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粒化計算處理不平衡資料之理論與應用 

學生：陳隆昇 

 

指導教授：蘇朝墩 
李榮貴 

國立交通大學工業工程與管理學系博士班 

摘 要       

 
近年來機器學習的發展為分類問題提供一項有效的工具。然而，當從不平衡

資料(imbalanced data)學習時，傳統的方法在預測少數範例(minor examples)上，

其能力是不足的。這類的問題相當重要，在許多環境、生命相關或商業重要領域

中大量發生，譬如詐騙偵測、文字探勘、垃圾信件偵測、醫療診斷、錯誤監視及

檢測等。在本論文中，我們提出稱為「粒化計算」(Granular Computing)的新穎方

法來解決這種「類別不均問題」(Class Imbalance Problems)。 

粒化計算以表示和處理資訊粒(Information Granule)為導向，是一種模仿人類

資訊處理本能的計算模式，逐漸在資訊科學、邏輯、哲學等領域中成為一項重要

的議題。當描述一個包含不完整、不確定或是模糊資訊的問題時，人類很難去考

慮詳細的數值資料，而被迫考慮『資訊粒』—是由個別元素(individual elements)

依據其相似性、功能接近性或是不可分辨度所構成的集合。粒化計算的模型不僅

可以移除不必要的細節、使我們看清資料的本質，更能有效地用來解決『類別不

均問題』。 

    本研究的目的在於發展出兩種粒化計算模型—「KAIG」與「IG based method」

分別處理離散型 (discrete)與連續型 (continuous)資料。兩個模型中，兩種指

標—H-index 與 U-ratio，被成功地導入以用來確定適當的顆粒性水準(level of 

granularity)，換言之，我們可以據此來確定適當的資訊粒數目。模糊適應共振理
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論網路(Fuzzy ART neural network)被用來建構資訊粒。此外，在「KAIG」模型

中，我們提出了「附屬屬性(sub-attributes)」的觀念來描述資訊粒並可解決資訊粒

彼此重疊的現象。在「IG based method」方法中，我們則是以資料特性來表示資

訊粒。本研究的主要目標詳述如次： 

(1)發展 KAIG 模型來建構資訊粒，並從其中攫取知識。七個 UCI 資料銀行中的

資料(包含一個不平衡診斷資料)，被用來評估 KAIG 模型的有效性，在使用不同

的績效指標(如 Overall Accuracy, G-mean 和 ROC curve)評估下，相較於決策樹

方法(decision tree, C4.5)與支持向量分類器(Support Vector Machine)，實驗結果說

明了我們所提方法的優異性。 

(2)應用 KAIG 模型解決工業工程相關領域中的「類別不均問題」。首先，在模

擬的彈性製造系統(Flexible Manufacturing Systems)環境中，KAIG 模型被應用來

改善動態排程系統的分類績效。其次，我們以一個手機檢測的實際案例來說明

KAIG 模型有極優異的能力偵測出極少數的不良品。此外，KAIG 模型可以減少

多餘的測試項目並縮短檢驗時程。這兩個應用實例證實對於處理不平衡資料，

KAIG 模型可以大幅提昇偵測少數範例的能力 (Negative Accuracy)，同時又不會

減少整體的分類準確率(Overall Accuracy)。 

(3)提出「IG based method」來處理連續型的不平衡資料。在這個方法中，不同的

資料特性及其組合被用來表示建構好的資訊粒，然後再利用這些資訊粒的代表來

建立分類器。一個糖尿病醫療診斷實例被用來評估所提方法的有效性。相較於傳

統的方法，本研究所提的方法在不平衡資料的學習上表現出極佳的結果。 

 

關鍵字: 粒化計算、資訊粒化、類別不均問題、模糊適應共振理論網路、知識攫

取、機器學習 
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ABSTRACT 
In recent years, the development of machine learning techniques has provided an 

effective avenue for classification problems. However, when learning from 

imbalanced data, the traditional methods have poor predictive ability to identify 

minority instances. This problem is of crucial importance since it is encountered by a 

large number of domains of great environmental, vital or commercial importance such 

as fraud detection, text mining, spam detection, medical diagnosis and fault 

monitoring/inspection. In this study, we propose novel methods called “Granular 

Computing” models to tackle class imbalance problems.  

Granular computing, which is oriented towards representing and processing 

Information Granules (IGs), is a computing paradigm that embraces a number of 

modeling frameworks. GrC imitates human instincts of processing information and is 

becoming a very important issue for computer science, logic, philosophy and others. 

When describing a problem which involves incomplete, uncertain, or vague 

information, we human beings tend to shy away from numbers and use aggregates to 

ponder the question instead. We are forced to consider IGs which are collections of 

entities arranged together due to their similarity, functional adjacency and 

indistinguishability. GrC model not only can remove unnecessary details and provide 

a better insight into the essence of data, but also effectively solve class imbalance 

problems. 

This study aims to develop two kinds of GrC models, “Knowledge Acquisition 

via Information Granulation” (KAIG) model and “Information Granules based 

method” (IG based method), for dealing with discrete and continuous data, 

respectively. In both models, the homogeneity index (H-index) and the 
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undistinguishable ratio (U-ratio) are successfully introduced to determine a suitable 

level of granularity (i.e. determine suitable number of IGs). Fuzzy Adaptive 

Resonance Theory (Fuzzy ART) neural network is utilized to construct IGs. In 

addition, we propose the concept of “sub-attributes” to describe granules and tackle 

the overlapping among granules in KAIG model. In IG based method, data 

characteristics are employed to represent IGs. The main objectives of this study are: 

1. Develop a KAIG model to construct IGs, and to discover knowledge from IGs. 

Seven data sets from UCI data bank (including one imbalanced diagnosis data), are 

provided to evaluate the effectiveness of KAIG model. By using different 

performance indexes, Overall Accuracy, G-mean and ROC curve, the experimental 

results comparing with C4.5 and Support Vector Machine (SVM) demonstrate the 

superiority of our method. 

2. Apply KAIG model to solve class imbalance problems in industrial engineering 

related areas. First, KAIG model is utilized to improve the classification 

performance of a dynamic scheduling system within a simulated Flexible 

Manufacturing System environment. Second, a real case of cellular phones 

inspection is provided to illustrate the excellent ability of KAIG model in 

identifying rare defective products. In addition, KAIG model can reduce redundant 

test items and shorten inspection time. For imbalanced data, these applications 

show KAIG model can dramatically increase Negative Accuracy (the capability of 

detecting minor instances) without losing Overall Accuracy. 

3. Propose IG based method to deal with continuous imbalanced data. In this method, 

different data characteristics and their combinations are employed to denote 

constructed IGs. Then we build a classifier from these representatives of IGs. An 

actual medical diagnosis data of diabetes is used to evaluate the effectiveness of 

this method. Compared with traditional techniques, the proposed method is shown 

to be superior for learning on imbalanced data. 

 

Key words: Granular computing, Information granulation, Class imbalance problems, 

Fuzzy ART neural network, Knowledge acquisition, Machine learning. 
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CHAPTER 1 

INTRODUCTION 

1.1  Research Motivations 

When learning from imbalanced/skewed data, which almost all the instances are 

labeled as one class while far few instances are labeled as the other class, traditional 

machine learning algorithms such as Neural Networks (NN), Decision Trees (DT), 

and Support Vector Machines (SVM) tend to produce high accuracy over the majority 

class but poor predictive accuracy over the minority class. This minority class is 

usually the important one, like illness patients of medical diagnoses examples or 

abnormal products of finished-goods inspection data. This study tries to solve these 

Class Imbalance problems which caused by skewed data distribution. 

There are two motivations why we propose the Granular Computing (GrC) to 

tackle class imbalance problems. The first one is human instinct (Zadeh, 2001). As 

human beings, we have developed a granular view of the world. When describing a 

problem or making decisions, we tend to shy away from numbers and use aggregates 

to ponder the question instead. This is especially true when a problem involves 

incomplete, uncertain, or vague information. It may be sometimes difficult to 

differentiate distinct elements, and so one is forced to consider “information granules” 

(IG) which are collections of entities arranged together due to their similarity, 

functional adjacency and indistinguishability (Bargiela and Pedrycz, 2003; Castellano 

and Fanelli, 2001; Yao and Yao, 2002; Zadeh, 1979). A typical example is the theory 

of rough sets (Walczak and Massart, 1999).  

The process of constructing IGs is referred to as information granulation. This 

was first pointed out in the pioneering work of Zadeh (1979) who coined the term 
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‘information granulation’, and emphasized the fact that a plethora of details does not 

necessarily amount to knowledge. Granulation serves as an abstraction mechanism for 

reducing an entire conceptual burden. The essential factor driving the granulation of 

information is the need to comprehend the problem and have a better insight into its 

essence, rather than get buried in all the unnecessary details. By changing the size of 

the IGs, we can hide or reveal more or less details (Bargiela and Pedrycz, 2003). 

Granular Computing (GrC) is oriented towards the representation and processing of 

IGs. 

The second motivation is about the behavior of data. In many practical datasets, 

such as medical/diagnosis, inspection, fault monitoring and fraud detecting data, the 

normal group and abnormal group are considered separate populations. Taguchi and 

Juoulum (2002) thought every abnormal condition (or a condition outside “healthy” 

group) is considered unique, since the occurrence of such a condition is different. 

Tolstoy’s quote in Anna Karenina: “All happy families look alike. Every unhappy 

family is unhappy after its own fashion” is also noted to illustrate their opinions 

(Taguchi and Juoulum, 2002). From the observations of practical data, we can clearly 

find the normal group (i.e. healthy patients, good products) look alike while the 

abnormal group (i.e. sick patients, defective products) are unique. If we construct IGs 

by the similarity of numerical data, the amount of IGs in normal group will be 

remarkably smaller than the size of normal numerical data. In other words, if we 

consider IGs instead of numerical data, it might increase the proportion of abnormal 

data and improve imbalanced/skewed situation of data. 
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1.2  Research Objectives 

The purpose of this study is to develop two Granular Computing models to deal 

with imbalanced/skewed data. These two models can extract knowledge from IGs and 

are developed for discrete and continuous data, respectively. The main issue needed to 

tackle is how to measure and represent IGs if we want to acquire knowledge from IGs. 

In this study, we use Fuzzy Adaptive Resonance Theory (Fuzzy ART) neural network 

to construct IGs. The two indexes, the homogeneity index (H-index) and the 

undistinguishable ratio (U-ratio), are presented to measure IGs. In the first proposed 

model called “Knowledge Acquisition via Information Granulation” (KAIG), the 

concept of “sub-attributes” is presented to describe granules, and to tackle the 

overlapping among granules. In the second proposed approach called “Information 

Granules based method”, we try to use different data characteristics such as mean, 

median, quartiles, minimum, maximum and combinations of them to represent IGs. 

Then, we extract knowledge from these IGs. 

The KAIG model is designed for discrete imbalanced data. We will evaluate 

KAIG model by using UCI data and make a comparison between KAIG model and 

traditional knowledge acquisition algorithms which operate with numerical data. In 

addition, KAIG model is applied to deal with class imbalance problems in a dynamic 

scheduling problem within a simulated Flexible Manufacturing System. Besides, this 

study developed a feature selection procedure integrated the proposed KAIG model to 

find key test items and shorten inspection time. A real case of mobile phone 

inspection in Taiwan was used to evaluate effectiveness of the proposed procedure. 

We also show advantages and benefits of this procedure.  

The IG based method is proposed to deal with continuous imbalanced data. The 

experimental results will be compared with cluster-based sampling method and 
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original machine learning techniques. Finally, an actual medical diagnosis data of 

diabetes is employed to illustrate the superiority of our method.  

 

1.3  Framework and Organization 

    In practical application of machine learning (or data mining), class imbalance 

problems are emerging issues. According the report of available researches, sampling 

and moving decision threshold are widely used methods to tackle this problem. This 

study developed two kinds of GrC model, which is also new topic in information 

processing, to solve the class imbalance problems. The developed models will be 

compared with previous techniques. The research framework is shown in Figure 1.1.    

This study is organized as follows. Chapter 1 presents the research motivations 

and objectives. Chapter 2 is the literature review of related researches toward granular 

computing, class imbalance problems, inductive learning and feature selection 

techniques. Chapter 3 proposes two GrC methodologies. In this chapter, we use Fuzzy 

ART neural network to construct IGs, present “H-index & U-ratio” to determine the 

suitable level of granularity, and develop the concept of “sub-attributes” and “data 

characteristics” to describe IGs. In chapter 4, several data sets from UCI machine 

learning group are provided to illustrate and evaluate the effectiveness of our 

methodologies. Chapter 5 describes the applications of KAIG model in dynamic 

scheduling system within a simulated FMS. In Chapter 6, we develop a KAIG model 

based feature selection procedure to reduce test items and shorten inspection time in 

mobile phone manufacturing. Chapter 7 provides a case study of diabetes diagnosis 

by using IG based method. Finally, conclusions and future works are described in 

Chapter 8.  
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CHAPTER 2 

RELATED WORKS 

2.1  Granular Computing 

Humans have a remarkable capability to perform a wide variety of physical and 

mental tasks without any measurements and any computations, such as driving, 

parking, cooking, and playing computer game. We human beings use perceptions of 

direction, speed, time and other attributes of physical/mental objects, instead of 

numerical data. Basically speaking, reflecting the limited ability of human brains, 

perceptions are inaccurate. In more concrete terms, perceptions are granular. It means 

that the boundaries of perceived classes are unsharp; and the values of attributes are 

granulated (Zadeh, 2001). For example, the granules of temperature might be labeled 

very cold, cold, warm, hot, very hot, etc. The computation theory of perceptions (CTP) 

is inspired by the marvelous human ability. And, GrC belongs to related research 

areas of CTP.    

GrC is quickly becoming an emerging conceptual and computing paradigm of 

information processing (Bargiela and Pedrycz, 2003). It is a superset of the theory of 

fuzzy information granulation, rough set theory and interval computations, and is a 

subset of granular mathematics. GrC as opposed to numeric computing is 

knowledge-oriented. Numeric computing is data oriented. The main issues 

(Castellano and Fanelli, 2001) of granular computing are how to construct the IGs, 

and to describe IGs. One particular question that arises is how to determine the level 

of granularity. If we want to acquire knowledge from IGs, we must try to solve these 

three questions which will be discussed in sections 3.1~3.3. 

In the issue of constructing IGs, there are many approaches, such as the Self 
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Organizing Map (SOM) network (Bortolan and Pedrycz, 2002), Fuzzy C-means 

(FCM) (Castellano and Fanelli, 2001; Bargiela and Pedrycz, 2003b), rough sets, 

shadowed sets (Bargiela and Pedrycz, 2003a) used to do this. Because IGs exist at 

different levels of granularity, we usually group granules of similar “size” (that is 

granularity) in a single layer. If more detailed processing is required, smaller IGs are 

selected. Figure 2.1 illustrates this concept of granularity. At the lowest level, we are 

concerned with numeric processing. This is a domain completely taken over by 

numeric models, such as differential equations, regression models, neural networks, 

etc. At the intermediate level, we see larger IGs (viz. those embracing more individual 

elements). The top level is solely devoted to symbol-based processing, and as such 

invokes well-known concepts of Petri nets, qualitative simulation, etc (Bargiela and 

Pedrycz, 2003a).  

In the issue of represntting IGs and determining the level of granularity, Bargiela 

and Pedrycz (2002) proposed the “hyperbox” and “inclusion & compatibility” to 

measure IGs. However, these researches focused on how to construct IG, how to 

describe IG and how to measure IG, individually. We need an advanced/integrated 

mechanism to imitate human ability of processing information, such as extracting 

knowledge from IGs and making decision based on them. 

 

 
   Figure 2.1 An information-processing pyramid (Bargiela & Pedrycz, 2003)  

 

high 

Granularity

low 
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2.2  Class Imbalance Problems 

Learning from imbalanced/skewed data is an important topic and rises very often 

in practice. In such kind of data, one class might be represented by a large number of 

examples while the other is represented by only a few. Many real world data have 

these characteristics, such as fraud detection, text classification (Chawla et al., 2002& 

2004) telecommunications management, oil spill detection, risk management, medical 

diagnosis/monitoring, financial analysis of loan policy or bankruptcy (Batista et al., 

2004; Chawla et al., 2004; Grzymala-Busse et al., 2004) and protein data (Provost and 

Fawcett, 2001). Traditional classifiers seeking an accurate performance over a full 

range of instances are not suitable to deal with imbalanced learning tasks (Batista et 

al., 2004; Chawla et al., 2004; Guo and Viktor, 2004; Japkowicz and Stephen, 2002) 

since they tend to classify all data into the majority class, which is usually the less 

important class. Therefore, these traditional algorithms often produce high accuracy 

over the majority class, but poor predictive accuracy over the minority class. 

To cope with imbalanced data sets, there are some methods proposed in 

literatures. There are two major groups of techniques designed to address class 

imbalance. The first group consists of supervised techniques that usually include five 

approaches: (1) undersampling, methods in which the minority population is kept 

intact, while the majority population is under-sampled, (2) oversampling, methods in 

which the minority examples are over-sampled so that the desired class distribution is 

obtained in the training set (Batista et al., 2004; Chawla et al., 2002; Guo and Viktor, 

2004), (3) cluster based sampling, methods in which the representative examples are 

randomly sampled from clusters (Altincay and Ergun, 2004), (4) moving the decision 

threshold, methods in which researchers try to adapt the decision thresholds to impose 

bias on the minority class (Chawla et al., 2002; Huang et al., 2004; Jo and Japkowicz, 
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2004) and (5) adjust costs matrices, methods in which the prediction accuracy is 

improved by adjusting the cost (weight) for each class(Cristianini and Shawe-Taylor, 

2000). 

The second large class of techniques for detecting rare events involves an 

unsupervised framework, i.e. outlier detection or one-class classification (Manevitz 

and Yousef, 2001). Initially, minority examples are completely ignored and a model is 

trained by using all examples from the majority class (target class). Then, the outliers 

are detected as the data points with low probability of occurrence, small number of 

neighboring examples. In addition, SVM is usually used to tackle class imbalance 

problem (Wu and Chang, 2005).  

These techniques have some disadvantages (Altincay and Ergun, 2004). For 

example, the computational load is increased and overtraining may occur due to the 

replicated samples in the case of over-sampling. Under-sampling does not take into 

account all available training data which corresponds to loss of available information. 

Huang et al. (2004) thought these supervised methods lack a rigorous and systematic 

treatment on imbalanced data. Moreover, the one-class classification methods only 

consider majority examples. It might miss some beneficial decision information of 

minority examples.  

 

2.3  Fuzzy ART Neural Network 

Fuzzy ART is one of clustering techniques and also the most recent adaptive 

resonance framework that provides a unified architecture for both binary and 

continuous valued inputs. Fuzzy ART clusters vectors based on two separate distance 

criteria, match and choice. For input vector I and category j, the match function is 

defined by 
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where jw  is an analog-valued weight vector associated with cluster j. ∧  denotes 
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where α  is a small constant. Increasing α  biases the search more towards clusters 

with large jw . Each input vector is assigned to the category that maximizes )(IT j  

while satisfying ρ≥)(IS j , where the vigilance ρ , is a constant, 10 ≤≤ ρ . The 

topological structure of the Fuzzy ART architecture is shown in Figure 2.2. 
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Figure 2.2 Topological structure of the Fuzzy-ART 
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2.4  Inductive Learning Methods 

2.4.1 Decision Tree 

The decision tree method is one of the most popular knowledge acquisition 

algorithms, and has been successfully applied in many areas. Decision tree algorithms, 

such as ID3 and C4.5, were originally intended for classification purposes. The core 

of C4.5 contains recursive partitioning of the training examples. Whenever a node is 

added to a tree, some subsets of the input features are used to pick the logical test at 

that node. The feature that results in the maximum information gain is selected for 

testing at that node. In other words, the algorithm chooses the “best” attribute to 

partition the data into individual classes at each node. After the test has been 

determined it is used to partition the examples, and the process is continued 

recursively until each subset contains examples of one class or satisfies some 

statistical criteria (Su and Shiue, 2003).   

In this study, See5 (C4.5 commercial version) software was utilized to construct 

a decision tree. In See5 there are two parameters that can be tuned during the pruning 

phase: the minimal number of examples represented at any branch of any 

feature-value test; and the confidence level of pruning. In order to avoid the 

occurrence of overfitting and generating a simple tree, 2 was set as the minimum 

number of instances at each leaf, and the confidence level for pruning was set at 25%. 

 

2.4.2 Back-propagation Neural Network 

    Neural nets have been used widely in pattern recognition, function 

approximation, optimization, and clustering. Generally speaking, neural nets can be 

classified into two categories, feed-forward and feedback networks. In this study, the 
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feed-forward network, shown as Figure 2.3, was employed because of their superior 

ability of classification. 

The back-propagation learning algorithm (Rumelhart & McClelland, 1986) is the 

best known training algorithm for neural networks and still one of the most useful. 

This iterative gradient algorithm is designed to minimize the mean square error 

between the actual output of a multilayer feed-forward perceptron and the desired 

output. According to the rule of thumb and reports of available published papers, the 

number of hidden layers should be one or two. The back-propagation algorithm 

includes a forward pass and a backward pass. The purpose of the forward pass is to 

obtain the activation value and the backward pass is to adjust weights and biases 

according to the difference between the desired and actual network outputs. These two 

passes will go through iteratively until the network converges. The feed-forward 

network training by back-propagation can be summarized as the following steps: 

Step 1: Select an architecture 

Step 2: Randomly initialize weights 

Step 3: While error is too large 

For each training pattern (presented in random order) 

Step 3.1: Select training pattern and feedforward to find actual network output 

Step 3.1.1: Apply the inputs to the network 

Step 3.1.2: Calculate the output for every neuron from the input layer, 
through the hidden layer(s), to the output layer 

                     The output from neuron j for pattern p is pjO  where  

jnetjpj e
netO −+

=
1

1)( (2.3)

and 

∑+=
k

jkpkj WObiasnet (2.4)

k ranges over the input indices and jkW  is the 
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weight on the connection from input k to neuron j. 

 

Step 3.2: Calculate errors and backpropagate error signals  

      Step 3.2.1: Calculate the error at the outputs 

The output neuron error signal pjδ  is given by  

)O-(1O )O-(T pjpjpjpjpj ××=δ (2.5)

where pjT  is the target value of output neuron j for 
pattern p and pjO  is the actual output value of output 
neuron j for pattern p. 

      Step 3.2.2: Use the output error to compute error signals for pre-output 
layers 

The hidden neuron error signal pjδ  is given by 

))1( kj
k

pkpjpjpj WOO ∑−= δδ (2.6)

where pkδ  is the error signal of a post-synaptic 
neuron k and kjW  is the weight of the connection 
from hidden neuron j to the post-synaptic neuron k.  

 

Step 3.3: Adjust weights 

      Step 3.3.1: Use the error signals to compute weight adjustments 

Compute weight adjustments jiW∆  at time t by 
 

1)-(tWO(t)W jipipjji ∆×+××=∆ αδη (2.7)

where η  is the learning rate and α  is the 
momentum coefficient ( ]1,0[∈α ). 

Step 3.3.2: Apply the weight adjustments 

                   Apply weight adjustments according to 
 

)(tW (t)W  1)(tW jijiji ∆+=+ (2.8)

 

Step 4: Evaluate performance using the test data set 
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2.4.3 Rough Sets 

The rough sets theory was introduced by Pawlak (1985) to deal with imprecise or 

vague concepts (Swiniarski and Skowron, 2003; Walczak and Massart, 1999). Rough 

sets deal with information represented by a table called the information system which 

contains objects and attributes. An information system is composed of a 4-tuple as 

follows: 

fVQUS ,,,= (2.9)

where U is the universe, a finite set of N objects {x1,x2,….xN}, Q is a finite set of 

attributes, qQq VV ∈∪= , where Vq is a value of attribute q, and VQUf →×:  is the 

total decision function called the information function such that qVqxf ∈),(  for 

every Qq∈ , Ux∈ . For a given subset of attributes QA ⊆  the IND(A)  

{ }a)(y,a)(x,A,a allfor :),()( ffUyxAIND =∈∈= (2.10)

is an equivalence relation on universe U (called an indiscernibility relation). 

    Some of the information systems can be designed as a decision table 

Figure 2.3 The back-propagation neural network structure 

Inputs Outputs 
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   Decision table= fV,D,CU, ∪ (2.11)

 where C is a set of condition attributes, D is a set of decision attributes, 

qDCq VV ∪∈∪= , where Vq is the set of values of attribute Qq∈ , and 

VDCUf →∪× )(:  is a total decision function (decision rule in a decision table) 

such that qVqxf ∈),(  for every Qq∈  and Vx∈ . 

    For a given information system S, a given subset of attributes QA ⊆  

determines the approximation space ))(,( AINDUAS =  in S. For a given QA ⊆  

and UX ⊆  (a concept of X), the A-lower approximation XA  of set X in AS and 

A-upper approximation XA  of set X in AS are defined as follows: 

{ } { }XYAYXxUxXA A ⊆∈∪=⊂∈= :][: * , (2.12)

{ } { }∅≠∈∪=∅≠∩∈= XYAYXxUxXA A I:][: * (2.13)

where *A  denotes the set of all equivalence classes of IND(A). The process of 

finding a set of attributes smaller than the original one with the same classificatory 

power as the original set is called attribute reduction. A reduct is the essential part of 

an information system (subset of attributes) which can discern all objects discernible 

by the original information system. By means of the dependent properties of the 

attributes we can find a reduced set of attributes, providing that by removing the 

superfluous attributes there is no loss in classification accuracy.  

 

2.4.4 Support Vector Machines 

SVM is a powerful learning method and often employed to tackle class 

imbalance problems (Wu and Chang, 2005). SVM learns a decision boundary 

between two classes by mapping the training data (through kernel functions) onto a 
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higher dimensional space, and then finding the maximal margin hyperplane within 

that space. Finally, this hyperplane can be viewed as a classifier. Figure 2.4 illustrates 

the concept of feature mapping and two-class separation. 

 

 

 

 

 

 

 

 

Consider a classifier, which uses a hyperplane to separate two class of patterns 

based on given examples { } { }.1,1,, 1 +−∈= = i
n
iii yyxS  The hyperplane is defined by 

),( bw , where w  is a weight vector and b  a bias. Let 0w and 0b  denote the 

optimal values of the weight vector and bias. Correspondingly, the optimal hyperplane 

can be written as 

000 =+ bxwT (2.14)

To find the optimum values of w  and b , it requires to solve the following 

optimization problem. 

ξ,,
min

bw
 ∑

=

+
n

i
i

T Cww
12

1 ξ  

Subject to 
0

1))((
≥

−≥+

i

ii
T

i bxwy
ξ

ξφ
                 (2.15)

where ξ  is the slack variables, C is the user-specified penalty parameter of the error 

term ( 0>C ), and φ  is the kernel function. 

In this research, we used the LIBSVM (version 2.8), which is an integrated tool 

Kernel 
function 

Support vector

Input space Feature space 

Hyperplane 

Margin 

Fig. 2.4 The operations of Support Vector Machine  

Pos example
Neg example
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for support vector classification and regression, and is available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm. We used the standard parameters of the 

algorithm. All optimal parameters can be automatically generated in this program and 

the default kernel function is Radial Basis Function (RBF).  

 

2.5  Feature Selection From Imbalanced Data 

Reduction of pattern dimensionality via feature selection belongs to the most 

fundamental steps in data processing (Swiniarski and Hargis, 2001). A large feature 

set often contains redundant and irrelevant information, and can actually degrade the 

performance of the classifier (Oyeleye and Lehtihet, 1998). The main purpose of 

feature selection is to remove irrelevant or redundant attributes and improve the 

performance of classification. 

Feature selection is often applied in pattern classification, data mining, as well as 

in machine learning. Among many feature selection methods, GA, rough sets and 

neural networks have attracted much attention, and have become popular techniques 

for feature selection. However, when these methods are applied to imbalanced data, it 

usually suffers from some drawbacks, such as ignoring the minority examples and 

viewing them as outliers. It was reported (Batista et al., 2004; Chawla et al., 2004) 

that these methods seeking an accurate performance over a full range of instances are 

not suitable to deal with imbalanced learning tasks since they tend to classify all data 

into the majority class, which is usually the less important class. This is because 

typical classifiers that are designed to optimize overall accuracy without taking into 

account the relative distribution of each class. 

Rough sets emerged as a major mathematical tool for discovering knowledge and 

feature selection (Walczak, B. and D. L. Massart, 1999). One of the fundamental 
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principles of a rough set-based learning system is discovering redundancies and 

dependencies between the given features of a problem to be classified. A reduct 

generated by the rough sets approach is defined as the minimal subset of attributes 

that enables the same classification of objects with full attributes. When applying 

rough sets in practice, its computational complexity increases dramatically with the 

growth of the data. In addition, the deterministic mechanism for the description of 

error is very simple in rough sets. Therefore, the rules generated by rough sets are 

often unstable and have a low classification accuracy (Li and Wang, 2004).  

Feature selection with neural networks can be thought of as a special case of 

architectural pruning (Reed, 1993), where the input features are pruned rather than the 

hidden neurons. Su et al. (2002) attempted to determine the important input nodes of a 

neural network based on the sum of absolute multiplication values of the weights 

between the layers. They (Su et al., 2002) proposed an algorithm to remove 

unimportant input nodes from a trained back-propagation neural network (BPNN). 

The essence of this method is to compare the multiplication values of the weights 

between the input-hidden layer and the hidden-output layer. Only the multiplication 

weights with large absolute values are kept and the rests are removed. The equation 

for calculating the sum of absolute multiplication values is defined as follows. 

∑ ×=
j

jkiji VWNode (2.14)

where ijW  is the weight between the ith input node and the jth hidden node, and jkV  

is the weight between the jth hidden node and the kth output node. Then, we must set 

a threshold to remove the irrelevant input nodes. The threshold should be determined 

by the user to obtain a suitable number of input nodes. Unfortunately, the training of 

neural networks when using imbalanced data is very slow (Bruzzone and Serpico, 

1997). 
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Another common understanding is that some learning algorithms have built-in 

feature selection, for example, ID3 (Quinlan, 1986), FRINGE and C4.5 (Quinlan, 

1993). Almuallim and Dietterich (1994) suggested that one should not rely on ID3 or 

FRINGE to filter out irrelevant features. There are some cases in which ID3 and 

FRINGE miss extremely simple hypotheses. In addition, the negative examples of 

imbalanced data might be removed in the pruning phase of the tree construction.  

In other words, when faced with imbalanced data, the performance of feature 

selection tools drops significantly (Akbani et al., 2004). Pendharkar et al. (1999) 

mentioned that the ratio of the number of objects belonging to positive and negative 

examples impacts upon effective learning. If the data set contains many positive 

examples and very few negative examples, there is a bias in the discriminant function 

that the technique will identify, and it therefore follows that this bias results in a lower 

reliability of the technique. An and Wang (2001) suggested to balance the data by 

sampling. However, this is sometimes not feasible due to there being so few negative 

examples.  
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CHAPTER 3 

PROPOSED GRANULAR COMPUTING MODELS 

 

In this chapter, we propose two kinds of GrC model, “Knowledge Acquisition via 

Information Granulation” (KAIG) model and IG based method, to tackle class 

imbalance problems. The KAIG model is suitable for dealing with discrete data and 

the IG based method is designed for continuous data. These two approaches can 

improve classification performance by controlling the reduction of unnecessary 

details. 

In both of proposed models, Fuzzy ART (Adaptive resonance theory) neural 

network is utilized to construct IGs. The two indexes, the homogeneity index 

(H-index) and the undistinguishable ratio (U-ratio), are developed to determine a 

suitable level of granularity. In KAIG model, the concept of “sub-attributes” is 

presented to describe IGs and tackle the overlapping among granules. In IG based 

method, we propose three strategies which utilize different data characteristics and 

their combinations to represent IGs.  

 

3.1 Construction of Information Granules 

In this study, the Fuzzy ART is utilized to construct IGs. ART is a well 

established neural network theory developed by Carpenter et al. (1991). The ART 

network is also a famous method of clustering. Instead of clustering by a given 

number of clusters, it assigns patterns onto the same cluster by comparing their 

similarity. The detailed algorithm of Fuzzy ART can be found in 

(Serrano-Gotarredona et al., 1998).  
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The major difference between ART and other unsupervised neural networks is 

the so called vigilance parameter ( ρ ) which is viewed as a granularity and can be 

adjusted by the users to control the degree of similarity of patterns placed on the same 

cluster. In an ART, the degree of similarity between a new pattern and a stored pattern 

is defined. This similarity, compared to ρ , is a measure to ensure whether the new 

pattern is properly classified or not. The other unsupervised learning neural networks 

which do not implement vigilance may cause a significantly different input pattern to 

be forced into an inappropriate cluster. In contrast to some other cluster methods, an 

ART network will not automatically force all input vectors onto a cluster if they are 

not sufficiently similar. This is the reason why the ART network is employed in this 

study to construct the IGs. 

There are three similar ART architectures, namely ART 1, ART 2, and Fuzzy 

ART. ART 1 is designed for binary-valued input patterns, and ART 2 is for 

continuous-valued patterns. Fuzzy ART is the most recent adaptive resonance 

framework that provides a unified architecture for both binary and continuous valued 

inputs. There are several factors that motivated us to use Fuzzy ART, and they are as 

follows (Burke and Kamal, 1995):  

(1)Unlike ART1, Fuzzy ART does not require a completely binary representation of 

the parts to be grouped. In addition, Fuzzy ART possesses the same desirable 

stability properties as ART1 and a simpler architecture than that of ART2. 

(2)ART2 can experience difficulty in achieving good categorizations if the input 

patterns are not all normalized to a constant length. However, such normalization 

can possibly destroy valuable information. Besides, there is a serious dependency 

of classification results in the case of ART1 on the sequence of input presentation.  

As a result, the Fuzzy ART network is employed to construct IGs in this study.  
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3.2 Selection of Granularity  

Selecting an appropriate size of IGs is a difficult task. Enough background 

knowledge is required to determine how similar objects should be gathered together to 

form one IG. An objective index is needed to select the appropriate similarity of 

granules. We propose H-index and U-ratio to solve this problem.  

The basic assumption of the H-index is that the classes of objects should be equal 

if their values of attributes are sufficiently similar. This implies that we always make 

the same decision under a similar condition. Because we form granules by the 

similarity of objects, the objects in the same granule should have the same class. The 

H-index is used to measure the consistency of the class of the objects in one IG. The 

H-index is defined as 

m
n
i

indexH m
∑

=−
(3.1)

where n  represents the number of all objects in one granule, m is the number of all 

IGs and i  is the amount of objects possessing the majority class. 

For example, Table 3.1 shows one IG involving five objects (n=5). There are 4 

condition attributes (namely A, B, C and D) in the iris data. The decision attribute 

(class) of the first 4 objects is “versicolor”, but the last one has a different decision 

attribute, “setosa”. In this example, “versicolor” is the majority class and 4=i .  The 

H-index of this IG is 
5
4 . 

 

 

 

 

 

 

 

Condition attributes 
A B C D 

Decision attribute 
(Classes) 

5.8 2.7 4.1 1 versicolor 
6.2 2.2 4.5 1.5 versicolor 
5.6 2.5 3.9 1.1 versicolor 
5.9 3.2 4.8 1.8 versicolor 
5 3.3 1.4 0.2 setosa 

Table 3.1 The information granule- iris example 
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Another index for selecting similarity is the U-ratio. In the preceding example, 

“versicolor” is the majority of the classes. Therefore, it is assigned to be the class of 

this IG. If there is another granule described as Table 3.2, and we are unable to 

distinguish the class of the IG, then we call that granule an “undistinguishable 

granule.” The U-ratio is defined as 

m
uratioU =− (3.2)

where u  represents the number of undistinguishable granules  

and m  represents the quantity of all granules. 

This index is to calculate the proportion of undistinguishable granules to all 

granules. If there are ten granules and two of them are undistinguishable granules, 

which means u  is equal to 2 and m  is equal to 10, then the U-ratio is equal to 0.2. 

By using these two indexes, we also need a “granularity selection criteria” to 

determine the similarity of the IGs. In the present study, the larger the H-index the 

better it is, because it means that more objects in one IG possess the same class. There 

is no need to set up the index to a fixed value. The size of the index depends on the 

domain knowledge or how large an error you can tolerate. On the other hand, the 

U-ratio is the opposite. As far as the U-ratio is concerned, the smaller the better. It’s 

difficult to process an undistinguishable granule, so we need to view them carefully. 

However, we try to avoid this situation by setting the U-ratio as small as possible. In 

other words, if we select a specific similarity where the H-index is larger and the 

Condition attributes 
A B C D 

Decision attribute

5.4 2.2 3.9 1.2 versicolor 
6.8 3.4 5.6 2.4 virginica 

Table 3.2 The undistinguishable information granule 
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U-ratio is smaller, then this similarity is the best solution.     

 

3.3 Representation of Information Granules  

3.3.1 The Concept of “Sub-attributes” 

In KAIG model, we propose the concept of “sub-attributes” to represent IGs. 

First, we utilize hyperboxes to represent IGs (Pedrycz and Bargiela, 2002). For 

example, a hyperbox ][b  defined in nR  is fully described by its lower )( −b  and 

upper corner )( +b , where −b  and +b  are vectors in nR . An important and 

frequently used universal set is the set of all points in the n-dimensional space. This 

set is denoted as nR . Using −b  and +b  we can express the hyperbox as 

],[][ +−= bbb . Consider two IGs (hyperboxes) ][aA =  and ][bB =  defined in 2R . 

More explicitly, we follow a full notation ],[][ +−= aaa  and ],[][ +−= bbb . These 

two granules are described as Table 3.3. 

 

Table 3.3 Two IGs represented by hyperbox form 
               

Attributes 
IGs 

1X  2X  

A { +−
11 ,aa } { +−

22 ,aa } 
B { +−

11 ,bb } { +−
22 ,bb } 

 

As Figure 3.1 shows, there are overlaps between two granules A and B. This 

makes it difficult to handle by knowledge acquisition tools. This is because most of 

knowledge acquisition algorithms are not designed to deal with IGs, especially when 

overlapping occurs between granules. Unfortunately, the overlapping situation always 

happens in real world. In this study, we introduce the concept of “sub-attributes” to 

tackle the problem of overlaps between granules.  

We can explain this idea of “sub-attributes” by using Figure 3.1. In axis X1 
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(attribute 1), the overlapping part of two granules are separated into overlapping part 

( ],[ 11
+− ab ) and non-overlapping parts ( ],[ 11

−− ba  & ],[ 11
++ ba ). These sub-intervals, 

],[ 11
−− ba , ],[ 11

+− ab  & ],[ 11
++ ba , are named as X11, X12, X13 which are so called 

“sub-attributes.” The binary variable which is employed to be the values of 

sub-attributes represents whether an IG contains these sub-intervals or not. The results 

of rewriting the IGs by using sub-attributes can be found in Table 3.4. We divide the 

original attribute 1X  into sub-attributes 11X , 12X , 13X ; and attribute 2X  into 

21X , 22X , 23X . Then, these two granules are rewritten by replacing the original 

attributes with sub-attributes. By introducing the concept of sub-attributes, we can 

easily extract knowledge from the granules even if the overlapping situation always 

exists. 

              

 

 

 

 

 

 

Figure 3.1 The overlap between IGs 

 

Table 3.4 The IGs with sub-attributes 

Original attributes 1X  2X  

11X  12X  13X  21X  22X  23X      Sub-attributes 
 

IGs ],[ 11
−− ba  ],[ 11

+− ab ],[ 11
++ ba ],[ 22

−− ba ],[ 22
+− ab  ],[ 22

++ ba

A 1 1 0 1 1 0 
B 0 1 1 0 1 1 

 

B 
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−
1b−
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1a +
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2X

+
2b  

+
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−
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−
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The concept of “sub-attributes” can maintain the complete characteristics of data. 

The IGs with addition of sub-attributes are suitable for all knowledge acquisition 

algorithms. It is not required to adjust the computational architecture of these 

algorithms. However, too many sub-attributes may be generated in the situation of 

natural overlapping which the values of the condition attributes are continuous and 

diverse. Therefore, as we often do in data preparation phase of data mining, we 

suggest descretizing data before implementing KAIG model to control the number of 

sub-attributes. 

 

3.3.2 Using Data Characteristics to represent IGs 

    As mentioned above, too many sub-attributes will increase computational 

complexity. In order to avoid this situation, we propose another idea which uses data 

characteristics to describe IGs. Unlike “sub-attributes” which use intervals to 

represent IG, we utilize different data points such as mean, median, maximum, 

minimum, and quartiles to describe IGs in IG based method. Three IG representation 

strategies are provided. In strategy 1, we utilize single value, mean and median, to 

describe IGs. The strategy 2 uses double-value combinations of data characteristics, 

Q1+Q3 and Maximum+Minimum. In strategy 3, we employ triple-values 

combinations, Q1+Median+Q3 and Maximum+Mean+Minimum. 

 

3.4 Proposed Methodologies 

This section summarizes the procedure of two proposed GrC models. First, we 

address how the IGs are formed from numerical data. Secondly, H-index and U-ratio 

are introduced to determine the level of granularity which can be used to construct 

IGs in Fuzzy ART. Then, we try to describe IGs and extract knowledge from them.  

3.4.1 The KAIG Model 
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Figure 3.2 shows the proposed KAIG model. We summarized KAIG model by 

the following steps: 

Step 1: Information Granulation 

In step 1, we use Fuzzy ART to construct IGs. But, first thing we need to 

determine is to select the suitable level of granularity (vigilance). The IGs are formed 

by the selected granularity. The initial value of granularity is set 1 and then decrease 

gradually until find one satisfying criteria of H-index and U-ratio. The found suitable 

granularity is employed to construct IGs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 2: Information Granules Representation 

IGs are represented in a suitable form that can be handled by knowledge 

acquisition tools. As mentioned in section 3.2.3, these formed IGs are described in 

hyperboxes. Then, the sub-attributes are applied in these IGs to solve the problem and 

finally we can extract knowledge from these IGs.    

Step 3: Knowledge Acquisition 

After describing IGs appropriately and tackling the overlapping situation, we can 

Knowledge rules 

Figure 3.2 Knowledge Acquisition via Information Granulation (KAIG) model 

Numerical data 

Select the level of granularity

Information granules representation (Sub-attributes)

Knowledge acquisition

Check granularity 
by using H-index 
& U-ratio 

Not satisfied

SatisfiedInformation granulation
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use knowledge acquisition tools to extract knowledge rules from the granules. In this 

study, we will compare three famous data mining algorithms, C4.5, Rough sets and 

back-propagation neural network, to evaluate their effectiveness in KAIG model. 

 

3.4.2 The IG based Method 

In KAIG model, we use “sub-attributes” to describe IGs and solve the 

overlapping situation effectively. However, when dealing with continuous data, KAIG 

may generate so many sub-attributes that increase the computational complexity of 

knowledge acquisition algorithms. The same situation may occur while the 

discretization algorithms dividing the continuous attribute’s value into too many 

discrete intervals. Therefore, we propose the IG based method in this section. 

In this method, the “information granulation” process is the same with KAIG 

model. Only one difference is the description of IGs. This method utilizes data 

characteristics to denote IGs without using sub-attributes. This IG based method 

follows the three steps described as bellow. We adopt three strategies which are listed 

in Step 2 to describe IGs. They are different combinations of data characteristics 

(mean, median, quartiles, maximum & minimum), single-value, double-value, and 

triple-value strategies. Then we can build a classifier from these data characteristics.  

Step 1: Information Granulation 

Step 2: IG Representation: Data Characteristics 

Strategy 1- Single value: Mean, Median. 

Strategy 2-Double values: Max+Min, Q1+Q3 

Strategy 3-Triple values: Max+Mean+Min, Q1+Median+Q3 

Step 3: Knowledge Acquisition 

CHAPTER 4 
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NUMERICAL EXAMPLES 
 

In this chapter, several data sets from UCI data bank are employed to illustrate 

our models and evaluate the effectiveness. Besides, some imbalanced data sets are 

provided to demonstrate the superiority of our methods in solving class imbalance 

class problem by using the indexes, Overall Accuracy, G-mean and Receiver 

Operation Characteristic (ROC) curve. 

 

4.1 Performance Measures 

Before implementing, we should discuss the effectiveness of performance index 

in class imbalance situation. The easiest way to evaluate the performance of classifiers 

is based on the confusion matrix described as Table 4.1. TP, FP, TN and FN are 

defined as bellows. 

TP: the number of True Positive examples 

FP: the number of False Positive examples 

TN: the number of True Negative examples 

FN: the number of False Negative examples 

Traditionally, the performance of a classifier is evaluated by considering the overall 

accuracy against test cases. However, when learning from imbalanced data sets, the 

measure is often not sufficient. For example, it is straightforward to create a classifier 

having an accuracy of 95% in a domain where the majority class proportion 

corresponds to 95% of the examples, by simply forecasting every new example as 

belonging to the majority class. Another fact is the metric considers different 

classification errors to be equally important. But as we know, a highly imbalanced 

class problem does not have equal error costs that favor the minority class, which is 

often the class of primary interest. Therefore, following the available studies (Batista 
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et al., 2004; Estabrooks et al., 2004; Guo and Viktor, 2004; Provost and Fawcett, 2001; 

Radivojac et al., 2004), we use Overall Accuracy (including Positive Accuracy and 

Negative Accuracy), G-Mean and Receiver Operation Characteristic (ROC) curve to 

evaluate our KAIG model. The G-mean is defined as 

Accuracy Negative Accuracy Positive × (4.1)

where Positive Accuracy and Negative Accuracy are calculated as TP/(FN+TP) and 

TN/(TN+FP). This measure is to maximize the accuracy on each of two classes while 

keeping these accuracies balanced. For instance, a high Positive Accuracy by a low 

Negative Accuracy will result in poor G-mean.  

 
Table 4.1 Confusion matrix for binary class problem 

 Predicted Positive Predicted Negative 
Actual Positive TP (the number of 

True Positive) 
FN (the number of 
False Negative) 

Actual Negative FP (the number of 
False Positive) 

TN (the number of 
True Negative) 

 

Another index is ROC curve, which is a technique for summarizing a classifier’s 

performance over a range by considering the tradeoffs between TP rate and FP rate. 

The TP rate and FP rate are calculated as TP/( FN+TP) and FP/( FP +TN). We use 

the term ROC space to denote the coordinate system used for visualizing classifier’s 

performance. In ROC space, TP rate is represented on the Y axis and FP rate is 

represented on the X axis. Each classifier is represented by the point in ROC space 

corresponding to its (FP rate, TP rate) pair. A ROC analysis also allows the 

performance of multiple classification functions to be visualized and compared 

simultaneously. The area under ROC curve (AUC) represents the expected 

performance as a single scalar. The AUC has a known statistical meaning: it equals to 

the Wilconxon test of ranks, and is equivalent to several other statistical measures for 
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evaluating classification and rank models (Hand, 1997).  

 

4.2  Implementation of KAIG Model 

4.2.1 Illustrative Example 

We apply the KAIG model to the well-known data set, iris. It is comprised of 150 

examples. We rearrange it randomly and divide it into two subsets, training set (100 

objects) and test set (50 examples). We will illustrate the process of KAIG step by 

step. 

Step 1: Information Granulation 

We input the 100 training examples to the Fuzzy ART to form IGs. We set the 

parameters of Fuzzy ART 01.0=α  and 1=β . The number of IGs varies with the 

different level of similarity (vigilance). In this study, similarity value varies gradually 

from 1 to 0. The similarity 1 represents the numerical data. Next, we need to 

determine which similarity is suitable by the H-index and the U-ratio. The H-index 

is ’the larger the better’ and the U-ratio is ‘the smaller the better’. In Figure 4.1, we 

can find more than one similarity that satisfies this criterion. These similarities are 

0.95-0.8 and 0.7-0.55, where H-index = 1 and U-ratio = 0. Their performances of 

classification, as described in Figure 4.2, are equal to each other. All classification 

accuracies are equal to 100%.  

When the performances are equally good, the amount of granules becomes 

another criterion for selecting the similarity. In this study, we use IGs instead of 

numerical data to acquire knowledge and make decisions. If the smaller similarity is 

selected, the lesser the amount of granules will be dealt with. This smaller amount of 

granules may save some training time during the building of the model. Therefore, we 

select a similarity of 0.55 and the amount of granules is 3.  
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Step 2: Representing the IGs  

We describe these 3 granules in hyperboxes form and they are shown in Table 

4.2. iL  represents the lower bound of attribute values, and iU  represents the upper 

limit of attribute values in the i-th granule. Take granule #1 for example, it contains 33 

objects. In condition attribute A, the minimum is 4.4 and the maximum is 5.7. We 

utilize the low limit and upper limit to describe all examples in the same one granule. 

Granule 1 possesses the same class, setosa. Granule 2 contains 33 examples which are 

of the same class, versicolor. Granule 3 is comprised of 34 examples which have the 

Figure 4.2 The performance of classification (Iris data)
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Figure 4.1 The H-index and U-ratio of the iris data
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same class, virginica. 

 

      Table 4.2 The IGs with the similarity of 0.55. 

Condition attribute Classes (No. of examples) No. of granules 
A B C D setosa versicolor virginica

L1 4.4 2.3 1 0.1 
#1 

U1 5.7 4.2 1.9 0.6 
33 0 0 

L2 5 2.2 3 1 
#2 

U2 6.8 3.4 5.1 1.8 
0 33 0 

L3 5.6 2.2 4.8 1.4 
#3 

U3 7.9 3.8 6.9 2.5 
0 0 34 

 

Next, the original attributes are divided into several sub-attributes. Table 4.3 

shows the IGs and their sub-attributes. The four original condition attributes (A, B, C, 

D) are divided into 17 sub-attributes (A1, …, D4). These 17 sub-attributes are used as 

the inputs for the operation of knowledge acquisition algorithms.  

 

Step 3: Knowledge Acquisition 

The rough sets method can be utilized to remove superfluous sub-attributes and 

to acquire knowledge. The theory of rough sets emerged as a major mathematical tool 

for discovering knowledge. A fundamental principle of a rough set-based learning 

system is to discover redundancies and dependencies between the given features of a 

problem to be classified (Mitra et al., 2002). In the rough set method, a reduct is the 

minimal subset of attributes that enable the same classification of objects with full 

attributes. All results of rough sets are operated by Rosseta software. Readers can find 

additional information on the theory of rough sets in the references (Hu et al., 2002; 

Walczak and Massart, 1999). The knowledge rules extracted by rough set method are 

listed as follows: 

Rule 1: IF B4=1 THEN Class= setosa; 
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Rule 2: IF D2=1 THEN Class= versicolor; 

Rule 3: IF B4=0 AND D2=0 THEN Class= virginica; 

These knowledge rules can be translated as follows: 

    Rule 1: ATTRIBUTE B ]2.4,8.3(∈  THEN Class= setosa; 
    Rule 2: ATTRIBUTE D ]4.1,0.1(∈  THEN Class= versicolor; 
    Rule 3: ATTRIBUTE B ]2.4,8.3(∉  AND ATTRIBUTE D ]4.1,0.1(∉   

THEN Class= virginica; 

These knowledge rules are applied to test the remaining 50 examples. Table 4.4 is the 

minimal reduct of the testing granules. The sub-attributes of testing granules, B4 and 

D2, are put into these extracted knowledge rules. The predicted decisions are fully 

equal to the true ones. Therefore, the classification accuracy is 100%. 

In this illustrative example, we reduce some unnecessary detailed information by 

acquiring knowledge from IGs, but the classification accuracy remains high. Also, the 

knowledge rules for decision-making are fewer than those extracted from numerical 

data, which may save the response time of a decision. Table 4.5 shows the comparison 

of classification performances.  
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Table 4.3 The IGs with sub-attributes 

Original 
attributes A B C D 

A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 
Sub-attributes 4.4-

5.0
5- 
5.6 

5.6- 
5.7 

5.7-
6.8

6.8-
7.9

2.2-
2.3 

2.3-
3.4

3.4-
3.8

3.8-
4.2 

1- 
1.9

3- 
4.8

4.8-
5.1

5.1-
6.9

0.1-
0.6

1- 
1.4

1.4-
1.8

1.8-
2.5 

Classes 

Granule No.1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 setosa 
Granule No.2 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 versicolor 
Granule No.3 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 virginica 

 

Table 4.4 The minimal reduct of IGs for testing 

B4 D2 Classes 
IGs No. 3.8-4.2 1-1.4 Predicted True 

#1 1 0 setosa setosa 
#2 0 1 versicolor versicolor 
#3 0 0 virginica virginica 
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Table 4.5 The comparison of processing with information granules and numerical data 

Methods Rough Sets KAIG 

Data type Numerical data 
(Similarity=1.0) 

Information granules 
(Similarity=0.55) 

Classification Accuracy 100% 98% 100% 100% 
No. of rules 16 3 

 

Table 4.6 The background of five data sets 

Data set Title No. of instances No of attributes Value of attributes Class distribution 

WDBC Wisconsin Diagnostic 
Breast Cancer 

683 
(699 minus 16 missing data)

9 (remove first 
attribute-“ID”) All discrete Benign (65.5%) 

Malignant (34.5%) 

CE Car Evaluation 
Database 1728 6 All discrete 

Unacceptable (70.023 %) 
Acceptable (22.222 %) 
Good (3.993 %) 
Very good (3.762 %) 

TAE Teaching Assistant 
Evaluation 151 5 1-continuous 

4-discrete 

Low (32.45%) 
Medium (33.11%) 
High (34.44%) 

BUPA BUPA liver disorders 345 6 All continuous Class 1 (42.03%) 
Class 2 (57.97%) 

WINE Wine recognition data 178 12 All continuous 
Class 1 (33.15%) 
Class 2 (39.89%) 
Class 3 (26.96%) 

PIMA Pima Indians Diabetes 768 8 All continuous Healthy (65%) 
Diabetic (35%) 
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4.2.2 Evaluation of KAIG Model 

To evaluate the effectiveness of the KAIG model, five data sets which come 

from databank of UCI machine learning group (http://www.ics.uci.edu/~mlearn/) are 

considered in this section. Table 4.6 provides brief explanation about the data 

background, including data size, number of features, data characteristics 

(binary/continuous), and defined classes. Before implementing, we divide all data sets 

into training set and testing set with the proportion of 3:1.  

With the help of the H-index and the U-ratio shown in Figure 4.3, we can find 

the suitable similarity of these data sets. According to these determined similarities, 

numerical data is transformed into IGs by Fuzzy ART. Then, three famous knowledge 

acquisition algorithms, neural network (BP), decision tree (C 4.5 algorithm) and the 

rough set method, are utilized. Professional II PLUS is employed to build neural 

network in this study. The optimal neural network (BP) parameter settings, structure 

and learning iterations shown in Table 4.7 are obtained by trial and error. See5 (C4.5 

commercial version) software was utilized to construct a decision tree in this study. 

The inputs and outputs of decision tree and the rough set method are condition 

attributes and defined classes respectively.  
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Figure 4.3 The H-indexes and U-ratios of five data sets 

 

The comparisons of implementation results are provided in Table 4.8. Except 

WDBC, KAIG model has better classification performances in the other five data sets 

than those of traditional methods which use numerical data. In average, the 

classification accuracy increases 2.33% and the number of rules is reduced by 48.67% 

compared with traditional methods. In KAIG model, we can use different kind of 

knowledge acquisition tools and the results will be different. The classification 
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accuracy averagely increases 0.86%, 2.238%, 1.182% by applying Rough sets, C4.5 

and BP, respectively. In addition, C4.5 has fewer number of knowledge rules (12 rules 

in average) than those of Rough sets (84.8 rules in average). Therefore, C4.5 is more 

suitable to be employed in KAIG model than the other two methods.    

 

Table 4.7 The setting of parameters in neural network (BP) 

 

4.2.3 Implementation in Imbalanced Data 

This section will apply KAIG method to overcome the class imbalance problems. 

C4.5 and SVM are usually utilized as benchmarks or basic learners in related works 

(Batista et al., 2004; Guo and Viktor, 2004; Huang et al., 2004; Jo and Japkowicz, 

2004; Provost and Fawcett, 2001; Radivojac et al., 2004). Therefore, the experimental 

results of KAIG will be compared with these two methods. A brief introduction about 

SVM can be found in (Wu and Chang, 2005; Cristianini and Shawe-Taylor, 2000).  

The imbalance class problems often happen in medical diagnosis data. Therefore, 

pima-indians-diabetes whose information shows in Table 4.6 is employed to verify 

effectiveness of our model. Results for this data set, shown in Table 4.9, were 

averaged over 4-fold cross validation (CV) experiments, which the data set was 

Data Set Data type Structure Learning rate Momentum Iterations
Numerical 9-11-1 0.2 0.9 20000 

WDBC 
Granule(0.85) 90-160-1 0.2 0.9 20000 

Numerical 6-9-1 0.2 0.9 10000 
CE 

Granule(0.95) 21-35-1 0.3 0.9 20000 
Numerical 5-6-1 0.2 0.9 20000 

TAE 
Granule(0.85) 69-120-1 0.2 0.9 20000 

Numerical 6-5-1 0.3 0.8 30000 
BUPA 

Granule(0.85) 26-31-1 0.2 0.9 15000 
Numerical 13-5-1 0.3 0.7 10000 

WINE 
Granule(0.8) 35-7-1 0.2 0.8 15000 
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partitioned into 4 equal sized sets and each set was then in turn used as the test set. 

Besides, in order to test the robustness of KAIG model, we reduce the proportion of 

minority class from 35% to 10% and 5% by removing the number of minor examples 

randomly. 

Table 4.8 The comparison of classification performance 

 

In the experiments of 35%, 10% and 5%, the results indicate that KAIG model 

              Data type 
 
Methods 

Numerical data (Similarity =1.0)
Traditional methods 

Granules (Similarity =0.85) 
KAIG 

Methods Train 
(%) 

Test 
(%) 

No. of 
rules 

Train 
(%) 

Test 
(%) 

No. of 
rules 

Rough sets 100 92.23 212 100 89.47 58 
Decision tree  

(C 4.5) 97.5 97.06 10 93.4 94.74 4 WDBC 

Neural Network 
(BP) 96.66 100 - 100 89.64 - 

Similarity =1.0 Similarity =0.95 
Phase Train 

(%) 
Test 
(%) 

No. of 
rules 

Train 
(%) 

Test 
(%) 

No. of 
rules 

Rough sets 100 89.58 385 100 88.96 207 
Decision tree  

(C 4.5) 97.4 92.8 75 98.4 95.58 36 
CE 

Neural Network 
(BP) 91.18 91.09 - 94.04 92.80 - 

Similarity =1.0 Similarity =0.9０ 
Phase Train 

(%) 
Test 
(%) 

No. of 
rules 

Train 
(%) 

Test 
(%) 

No. of 
rules 

Rough sets 84.96 84.21 90 95.95 87.37 68 
Decision tree  

(C 4.5) 60.2 47.36 13 64.9 48.39 11 
TAE 

Neural Network 
(BP) 68.23 69.05 - 78.61 84.21 - 

Similarity =1.0 Similarity =0.85 
Phase Train 

(%) 
Test 
(%) 

No. of 
rules 

Train 
(%) 

Test 
(%) 

No. of 
rules 

Rough sets 100 63.95 165 100 66 80 
Decision tree  

(C 4.5) 76.4 65.1 15 78.2 70 5 
BUPA 

Neural Network 
(BP) 69.35 64.47 - 100 66.15 - 

Similarity =1.0 Similarity =0.8 
Phase Train 

(%) 
Test 
(%) 

No. of 
rules 

Train 
(%) 

Test 
(%) 

No. of 
rules 

Rough sets 100 93.18 31 100 95.65 11 
Decision tree  

(C 4.5) 95.6 90.9 6 96.7 95.7 4 
WINE 

Neural Network 
(BP) 87.63 86.49 - 85.87 84.21 - 

Classification  
Accuracy 
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has better performance than those of SVM and C4.5 against highly imbalanced data 

sets, in term of the Negative Accuracy. In average, KAIG owns 58.08% of Negative 

Accuracy far better than 14.55% of SVM and 27.49% of C4.5. It means KAIG has 

excellent capability of detecting minor examples (diabetic patients). Meanwhile, 

KAIG doesn’t lose Overall Accuracy and Positive Accuracy. They are even better 

than those of SVM and C4.5 in experiment of 35%.  

 
 

Table 4.9 The results in different proportion of minor class examples 
Methods KAIG SVM Decision tree (C 4.5) 

Training Test Training Test Training Test  

 (35%) Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv
Overall 

Accuracy 91.97% 2.5% 78.78% 2.5% 76.82% 1.4% 75.52% 2.8% 81.50% 4.28% 74.22% 3.1% 

Pos. Acc. 93.07% 2.3% 84.00% 4.5% 93.07% 0.5% 92.60% 2.7% 87.94% 7.50% 83.20% 2.8% 

Neg. Acc. 85.24% 2.1% 70.52% 8.0% 46.52% 4.7% 43.66% 3.3% 71.40% 8.73% 57.46% 8.3% 

G-mean 90.67%2.59% 76.46% 3.85% 65.73% 3.18% 63.56% 3.29% 78.95% 3.24% 68.99% 4.80%

Training Test Training Test Training Test 
(10%) 

Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv
Overall 

Accuracy 95.01% 1.1% 87.05% 2.3% 89.93% 0% 89.93% 0% 91.55% 1.7% 88.49% 1.6% 

Pos. Acc. 99.33% 0.8% 92.20% 1.2% 100% 0% 100% 0% 98.73% 1.9% 96.80% 3.1% 

Neg. Acc. 52.98% 11.9% 41.08% 20.5% 0% 0% 0% 0% 27.38% 20.4% 14.29% 24.0% 

G-mean 72.16%7.91% 59.73% 17.0% 0% 0% 0% 0% 44.43% 30.6% 23.63% 32.1%

Training Test Training Test Training Test 
(5%) 

Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv
Overall 

Accuracy 97.48% 0.7% 94.89% 1.6% 94.94% 0% 94.70% 0% 96.52% 0.8% 93.56% 1.0% 

Pos. Acc. 98.54% 0.9% 98.60% 1.7% 100% 0% 100% 0% 99.47% 0.7% 98.20% 0.8% 

Neg. Acc. 72.50% 13.2% 28.57% 26.1% 0% 0% 0% 0% 41.25% 14.9% 10.72% 13.7% 

G-mean 84%7.69% 44% 33.3% 0% 0% 0% 0% 63% 12.7% 23% 26.9%
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Figure 4.4 ROC curves of pima-indians-diabetes data 

 
Both G-mean and ROC curves shown in Figure 4.4 also demonstrate the 

superiority of our method. In extreme skewed data (10% and 5%), G-mean is more 
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sensitive than Overall Accuracy. When Negative Accuracy decreases dramatically, 

G-mean can indicate these changes but Overall Accuracy can not. ROC curves 

provide visual results which can easily compare these three methods and find KAIG 

has best performances (AUC) in different experiments.  

 
4.2.4 Discussion and Concluding Remarks 

A novel method called KAIG model is presented to solve class imbalance 

problems. In this model, we propose two indexes to determine the level of granularity 

and the “sub-attributes” concept to describe IGs. The experimental results show that 

the KAIG model can improve classification performance by reducing unnecessary 

details of information. We also demonstrate that the proposed method has excellent 

ability of identifying the minority examples in imbalanced learning tasks. In medical 

diagnosis data, our method can dramatically increase Negative Accuracy without 

losing Positive Accuracy and Overall Accuracy. ROC curves and G-mean also 

illustrate the superiority of KAIG model compared with C4.5 and SVM.   

    Construction of IGs is one of many interesting and important issues in granular 

computing. IGs are aimed at building efficient and user-centered views of the external 

world and supporting/facilitating our perception of the surrounding physical and 

virtual world. In our research, we construct IGs by objects’ “similarity”, the parameter 

(vigilance) of Fuzzy ART. It can define the “indistinghishable, similar, coherency and 

alike” relations of objects. However, other relations whose definitions are not specific/ 

concrete, such as “functional adjacency”, also can employ to construct IGs. But, it is 

hard to define these “not specific” relations. Therefore, more efforts of studying 

different relations are necessary in the future researches.  
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4.3  Implementation of IG based Method 
4.3.1 Illustrative Example 
 

    In this section, the Haberman’s survial data is used to be an illustrative example 

of IG based method. This data set contains 306 objects. 225 of them are training 

examples and the rests are for testing. The operation of IG based method will be 

illustrated step by step. 

Step 1: Information Granulation 

The information granulation process is the same with KAIG model. We input the 

training data to the Fuzzy ART. The parameters of Fuzzy ART, α , β , are set as 0.01, 

1, respectively. Then, we vary gradually the parameter “vigilance” (level of similarity) 

from 1 to 0. According to ’granularity selection criteria’ mentioned in section 3.2, we 

can find the suitable similarity is 0.85. The results of H-index and U-ration can be 

found in Figure 4.5. Forty-two IGs are constructed during information granulation 

process. 
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Table 4.10 An illustrative example of IG based method 
Attributes Data Characteristics IG No 

x1 x2 x3 
Clas

s  x1 x2 x3 class 
1 59 64 0 +1 Mean 59.6 64.4 0.22 +1 
1 62 66 0 +1 Median 60 64 0 +1 

1 60 64 0 +1 Q1 59 64 0 +1 

1 59 64 1 +1 Q3 61 65 0 +1 

1 57 64 0 +1 Min 57 64 0 +1 

1 61 64 0 +1 Max 62 66 1 +1 

2 43 60 0 +1 Mean 44 62.1 0.57 +1 

2 46 63 0 +1 Median 44 63 0 +1 

2 43 63 2 +1 Q1 43 61.5 0 +1 
2 46 62 0 +1 Q3 45 63 1 +1 
2 44 61 0 +1 Min 42 60 0 +1 

2 42 63 1 +1 Max 46 63 2 +1 

2 44 63 1 +1      

3 39 67 0 +1 Mean 42.4 65.4 0.55 +1 

3 41 65 0 +1 Median 43 65 0 +1 

3 45 67 1 +1 Q1 41 64 0 +1 

3 43 64 3 +1 Q3 43 67 0.5 +1 

3 45 67 0 +1 Min 39 64 0 +1 

3 42 65 0 +1 Max 45 67 3 +1 

3 43 64 2 +1      

3 41 65 0 +1      
.. .. .. .. .. .. .. .. .. .. 

34 47 63 23 -1 Mean 50 64 22.5 -1 

34 46 65 20 -1 Median 50 64 23 -1 

34 54 65 23 -1 Q1 46.8 63 22.3 -1 

34 53 63 24 -1 Q3 53.3 65 23.3 -1 

     Min 46 63 20 -1 

     Max 54 65 24 -1 

36 66 61 13 -1 Mean 62.7 59.7 14.3 -1 

36 62 59 13 -1 Median 62 59 13 -1 

36 60 59 17 -1 Q1 61 59 13 -1 

     Q3 64 60 15 -1 

     Min 60 59 13 -1 

     Max 66 61 17 -1 

37 48 58 11 -1 Mean 47.7 58.3 11 -1 

37 51 59 13 -1 Median 48 58 11 -1 

37 44 58 9 -1 Q1 46 58 10 -1 
     Q3 49.5 58.5 12 -1 
     Min 44 58 9 -1 
     Max 51 59 13 -1 
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Step 2: IG Representation by using Data Characteristics 

    In this step, we use different data characteristics and their combination to 

represent the constructed IGs. Table 4.10 provides parts of the IGs and their data 

characteristics. We utilize Mean, Median, Q1+Q3, Min+Max, Q1+Median+Q3, and 

Min+Mean+Max, to describe those IGs. 

 

Step 3: Knowledge Acquisition 

    Those data characteristics mentioned above serve as the training data of a learner. 

Decision tree is employed as basic classifier in this method. The results of using Mean 

to represent IGs are listed as bellow. During training phase, the classification 

performance, Overall Accuracy, Positive Accuracy, and Negative Accuracy are 

85.71%, 84.62%, 87.5%, respectively. The evaluation of three IG representing 

strategies is provided in next section. 

 
Rule 1: IF x1 <= 43 THEN Class= +1 [Support: 0.833] 
Rule 2: IF x3 <= 4 THEN Class= +1 [Support: 0.808]  
Rule 3: IF x1 > 43 AND x3 > 4 THEN Class= -1 [Support: 0.689] 

 

4.3.2 Experimental Results 

In order to evaluate the effectiveness of the IG based method, three data sets 

from UCI are considered in this chapter. The brief illustration about these data sets is 

provided in Table 4.11. Before implementing, the data sets are divided into training 

and testing set (4:1). In other word, we use 80% data to build model and the rest 20% 

is employed to criticize the constructed classifier. The basic learner will be C 4.5 and 

SVM is the benchmark. 
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Table 4.11 Data background (UCI) 

Data set No of 
examples 

No of 
attributes

Value of 
attributes Class distribution 

Diabetes 759 9 Continuous Healthy: 496 (66%) 
Diabetic: 263 (34%) 

Haberman’s 
survial data 306 4 Continuous Survived (74%) 

Died (26%) 

Post-operative 
patient data 90 10 All discrete 

I (sent to Intensive Care Unit) (2%) 
S (prepared to go home) (27%)  
A (sent to general hospital floor) (71%) 

 

The experimental results of IG based method are summarized in Table 4.12. We 

have tried three strategies, single, double, triple value strategy. Considering average 

Overall Accuracy (G-mean), the performances of single, double, triple-value strategy 

are 73.93% (44.98%), 71.44% (39.04%), 70.59% (43.06%), respectively. Obviously, 

triple-value strategy has better performance than those of single and double strategy. 

From Figure 4.6 & 4.7, the combination of Q1+Median+Q3 has better Overall 

Accuracy, G-mean, and Negative Accuracy than others.  
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Table 4.13 provides the comparison of IG based method and other methods, like 

DT, SVM, under-sampling, and cluster-based sampling. It’s easy to find our method 

has excellent performance in Overall Accuracy, G-mean, and Negative Accuracy. As 

seen in Figure 4.8, the proposed IG based method can dramatically increase Negative 

Accuracy. It means IG based method has marvelous ability to classify minority 

examples without losing Overall Accuracy. Compared with cluster-based sampling, 

under-sampling, SVM, and DT, the experimental results also show our proposed 

methods have the superiority in G-mean. 

 

 

 

 

 

 

 

 

 

Table 4.12 The experimental results of IG based method  
IG based method (Data characteristics)       Methods 

Performance Mean Median Q1+Q3 Min+Max Q1+Q2+Q3Min+Mean+Max 

Overall Accuracy 71.03%70.15% 72.43% 70.45% 75.63% 72.23% 

Pos. Accu. 83.86%81.17% 87.96% 86.76% 88.97% 85.24% 

Neg. Accu. 36.79%39.31% 28.66% 28.62% 38.68% 36.79% 

G-mean 43.11% 43.26% 39.15% 38.93% 46.29% 43.66% 
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Table 4.13 The experimental results of sampling methods 
          Methods
Performance 

IG based method Cluster based sampling Under- sampling SVM DT 

Overall Accuracy 75.63% 71.99% 73.30% 74.98% 72.65%

Pos. Accu. 88.97% 85.27% 86.62% 94.25% 88.64%

Neg. Accu. 38.68% 32.43% 33.69% 19.06% 28.03%

G-mean 46.29% 40.08% 41.39% 30.50% 39.03%

 

 

 

 

 

 

 

 

 

 

 

 

 
4.3.3 Discussion and Concluding Remarks 

In this section, we proposed IG based method. The experimental results show our 

method can remarkably improve the class imbalance problems. In other words, IG 

based method can dramatically raise the ability of identifying minority examples 

without losing Overall Accuracy. Among three IG representing strategies, triple-value 

strategy (Q1+Q2+Q3) outperforms double and single-value strategies.  

    In addition, the sampling methods can improve the class imbalance situation, but 

they cannot guarantee to find the optimal solutions. This is because sampling methods 

Figure 4.8 Comparison of the proposed IG based, cluster-based sampling, 
under-sampling, DT and SVM 
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lack a systematic method to find representative examples and determine what the 

proportion of majority to minority is. The IG based method can be viewed as another 

kind of sampling method. However, the problems mentioned above can be easily 

resolved by using our approach. IG based method has a clear procedure to find 

suitable number of clusters. Once the number of clusters is determined, the 

representative examples and the proportion of majority to minority can be easily 

found. In other words, IG based method enhances sampling methods without 

sacrificing the advantages. Besides, compared with KAIG model, IG based method 

can avoid increasing the number of input variables. 
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CHAPTER 5 

APPLY KAIG MODEL TO BUILD A GRANULAR 

COMPUTING BASED SCHEDULING SYSTEM WITHIN 

DYNAMIC MANUFACTURING ENVIRONMENT 

 

5.1 Problem Description 

Scheduling must efficiently reconcile conflicts in the assignment of various 

resources and also the constraints between them, in order to keep the production 

system operating smoothly. Traditionally, researchers use analytical tools such as 

mathematical modeling technology, dynamic programming, branch-and-bound 

methods or other heuristic algorithms (Li et al. 2003) to solve static scheduling 

problem. Unfortunately, scheduling environments are usually dynamic. Therefore, 

researchers try to tackle the issues of dynamic scheduling problems by employing 

machine learning approaches (Aytug et al., 1994) such as Artificial Neural Networks 

(Li and She, 1994; Sim et al., 1994; Li et al., 2003; Min and Yih, 2003), Decision 

Trees (Su and Shiue 2003), Support Vector Machines (SVM) (Gersmann and Hammer, 

2005), Genetic Algorithm (Wang and Uzsoy, 2002) and etc.  According to related 

works, applying inductive learning techniques is a useful way in acquiring dynamic 

scheduling knowledge and can effectively solve dynamic scheduling problems.  

However, when inducing knowledge by generalizing from environment-provided 

examples, there are some issues needed to be overcome. One of them is class 

imbalance problem (Japkowicz and Stephen, 2002; Wu and Chang, 2005). This 

problem is of crucial importance since it is encountered by a large number of domains 

of great environmental, vital or commercial importance, and was shown, in certain 

cases, to cause a significant bottleneck in the performance attainable by standard 
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learning methods, which assume a balanced class distribution. For example, it is 

relatively cheap and simple to obtain training examples from a normally working 

machine in manufacturing environments. But, the sampling from a faulty machine 

will require that the machine has to be damaged in several ways to obtain defective 

examples. The creating of a balanced training set will therefore be very expensive or 

impractical.  

This chapter develops a new scheduler which integrates GrC model to conduct 

class imbalance problem in dynamic scheduling environment. We implement this new 

scheduler within a simulated Flexible Manufacturing System (FMS) environment. A 

highly imbalanced simulation data is generated to evaluate the effectiveness of this 

scheduler. Compared with traditional techniques, “cluster based sampling” and “costs 

adjusting” method, the experimental results indicated that the proposed model can 

remarkably improve the ability of detecting minority examples while reforming other 

classification performance.  

 

5.2 A Granular Computing Based Scheduler 

In this section, we’ll discuss the proposed model within a dynamic scheduling 

environment. The scheduler contains two major mechanism, information granulation 

and inductive learning mechanism. The first mechanism is to construct IGs. The 

second one is to extract scheduling knowledge from IGs. 

 

5.2.1 Information Granulation Mechanism 

The main purpose of information granulation is to transfer numerical data into 

IGs. This mechanism has three phases described as Figure 5.1. Phase 1 and 2 try to 

find a suitable level of granularity and construct IG within Fuzzy ART neural network. 

Phase 3 is to describe these constructed IGs by using sub-attributes. Then the 
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inductive learning mechanism can extract knowledge from these IGs with addition of 

sub-attributes. A more concise algorithm for the information granulation mechanism 

follows. 

Step 1: Initialize parameters of Fuzzy ART. 

Select values for vigilance parameter ( 1=ρ ), choice parameter 

( 0→α ) and learning rate ( 1=β ).  

Step 2: Construct IGs by Fuzzy ART according to the selected vigilance 

parameter (similarity). 

Step 3: Compute H-index & U-ratio.  

Step 4: Check “granularity selection criteria”.  

IF H-index & U-ratio don’t satisfy “granularity selection criteria”  

          ∆−= ρρ  AND go to step 2. 

          Where ∆  represents a constant increment defined by users   

    ELSE 

          Go to step 5.     

Step 5: Describe IGs by hyperbox form. 

Step 6: Divide original attributes into sub-attributes. 

Step 7: Re-formulate IGs with sub-attributes. 

 

5.2.2 Inductive Learning Mechanism 

In this study, we consider two learning methods, Support Vector Machine (SVM) 

and Decision Tree (C 4.5). SVM is a powerful learning method and often employed to 

tackle class imbalance problems (Wu and Chang, 2005). Decision tree is the 

benchmark of comparison and it’s also the basic learner in many literatures. 
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5.3 Comparative Techniques 

    We use two techniques, Cost Adjusting and Cluster Based Sampling, to be the 

comparative algorithms. In order to compare the classification performance of 

standard SVM and these two techniques, we use SVM to be the learner in different 

schemes.  

5.3.1 Costs Adjusting Method 

This method is to improve the classification performance by increasing the 

misclassification cost for minority class. Traditional performance indexes consider the 

misclassification costs of majority and minority instances are equal. Under the 

assumption of maximizing overall classification accuracy, the minority examples will 

be neglected. If we give penalty (cost) to minority class, the class imbalance problem 

will be improved. In this method, different misclassification costs can be incorporated 

into classes, which avoid direct artificial manipulation on the training set.  

5.3.2 Clusters Based Sampling Method 

Under-sampling might remove some important examples and over-sampling 

introduces noises into the training data set. Therefore, we consider cluster based 

sampling method in this study. The purpose of cluster based sampling method is to 

find representative examples and balance class distribution. This technique can be 

illustrated in Figure 5.2.  First, we separate majority and minority examples into two 

groups. The minority population is kept intact. Second, the majority examples are 

clustered depending on their similarity. Third, we sample representative majority 

examples from those clusters. Finally, those samples and minority examples are 

joined together and we can acquire knowledge from both class examples. In order to 

improve class imbalanced situation, we only vary the number of majority examples by 

randomly sampling and do nothing for minority examples. 
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5.4 Implementation 

In this section, a Flexible Manufacturing System (FMS) schedule decision 

problem is provided to illustrate the class imbalance problem. PROMODEL II 

software is employed to build this simulation model. And the GrC model is 

programmed with the use of the software of Matlab 6.1.  

5.4.1 Description of Simulated System  

We slightly modify the FMS simulation model built in Li’s paper (Li et al., 2003) 

by adding one processing part. Basically, we follow most assumptions like physical 

layout, simulation time and others. This modified FMS simulation model involves 5 

different types of parts, 4 numerical control (NC) machines, 4 Work-In-Process (WIP) 

buffers located in front of each machine, and 1 load/unload station. To evaluate the 

performance of the FMS, “mean machine utility” was selected to evaluate production 

performance. For simplicity and clarity, three basic dispatching rules were set for 

deciding which part should be processed when there is more than one part in the WIP 

buffer waiting to be processed. They are FCFS (First come, first served), SPT 

(Shortest processing time) and EDD (Earliest due date). Besides, four system control 

attributes were defined to describe the operating conditions of this FMS model. They 

are as follows: 

-Buffer size: capacity of WIP buffers (unit). 

-Arrival rate of parts: frequency of parts incoming to the FMS (batch/min). 

-Batch size: the volume of parts per batch (unit/batch). 

-Speed of AGV (m/min). 

There are 1500 examples collected and 4 folds CV method is applied for training 

and testing. The distribution of each class is 42.8% (FCFS), 49.6% (SPT) and 7.6% 

(EDD). All attributes’ values are continuous. In such data, the examples labeled EDD 

obviously are viewed as the minority compared with those of FCFS and SPT. 
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5.4.2 Using the Costs Adjusting Method 

    By increasing the misclassification cost of minority examples from 1, 2, 5 to 10, 

we train a SVM classifier with RBF kernel function and the parameter setting of γ  

and tolerance are 0.5, 0.00001, respectively. The experimental results are shown in 

Figure 5.3. C=1 represents equal misclassification cost of classes. From Figure 5.3, 

with the increase of cost, we can find the Negative Accuracy and G-mean rises 

remarkably while the Positive Accuracy decreasing slowly. But, the Overall Accuracy 

has slight improvement compared with the origin (C=1). Considering the tradeoff of 

these indexes, we choose the C=5 as the optimal solution in this method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.3 Using the Cluster Based Sampling Method 

    In this method, we vary the proportion of majority and minority by only 

changing the number of majority examples. Four different combinations of proportion 
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of majority to minority (1:1), (2:1), (3:1), (4:1) and (9:1) are employed to implement 

this method. In order to compete with cost adjusting method, we use the same 

inductive learning algorithm (SVM) and same test data. Figure 5.4 shows the 

experimental results of different proportions. In 2:1 proportion, the cluster based 

sampling method has best G-mean and good performances in Accuracies. In 1:1 

situation, the Negative Accuracy reaches to perfect 100%, but other indexes drops. 

This is because the data size (86+86=172) of training dataset smaller than the number 

of test dataset (375). 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Experimental Results 

The experimental results are summarized in Table 5.1 and Figure 5.5. In Overall 

Accuracy, our proposed method is slightly better than C4.5 and obviously superior to 

Costs Adjusting, Cluster-based Sampling and SVM, which can not identify any minor 

examples in this case. In average, the proposed approach remains the ability (89.53%) 

of identifying class FCFS and SPT, comparing with Costs Adjusting (73.45%), 
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Cluster based sampling (61.74%) and C4.5 (89.54%). Moreover, our method has 

better capability (91.95%) in identifying minor instances (EDD) than 82.76% of Costs 

Adjusting, 64.37% of Cluster-based sampling, and 67.81% of C4.5. Our proposed 

method also outperforms the other methods in G-mean. The same conclusion is also 

shown in Figure 5.6. It’s easy to see that AUC of the proposed method is bigger than 

those of other methods.  
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5.6 Discussion and Concluding Remarks 

Most conventional classifiers assume more or less equally balanced data classes 

and do not work well when one class is severely undersampled. Actually, when 

introducing inductive learning to real world applications, class imbalance problems 

are necessary to be considered especially in situations where the minority examples 

are crucial, such as fault monitoring or finished products inspection. In this chapter, 

we applied KAIG model to induce scheduling knowledge within an FMS. Compared 

with the experimental results of Cost Adjusting, Cluster-based Sampling, DT (C4.5) 

and SVM, our proposed model can significantly improve the ability of a scheduling 

system in detecting minority examples while increasing the overall classification 

performance. The other two comparative approaches, Costs Adjusting method and 

Cluster-based Sampling approach, can effectively raise the ability of detecting 

minority examples in highly imbalanced data. Unfortunately, both techniques might 

result in decreases of Positive and Overall Accuracy. 
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Table 5.1 The experimental results of FMS simulated data 
Method GrC model Adjusting Costs (C=5) Decision tree (C 4.5) Class-based sampling (2:1) 

Training Test Training Test Training Test Training Test Phases
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Overall 
Accuracy 90.64% 1.9%  89.16% 2.2% 74.49% 1.6% 73.00% 2.0% 92.63% 2.6% 88.35% 0.9% 61.94% 2.80% 61.87% 4.27%

Class 
1(FCFS) 91.56% 1.9%  92.71% 1.9% 82.11% 0.7% 81.25% 3.5% 92.65% 6.3% 93.96% 3.1% 62.74% 13.01% 62.29% 13.20%

Class 
2(SPT) 90.30% 4.7%  85.84% 4.5% 65.62% 3.4% 64.38% 4.3% 82.59% 8.1% 85.12% 4.8% 61.37% 5.68% 61.11% 2.76%

Class 
3(EDD) 87.60% 4.8%  91.95% 8.0% 89.24% 3.5% 82.76% 4.9% 88.96% 0.6% 67.81% 28.9% 63.45% 5.29% 64.37% 3.98%

G-mean 85.04% 2.12% 85.50% 5.33% 81.50% 1.5% 77.83% 1.5% 82.49% 6.71% 72.18% 16.7% 62.23% 3.10% 64.03% 1.74%
Note: Class 1(FCFS) and Class 2(SPT) can viewed as Positive Accuracy; Class 3(EDD) is the Negative Accuracy. 
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CHAPTER 6 

APPLY KAIG MODEL TO SHORTEN THE CELLULAR 

PHONE TEST PROCESS 

6.1 Problem Description 

Personal wireless communication services have been available to the general 

public for only about 10 years, since the breakthrough of cellular phones 

(Hannikainen et al., 2002). At the same time the technology employed by mobile 

telecommunications is evolving rapidly. New designs in cellular phones and novel 

functions are being introduced at an ever increasing pace. This is leading to fierce 

competition and short product life cycles. Consequently, one of the major concerns of 

OEM (Original Equipment Manufacture) and EMS (Electronic Manufacturing Service) 

phone manufacturers is how to decrease testing costs, especially in the low profit 

environment in which they operate. This is because testing equipments for mobile 

phones are expensive, and the testing times long. In one estimate, it costs around 1 US 

dollar and 1-3 minutes per phone (VI service Network). However, these testing cost 

and time will increase dramatically because more and more newly developed modules 

like digital camera, mp3 player, personal digital assistant (PDA), and blue-tooth 

transmitter are added to cellular phones. We have to spend extra time and money to 

inspect these new functions. These factors often hinder the enhancement of the overall 

output of cellular phones (VI service Network).  

Another key issue affecting handset vendor success is time-to-market (Agilent 

Technologies). If we can shorten manufacturing time, the time-to-market will be 

reduced. Cellular manufacturers can quickly response customers’ demand. In the 

manufacturing process of cellular phones shown as Figure 6.1, the Radio Frequency 

(RF) function is a crucial test and needs more operation time than any of the other 
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inspection processes. In order to save inspection costs and shorten production time, 

manufacturers need an effective method to reduce the RF function test items. A 

number of soft computing approaches, such as neural networks (Verikas and 

Bacauskiene, 2002), genetic algorithms (GA) (Zhu and Guan, 2004), decision tree and 

rough sets (Swiniarski and Hargis, 2001; Swiniarski and Skowron, 2003) have been 

widely used to remove irrelevant, unnecessary, and redundant attributes (test items). 

However, when these methods are applied to real world problems, there are many 

issues that need to be addressed. One of them is the “class imbalance” problem.  

In modern production systems, the defective rate of products is becoming quite 

low. In the six sigma quality management system for example, we should use 

“ppm”(parts per million) instead of “%” to calculate the defective rate. In a mature 

manufacturing industry the amount of good products far exceeds the defective 

products. When feature selection approaches encounter imbalanced data such as this, 

it becomes difficult to acquire knowledge from the few negative examples (defective 

products). Fewer abnormal products will be viewed as outliers or bias by feature 

selection methods (Pendharkar et al., 1999). This leads to a high level of type II errors 

(customer risks, the probability that customers accept defective products) which are 

critical to OEM/EMS companies. A low level of Negative Accuracy will cause great 

losses, requires compensation and may result in the loss of orders from important 

customers.  

In this chapter, we use KAIG model to effectively reduce RF function test items. 

A real case with imbalanced data is studied, and the implementation results show that 

our method can find relevant test items without losing Overall Accuracy. 

 

6.2 Proposed Feature Selection Procedure 

    Figure 6.2 shows the basic idea of the proposed methodology. A large amount of 
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similar objects are gathered together to form fewer granules. When the information 

granulation approach is employed, numeric data will transfer to IGs and the number 

of positive and negative granules will be decreased compared with numeric data. The 

ratio of negative to positive examples will be increased. It may improve imbalanced 

data situation. Next, these IGs are described with appropriate form and then we can 

use feature selection method to extract knowledge rules or key attributes from these 

granules. The detailed procedure of the neural network based information granulation 

approach is described as follows. 

     
Step 1: Identify condition attributes and class attributes 
Step 2: Data Preprocessing 
      Step 2.1: Data cleaning (Fill in missing data and remove noisy or 

inconsistent data) 
      Step 2.2: Data transformation (Normalize or discretize the data) 
Step 3: Measure the information granules 
      Step 3.1: Select the degree of similarity  
      Step 3.2: Check the suitability 
      Step 3.3: Determine the suitable similarity  
Step 4: Construct the information granules 
Step 5: Define the information granules  
      Step 5.1: Describe the information granules 
      Step 5.2: Tackle the overlaps among the information granules 
Step 6: Acquire key attributes and extract knowledge rules 

Step 1 and Step 2 are data preparing phases. In these phases, we should identify 

the condition attributes (inputs) and the decision attributes (outputs) first. Then, data 

should be prepared for the process, like removing noisy data, filling missing data, and 

discretizing data. In step 3, the users need to determine suitable level of granularity. 

After that, Fuzzy ART neural network can be utilized to construct the IG, depending 

on the selected similarity (granularity). Next, we describe these IGs using the 

appropriate form. Finally, the relevant attributes can be found by feature selection 

methods.  
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In addition, real-world data tend to incomplete, noisy, and inconsistent. Data 

cleaning (step 2.1) routines attempt to fill in miss values, smooth out noise while 

identifying outliers, and correct inconsistencies in the data. Moreover, discretization 

techniques can be used to reduce the number of values for a given continuous attribute, 

by dividing the range of the attribute into intervals. In this study, “equal frequency 

bining” algorithm is utilized to discretize data. This unsupervised method is to divide 

the range into b bins of equal frequency. This method is less susceptible to outliers, 

and the intervals would be closer to each other in regions where there are more 

elements and farther apart in sparsely-populated regions, which represents the 

distribution of each variable better than the equal-width method. In summary, data 

preprocessing techniques can improve the quality of the data, thereby helping to 

improve the accuracy and efficiency of data mining process.  

    

 

 

 

.  

Figure 6.1 A manufacturing process of a cellular phone 

Surface Mount Technology 
14 seconds 

Automatic Optical Inspection
30 seconds 

PCB Assembly Quick Test
90 seconds 

System Assembly 
25 seconds 

Assembly Functional Test 
95 seconds

RF Functional Test 
190 seconds

Call Function Test 
50 seconds

Labeling/Coding/Packing 
75 seconds

Shipping
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6.3 Case Study 
The actual case comes from a cellular phone OEM/ODM company which was 

established in 1984. It is located in Taiwan and the company owns several factories in 

mainland China. In 2003, its total annual revenue reached US 4.713 billion dollars, 

and it has a worldwide workforce of over 10 000. The production volume of cellular 

phones in 2004 was about 7.5 million units.  

 

 Positive examples 

 Negative examples 

Figure 6.2 Basic idea of the proposed methodology  
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data 

Information  
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Description of Information 
Granules 

Positive Negative... Positive Negative

Attribute #3 Attribute #N

Attribute #1 

….

Feature Selection and 
Knowledge Extraction  
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6.3.1 The Problem 

In this case, the objectives of the cellular phone manufacturer are to reduce the 

time-to-market and reduce test time and consequently cost. Figure 6.1 provides the 

manufacturing process of the cellular phone including the operation time of each 

process. We find that the RF functional test is the bottleneck of entire process. The RF 

test is aimed at inspecting whether or not the mobile phone receive/transmit signal 

satisfies the enabled transmission interval (ETI) protocol on different channels and 

different power levels. In order to ensure the quality of communication of mobile 

phones, the manufacturers usually add extra inspection items, such as several different 

frequency channels and power levels, resulting in the inspection time being increased 

and as a result the test procedure becomes a bottleneck. 

 If we can reduce the numbers of items tested in the RF function test, without 

losing inspection accuracy, then the inspection time will be shortened. At the same 

time this reduction of test items will help lower the cost of testing and the ‘time-to 

-market’.  

 

6.3.2 Data Collection 

The 1006 RF function test data containing 62 test items (27 are continuous 

attributes and 35 are discrete attributes) as described in Table 6.1 are collected. There 

are eight major RF functional tests:  the power versus time (PVT; symbol: A), the 

power level (TXP; symbol: B), the phase error and the frequency error (PEFR; 

symbol: C), the bit error rate (BER -20; symbol: D and BER -102; symbol: E), the 

ORFS-spectrum due to the switching transient (ORFS_SW; symbol: F), the 

ORFS-spectrum due to modulation (ORFS_MO; symbol: G), the Rx level report 

accuracy (RXP_Lev_Err; symbol: H), and the Rx level report quality 

(RXP_QUALITY; symbol: I). According to different channels and power levels, each 
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test item has several separate test attributes. Each form of the test attributes is to be 

represented as: test item-channel-power level. In the 1006 collected objects, there are 

only 44 negative examples (defective products) and the rests are positive examples 

(normal products). The defective rate is about 4%. We separate the 1006 examples 

into a training set which includes 756 objects (722 objects are normal, and 34 objects 

are defective) and a test set that includes 250 objects (240 objects are normal, and 10 

objects are defective).   

 
Table 6.1 Test items of the RF function 

No. Test items Code No. Test items Code No. Test items Code 

1 TXP B105 22 BER(-20) D1145 43 RXP_QUALITY I522-102
2 PEFR C105 23 BER(-102) E1145 44 TXP B6880 
3 BER(-20) D105 24 ORFS_SW F1145 45 PFER C6880 
4 BER(-102) E105 25 ORFS_MO G1145 46 BER(-20) D6880 
5 ORFS_SW F105 26 RXP_Lev_Err H114-102 47 BER(102) E6880 
6 ORFS_MO G105 27 RXP_QUALITY I114-102 48 ORFS_SW F6880 
7 RXP_Lev_Err H10-102 28 TXP B9655 49 ORFS_MO G6880 
8 RXP_QUALITY I10-102 29 PFER C9655 50 TXP B6883 
9 TXP B725 30 BER(-20) D9655 51 TXP B6887 
10 PFER C725 31 BER(-102) E9655 52 TXP B68815 
11 BER(-20) D725 32 ORFS_SW F9655 53 RXP_Lev_Err H688-102
12 BER(-120) E725 33 ORFS_MO G9655 54 RXP_QUALITY I688-102
13 ORFS_SW F725 34 RXP_Lev_Err H965-102 55 TXP B8750 
14 ORFS_MO G725 35 RXP_QUALITY I965-102 56 PEFR C8750 
15 TXP B727 36 TXP B5220 57 BER(-20) D8750 
16 TXP B7211 37 PEFR C5220 58 BER(-102) E8750 
17 TXP B7219 38 BER(-20) D5220 59 ORFS_SW F8750 
18 RXP_Lev_Err H72-102 39 BER(-102) E5220 60 ORFS_MO G8750 
19 RXP_QUALITY I72-102 40 ORFS_SW F5220 61 RXP_Lev_Err H875-102
20 TXP B1145 41 ORFS_MO G5220 62 RXP_QUALITY I875-102
21 PFER C1145 42 RXP_Lev_Err H522-102    
 
6.3.3 Data Preparation 

In this case, the inspection data are collected automatically by computers, and 

there are no missing values. In the data preparation phase we remove 11 attributes 

(D105,I10-102,D725,I72-102,D1145,I114-102,D9655,I965-102,D6880,I688-102,D87

50) which have the same value. These 11 attributes have no classification ability. 
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Consequently, only 51 attributes labeled X1~X51 are left to be analyzed further. 

Before implementation, these collected data need to be normalized due to different 

scale of attributes’ value, which may affect the performance of Fuzzy ART. All values 

of attributes were normalized to the interval [0, 1] by employing a min-max 

normalization equation, shown as equation (6.1). In this equation, imax  is the 

maximum and imin is the minimum of the i-th attribute values, and ijv  is the value 

of i-th attribute of j-th objects and '
ijv  is the normalized value. 

ii

iij
ij

v
v

minmax
min'

−

−
= (6.1)

 

6.3.4 Information Granulation 

Next, we utilize the Fuzzy ART to construct IGs. The proposed procedure is 

programmed with the use of the software of Matlab 6.1. Depending on H-index and 

U-ratio, the suitable similarity was determined as 0.8.  

Once the similarity is determined, Fuzzy ART is again utilized to construct IGs. 

We set the Fuzzy ART parameters ρβα ,,  to be 0.01, 1, 0.8, respectively. 

Thirty-three IGs are constructed. Twenty four of them are IGs of good products and 

the rests belong to the defective products. Each IG is described by using the lower 

limit and upper boundary (hyperbox form) as shown in Table 6.2. In addition, the 

overlapping parts among granules are separated from the original attribute by 

designating them as new attributes or so-called “sub-attributes.” We divide the 

original attribute 1X  into sub-attributes 11X , 12X , 13X , 14X , 15X ; and the same 

happens for the other attributes. These 33 granules are rewritten as Table 6.3.  
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Table 6.2 The information granules described as hyperbox form 
X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Y

L1 4 3 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 5 2 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 2 3 2 1 5 2 1 1 1 1 1 1

U1 4 4 1 1 1 1 2 1 1 1 1 2 2 4 1 3 2 1 1 1 1 5 2 1 1 1 1 3 5 2 1 2 1 2 1 3 7 1 1 1 2 3 3 1 5 4 1 2 2 1 1 1

L2 3 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 4 1 1 1 1 1 3 2 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 4 1 1 1 1 1 1 1

U2 4 3 1 1 1 1 2 1 1 1 1 3 3 4 1 3 2 1 2 1 1 5 1 1 2 1 1 3 4 1 3 2 1 2 1 3 5 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L3 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 2 1 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 1 1 2 1 1 1 1 2 3 3 1 3 1 1 1 1 1 1 1

U3 4 3 1 1 1 1 2 1 1 1 1 2 4 4 1 4 2 1 1 1 1 5 2 1 2 1 1 3 4 3 2 2 1 2 1 3 5 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L4 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 5 2 1 1 1 1 1 1

U4 4 3 1 1 1 1 2 2 1 1 1 2 3 3 1 4 2 1 1 1 1 5 2 1 2 1 1 3 4 1 2 2 1 2 1 3 7 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 3 1 1 1 2 1 1 1 3 1 1 1 1 2 3 2 1 5 1 1 1 1 1 1 1

U5 4 4 1 1 1 1 2 1 1 1 1 2 3 4 1 3 2 1 1 1 1 5 2 1 2 1 1 3 5 1 2 2 1 2 1 3 6 1 1 1 2 3 3 1 5 4 3 2 2 1 1 1

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

L31 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 3 2 1 1 1 1 3 1 1 1 2 1 3 1 3 1 1 1 1 2 3 3 1 5 2 1 1 1 2 1 2

U31 4 3 1 1 1 2 1 1 1 1 1 2 2 4 2 3 2 1 1 1 2 5 2 1 1 1 2 3 4 1 1 2 1 3 1 3 1 1 1 1 2 3 3 2 5 3 2 2 1 2 1 2

L32 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 4 1 2 1 2 2

U32 3 3 2 1 1 1 1 1 5 1 1 2 3 2 1 3 2 2 1 1 1 1 1 5 1 1 1 1 2 1 4 1 1 2 2 1 4 2 1 1 1 1 1 1 1 4 4 1 2 1 2 2

L33 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 4 1 1 1 1 1 3 1 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 1 1 1 1 1 1 1 2

U33 4 2 1 1 1 2 2 1 1 1 1 2 2 4 1 3 2 1 1 1 2 5 2 1 2 1 2 3 4 1 1 2 1 2 1 3 1 1 1 1 3 3 3 2 5 2 2 2 1 1 1 2

Notes: (1) L1 and U1 represent the lower limit and upper limit of the 1st IG. 
               (2) X represents the condition attributes, and Y is the decision attribute. 
               (3) The data shown in the table are discretized.    
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Table 6.3 The IGs with the addition of sub-attributes 
Original 

Attributes 
X1 X2 X3 X4 X5 X6 .. .. .. X51 

Sub-attributes X11
(X1=1)

X12 
(X1=2) 

X13 
(X1=3) 

X14 
(X1=4)

X15
(X1=5)

X21
(X2=1)

X22
(X2=2)

X23
(X2=3)

X24
(X2=4)

X25
(X2=5)

X31
(X3=1)

X32
(X3=2)

X41 
(X4=1) 

X42
(X4=2)

X51
(X5=1)

X52
(X5=2)

X61
(X6=1)

X62
(X6=2) .. .. .. X175

(X51=1)
X176

(X51=2) 

Y 

IG #1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #2 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #3 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #4 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #5 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #6 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

IG #7 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 .. .. .. 1 0 1 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..    

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..    

IG #27 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 .. .. .. 1 1 2 

IG #28 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 .. .. .. 1 0 2 

IG #29 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 .. .. .. 1 0 2 

IG #30 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 .. .. .. 0 1 2 

IG #31 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 .. .. .. 1 0 2 

IG #32 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 .. .. .. 0 1 2 

IG #33 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 .. .. .. 1 0 2 
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Table 6.4 The implementation results by rough sets 
Method KAIG (rough sets) Rough sets 

Phase Training Test Training Test 
Data size 
(good:bad) 

33 
(24:9) 

14 
(9:5) 

756 
(722:34) 

250 
(240:10) 

Pos. Accu. 100% 100% 99.3% 99.6% 
Neg. Accu. 100% 90% 1000% 10% 
Overall Accu. 100% 99.6% 99.34% 96% 
No. of rules 4 433 
Extracted 
features B725, H114-102 

C105, B727, B1145, H114-102, 

C9655, H522-102, B8750, E8750 

Note: (24:9) is the proportion of good products to bad products. 

 
Table 6.5 The implementation results by decision tree (C 4.5) 

Method KAIG (DT) DT 
Phase Training Test Training Test 

Data size 
(good:bad) 

33 
(24:9) 

14 
(9:5) 

756 
(722:34) 

250 
(240:10) 

Pos. Accu. 100% 100% 100% 100% 
Neg. Accu. 100% 90% 76.47% 60% 
Overall Accu. 100% 99.6% 98.9% 98.4% 
No. of rules 3 7 
Extracted 
features B725, H114-102 E105, C725, G725, H72-102, 

H965-102, H688-102       

 
Table 6.6 The implementation results by BPNN (full attributes) 

Method KAIG (BPNN) BPNN 
Phase Training Test Training Test 

Data size 
(good:bad) 

33 
(24:9) 

14 
(9:5) 

756 
(720:34) 

250 
(240:10) 

Pos. Accu. 99.5% 100% 99.86% 100% 
Neg. Accu. 88.24% 100% 70.59% 50% 
Overall Accu. 98.9% 100% 98.54% 98% 
Structure 16-15-1 17-4-1 
Parameters Learning rate: 0.2 

Momentum: 0.9 
50000 iterations 

Learning rate: 0.2 
Momentum: 0.8 
2000 iterations 

Extracted 
features 

B7211, H114-102, E8750, B8750, 

C8750, B725, H965-102, 

H688-102, H10-102, B727, E5220, 

B7219, C105, C6880, C9655, 

B68815 

C9655, B725, C725 ,B8750, B105, 

B727, C8750, F1145, B5220, 

B7211, H114-102, B6880, B68815, 

F725, B6887, E1145, I522-102 
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6.3.5 Feature Selection and Knowledge Acquisition 

 Now three feature selection algorithms, rough sets method, decision tree (C 4.5 

algorithm) and neural network, are implemented. The inputs and outputs of the 

decision tree and rough sets are 176 sub-attributes and defined classes respectively. In 

the neural network based method, the back-propagation neural network with one 

hidden layer is adopted and implemented using Professional II PLUS software. All 

parameters of the BPNN are obtained by trial and error, including the number of 

training iterations and the structure of the network.  

   Implementation results are shown in Tables 6.4~6.6. In Tables 6.4 and 6.5, our 

proposed approach obviously outperforms the traditional approach without 

granulation, in both classification accuracy and type II error. In addition, fewer 

knowledge rules and attributes are obtained. In Table 6.6, the classification accuracy 

and type II error of our approach are still better than those by the original BPNN. All 

the attributes, kept and ranked by priority, are listed in Table 6.6. By comparing the 

implementation results of these three methods, six attributes {B7211, H114-102, 

B725, B8750, C8750 and E8750} are reserved as final test items for the RF functional 

test. The knowledge rules listed in Figures 6.7(a) & (b) are generated by using rough 

sets and decision tree methods. These rules may not only help engineers to predict the 

yield rate of products, but may also enhance the performance of knowledge 

management. 

 

6.4 The Benefits 

By implementing the proposed method, test items are reduced from 62 to 6 items. 

The test time is reduced from 190 seconds to 95 seconds. The amount of employed 

test equipment is reduced from 8 machines to 4 machines. As a result the company 

will save about $ US 200 000 per year. In addition we should not forget the resulting 
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rise in customer satisfaction and the reduction in risk for the customers. The potential 

benefits of implementation are substantial.  

 

Rule 1:  
)7446.31,7440.31[725∈B  AND ,*]1(102114 ∉−H  TEHN Class = Good Product 

[Accuracy: 1.0; Supports: 24] 
Rule 2:  

)7446.31,7440.31[725∈B  AND ,*]1(102114 ∈−H TEHN Class = Bad Product 
[Accuracy: 1.0; Supports: 2] 
Rule 3:  

)7446.31,7440.31[725∉B  AND ,*]1(102114 ∉−H  TEHN Class = Bad Product 
[Accuracy: 1.0; Supports: 4] 
Rule 4:  

)7446.31,7440.31[725∉B  AND ,*]1(102114 ∈−H  TEHN Class = Bad Product 
[Accuracy: 1.0; Supports: 3] 
 

Figure 6.7 (a). Knowledge rules extracted by rough sets 
 

Rule 1:  
)7446.31,7440.31[725∈B AND ,*]1(102114 ∉−H  TEHN Class = Good Product 

[Accuracy: 0.962; Supports: 24] 
Rule 2: 

)7446.31,7440.31[725∉B  TEHN Class = Bad Product  
[Accuracy: 0.889; Supports: 7] 
Rule 3: 

,*]1(102114 ∈−H  TEHN Class = Bad Product  
[Accuracy: 0.857; Supports: 5] 
 

Figure 6.7 (b). Knowledge rules extracted by decision tree (C 4.5) 
 

6.5 Discussion and Concluding Remarks 

In most cases of inspection data, the amount of good products is far greater than 

the amount of defective products. The few defective products are usually viewed as 

outliers and are removed in the generalization phase of the classification tools. 

Actually, all normal products look alike, and the abnormal products have individual 

styles. That phenomenon is also noted by Taguchi and Jugulum [22]. We should pay 
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more attention to this, and consider the categories of instances instead of the data size 

when developing feature selection algorithms. 

Traditional machine learning techniques tend to generate a huge amount of 

knowledge rules and lead to a low level of Negative Accuracy when dealing with 

imbalanced data. This chapter applied KAIG model to select key test items in mobile 

phone inspection. KAIG model not only extracts fewer knowledge rules, but also 

outperforms the traditional methods regarding the Negative Accuracy and Overall 

Accuracy. 

A real case study of cellular phone test process was employed to demonstrate the 

effectiveness of KAIG model. When encountering imbalanced data, KAIG model is 

effective in removing unnecessary RF function test items, saving testing costs and 

shortening the time to market. It is suitable for reducing the inspection process in the 

high technology industry, especially now that we are facing the six-sigma age, i.e. the 

defective rate of products is becoming extremely low.  

The experimental results also show that there is a trade-off relationship between 

Positive Accuracy and Negative Accuracy. The KAIG model can raise the level of 

Negative Accuracy without dropping Positive Accuracy. This is very important to 

OEM/ODM manufacturers because a low level of Negative Accuracy will inevitably 

lead to orders being lost. The inconsistence of the extracted attributes when using 

different feature selection methods is an important issue for future research, because it 

might confuse users (engineers) when applying these feature selection techniques in 

practice. To solve the inconsistence, a robust approach is needed to be developed in 

the future. 
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CHAPTER 7 

APPLY IG BASED METHOD TO ENCHANCE THE 
DIABETES DIAGNOSIS ABILITY 

7.1  Problem Description 

Diabetes, which can result in a variety of complications, including heart disease, 

kidney disease, eye disease, erectile dysfunction, and nerve damage, has become a 

serious problem in human society. In 2000, the World Health Organization (WHO) 

estimated that over 177 million people had diabetes. By 2030, it is estimated that there 

will be 366 million diabetes patients world-wide. The WHO is calling diabetes an 

epidemic, and recently it is having a huge economic impact on countries in Africa, 

India, and China. Diabetes is a bigger killer than AIDS, and the cost of supporting a 

person who has lost a foot due to diabetes may drain three-quarters of the income of a 

poor family. In Taiwan, diabetes has been the 5th leading cause of death since 1987 

and it became number 4 in 2004.  

In recent years, researchers have tried to use artificial intelligence (AI) methods 

to build diagnostic classifiers (Srikanth et al., 1997) in order to identify diseases 

quickly and economically, and therefore help diagnose patients in those developing 

countries that lack sufficient medical resources. The AI methods acquire knowledge 

from examples of existing diagnoses and apply the extracted knowledge to diagnose 

an illness. However, the data obtained from examples of diagnoses are often 

imbalanced or skewed, with almost all the instances being labeled as one class, while 

only a scant few instances are labeled as the other class, usually the important class. 

When building a classifier from such imbalanced/skewed diagnosis data, class 

imbalance problems are necessary to be considered. In this chapter, we apply IG 

based method to increase the ability of identifying diabetic patients.  
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7.2 Data Collection 

The experimental data comes from the health examination database of a regional 

hospital in Taiwan. We obtained 2000 raw data. After removing missing value 

examples, 1829 objects remained, which contain 1729 positive instances (healthy 

patients) and 100 negative instances (diabetic patients). These examples are divided 

into training (1464: 1384+80) and test objects (365: 345+20). The proportion of 

negative examples is about 5%.  

Table 7.1 shows 23 attributes of this data, they are biochemical or physical test 

items and all their values are continuous except for the first one “Gender.” Although 

there are different types of diabetes like Type 1, Type 2 and gestational diabetes, they 

are combined and considered as diabetes. Therefore we have 2 classes, positive 

(healthy patients) and negative (diabetic patients). 

Table 7.1 Attributes 

#1 Gender #5 FEV1 #9 SGOT #13 BUN #17 Thyroxine #21 HDL
#2 Age #6 PFR #10 SGPT #14 Creatinine #18 Uric acid #22 ELDL

#3 Vital 
Capacity #7 albumin #11 APAE #15 Glucose 

AC  #19 Cholesterol #23 LDL

#4 Predicted 
VC #8 Total 

protein #12 Total 
bilirubin #16 Glucose 

PC  #20 Triglyceride   

 

7.3 Implementation of IG based method 

    In this section, we try to build a classifier to identify diabetic patients 

automatically by using IG based method. The comparison of our method, SVM, DT 

(C 4.5), cluster based sampling, and under-sampling will be provided to show the 

superiority of IG based method in highly class imbalance situation.  

    Table 7.1 shows the results of H-index and U-ratio. Seventy-nine IGs are 

constructed depending on the selected similarity (vigilance), 0.7. Then, three quartiles, 
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Q1, Q2, and Q3 are utilized to describe those IGs which are shown in Table 7.2.   

 

Table 7.2 Using Q1+Q2+Q3 to describe IGs  
Data 

char. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 class IG No. 

Q3 1 57 4.16 128.8 86 143 5 8 30 40 71 1.1 16 1.1 100 96.75 1.4 6.3 238 109 57 22 173 +1 1 

Q2 1 50 3.22 110 82 101 4.7 8 17 23 62.5 0.9 14 1.1 91 92.5 1.1 5.9 219 99 52 20 142 +1 1 

Q1 0 37 2.725 77.25 80 80.5 4.6 7 17 15 57.3 0.7 13 0.9 85 84.5 0.7 5.1 198 78.3 43 16 123 +1 1 

Q3 1 68 3.785 116.4 88 137 4.8 8 25 22 152 1.1 20 1.2 90.8 120.8 1.2 8.7 187 163 58 33 114 +1 2 

Q2 1 60 2.98 109.5 84 127 4.5 7.5 20 20 93 1 19 1.2 89.5 92 0.9 6.8 174 128 44 26 111 +1 2 

Q1 0.3 44 2.61 101 79 103 4.1 7 17 15 70.8 0.8 16 1.1 86 88 0.7 6.6 171 80.5 31 16 108 +1 2 

Q3 1 60 3.04 108 85 82 4.6 8 19 16 87 1.6 19 1.1 101 120 4.8 6 184 112 57 22 110 +1 3 

Q2 0 54 2.47 96 80 78 4.5 7 14 13 53 1 19 0.9 98 88 1.4 5.8 168 94 55 19 81 +1 3 

Q1 0 51 1.76 71 79 75 4.4 7 14 11 45 0.7 16 0.8 91 74 0.9 5.3 146 74 52 15 70 +1 3 

Q3 1 62 3.51 107 87 142 4.7 7 25 48 57.5 1.1 18 1.2 103 106.5 2.9 6.9 252 175 67 35 169 +1 4 

Q2 1 58 2.985 94.6 84 126 4.5 7 23 27 54 0.9 16 1.1 91.5 95 1.5 6.4 223 115 58 23 120 +1 4 

Q1 0.8 50 2.62 89 83 101 4.4 7 19 16 41.8 0.7 15 1 87 91.75 0.8 6.1 193 88.8 48 18 106 +1 4 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

Q3 1 71 2.64 99.5 83 89 4.5 7 30 37 85 0.9 17 1.2 135 224.5 4.3 7.4 210 171 46 34 133 -1 75 

Q2 0.5 66 2.27 79.45 75 68 4.1 7 22 25 74 0.7 15 1 127 206.5 2.2 6.2 189 144 42 29 112 -1 75 

Q1 0 60 2.0175 65 69 47.9 4 7 20 20 63 0.7 13 0.9 94.5 189.5 0.9 5.4 154 116 38 23 88 -1 75 

Q3 1 56 3.3825 105.5 88 139 4.9 8 25 37 84 1.1 19 1.2 221 256 1.7 7.4 245 200 52 40 142 -1 76 

Q2 1 51 2.87 98 85 124 4.8 8 22 29 79.5 0.9 18 0.9 137 218 1.1 6.5 189 188 50 38 104 -1 76 

Q1 0 47 2.585 78.25 83 102 4.7 7 20 21 62.3 0.7 15 0.8 118 137.5 1 5.8 152 99.5 48 20 74.3 -1 76 

Q3 1 64 3.57 125 87 184 4.9 8 32 44 78 0.9 20 1.2 258 278 1.1 6.2 199 145 61 29 115 -1 77 

Q2 1 64 3.53 108 82 134 4.9 8 19 25 71 0.9 20 1.2 146 224 1 5.9 188 115 52 23 112 -1 77 

Q1 1 56 2.95 108 76 79 4.5 8 18 20 63 0.8 16 1 113 222 0.9 5.7 159 79 46 16 91 -1 77 

Q3 1 60 3.3525 101.5 77 94.3 4.3 8 34 53 94.5 1 17 1.2 264 427.3 1.6 5.5 274 362 56 69 164 -1 78 

Q2 1 54 3.075 100.5 75 68.5 3.9 7.5 24 29 83.5 0.8 14 1 222 338 1.3 5 256 228 45 46 153 -1 78 

Q1 1 49 2.9025 94.75 71 51.5 3.7 6.8 20 25 76 0.7 11 0.9 198 285 1 4.5 226 152 37 31 132 -1 78 

Q3 0 67 2.48 118 98 177 5 7 30 17 71.5 0.9 18 1.1 135 166 1.9 7 246 230 70 46 145 -1 79 

Q2 0 66 2.38 114 96 175 4.9 7 23 14 60 0.8 16 1 134 161 1.6 6.3 242 195 63 39 140 -1 79 

Q1 0 66 2.28 110 95 174 4.7 7 17 11 48.5 0.8 14 1 132 156 1.3 5.5 237 159 55 32 135 -1 79 
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Table 7.3 summarizes the results of experiments. Although Overall Accuracy and 

Positive Accuracy drop slightly, IG based method has excellent performance in 

Negative Accuracy (75%), which is better than cluster based sampling (65%), 

under-sampling (45%), SVM (10%), and DT (15%). It means IG based method can 

remarkably increase the ability of detecting diabetic patients. Considering G-mean, IG 

based method also outperforms other methods. The comparison is also demonstrated 

in Figure 7.2. 

 

Table 7.3 Summary of experimental results 

          Methods 
Performance 

IG based method Cluster based sampling Under- sampling SVM DT 

Overall Accuracy 93.70% 92.88% 95.07% 95.07%95.34%
Pos. Accu. 94.78% 94.49% 97.97% 100% 100%
Neg. Accu. 75% 65% 45% 10% 15%

G-mean 84.31% 78.37% 66.40% 31.62%38.73%
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Figure 7.1 H-index & U-ratio of diabetes diagnosis data 
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7.4 Discussion and Concluding Remarks 

    Medical diagnosis data is usually highly imbalanced. It’s especially true when 

diseases are rare. When applying machine learning techniques to build classifiers to 

diagnose an illness, it’s necessary to consider class imbalance problems. The chapter 

applied IG based method to diabetes diagnosis. An actual case was provided to 

illustrate the effectiveness of our method. The experimental results show our proposed 

method can significantly increase the ability of detecting diabetic patients (minority) 

in highly skewed data situation.  
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Figure 7.2 The comparison of experimental results 
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CHAPTER 8 

CONCLUSIONS  

8.1 Summary 

Granular computing, which imitates human capability of performing tasks or 

processing information, is a new direction of Artificial Intelligence. Albert Einstein 

(1879-1955) said “As far as the laws of mathematics refer to reality, they are not certain; 

as far as they are certain, they do not refer to reality.” His words can be used to explain 

why researchers paid lots of attentions on uncertainty/vagueness in human decision 

making, such as fuzzy sets, rough sets, granular computing, and etc. These researches 

are not intended to replace traditional measurement-based methods which operate 

numerical data. Their purpose is to let the developed computational theories refer to 

reality. 

The main contributions of this dissertation are to propose two practical GrC 

models, KAIG and IG based method, for dealing with discrete and continuous data, 

respectively. The first proposed KAIG indeed has impressive classification ability for 

imbalanced data, but it also has a drawback of generating so many “sub-attributes” 

that may increase computational complexity when dealing with continuous data. We 

can control the number of “sub-attributes” by adopting a discretization algorithm. 

However, in some situations, the discretization algorithm might still generate lots of 

discrete intervals. Therefore, we proposed the second IG based method to aim at 

continuous data. Unlike traditional data mining approaches which acquire knowledge 

from numerical data, our methods can extract knowledge from IGs while controlling 

the reduction of information (i.e. removing unnecessary details). In both GrC models, 

the procedures to find appropriate number of IGs and to represent the constructed IGs 
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were provided. Integrating Fuzzy ART neural network and two objective indexes 

(H-index and U-ratio), an information granulation procedure was presented to 

construct IGs. This study also developed two kinds of IG representation methods, the 

concept of “sub-attributes” and “data characteristics.” Experimental results show their 

efficacy to represent IGs. 

    In addition, this study also discussed class imbalance problems which are 

becoming serious issues when applying data mining techniques to practical areas, 

such as spam detection, defective products inspection, and diseases/illness diagnosis. 

Recently, we observe an increase of research activity in data mining from imbalanced 

data sets. This increase in interest gave rise to two workshops held in 2000 (the 

American Association for Artificial Intelligence; AAAI) and 2003 (International 

Conference on Machine Learning; ICML) on learning from imbalanced data sets. The 

Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data 

Mining, SIGKDD Explorations, also published a special issue to discuss the same 

issue (June 2004).  

In related researches, some presented techniques like re-sampling and 

weight-adjusting techniques can merely slightly improve the imbalanced situation, but 

they cannot guarantee optimal solutions. Compared with IG based method, 

cluster-based sampling methods lack a systematic mechanism to determine a suitable 

number of clusters and to find representative examples to denote clusters. 

Nevertheless, our methods provided an effective avenue to solve these problems. 

Considering ROC curve analysis and other performance indexes, KAIG and IG based 

method have been shown their superiority of identifying minority examples without 

losing overall accuracy. 

In practical applications, we found proposed GrC models actually can increase 

classification performance by reducing detailed information. Our methods are 
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especially effective for imbalanced inspection, diagnosis, faults monitoring, and fraud 

detecting data. The case studies showed KAIG model improved predictive ability of a 

scheduling system within an FMS environment. KAIG model also removed redundant 

test items and shortened inspection time of cellular phone manufacturing. In addition, 

the IG based model was proposed to deal with continuous data and it effectively 

increased the ability of a classifier to detect rare diabetic patients. 

   

8.2 Further Research 

Some potential directions for improvement and future work are clear. The first 

issue is about reduction of information. How many unnecessary details should be 

removed? Although we employed two indexes to tackle this issue, it’s necessary to 

pay more efforts to do advanced researches.   

The second issue is about class imbalance problems. Usually, data from two 

classes are available in conventional classification; the decision boundary is supported 

from both sides of example objects. When the class distribution is extremely skewed 

or the minority examples are completely absent, the traditional algorithms might fail. 

One-class classification method which is assumed that only one class information 

available might be the possible solution. 
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