0.9 15000
Numerical 13-5-1 0:3 0.7 10000

WINE
Granule(0.8) 35-7-1 0.2 0.8 15000

4.2.3 Implementation in Imbalanced Data

This section will apply KAIG method to overcome the class imbalance problems.
C4.5 and SVM are usually utilized as benchmarks or basic learners in related works
(Batista et al., 2004; Guo and Viktor, 2004; Huang et al., 2004; Jo and Japkowicz,
2004; Provost and Fawcett, 2001; Radivojac et al., 2004). Therefore, the experimental
results of KAIG will be compared with these two methods. A brief introduction about
SVM can be found in (Wu and Chang, 2005; Cristianini and Shawe-Taylor, 2000).

The imbalance class problems often happen in medical diagnosis data. Therefore,
pima-indians-diabetes whose information shows in Table 4.6 is employed to verify
effectiveness of our model. Results for this data set, shown in Table 4.9, were

averaged over 4-fold cross validation (CV) experiments, which the data set was
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partitioned into 4 equal sized sets and each set was then in turn used as the test set.
Besides, in order to test the robustness of KAIG model, we reduce the proportion of

minority class from 35% to 10% and 5% by removing the number of minor examples

randomly.
Table 4.8 The comparison of classification performance
Data type . S Lo
Classification Numerical .d.ata (Similarity =1.0) Granules (Similarity =0.85)
Methods ccuracy Traditional methods KAIG
Methods Train Test No. of Train Test No. of
(%) (%) rules (%) (%) rules
Rough sets 100 92.23 212 100 89.47 58
WDBC Decision tree
(C 4.5) 97.5 97.06 10 93.4 94.74 4
Neural Network
(BP) 96.66 100 - 100 89.64 -
Similarity =1.0 Similarity =0.95
Phase | Train Test No. of Train Test No. of
(%) (%) rules (%) (%) rules
CE Rough sets 100 89.58 385 100 88.96 207
Decision tree
(C 4.5) 97.4 92.8 75 98.4 95.58 36
Neural Network | g, 1 = 9109 ; 94.04 | 92.80 -
(BP)
Similarity =1.0 Similarity =0.90
Phase | Train Test Neo: of Train Test No. of
(%) (%) rules (%) (%) rules
TAE Rough sets 84.96 84.21 90 95.95 87.37 68
Decision tree
(C 4.5) 60.2 47.36 13 64.9 48.39 11
Ne”ra('B'\F',‘;twork 6823 | 69.05 . 7861 | 8421 .
Similarity =1.0 Similarity =0.85
Phase | Train Test No. of Train Test No. of
(%) (%) rules (%) (%) rules
BUPA DF;g;JSg?QnS(tart:e 100 63.95 165 100 66 80
(C 4.5) 76.4 65.1 15 78.2 70 5
Ne“ra('B'\;,‘;twork 69.35 | 64.47 . 100 | 6615 .
Similarity =1.0 Similarity =0.8
Phase | Train Test No. of Train Test No. of
(%) (%) rules (%) (%) rules
WINE DFégzjsgi]gnsi:rtZe 100 93.18 31 100 95.65 1
(C 45) 95.6 90.9 6 96.7 95.7 4
Ne”ra('B'\é,‘;tW‘”k 87.63 | 86.49 . 8587 | 84.21 :

In the experiments of 35%, 10% and 5%, the results indicate that KAIG model
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has better performance than those of SVM and C4.5 against highly imbalanced data
sets, in term of the Negative Accuracy. In average, KAIG owns 58.08% of Negative
Accuracy far better than 14.55% of SVM and 27.49% of C4.5. It means KAIG has
excellent capability of detecting minor examples (diabetic patients). Meanwhile,
KAIG doesn’t lose Overall Accuracy and Positive Accuracy. They are even better

than those of SVM and C4.5 in experiment of 35%.

Table 4.9 The results in different proportion of minor class examples

Methods KAIG SVM Decision tree (C 4.5)
Training Test Training Test Training Test
(35%) | Mean |Stdv | Mean | Stdv | Mean | Stdv | Mean | Stdv | Mean | Stdv | Mean | Stdv
A%‘éﬁ:z'c'y 91.97%)| 2.50478.78%)| 2.5%| 76.82% | 1.4%| 75.52% | 2.8% 81.50% | 4.28%| 74.22% | 3.1%
Pos. Acc. |93.07%)| 2.3%[84.00%| 4.5%}°93.07% | 0.5% 92.60% | 2.7%| 87.94% | 7.50% 83.20% | 2.8%
Neg. Acc. |85.24%)| 2.1%(70.52%| 8.0%| 46.52% | 4.7%| 43.66% | 3.3%| 71.40% | 8.73%) 57.46% | 8.3%
G-mean | 90.67%[2.59%)|76.46%| 3.85%) 65.73% | 3.18%| 63.56% |3.29% 78.95% 3.24%| 68.99%)4.80%
(10%) Training Test Training Test Training Test
Mean | Stdv | Mean | Stdv#}«Mean | Stdv |* Mean [ Stdv | Mean | Stdv | Mean | Stdv
A%XE:ZLIy 95.01%| 1.1%|87.05%)| 2.3%| 89.93% 0%| 89.93% 0% 91.55%| 1.7%| 88.49%| 1.6%
Pos. Acc. | 99.33%| 0.8%(92.20%| 1.2%| 100% 0% 100% 0% 98.73%| 1.9%| 96.80%| 3.1%
Neg. Acc. | 52.98%,]11.9%(41.08%]20.5% 0% 0% 0% 0% 27.38%| 20.4%)| 14.29%| 24.0%
G-mean | 72.16%]|7.91%,59.73%|17.0% 0% 0% 0% 0%| 44.43%| 30.6%)| 23.63%|32.1%
(5%) Training Test Training Test Training Test
Mean | Stdv | Mean | Stdv | Mean | Stdv | Mean [ Stdv | Mean | Stdv | Mean | Stdv
A%XE:ZLIy 97.48%| 0.7%]94.89%)| 1.6%| 94.94% 0%| 94.70% 0% 96.52%| 0.8%| 93.56%| 1.0%
Pos. Acc. | 98.54%| 0.9%(98.60%| 1.7%| 100% 0% 100% 0% 99.47%| 0.7%| 98.20%| 0.8%
Neg. Acc. | 72.50%] 13.2%)28.57%)| 26.1% 0% 0% 0% 0% 41.25%| 14.9%| 10.72%| 13.7%
G-mean 849%|7.69%| 44%)|33.3% 0% 0% 0% 0% 63%| 12.7% 23%| 26.9%
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Figure 4.4 ROC curves of pima-indians-diabetes data

Both G-mean and ROC curves shown in Figure 4.4 also demonstrate the

superiority of our method. In extreme skewed data (10% and 5%), G-mean is more
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sensitive than Overall Accuracy. When Negative Accuracy decreases dramatically,
G-mean can indicate these changes but Overall Accuracy can not. ROC curves
provide visual results which can easily compare these three methods and find KAIG

has best performances (AUC) in different experiments.

4.2.4 Discussion and Concluding Remarks

A novel method called KAIG model is presented to solve class imbalance
problems. In this model, we propose two indexes to determine the level of granularity
and the “sub-attributes” concept to describe 1Gs. The experimental results show that
the KAIG model can improve classification performance by reducing unnecessary
details of information. We also demonstrate that the proposed method has excellent
ability of identifying the minority examples.in imbalanced learning tasks. In medical
diagnosis data, our method can’dramatically. increase Negative Accuracy without
losing Positive Accuracy and- Overall Accuracy. ROC curves and G-mean also
illustrate the superiority of KAIG model'compared'with C4.5 and SVM.

Construction of 1Gs is one of many:interesting and important issues in granular
computing. IGs are aimed at building efficient and user-centered views of the external
world and supporting/facilitating our perception of the surrounding physical and
virtual world. In our research, we construct 1Gs by objects’ “similarity”, the parameter
(vigilance) of Fuzzy ART. It can define the “indistinghishable, similar, coherency and
alike” relations of objects. However, other relations whose definitions are not specific/
concrete, such as “functional adjacency”, also can employ to construct IGs. But, it is
hard to define these “not specific” relations. Therefore, more efforts of studying

different relations are necessary in the future researches.
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4.3 Implementation of I1G based Method

4.3.1 lllustrative Example

In this section, the Haberman’s survial data is used to be an illustrative example
of 1G based method. This data set contains 306 objects. 225 of them are training
examples and the rests are for testing. The operation of IG based method will be
illustrated step by step.

Step 1: Information Granulation

The information granulation process is the same with KAIG model. We input the
training data to the Fuzzy ART. The parameters of Fuzzy ART, «, £, are setas 0.01,
1, respectively. Then, we vary gradually the parameter “vigilance” (level of similarity)
from 1 to 0. According to ’granularity selection criteria’ mentioned in section 3.2, we
can find the suitable similarity is 0.85. The results of H-index and U-ration can be
found in Figure 4.5. Forty-two IGs are constructed: during information granulation

process.
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Figure 4.5 H-index and U-ratio of Haberman’s survial
data
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Table 4.10 An illustrative example of IG based method

IG No Attributes Clas Data Characteristics
x1 X2 x3 S x1 X2 x3  class
1 59 64 0 +1 Mean 59.6 64.4 022 +1
1 62 66 0 +1  Median 60 64 0 +1
1 60 64 0 +1 Q1 59 64 0 +1
1 59 64 1 +1 Q3 61 65 0 +1
1 57 64 0 +1 Min 57 64 0 +1
1 61 64 0 +1 Max 62 66 1 +1
2 43 60 0 +1 Mean 44 621 057 +1
2 46 63 0 +1  Median 44 63 0 +1
2 43 63 2 +1 Q1 43 615 O +1
2 46 62 0 +1 Q3 45 63 1 +1
2 44 61 0 +1 Min 42 60 0 +1
2 42 63 1 +1 Max 46 63 2 +1
2 44 63 1 +1
3 39 67 0 +1 Mean 424 654 055 +1
3 41 65 0 +1  Median 43 65 0 +1
3 45 67 1 +1; Q1 41 64 0 +1
3 43 64 3 +1 Q3 43 67 05 +1
3 45 67 0 +1 Min 39 64 0 +1
3 42 65 0 +1 Max 45 67 +1
3 43 64 2 +1
3 41 65 0 +1
34 47 63 23 -1 Mean 50 64 225 -1
34 46 65 20 -1 Median 50 64 23 -1
34 54 65 23 -1 Q1 468 63 223 -1
34 53 63 24 -1 Q3 533 65 233 -1
Min 46 63 20 -1
Max 54 65 24 -1
36 66 61 13 -1 Mean 62.7 59.7 143 -1
36 62 59 13 -1 Median 62 59 13 -1
36 60 59 17 -1 Q1 61 59 13 -1
Q3 64 60 15 -1
Min 60 59 13 -1
Max 66 61 17 -1
37 48 58 11 -1 Mean 477 583 11 -1
37 51 59 13 -1  Median 48 58 11 -1
37 44 58 9 -1 Q1 46 58 10 -1
Q3 495 585 12 -1
Min 44 58 9 -1
Max 51 59 13 -1
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Step 2: 1G Representation by using Data Characteristics

In this step, we use different data characteristics and their combination to
represent the constructed 1Gs. Table 4.10 provides parts of the I1Gs and their data
characteristics. We utilize Mean, Median, Q1+Q3, Min+Max, Q1+Median+Q3, and

Min+Mean+Max, to describe those I1Gs.

Step 3: Knowledge Acquisition

Those data characteristics mentioned above serve as the training data of a learner.
Decision tree is employed as basic classifier in this method. The results of using Mean
to represent 1Gs are listed as bellow. During training phase, the classification
performance, Overall Accuracy, Positive Accuracy, and Negative Accuracy are
85.71%, 84.62%, 87.5%, respectively. The ‘evaluation of three IG representing

strategies is provided in next seetion.

Rule 1: IF x1 <= 43 THEN Class= +1 [Support: 0.833]
Rule 2: IF x3 <=4 THEN Class="+1 [Support: 0.808]
Rule 3: IF x1 > 43 AND x3 >4 THEN Class= -1 [Support: 0.689]

4.3.2 Experimental Results

In order to evaluate the effectiveness of the 1G based method, three data sets
from UCI are considered in this chapter. The brief illustration about these data sets is
provided in Table 4.11. Before implementing, the data sets are divided into training
and testing set (4:1). In other word, we use 80% data to build model and the rest 20%
is employed to criticize the constructed classifier. The basic learner will be C 4.5 and

SVM is the benchmark.
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Table 4.11 Data background (UCI)

Data set No of N_o of Val_ue of Class distribution
examples | attributes attributes
. . Healthy: 496 (66%)
Diabetes 759 9 Continuous Diabetic: 263 (34%)
Haberman’s . Survived (74%)
survial data 306 4 Continuous Died (26%)
Post-operative I (sent to Intensive Care Unit) (2%)
atielgt data 90 10 All discrete | S (prepared to go home) (27%)
P A (sent to general hospital floor) (71%)

The experimental results of IG based method are summarized in Table 4.12. We
have tried three strategies, single, double, triple value strategy. Considering average
Overall Accuracy (G-mean), the performances of single, double, triple-value strategy
are 73.93% (44.98%), 71.44% (39.04%), 70.59% (43.06%), respectively. Obviously,
triple-value strategy has better performance than those of single and double strategy.
From Figure 4.6 & 4.7, the combination of Q1+Median+Q3 has better Overall

Accuracy, G-mean, and Negative Accuracy than others.

Overall Accuracy
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Figure 4.6 Overall accuracies of different strategies (UCI)
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Table 4.13 provides the comparison of IG based method and other methods, like
DT, SVM, under-sampling, and cluster-based sampling. It’s easy to find our method
has excellent performance in Overall Accuracy, G-mean, and Negative Accuracy. As
seen in Figure 4.8, the proposed IG based method can dramatically increase Negative
Accuracy. It means IG based method has marvelous ability to classify minority
examples without losing Overall Accuracy. Compared with cluster-based sampling,
under-sampling, SVM, and DT, the experimental results also show our proposed

methods have the superiority in G-mean.
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Figure 4.7 G-mean of different strategies (UCI)

Table 4.12 The experimental results of IG based method

Methods IG based method (Data characteristics)
Performance Mean |Median| Q1+Q3 | Min+Max [Q1+Q2+Q3Min+Mean+Max|
Overall Accuracy|71.03%(70.15%)| 72.43% | 70.45% 75.63% 72.23%
Pos. Accu.  [83.86%81.17%| 87.96% | 86.76% | 88.97% 85.24%
Neg. Accu.  [36.79%(39.31%]| 28.66% | 28.62% | 38.68% 36.79%
G-mean 43.11%(43.26%) 39.15% | 38.93% 46.29% 43.66%
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Table 4.13 The experimental results of sampling methods

Performanc:/lethOds IG based method|Cluster based samplinglUnder- sampling| SVM | DT
Overall Accuracy 75.63% 71.99% 73.30% 74.98%]72.65%
Pos. Accu. 88.97% 85.27% 86.62% 94.25%88.64%
Neg. Accu. 38.68% 32.43% 33.69% 19.06%28.03%
G-mean 46.29% 40.08% 41.39% 30.50%(39.03%
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Figure 4.8 Comparison of the proposed IG based, cluster-based sampling,
under-sampling, DT and SVM

4.3.3 Discussion and Concluding Remarks

In this section, we proposed IG based method. The experimental results show our
method can remarkably improve the class imbalance problems. In other words, 1G
based method can dramatically raise the ability of identifying minority examples
without losing Overall Accuracy. Among three IG representing strategies, triple-value

strategy (Q1+Q2+Q3) outperforms double and single-value strategies.

In addition, the sampling methods can improve the class imbalance situation, but

they cannot guarantee to find the optimal solutions. This is because sampling methods
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lack a systematic method to find representative examples and determine what the
proportion of majority to minority is. The IG based method can be viewed as another
kind of sampling method. However, the problems mentioned above can be easily
resolved by using our approach. IG based method has a clear procedure to find
suitable number of clusters. Once the number of clusters is determined, the
representative examples and the proportion of majority to minority can be easily
found. In other words, IG based method enhances sampling methods without
sacrificing the advantages. Besides, compared with KAIG model, IG based method

can avoid increasing the number of input variables.
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CHAPTER 5

APPLY KAIG MODEL TO BUILD A GRANULAR
COMPUTING BASED SCHEDULING SYSTEM WITHIN
DYNAMIC MANUFACTURING ENVIRONMENT

5.1 Problem Description

Scheduling must efficiently reconcile conflicts in the assignment of various
resources and also the constraints between them, in order to keep the production
system operating smoothly. Traditionally, researchers use analytical tools such as
mathematical modeling technology, dynamic programming, branch-and-bound
methods or other heuristic algorithms?(Li‘et_.al. 2003) to solve static scheduling
problem. Unfortunately, scheduling environments “are usually dynamic. Therefore,
researchers try to tackle the issues of dynamic scheduling problems by employing
machine learning approaches (Aytug et al., 1994) such as Artificial Neural Networks
(Li and She, 1994; Sim et al., 1994; Li et al., 2003; Min and Yih, 2003), Decision
Trees (Su and Shiue 2003), Support Vector Machines (SVM) (Gersmann and Hammer,
2005), Genetic Algorithm (Wang and Uzsoy, 2002) and etc. According to related
works, applying inductive learning techniques is a useful way in acquiring dynamic
scheduling knowledge and can effectively solve dynamic scheduling problems.

However, when inducing knowledge by generalizing from environment-provided
examples, there are some issues needed to be overcome. One of them is class
imbalance problem (Japkowicz and Stephen, 2002; Wu and Chang, 2005). This
problem is of crucial importance since it is encountered by a large number of domains
of great environmental, vital or commercial importance, and was shown, in certain

cases, to cause a significant bottleneck in the performance attainable by standard
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learning methods, which assume a balanced class distribution. For example, it is
relatively cheap and simple to obtain training examples from a normally working
machine in manufacturing environments. But, the sampling from a faulty machine
will require that the machine has to be damaged in several ways to obtain defective
examples. The creating of a balanced training set will therefore be very expensive or
impractical.

This chapter develops a new scheduler which integrates GrC model to conduct
class imbalance problem in dynamic scheduling environment. We implement this new
scheduler within a simulated Flexible Manufacturing System (FMS) environment. A
highly imbalanced simulation data is generated to evaluate the effectiveness of this
scheduler. Compared with traditional techniques, “cluster based sampling” and “costs
adjusting” method, the experimental results indicated that the proposed model can
remarkably improve the ability-of detecting minority-examples while reforming other

classification performance.

5.2 A Granular Computing Based Scheduler

In this section, we’ll discuss the proposed model within a dynamic scheduling
environment. The scheduler contains two major mechanism, information granulation
and inductive learning mechanism. The first mechanism is to construct 1Gs. The

second one is to extract scheduling knowledge from IGs.

5.2.1 Information Granulation Mechanism

The main purpose of information granulation is to transfer numerical data into
IGs. This mechanism has three phases described as Figure 5.1. Phase 1 and 2 try to
find a suitable level of granularity and construct 1G within Fuzzy ART neural network.

Phase 3 is to describe these constructed 1Gs by using sub-attributes. Then the
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inductive learning mechanism can extract knowledge from these IGs with addition of
sub-attributes. A more concise algorithm for the information granulation mechanism
follows.
Step 1: Initialize parameters of Fuzzy ART.
Select values for vigilance parameter ( p=1), choice parameter
(¢ — 0) and learning rate (S =1).
Step 2: Construct 1Gs by Fuzzy ART according to the selected vigilance
parameter (similarity).
Step 3: Compute H-index & U-ratio.
Step 4: Check “granularity selection criteria”.
IF H-index & U-ratio don’t satisfy “granularity selection criteria”
p=p—A ANDQgo to step 2.
Where A represents a constant increment defined by users
ELSE
Go to step 5.
Step 5: Describe 1Gs by hyperbox form.
Step 6: Divide original attributes into sub-attributes.

Step 7: Re-formulate 1Gs with sub-attributes.

5.2.2 Inductive Learning Mechanism

In this study, we consider two learning methods, Support Vector Machine (SVM)
and Decision Tree (C 4.5). SVM is a powerful learning method and often employed to
tackle class imbalance problems (Wu and Chang, 2005). Decision tree is the

benchmark of comparison and it’s also the basic learner in many literatures.
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Fig. 5.1 An Granular Computing based scheduler
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5.3 Comparative Techniques

We use two techniques, Cost Adjusting and Cluster Based Sampling, to be the
comparative algorithms. In order to compare the classification performance of
standard SVM and these two techniques, we use SVM to be the learner in different
schemes.
5.3.1 Costs Adjusting Method

This method is to improve the classification performance by increasing the
misclassification cost for minority class. Traditional performance indexes consider the
misclassification costs of majority and minority instances are equal. Under the
assumption of maximizing overall classification accuracy, the minority examples will
be neglected. If we give penalty (cost) to minority class, the class imbalance problem
will be improved. In this method, different misclassification costs can be incorporated
into classes, which avoid direct-artificial manipulation on the training set.
5.3.2 Clusters Based Sampling-Methed

Under-sampling might remove some.important examples and over-sampling
introduces noises into the training data set. Therefore, we consider cluster based
sampling method in this study. The purpose of cluster based sampling method is to
find representative examples and balance class distribution. This technique can be
illustrated in Figure 5.2.  First, we separate majority and minority examples into two
groups. The minority population is kept intact. Second, the majority examples are
clustered depending on their similarity. Third, we sample representative majority
examples from those clusters. Finally, those samples and minority examples are
joined together and we can acquire knowledge from both class examples. In order to
improve class imbalanced situation, we only vary the number of majority examples by

randomly sampling and do nothing for minority examples.
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Fig. 5.2 llustration of cluster based sampling method

56



5.4 Implementation
In this section, a Flexible Manufacturing System (FMS) schedule decision
problem is provided to illustrate the class imbalance problem. PROMODEL Il
software is employed to build this simulation model. And the GrC model is
programmed with the use of the software of Matlab 6.1.
5.4.1 Description of Simulated System
We slightly modify the FMS simulation model built in Li’s paper (Li et al., 2003)
by adding one processing part. Basically, we follow most assumptions like physical
layout, simulation time and others. This modified FMS simulation model involves 5
different types of parts, 4 numerical control (NC) machines, 4 Work-In-Process (WIP)
buffers located in front of each machine, and 1 load/unload station. To evaluate the
performance of the FMS, “mean machine utility” was selected to evaluate production
performance. For simplicity and clarity, three basie dispatching rules were set for
deciding which part should be processed-when-there-is more than one part in the WIP
buffer waiting to be processed. They.are FCFS (First come, first served), SPT
(Shortest processing time) and EDD (Earliest due date). Besides, four system control
attributes were defined to describe the operating conditions of this FMS model. They
are as follows:
-Buffer size: capacity of WIP buffers (unit).
-Arrival rate of parts: frequency of parts incoming to the FMS (batch/min).
-Batch size: the volume of parts per batch (unit/batch).
-Speed of AGV (m/min).
There are 1500 examples collected and 4 folds CV method is applied for training
and testing. The distribution of each class is 42.8% (FCFS), 49.6% (SPT) and 7.6%
(EDD). All attributes’ values are continuous. In such data, the examples labeled EDD

obviously are viewed as the minority compared with those of FCFS and SPT.
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5.4.2 Using the Costs Adjusting Method

By increasing the misclassification cost of minority examples from 1, 2, 5 to 10,
we train a SVM classifier with RBF kernel function and the parameter setting of »
and tolerance are 0.5, 0.00001, respectively. The experimental results are shown in
Figure 5.3. C=1 represents equal misclassification cost of classes. From Figure 5.3,
with the increase of cost, we can find the Negative Accuracy and G-mean rises
remarkably while the Positive Accuracy decreasing slowly. But, the Overall Accuracy
has slight improvement compared with the origin (C=1). Considering the tradeoff of

these indexes, we choose the C=5 as the optimal solution in this method.
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Fig 5.3 Overall accuracy, Positive Accuracy, Negative Accuracy & G-mean
of SVM with different costs

5.4.3 Using the Cluster Based Sampling Method
In this method, we vary the proportion of majority and minority by only

changing the number of majority examples. Four different combinations of proportion
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of majority to minority (1:1), (2:1), (3:1), (4:1) and (9:1) are employed to implement
this method. In order to compete with cost adjusting method, we use the same
inductive learning algorithm (SVM) and same test data. Figure 5.4 shows the
experimental results of different proportions. In 2:1 proportion, the cluster based
sampling method has best G-mean and good performances in Accuracies. In 1:1
situation, the Negative Accuracy reaches to perfect 100%, but other indexes drops.
This is because the data size (86+86=172) of training dataset smaller than the number

of test dataset (375).
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Fig. 5.4 Overall Accuracy, Positive Accuracy, Negative Accuracy & G-mean of
Cluster based method with different sample size

5.5 Experimental Results

The experimental results are summarized in Table 5.1 and Figure 5.5. In Overall
Accuracy, our proposed method is slightly better than C4.5 and obviously superior to
Costs Adjusting, Cluster-based Sampling and SVM, which can not identify any minor
examples in this case. In average, the proposed approach remains the ability (89.53%)

of identifying class FCFS and SPT, comparing with Costs Adjusting (73.45%),
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Cluster based sampling (61.74%) and C4.5 (89.54%). Moreover, our method has

better capability (91.95%) in identifying minor instances (EDD) than 82.76% of Costs

Adjusting, 64.37% of Cluster-based sampling, and 67.81% of C4.5. Our proposed

method also outperforms the other methods in G-mean. The same conclusion is also

shown in Figure 5.6. It’s easy to see that AUC of the proposed method is bigger than

those of other methods.
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5.6 Discussion and Concluding Remarks

Most conventional classifiers assume more or less equally balanced data classes
and do not work well when one class is severely undersampled. Actually, when
introducing inductive learning to real world applications, class imbalance problems
are necessary to be considered especially in situations where the minority examples
are crucial, such as fault monitoring or finished products inspection. In this chapter,
we applied KAIG model to induce scheduling knowledge within an FMS. Compared
with the experimental results of Cost Adjusting, Cluster-based Sampling, DT (C4.5)
and SVM, our proposed model can significantly improve the ability of a scheduling
system in detecting minority examples while increasing the overall classification
performance. The other two comparative approaches, Costs Adjusting method and
Cluster-based Sampling approach; can effectively raise the ability of detecting
minority examples in highly imbalanced data. Unfortunately, both techniques might

result in decreases of Positive and Overall-Accuracy.
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Table 5.1 The experimental results of FMS simulated data

Method GrC model Adjusting Costs (C=5) Decision tree (C 4.5) Class-based sampling (2:1)
Phases Training Test Training Test Training Test Training Test
Mean | SD |Mean| SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD Mean SD Mean SD
g‘c’gﬂfgcy 90.64% [1.9% [89.16%[2.2% | 74.49% | 1.6%| 73.00% | 2.0%/92.63% [2.6% [88.35% 0.9% 61.94% 2.80% 61.87% 4.27%
1((;'35;3) 01.56% [1.9% [92.71%|1.9% | 82.11% | 0.7%| 81.25% | 3.5%(92.65% [6.3% [93.96% [3.1% 62.74%| 13.01%| 62.29%| 13.20%
2%2,5% 90.30% [4.7% [85.84%4.5% | 65.62% | 3.4%| 64.38% | 4.3%(82.59% [8.1% [85.12% |4.8% 61.37% 5.68% 61.11% 2.76%
385'?)53) 87.60% [4.8% [91.95%(8.0% | 89.24% | 3.5%| 82.76% | 4.9%{88.96% [0.6% [67.81% [28.9% 63.45% 5.29% 64.37% 3.98%
G-mean g5 049 [2.12%(85.50%(5.33%| 81.50% | 1.5%| 77.83% 1.5%“82.49% 6.71% 72.18% [16.7% 62.23% 3.10% 64.03% 1.74%

Note: Class 1(FCFS) and Class 2(SPT) can viewed as Positive Accuracy;-Class 3(EDD) is the Negative Accuracy.
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CHAPTER 6

APPLY KAIG MODEL TO SHORTEN THE CELLULAR
PHONE TEST PROCESS

6.1 Problem Description

Personal wireless communication services have been available to the general
public for only about 10 years, since the breakthrough of cellular phones
(Hannikainen et al., 2002). At the same time the technology employed by mobile
telecommunications is evolving rapidly. New designs in cellular phones and novel
functions are being introduced at an ever increasing pace. This is leading to fierce
competition and short product life cycles. Consequently, one of the major concerns of
OEM (Original Equipment Manufacture) and EMS (Electronic Manufacturing Service)
phone manufacturers is how to decrease testing-costs, especially in the low profit
environment in which they operate. Thisris-because testing equipments for mobile
phones are expensive, and the testing times.long. 1n one estimate, it costs around 1 US
dollar and 1-3 minutes per phone (VI service Network). However, these testing cost
and time will increase dramatically because more and more newly developed modules
like digital camera, mp3 player, personal digital assistant (PDA), and blue-tooth
transmitter are added to cellular phones. We have to spend extra time and money to
inspect these new functions. These factors often hinder the enhancement of the overall
output of cellular phones (VI service Network).

Another key issue affecting handset vendor success is time-to-market (Agilent
Technologies). If we can shorten manufacturing time, the time-to-market will be
reduced. Cellular manufacturers can quickly response customers’ demand. In the
manufacturing process of cellular phones shown as Figure 6.1, the Radio Frequency

(RF) function is a crucial test and needs more operation time than any of the other
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inspection processes. In order to save inspection costs and shorten production time,
manufacturers need an effective method to reduce the RF function test items. A
number of soft computing approaches, such as neural networks (Verikas and
Bacauskiene, 2002), genetic algorithms (GA) (Zhu and Guan, 2004), decision tree and
rough sets (Swiniarski and Hargis, 2001; Swiniarski and Skowron, 2003) have been
widely used to remove irrelevant, unnecessary, and redundant attributes (test items).
However, when these methods are applied to real world problems, there are many
issues that need to be addressed. One of them is the “class imbalance” problem.

In modern production systems, the defective rate of products is becoming quite
low. In the six sigma quality management system for example, we should use
“ppm”(parts per million) instead of “%” to calculate the defective rate. In a mature
manufacturing industry the amount of good  products far exceeds the defective
products. When feature selection approaches.encounter imbalanced data such as this,
it becomes difficult to acquire knowledge-from-the few negative examples (defective
products). Fewer abnormal products will be-viewed as outliers or bias by feature
selection methods (Pendharkar et al., 1999). This leads to a high level of type Il errors
(customer risks, the probability that customers accept defective products) which are
critical to OEM/EMS companies. A low level of Negative Accuracy will cause great
losses, requires compensation and may result in the loss of orders from important
customers.

In this chapter, we use KAIG model to effectively reduce RF function test items.
A real case with imbalanced data is studied, and the implementation results show that

our method can find relevant test items without losing Overall Accuracy.

6.2 Proposed Feature Selection Procedure
Figure 6.2 shows the basic idea of the proposed methodology. A large amount of
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similar objects are gathered together to form fewer granules. When the information
granulation approach is employed, numeric data will transfer to 1Gs and the number
of positive and negative granules will be decreased compared with numeric data. The
ratio of negative to positive examples will be increased. It may improve imbalanced
data situation. Next, these 1Gs are described with appropriate form and then we can
use feature selection method to extract knowledge rules or key attributes from these
granules. The detailed procedure of the neural network based information granulation

approach is described as follows.

Step 1: Identify condition attributes and class attributes
Step 2: Data Preprocessing

Step 2.1: Data cleaning (Fill in missing data and remove noisy or

inconsistent data)

Step 2.2: Data transformation (Nermalize or discretize the data)
Step 3: Measure the information granules

Step 3.1: Select the degree of similarity

Step 3.2: Check the suitability

Step 3.3: Determine the suitable similarity
Step 4: Construct the information granules
Step 5: Define the information granules

Step 5.1: Describe the information granules

Step 5.2: Tackle the overlaps among the information granules
Step 6: Acquire key attributes and extract knowledge rules

Step 1 and Step 2 are data preparing phases. In these phases, we should identify
the condition attributes (inputs) and the decision attributes (outputs) first. Then, data
should be prepared for the process, like removing noisy data, filling missing data, and
discretizing data. In step 3, the users need to determine suitable level of granularity.
After that, Fuzzy ART neural network can be utilized to construct the IG, depending
on the selected similarity (granularity). Next, we describe these IGs using the
appropriate form. Finally, the relevant attributes can be found by feature selection

methods.
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Figure 6.1 A manufacturing process of a cellular phone

In addition, real-world data tend to incomplete, noisy, and inconsistent. Data
cleaning (step 2.1) routines attempt to fill in miss values, smooth out noise while
identifying outliers, and correct inconsistencies in. the data. Moreover, discretization
techniques can be used to reduce the number of values for a given continuous attribute,
by dividing the range of the attribute-into-intervals; In this study, “equal frequency
bining” algorithm is utilized to discretize data: This unsupervised method is to divide
the range into b bins of equal frequency. This method is less susceptible to outliers,
and the intervals would be closer to each other in regions where there are more
elements and farther apart in sparsely-populated regions, which represents the
distribution of each variable better than the equal-width method. In summary, data
preprocessing techniques can improve the quality of the data, thereby helping to

improve the accuracy and efficiency of data mining process.
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Figure 6.2 Basic idea of the proposed methodology

6.3 Case Study

The actual case comes from a cellular phone OEM/ODM company which was
established in 1984. It is located in Taiwan and the company owns several factories in
mainland China. In 2003, its total annual revenue reached US 4.713 billion dollars,
and it has a worldwide workforce of over 10 000. The production volume of cellular

phones in 2004 was about 7.5 million units.
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6.3.1 The Problem

In this case, the objectives of the cellular phone manufacturer are to reduce the
time-to-market and reduce test time and consequently cost. Figure 6.1 provides the
manufacturing process of the cellular phone including the operation time of each
process. We find that the RF functional test is the bottleneck of entire process. The RF
test is aimed at inspecting whether or not the mobile phone receive/transmit signal
satisfies the enabled transmission interval (ETI) protocol on different channels and
different power levels. In order to ensure the quality of communication of mobile
phones, the manufacturers usually add extra inspection items, such as several different
frequency channels and power levels, resulting in the inspection time being increased
and as a result the test procedure becomes a bottleneck.

If we can reduce the numbers of items tested in the RF function test, without
losing inspection accuracy, then the inspection time-will be shortened. At the same
time this reduction of test items will help-lower the cost of testing and the ‘time-to

-market’.

6.3.2 Data Collection

The 1006 RF function test data containing 62 test items (27 are continuous
attributes and 35 are discrete attributes) as described in Table 6.1 are collected. There
are eight major RF functional tests: the power versus time (PVT; symbol: A), the
power level (TXP; symbol: B), the phase error and the frequency error (PEFR;
symbol: C), the bit error rate (BER -20; symbol: D and BER -102; symbol: E), the
ORFS-spectrum due to the switching transient (ORFS_SW; symbol: F), the
ORFS-spectrum due to modulation (ORFS_MO; symbol: G), the Rx level report
accuracy (RXP_Lev _Err; symbol: H), and the Rx level report quality

(RXP_QUALITY; symbol: ). According to different channels and power levels, each
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test item has several separate test attributes. Each form of the test attributes is to be

represented as: test item-channel-power level. In the 1006 collected objects, there are

only 44 negative examples (defective products) and the rests are positive examples

(normal products). The defective rate is about 4%. We separate the 1006 examples

into a training set which includes 756 objects (722 objects are normal, and 34 objects

are defective) and a test set that includes 250 objects (240 objects are normal, and 10

objects are defective).

Table 6.1 Test items of the RF function

No Test items Code (No. Test items Code |[No. Test items Code
1 |TXP B105  [22 |BER(-20) D1145 |43 |RXP QUALITY |I1522-102
2 |PEFR C105 23 |BER(-102) E1145 |44 |TXP B6880
3 |BER(-20) D105 24 |ORFS SW F1145 |45 |PFER C6880
4 |BER(-102) E105 25 |ORFS. MO G1145 [46 |BER(-20) D6880
5 |ORFS SW F105 26 |RXP Lev FErr H114-102[47 |BER(102) E6880
6 |ORFS MO G105 27 |RXP (QUALITY. }1114:102 |48 |ORFS SW F6880
7 |RXP_Lev Err |H10-102 |28 [TXP B9655 [49 |ORFS_MO G6880
8 |RXP QUALITY |110-102 |29 {PFER C9655 [°0 [TXP B6883
9 [rxp B725  [30 |BER(:20) D655 |51 [Txp B6887
10 [PFER c725 |31 |BER(:102) E9655 |52 [TxP B68815
11 |BER(-20) D725 32 |ORFS SW. F9655 |53 |[RXP Lev Err  |H688-102
12 |BER(-120) E725 33 |ORFS_MO G9655 |54 |[RXP QUALITY |1688-102
13 |ORFS sSw F725 34 |RXP Lev Err H965-102[55 [TXP B8750
14 |ORFS_MO G725 35 |RXP_QUALITY |1965-102 [56 |PEFR C8750
15 [Txp B727  [36 |[TxP B5220  [57 |BER(-20) D8750
16 [Txp B7211 |37 |PEFR C5220 |58 |BER(-102) E8750
17 [Txp B7219 (38 |BER(-20) D5220 |59 |ORFS sw F8750
18 |RXP Lev Err |H72-102 [39 |BER(-102) E5220 |60 [ORFS MO G8750
19 |RXP_QUALITY [172-102 [40 |ORFS SW F5220 [61 [RXP Lev Err  |H875-102
20 |TXP B1145 [41 |ORFS MO G5220 [62 |[RXP QUALITY |1875-102
21 |PFER C1145 |42 |RXP Lev Err H522-102

6.3.3 Data Preparation

In this case, the inspection data are collected automatically by computers, and

there are no missing values. In the data preparation phase we remove 11 attributes

(D105,110-102,D725,172-102,D1145,1114-102,D9655,1965-102,D6880,1688-102,D87

50) which have the same value. These 11 attributes have no classification ability.
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Consequently, only 51 attributes labeled X1~X51 are left to be analyzed further.
Before implementation, these collected data need to be normalized due to different
scale of attributes’ value, which may affect the performance of Fuzzy ART. All values

of attributes were normalized to the interval [0, 1] by employing a min-max

normalization equation, shown as equation (6.1). In this equation, max, is the

maximum and min; is the minimum of the i-th attribute values, and v; is the value

of i-th attribute of j-th objects and vi'j is the normalized value.
.V —min,
Vi = max, —min, ©.1)

6.3.4 Information Granulation

Next, we utilize the Fuzzy ART to construct 1Gs. The proposed procedure is
programmed with the use of the software of .Matlab-6.1. Depending on H-index and
U-ratio, the suitable similarity was determined-as 0.8;

Once the similarity is determined;.Fuzzy-ART is again utilized to construct IGs.
We set the Fuzzy ART parameters «,f,p to be 0.01, 1, 0.8, respectively.
Thirty-three 1Gs are constructed. Twenty four of them are IGs of good products and
the rests belong to the defective products. Each 1G is described by using the lower
limit and upper boundary (hyperbox form) as shown in Table 6.2. In addition, the
overlapping parts among granules are separated from the original attribute by
designating them as new attributes or so-called *“sub-attributes.” We divide the

original attribute X, into sub-attributes X,,, X,,, X5, Xy, X,; and the same

happens for the other attributes. These 33 granules are rewritten as Table 6.3.
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Table 6.2 The information granules described as hyperbox form

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

L1 | 4

1

1

2

1

2

2

1

1

1

1

5

2

1

1

1

1

3

3

1

1

1

1

1

1

3

3

1

1

1

ul | 4

L2 | 3

uz2 | 4

L3 | 2

u3 | 4

L4 |1

ua | 4

L5 | 4

us | 4

L31| 3

U3l 4

L32| 1

u32| 3

L33| 3

1

1

1

1

1

1

1

1

1

1

1

2

3

1

1

1

1

1

1

1

4

1

1

1

1

1

3

1

1

1

u33| 4

2

1

1

1

2

2

1

1

1

1

2

2

4

1

3

2

1

1

1

2

5

2

1

2

1

2

3

4

1

1

Notes:

(1) L1 and U1 represent the lower limit and upper limit of the 1% IG,
(2) X represents the condition attributes, and Y is the decision attribute.

(3) The data shown in the table are discretized.




Table 6.3 The IGs with the addition of sub-attributes

Original
Atibues X1 X2 X3 X4 X5 X6 X51 v
Sub-attriutes (;(11:11) (;(11:22) (>z(11=33) (;(11:44) (;(11:55) (;(22:11) (><X22=22) (><X2233) (;(22:44) (>é2=55) (;(3.3:11) (><X33=22) (;(44=11) (;(4432) (;(55:1) (>é5=22) (>é36=11) &2632) (;(511151) (;(511162)
IG#1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1
IG#2 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1
IG#3 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1
IG#4 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1
IG #5 0 0 0 1 0 1 1 1 1 G 0, |1 0 1 0 1 0 1 0 1
IG #6 0 1 1 1 0 1 1 1 1 0 il 0 =1 0 1 0 1 0 1 0 1
IG #7 oo 1|1|o|1|1|1]0of0o]lrlola|o|1|0o]|1]|o0 1] 0 |1
1G #27 1 0 0 0 0 0 1 1 1 1P mmb 1 1 0 1 0 1 0 1 1 2
1G #28 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 2
1G #29 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 2
1G #30 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 2
1G #31 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 2
1G #32 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 2
1G #33 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 2
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Table 6.4 The implementation results by rough sets

Method KAIG (rough sets) Rough sets

Phase Training Test Training Test
Data size 33 14 756 250
(good:bad) (24:9) (9:5) (722:34) (240:10)
Pos. Accu. 100% 100% 99.3% 99.6%
Neg. Accu. 100% 90% 1000% 10%
Overall Accu. 100% 99.6% 99.34% 96%
No. of rules 4 433
Extracted 575 H114.100 C105, B727, B1145, H114-102,
features > ° C9655, H522-102, B8750, E8750

Note: (24:9) is the proportion of good products to bad products.

Table 6.5 The implementation results by decision tree (C 4.5)

Method KAIG (DT) DT

Phase Training Test Training Test
Data size 33 14 756 250
(good:bad) (24:9) (9:5) (722:34) (240:10)
Pos. Accu. 100% 100% 100% 100%
Neg. Accu. 100% 90% 76.47% 60%
Overall Accu. 100% 99.6% 98.9% 98.4%
No. of rules 3 7
Extracted

Table 6.6 The implementation results by BPNN (full attributes)

Method KAIG (BPNN) BPNN
Phase Training Test Training Test
Data size 33 14 756 250
(good:bad) (24:9) (9:5) (720:34) (240:10)
Pos. Accu. 99.5% 100% 99.86% 100%
Neg. Accu. 88.24% 100% 70.59% 50%
Overall Accu. 98.9% 100% 98.54% 98%
Structure 16-15-1 17-4-1
Parameters Learning rate: 0.2 Learning rate: 0.2
Momentum: 0.9 Momentum: 0.8
50000 iterations 2000 iterations
Extracted B7211, H114-102, E8750, B8750,
features C9655, B725, C725 ,B8750, B105,
C8750, B725, H965-102,
B727, C8750, F1145, B5220,
H688-102, H10-102, B727, E5220,
B7211, H114-102, B6880, B68815,
B7219, C105, C6880, C9655,
F725, B6887, E1145, 1522-102
B68815




6.3.5 Feature Selection and Knowledge Acquisition

Now three feature selection algorithms, rough sets method, decision tree (C 4.5
algorithm) and neural network, are implemented. The inputs and outputs of the
decision tree and rough sets are 176 sub-attributes and defined classes respectively. In
the neural network based method, the back-propagation neural network with one
hidden layer is adopted and implemented using Professional 11 PLUS software. All
parameters of the BPNN are obtained by trial and error, including the number of
training iterations and the structure of the network.

Implementation results are shown in Tables 6.4~6.6. In Tables 6.4 and 6.5, our
proposed approach obviously outperforms the traditional approach without
granulation, in both classification accuracy and type Il error. In addition, fewer
knowledge rules and attributes are obtained. In-Table 6.6, the classification accuracy
and type Il error of our approach are still-better than those by the original BPNN. All
the attributes, kept and ranked by priority, are listed:in Table 6.6. By comparing the
implementation results of these“three methods, six attributes {B7211, H114-102,
B725, B8750, C8750 and E8750} are reserved as final test items for the RF functional
test. The knowledge rules listed in Figures 6.7(a) & (b) are generated by using rough
sets and decision tree methods. These rules may not only help engineers to predict the
yield rate of products, but may also enhance the performance of knowledge

management.

6.4 The Benefits

By implementing the proposed method, test items are reduced from 62 to 6 items.
The test time is reduced from 190 seconds to 95 seconds. The amount of employed
test equipment is reduced from 8 machines to 4 machines. As a result the company

will save about $ US 200 000 per year. In addition we should not forget the resulting
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rise in customer satisfaction and the reduction in risk for the customers. The potential

benefits of implementation are substantial.

Rule 1:
B725€[31.7440,31.7446) AND H114-102 ¢ (1,*] TEHN Class = Good Product

[Accuracy: 1.0; Supports: 24]
Rule 2:

B725 c[31.7440,31.7446) AND H114-102 € (L*] TEHN Class = Bad Product
[Accuracy: 1.0; Supports: 2]

Rule 3:

B725 ¢[31.7440,31.7446) AND H114-102 ¢ (1,*] TEHN Class
[Accuracy: 1.0; Supports: 4]

Rule 4:

B725 ¢[31.7440,31.7446) AND H114-102 € (1,*] TEHN Class

[Accuracy: 1.0; Supports: 3]

Bad Product

Bad Product

Figure 6.7 (a). Knowledge rules extracted by rough sets

Rule 1:
B725 €[31.7440,31.7446) AND- H114-102¢ (1,*]- TEHN Class = Good Product

[Accuracy: 0.962; Supports: 24]

Rule 2:
B725 ¢ [31.7440,31.7446) TEHN Class = Bad Preduct

[Accuracy: 0.889; Supports: 7]
Rule 3:
H114-102 € (1,*] TEHN Class = Bad Product

[Accuracy: 0.857; Supports: 5]

Figure 6.7 (b). Knowledge rules extracted by decision tree (C 4.5)

6.5 Discussion and Concluding Remarks

In most cases of inspection data, the amount of good products is far greater than
the amount of defective products. The few defective products are usually viewed as
outliers and are removed in the generalization phase of the classification tools.
Actually, all normal products look alike, and the abnormal products have individual

styles. That phenomenon is also noted by Taguchi and Jugulum [22]. We should pay
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more attention to this, and consider the categories of instances instead of the data size
when developing feature selection algorithms.

Traditional machine learning techniques tend to generate a huge amount of
knowledge rules and lead to a low level of Negative Accuracy when dealing with
imbalanced data. This chapter applied KAIG model to select key test items in mobile
phone inspection. KAIG model not only extracts fewer knowledge rules, but also
outperforms the traditional methods regarding the Negative Accuracy and Overall
Accuracy.

A real case study of cellular phone test process was employed to demonstrate the
effectiveness of KAIG model. When encountering imbalanced data, KAIG model is
effective in removing unnecessary RF function test items, saving testing costs and
shortening the time to market. It isisuitable for reducing the inspection process in the
high technology industry, especially. now that.we are-facing the six-sigma age, i.e. the
defective rate of products is becoming-extremely low.

The experimental results also'show.that.there is a trade-off relationship between
Positive Accuracy and Negative Accuracy. The KAIG model can raise the level of
Negative Accuracy without dropping Positive Accuracy. This is very important to
OEM/ODM manufacturers because a low level of Negative Accuracy will inevitably
lead to orders being lost. The inconsistence of the extracted attributes when using
different feature selection methods is an important issue for future research, because it
might confuse users (engineers) when applying these feature selection techniques in
practice. To solve the inconsistence, a robust approach is needed to be developed in

the future.
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CHAPTER 7

APPLY IG BASED METHOD TO ENCHANCE THE
DIABETES DIAGNOSIS ABILITY

7.1 Problem Description

Diabetes, which can result in a variety of complications, including heart disease,
kidney disease, eye disease, erectile dysfunction, and nerve damage, has become a
serious problem in human society. In 2000, the World Health Organization (WHO)
estimated that over 177 million people had diabetes. By 2030, it is estimated that there
will be 366 million diabetes patients world-wide. The WHO is calling diabetes an
epidemic, and recently it is having a huge economic impact on countries in Africa,
India, and China. Diabetes is a bigger killer than AIDS, and the cost of supporting a
person who has lost a foot due to diabetes may. drain:three-quarters of the income of a
poor family. In Taiwan, diabetes has been the 5th leading cause of death since 1987

and it became number 4 in 2004.

In recent years, researchers have tried to use artificial intelligence (Al) methods
to build diagnostic classifiers (Srikanth et al., 1997) in order to identify diseases
quickly and economically, and therefore help diagnose patients in those developing
countries that lack sufficient medical resources. The Al methods acquire knowledge
from examples of existing diagnoses and apply the extracted knowledge to diagnose
an illness. However, the data obtained from examples of diagnoses are often
imbalanced or skewed, with almost all the instances being labeled as one class, while
only a scant few instances are labeled as the other class, usually the important class.
When building a classifier from such imbalanced/skewed diagnosis data, class
imbalance problems are necessary to be considered. In this chapter, we apply I1G
based method to increase the ability of identifying diabetic patients.
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7.2 Data Collection

The experimental data comes from the health examination database of a regional
hospital in Taiwan. We obtained 2000 raw data. After removing missing value
examples, 1829 objects remained, which contain 1729 positive instances (healthy
patients) and 100 negative instances (diabetic patients). These examples are divided
into training (1464: 1384+80) and test objects (365: 345+20). The proportion of

negative examples is about 5%.

Table 7.1 shows 23 attributes of this data, they are biochemical or physical test
items and all their values are continuous except for the first one “Gender.” Although
there are different types of diabetes like Type 1, Type 2 and gestational diabetes, they
are combined and considered as diabetes.: Therefore we have 2 classes, positive

(healthy patients) and negative (diabetic:patients).

Table 7.1 Attributes

#1| Gender [#5| FEV1 |#9 | SGOT" |#13|" BUN |#17| Thyroxine |#21) HDL
#2| Age |[#6| PFR |#10, SGPIT. |#14|Creatinine|#18| Uric acid |#22|ELDL
Vital . Glucose
#3 . |#7| albumin [#11| APAE |#15 #19| Cholesterol [#23| LDL
Capacity AC
Predicted Total Total Glucose . .
#4 Ve #8 orotein #12 bilirubin #16 PC #20|Triglyceride

7.3 Implementation of 1G based method

In this section, we try to build a classifier to identify diabetic patients
automatically by using IG based method. The comparison of our method, SVM, DT
(C 4.5), cluster based sampling, and under-sampling will be provided to show the

superiority of 1G based method in highly class imbalance situation.

Table 7.1 shows the results of H-index and U-ratio. Seventy-nine IGs are

constructed depending on the selected similarity (vigilance), 0.7. Then, three quartiles,
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Q1, Q2, and Q3 are utilized to describe those 1Gs which are shown in Table 7.2.

Table 7.2 Using Q1+Q2+Q3 to describe 1Gs

Data
char.

Q3 157 416128886 143 5 83040 71111611 100 96.75 1.4 6.3 238 109 57 22 173 +1 1

12 3 4 5 6 7 8 91011 121314 15 16 17 18 19 20 2122 23 class IG No.

Q2 150 322 11082 10147 81723625091411 91 9251159219 995220 142 +1 1

Q1 037 272577.258080546 7171557.3071309 85 8450.7511987834316 123+1 |
Q3 168 3785116488 13748 82522 1521.1201.290.8 120.8 1.2 8.7 187 1635833 114+1 2
Q2 160 298109584 12745752020 93 11912895 920968174 1284426 111+1 2
Ql 0344 261 10179 10341 71715708081611 86 880.76.61718053116 108+1 2
Q3 160 304 10885 8246 81916 87161911 101 12048 6184 1125722 110+1 3
Q2 o054 247 9680 7845 71413 53 11909 98 831458168 945519 81+1 3
Ql o051 176 7179 7544 71411 45071608 91 740953146 745215 70+1 3
Q3 162 351 10787 14247 725485751118 1.2 103 106.52.9 6.9 252 17567 35 169 +1 4
Q2 158 2985 94.684 12645 72327 540916119150, 951564223 1155823 120+1 4
Ql 0850 262 8983 10144 719164180715 1 87.91.75:0.8 6.1 1938884818 106 +1 4

Q3 171 264 99583 8945 730378500917 12135224543 7.4210 171 46 34 133 -1 75
Q2 0566 227794575 6841 72225 74.0.715-47127.206.52.2 6.2 189 144 4229 112 -1 75

Ql 06020175 6569479 4 72020 630.7130.9 94.5189.50.9 5.4 154 116 38 23 88 -1 75

Q3 1563.3825105588 13949 82537 84111912 221 256 1.7 7.4 245 200 52 40 142 -1 76
Q2 151 287 9885 12448 8222979509 1809 137 218 1.16.5189 188 50 38 104 -1 76

Q1 047 2585782583 1024.7 720216230.7150.8 118 137.5 15.8 152 99.5 48 20 74.3 -1 76

Q3 164 357 12587 18449 83244 78092012 258 278 1.16.2199 1456129 115 -1 71
Q2 164 353 10882 13449 81925 71092012 146 224 159188 1155223 112 -1 71

Q1 156 295 10876 7945 81820 630816 1 113 2220957159 794616 91-1 71

Q3 1603.3525101.57794343 83453945 11712 26442731655 274 36256 69 164 -1 78
Q2 154 3.075100.5756853.97524298350814 1 222 33813 5256 228 4546 153 -1 78

Q1 1492902594.757151.53.76.82025 76071109 198 285 14.5226 1523731 132 -1 78

Q3 067 248 11898 177 5 730177150918 11 135 166 1.9 7246 230 70 46 145 -1 79
Q2 o066 238 11496 17549 72314 600816 1 134 161 1.66.3 242 195 63 39 140 -1 79

Q1 o066 228 11095 17447 717114850814 1 132 156 1.3 55237 159 55 32 135 -1 79
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Figure 7.1 H-index & U-ratio of diabetes diagnosis data

Table 7.3 summarizes the results of experiments. Although Overall Accuracy and

Positive Accuracy drop slightly, .1G based .method has excellent performance in

Negative Accuracy (75%), which tis better—than cluster based sampling (65%),

under-sampling (45%), SVM (10%), and DT (15%). It means IG based method can

remarkably increase the ability of detecting diabetic patients. Considering G-mean, 1G

based method also outperforms other methods. The comparison is also demonstrated

in Figure 7.2.
Table 7.3 Summary of experimental results
Methods IG based method|Cluster based samplingjUnder- sampling| SVM DT
Performance
Overall Accuracy 93.70% 92.88% 95.07%  [95.07%95.34%
Pos. Accu. 94.78% 94.49% 97.97% 100% | 100%
Neg. Accu. 75% 65% 45% 10% | 15%
G-mean 84.31% 78.37% 66.40% 31.62%38.73%
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Figure 7.2 The comparison of experimental results

7.4 Discussion and Concluding Remarks

Medical diagnosis data is usually highly imbalanced. It’s especially true when
diseases are rare. When applying machine learning techniques to build classifiers to
diagnose an illness, it’s necessary to consider class imbalance problems. The chapter
applied 1G based method to diabetes diagnosis. An actual case was provided to
illustrate the effectiveness of our method. The experimental results show our proposed
method can significantly increase the ability of detecting diabetic patients (minority)

in highly skewed data situation.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

Granular computing, which imitates human capability of performing tasks or
processing information, is a new direction of Artificial Intelligence. Albert Einstein
(1879-1955) said “As far as the laws of mathematics refer to reality, they are not certain;
as far as they are certain, they do not refer to reality.” His words can be used to explain
why researchers paid lots of attentions on uncertainty/vagueness in human decision
making, such as fuzzy sets, rough sets, granular computing, and etc. These researches
are not intended to replace traditional measurement-based methods which operate
numerical data. Their purpose is«to let the.developed computational theories refer to
reality.

The main contributions of_this. dissertation are to propose two practical GrC
models, KAIG and IG based method; for dealing with discrete and continuous data,
respectively. The first proposed KAIG indeed has impressive classification ability for
imbalanced data, but it also has a drawback of generating so many “sub-attributes”
that may increase computational complexity when dealing with continuous data. We
can control the number of “sub-attributes” by adopting a discretization algorithm.
However, in some situations, the discretization algorithm might still generate lots of
discrete intervals. Therefore, we proposed the second IG based method to aim at
continuous data. Unlike traditional data mining approaches which acquire knowledge
from numerical data, our methods can extract knowledge from 1Gs while controlling
the reduction of information (i.e. removing unnecessary details). In both GrC models,

the procedures to find appropriate number of 1Gs and to represent the constructed IGs
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were provided. Integrating Fuzzy ART neural network and two objective indexes
(H-index and U-ratio), an information granulation procedure was presented to
construct IGs. This study also developed two kinds of 1G representation methods, the
concept of “sub-attributes” and “data characteristics.” Experimental results show their
efficacy to represent IGs.

In addition, this study also discussed class imbalance problems which are
becoming serious issues when applying data mining techniques to practical areas,
such as spam detection, defective products inspection, and diseases/illness diagnosis.
Recently, we observe an increase of research activity in data mining from imbalanced
data sets. This increase in interest gave rise to two workshops held in 2000 (the
American Association for Artificial Intelligence; AAAI) and 2003 (International
Conference on Machine Learning;:ICML) on learning from imbalanced data sets. The
Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data
Mining, SIGKDD Explorations; alse.published a special issue to discuss the same
issue (June 2004).

In related researches, some presented techniques like re-sampling and
weight-adjusting techniques can merely slightly improve the imbalanced situation, but
they cannot guarantee optimal solutions. Compared with IG based method,
cluster-based sampling methods lack a systematic mechanism to determine a suitable
number of clusters and to find representative examples to denote clusters.
Nevertheless, our methods provided an effective avenue to solve these problems.
Considering ROC curve analysis and other performance indexes, KAIG and IG based
method have been shown their superiority of identifying minority examples without
losing overall accuracy.

In practical applications, we found proposed GrC models actually can increase

classification performance by reducing detailed information. Our methods are
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especially effective for imbalanced inspection, diagnosis, faults monitoring, and fraud
detecting data. The case studies showed KAIG model improved predictive ability of a
scheduling system within an FMS environment. KAIG model also removed redundant
test items and shortened inspection time of cellular phone manufacturing. In addition,
the I1G based model was proposed to deal with continuous data and it effectively

increased the ability of a classifier to detect rare diabetic patients.

8.2 Further Research

Some potential directions for improvement and future work are clear. The first
issue is about reduction of information. How many unnecessary details should be
removed? Although we employed two indexes to tackle this issue, it’s necessary to
pay more efforts to do advanced researches.

The second issue is about class imbalance .preblems. Usually, data from two
classes are available in conventional elassification; the decision boundary is supported
from both sides of example objects: When the ¢lass distribution is extremely skewed
or the minority examples are completely absent, the traditional algorithms might fail.
One-class classification method which is assumed that only one class information

available might be the possible solution.
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