
Chemical Physics Letters 486 (2010) 104–109
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier .com/locate /cplet t
Theoretical studies of ZEKE spectroscopy and dynamics of high Rydberg states

Yi-Hsieh Wang a,e, Y. Teranishi b,c, H. Mineo a, S.D. Chao a,*, H.L. Selzle d, H.J. Neusser d,
E.W. Schlag d, S.H. Lin b,c,e

a Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
c Institute of Applied Chemistry, Institute of Molecular Science, Chiao-Tung University, Hsin-Chu, Taiwan
d Institut für Physikalische und Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
e Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan

a r t i c l e i n f o
Article history:
Received 22 September 2009
In final form 29 December 2009
Available online 11 January 2010
0009-2614/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.cplett.2009.12.092

* Corresponding author. Fax: +886 2 2363 9290.
E-mail address: sdchao@iam.ntu.edu.tw (S.D. Chao
a b s t r a c t

A main purpose of this Letter is to show how to employ the inverse Born–Oppenheimer approximation as
a basis set to study zero kinetic energy (ZEKE) spectroscopy and the autoionization dynamics of the ZEKE
states. The calculations of channel couplings, quantum defects, intensity borrowing, vibrational and rota-
tional autotionizations will be demonstrated by using a homonuclear diatomic molecule as an example.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since its invention by Müller–Dethlefs, Sander and Schlag in
1984 [1,2], the zero kinetic energy (ZEKE) spectroscopy has seen
the explosive activity in high resolution spectroscopy of the ions.
Using this technique, the first examples of full rotational resolution
in photoelectron spectra (PES) have been obtained. Consequently,
there has been a considerable impetus given to the understanding
of the behavior of molecules very close to their ionization
thresholds.

However, while the power of the ZEKE technique to determine
ionization potential (IP) of molecules and ionic rovibronic energies
with high accuracy is widely recognized, and has been illustrated
in many systems, the interpretation of rotational line intensities
and dynamics of ZEKE states still poses some problems [3,4]. For
example, do the ZEKE line intensities reflect direct ionization
cross-sections? Are ZEKE-PES intensities consistent with conven-
tional PES intensities? Can they be predicted by ab initio calcula-
tions? Is there a systematic procedure to extract meaningful
information from ZEKE line intensities? Rotational and vibrational
autoionizations are believed to play important roles in ZEKE spec-
troscopy. How can they be evaluated credibly? Anomalous intense
peaks are often observed in ZEKE spectroscopy and they are usu-
ally attributed to some resonance effects. How can we treat these
resonance phenomena? In this Letter, we shall attempt to answer
these questions by employing the theory of ZEKE spectroscopy
based on the use of inverse Born–Oppenheimer approximation
(IBOA) [5–8].
ll rights reserved.

).
For simplicity of demonstration, we shall use a homonuclear
diatomic molecule as an example to demonstrate how to calculate
channel couplings, quantum defects, intensity borrowing in ZEKE
spectroscopy, and dynamics of rotational and vibrational autoion-
ization. In our opinion, the observed ZEKE band-shapes should de-
pend on optical pumping of ZEKE levels, l mixing induced by a
stray field, field-induced lowering of ionization thresholds, electric
field-induced ionization, tunneling ionization, and autoionization.
The ZEKE band-shapes will not be studied in this Letter, but will
be reported in a future paper.

The present Letter will be organized as follows. In Section 2, a
typical ZEKE spectroscopy experiment will be presented and the
IBOA will be described. In Sections 3–5, we shall show how to
use the IBOA to study quantum defects, and rotational and vibra-
tional autoionizations, respectively. These will be followed by dis-
cussion which is presented in Section 6.
2. General consideration

In treating ZEKE spectroscopy and dynamics of the ZEKE Rydberg
states, the multi-channel quantum defect theory (MQDT) is com-
monly used [3,4,9–11], which is combined with the photo-electron
spectroscopy model [12–17]. In this Letter, we shall use the inverse
Born–Oppenheimer approximation (IBOA) to study these phenom-
ena. Some preliminary results have been reported [5–7]. Several
types of ZEKE experiments have been proposed [1–4]. For conve-
nience of discussion, one of these experiments will be briefly
described, which is based on the one-photon absorption [5,6], and
shown in Fig. 1.

Consider a photoexcitation from state KðavÞ to state MðcwmÞ,
where a and c denote electronic states and v and w denote
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Fig. 1. A schematic plot showing a one-photon ZEKE spectroscopy. The transition
by a laser of frequency x is from state KðavÞ to state MðcwmÞ. See text for more
details.
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rovibrational states, and m denotes the Rydberg electron state.
In the dipole approximation, the interaction Hamiltonian is

bH 0 ¼ �l
*
�E
*

0 cos xt ð2:1Þ

where l
*

is the dipole moment, E
*

0 and x are the electric field and
frequency of the laser field, respectively, and the absorption rate
constant W ð1Þ

K!M is given by

W ð1Þ
K!M ¼

p
2�h2 jl

*

MK � E
*

0j2DðxMK �xÞ ð2:2Þ

where l
*

MK denotes the transition dipole moment and DðxMK �xÞ
represents the line-shape function. The latter can be Lorentzian or
Fano-type of line-shape depending on whether the M-level is iso-
lated or coupled to a continuum. The thermal average rate constant
W ð1Þ is given by

W ð1Þ ¼
X

K

X
M

PK W ð1Þ
K!M

¼ p
2�h2

X
K

X
M

PK jl
*

MK � E
*

0j2DðxMK �xÞ ð2:3Þ

where PK denotes the Boltzmann distribution.
It should be noted that the absorption rate constants given by

Eqs. (2.2) and (2.3) can easily be converted into the corresponding
absorption coefficients or cross sections. However, the measure-
ments of ZEKE signals involve not only the optical absorption from
the transition of, for example, ðavÞ ! ðcwmÞ but also the extraction
of ZEKE electrons from ZEKE states ðcwmÞ by a discriminating field
and an extraction field. This is the reason why the absorption rate
constants, instead of the absorption coefficients, are being used in
treating ZEKE spectroscopy in this Letter.

In this Letter, we shall choose the inverse Born–Oppenheimer
approximation [5–7] as a basis set for the ZEKE experiment. The
molecular Hamiltonian in this case can be expressed asbH ¼ bHion þ bT e ð2:4Þ

where bHion is the Hamiltonian of the ion and bT e denotes the kinetic
energy operator of the ZEKE electron. It follows thatbHWcwm ¼ EcwmWcwm ð2:5Þ
Wcwm ¼ UcwmHcw ð2:6ÞbHionHcw ¼ UcwHcw ð2:7Þ

and

ðbT e þ UcwÞUcwm ¼ EcwmUcwm ð2:8Þ

This shows that the ZEKE electron is moving in the potential energy
surface provided by the ion core described by ðcwÞ. The energy lev-
els within IBOA are shown graphically in Fig. 2. In the figure, ZEKE
states ðcwmÞ below the rovibronic state ðcwÞ of the ion are discrete
while those above ðcwÞ are continuous ðcwkÞ. Here we refer to the
high Rydberg states near but below the ionization continuum as
‘ZEKE Rydberg’ states.

Based on the IBOA model for ZEKE spectroscopy, the ab initio
calculations can be applied to calculate transition dipole moments
involved in absorption rate constants shown in Eqs. (2.1)–(2.3). It
should be noted that nearly all ZEKE experiments involve pulse-
field ionization of very high Rydberg states just below threshold,
rather than extraction of true ZEKE electrons at, or above thresh-
old. The Rydberg states form a pseudo-continuum, and as a conse-
quence of the continuity of the transition probability on either side
of an ionization limit, it is often assumed that the ZEKE transition
intensities can be treated in the same manner as true photoioniza-
tion intensities [12–17].

It should be noted that in the BOA model, the kinetic energy
operator of nuclear motion bT n can be used to treat the excited state
dynamics like internal conversion [18] and autoionization of low
Rydberg states [19]. In a similar manner, the kinetic energy opera-
tor of the ZEKE electron bT e can be employed to treat rotational and
vibrational autoionization, as will be shown below.

Based on the use of the IBOA, the model of the ZEKE spectros-
copy and the dynamics of its Rydberg states can be shown in
Fig. 2. Here the Born–Oppenheimer approximation (BOA) is used
to describe the neutral molecule. From this figure we can see that
the ZEKE spectroscopy is related to the transition from the rovib-
ronic state of the neutral molecule ðavÞ or Wav . In the BOA,
Wav ¼ UaHav where Ua and Hav represent the wavefunctions of
the electronic motion and nuclear motion, respectively. We can
also see that in the IBOA, the channel coupling is due to the cou-
pling between ðcwmÞ and ðcw0m0Þ while the autoionization is due
to the coupling of the ZEKE states ðcwmÞ with the ZEKE continuum
states ðcw0k0Þ.

3. Quantum defect

Due to the channel couplings, each ZEKE state is not pure and
thus we can calculate the quantum defect for a ZEKE state and
the intensity borrowing in the ZEKE spectroscopy. For example,
we can calculate the quantum defect as follows. Suppose that we
let n denote the ZEKE state ðcwmÞ under consideration which will
be coupled to other lower Rydberg states like n1, n2, . . . by the
channel couplings as shown in Fig. 2. Then we have

Wn ¼ Cn;nW
0
n þ Cn;n1W

0
n1
þ Cn;n2W

0
n2
þ � � � ð3:1Þ

andbHWn ¼ EnWn ð3:2Þ
Cn;nðHn;n � EÞ þ Cn;n1 Hn;n1 þ Cn;n2 Hn;n2 þ � � � ¼ 0 ð3:3Þ
Cn1 ;nHn1 ;n þ Cn1 ;n1 ðHn1 ;n1 � EÞ ¼ 0 ð3:4Þ
Cn2 ;nHn2 ;n þ Cn2 ;n2 ðHn2 ;n2 � EÞ ¼ 0 ð3:5Þ
. . .

Here we assume that the couplings like Hni ;nj
ði – jÞ can be ne-

glected. It follows that

E ¼ Hn;n þ
X

ni

jHn;ni
j2

E� Hni ;ni

ð3:6Þ

or approximately

E ¼ Hn;n þ
X

ni

jHn;ni
j2

Hn;n � Hni ;ni

ð3:7Þ

In this Letter, for demonstration we shall consider the applications
of the IBOA model to the dynamics and spectroscopy of ZEKE states
of homonuclear diatomic molecules. In the following we consider a
simple model. Notice that Ucw in the Schrödinger equation of the



Fig. 2. A schematic plot showing the channel coupling ðcwmÞ $ ðcw0m0Þ and the autoionization ðcwmÞ $ ðcw0kÞ mechanisms.
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molecular ion core, Eq. (2.7), consists of the rovibronic energy levels
Ecw of the molecular ion plus the potential energy Ve of the ZEKE
electron. That is,

ðbT e þ VeÞUcwm ¼ ecwmUcwm ð3:8Þ

where

ecwm ¼ Ecwm � Ecw; Ve ¼ Ucw � Ecw ð3:9Þ

For Ve we shall for simplicity use the multipole expansion

Ve ¼ �
e2

r
þ V 0q ð3:10Þ

V 0q ¼ �e
QðRÞ

r3

4p
5

X2

�m¼�2

Y2 �mðh;/ÞY�2 �mðH;UÞ
" #

ð3:11Þ

where QðRÞ denotes the core quadrupole moment.
For our purpose, we shall use the notations; vþ and Nþ denote

the vibrational and rotational quantum numbers of the ion, while
ðnlmÞ represents the quantum numbers of high Rydberg states.

The quantum defect of N2 has been experimentally determined
by Merkt and Softley [10,20–22]. In the following, we demonstrate
how to calculate it by choosing the state fvþ ¼ 0; Nþ ¼ 0ðnlmÞg as
an example. Notice that

v 0þ ¼ 0; N0þ ¼ 2ðn0l0Þ V 0q
��� ���vþ ¼ 0; Nþ ¼ 0ðnlÞ

D E
¼ �ehvv 0þ¼0jQðRÞjvvþ¼0ihRn0 l0 jr�3jRnli

� 4p
5

X
mMþ

X
m0M0þ

X
�m

hYl0m0 jY2 �mjYlmi YN0þ¼2;M0þ Y�2 �m

�� ��YNþ¼0;Mþ
� �" #

ð3:12Þ

and

hRn0 ;l0 jr�pjRn;li ¼ ½ðnþ lÞ!ðn� l�1Þ!�
1
2½ðn0 þ l0Þ!ðn0 � l0 �1Þ!�

1
2

�
Xn�l�1

k¼0

Xn0�l0�1

k0¼0

ð�1Þkþk02lþl0þkþk0þ2 ðlþ l0 þ kþ k0 �pþ2Þ!
ðn�1þn0�1Þlþl0þkþk0�pþ3

"
� Fðnl;kÞFðn0l0;k0Þ

�
ð3:13Þ

where
Fðnl; kÞ ¼ ðn�1Þlþkþ2ðk!Þ�1½ðn� l� 1� kÞ!��1½ð2lþ 1� kÞ!��1 ð3:14Þ

and a similar expression for Fðn0l0; k0Þ.
Therefore, we can calculate the quantum defect as the energy

correction in Eq. (3.7) and evaluate the matrix element by Eq.
(3.12). Our preliminary results show that there seems no definite
correlation between the quantum defects and the rotational quan-
tum number. For example, for n = 200 we obtain the quantum de-
fects of �0.158, �0.322, 0.825 for N+ = 1, 2, 3, respectively. On the
other hand from the formulation shown in the above, it is clear the
vibrational quantum number dependence of the quantum defect is
roughly linear. This has been found to be consistent with the
experimental observation [7].

Merkt and Softley reported the rotationally resolved ZEKE spec-
tra of N2 for the bands X2Rþg ðvþ ¼ 0;1Þ  X0Rþg ðv ¼ 0Þ [10]. For
ðvþ ¼ 0Þ  ðv ¼ 0Þ band, they observed that the Q-branch is strong
and the O-branch is weak, and pointed out that the intensity bor-
rowing takes place. This intensity borrowing can be treated by cal-
culating the corresponding matrix elements similar to Eq. (3.12).
Our calculations show that the transition 00 ! 2þ of the S-branch,
due to the channel coupling, can borrow the 00 ! 0þ of the
Q-branch, due to the large gap E2þ � E0þ (that is, off-resonance),
the 00 ! 2þ transition is weak as experimentally observed. The
O-branch 20 ! 0þ can borrow the intensity from 20 ! 2þ. For the
ðv 0 ¼ 0! vþ ¼ 0Þ of N2, the spectral intensities of various bands
of S, O, M, . . . branches are determined by the intensity borrowing
from the Q-band and are determined by the energy differences like
E4þ � E0þ ; E0þ � E2þ , etc. For O-branch, M-branch, etc., accidental
resonances can happen to these energy gaps and consequently,
some anomalous peaks can be observed.
4. Rotational autoionization

We start with the Fermi golden rule expression for rotational
autoionization using the IBOA as a basis set [5–7]

W ðcwm!cw0kÞ ¼
2p
�h

Wcw0k
bH 0IBO

��� ���Wcwm

D E��� ���2qðEkÞ ð4:1Þ

where qðEkÞ is the density of state around energy Ek. Notice that



Table 1
Rotational autoionization for the transition of fvþ ¼ 0; Nþ ¼ 2; JMJðnlÞg !
fv 0þ ¼ 0; N0þ ¼ 0; JMJðklÞg. The energy of the continuum state is 156 cm�1.

n l J Rate
(s�1) IBOA

Rate
(s�1) MI

150 2 2 4.076E+07 4.076E+07
150 3 3 4.831E+06 4.830E+06
150 4 4 1.016E+06 1.016E+06
150 5 5 2.940E+05 2.940E+05
150 6 6 1.042E+05 1.042E+05
150 7 7 4.240E+04 4.239E+04
150 8 8 1.900E+04 1.900E+04
150 9 9 9.125E+03 9.124E+03
150 10 10 4.603E+03 4.602E+03

250 2 2 8.805E+06 8.804E+06
250 3 3 1.044E+06 1.043E+06
250 4 4 2.195E+05 2.195E+05
250 5 5 6.356E+04 6.355E+04
250 6 6 2.254E+04 2.254E+04
250 7 7 9.178E+03 9.177E+03
250 8 8 4.118E+03 4.118E+03
250 9 9 1.981E+03 1.981E+03
250 10 10 1.001E+03 1.001E+03

Table 2
Vibrational autoionization for the transition of fvþ ¼ 1; Nþ ¼ 0; JMJðnlÞg !
fv 0þ ¼ 0; N0þ ¼ 2; JMJðklÞg. The energy of the continuum state is 2035 cm�1.

n l J Rate
(s�1) IBOA

Rate
(s�1) MI

150 2 2 1.710E+06 1.710E+06
150 3 3 1.906E+05 1.905E+05
150 4 4 3.534E+04 3.534E+04
150 5 5 8.270E+03 8.269E+03
150 6 6 2.135E+03 2.135E+03
150 7 7 5.638E+02 5.637E+02
150 8 8 1.455E+02 1.455E+02
150 9 9 3.569E+01 3.569E+01
150 10 10 8.177E+00 8.178E+00

250 2 2 3.695E+05 3.694E+05
250 3 3 4.117E+04 4.116E+04
250 4 4 7.638E+03 7.637E+03
250 5 5 1.788E+03 1.788E+03
250 6 6 4.621E+02 4.621E+02
250 7 7 1.222E+02 1.222E+02
250 8 8 3.159E+01 3.158E+01
250 9 9 7.765E+00 7.764E+00
250 10 10 1.784E+00 1.786E+00
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Wcw0k
bH 0IBO

��� ���Wcwm

D E
¼ � �h2

me
hUcw0kjhHcw0 jrejHcwi � jreUcwmi ð4:2Þ

For a homonuclear diatomic molecule, the interaction between the
ZEKE electron and the molecular ion can be expressed as shown in
Eq. (3.11). In Eqs. (4.1) and (4.2) Ucwm and Ucw0k denote the bound
state and continuum state of the ZEKE electron, respectively, while
Hcw and Hcw0 represent the wavefunctions the remaining degrees of
freedom of the ion.

Carrying out the time-independent perturbation to the ionic
wavefunction, we obtain

hHcw0 jrejHcwi ¼
H0

cw0 reV 0q
��� ���H0

cw

D E
E0

cw � E0
cw0

ð4:3Þ

and

Wcw0k
bH 0IBO

��� ���Wcwm

D E
¼ � �h2

me

1
E0

cw � E0
cw0

Ucw0k H0
cw0 reV 0q
��� ���H0

cw

D E
�

��� ���reUcwm

D E
ð4:4Þ

For spherical harmonics, we obtain

Yl0m0
@Y2 �m

@h

���� ���� @Ylm

@h

� �
þ Yl0m0

1
sin h

@Y2 �m

@/

���� ���� 1
sin h

@Ylm

@/

� �
¼ Dl0 ;lhYl0m0 jY2 �mjYlmi ð4:5Þ

where

Dl;l ¼ 3
Dlþ2;l ¼ �2l

Dl�2;l ¼ 2ðlþ 1Þ

8><>: ð4:6Þ

Therefore, we can obtain the final expression of transition matrix
element as

v 0þN0þJMJðkl0Þ bH 0IBO

��� ���vþNþJMJðnlÞ
D E
¼��h2

me

ð�eÞ
E0

vþNþ �E0
v 0þN0þ

hvv 0þ jQðRÞjvvþ i

� 4p
5

X
mMþ

X
m0M0þ

X
�m

C
JMJ

mMþ
C

JMJ

m0M0þ
hYl0m0 jY2 �mjYlmi YN0þM0þ Y�2 �m

�� ��YNþMþ
� �" #

� Dl0 ;lhRkl0 jr�5jRnli�3hRkl0 jr�4 dRnl

dr

���� �� 	
ð4:7Þ

where QðRÞ denotes the core quadrupole moment, vvþ denotes the
wavefunction of vibrational state vþ, and C

JMJ
mM represents the

Clebsch–Gordan coefficient for the coupling between the electronic
orbital angular momentum and the core rotational motion; J and MJ

denote the total angular momentum and its projection on the
space-fixed z axis. Besides, the radial integrals in Eq. (4.7) were
performed numerically.

In the case of rotational autoionization of H2, the numerical re-
sults are given in Table 1 for the transition fvþ ¼ 0; Nþ ¼
2; JMJðnlÞg ! fv 0þ ¼ 0; N0þ ¼ 0; JMJðklÞg. For a homonuclear mol-
ecule like H2, only transitions l0 ¼ l and l0 ¼ l� 2 are allowed. In
our calculation, the largest contribution comes from the transition
l0 ¼ l, which is few orders of magnitude larger than those from
l0 ¼ l� 2 mainly due to its larger radial matrix element. Further-
more, from Tables 1 and 2, we can see that the rotational autoion-
ization rates decrease with increasing l and decrease with
increasing n for a given l value. From the tables we can see that
the n3 scaling law holds well and gives a very consistent estimation
of the autoionization rate. This dependence is easily verified as a
result of the factor of n�3/2 in the asymptotic bound-state wave-
function with high n.

5. Vibrational autoionization

We consider the vibrational autoionization described by the
transition

fvþ ¼ 1; Nþ ¼ 0; JMJðnlÞg ! fvþ ¼ 0; Nþ ¼ 2; JMJðklÞg

The calculated vibrational autoionization rates of H2 are shown in
Table 2. From Table 2, we can see that the behaviors of vibrational
autoionization are similar to those of rotational autoionization.
With the same rotational transition, the discrepancy between them
is mainly attributed to the vibrational matrix elements.

From Tables 1 and 2, we see that the autoionization rates are
quite sensitive to n; l. In addition, their energy dependence is given
as follows. We have calculated the rates by changing the energy
gap and k in Eq. (4.7). For example, for the transitions in Table 1
with n ¼ 150 and l ¼ 3, we obtain the rates of 4:842� 106,
4:757� 106, 4:647� 106 s�1 for the energies of 100, 500,
1000 cm�1, respectively. We can see that the variation on rates is
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small. In fact, our calculation shows that, in Eq. (4.7), the parenthe-
sis containing the radial matrix element is approximately propor-
tional to the energy difference which is roughly canceled out by
the energy gap in the coefficient.

In ZEKE experiments, the influence of Stark-mixing due to the
stray residue field needs to be included in our discussion of autoi-
onization rates. Chao et al. have proposed that the optically acces-
sible populations in low-l states would transfer to high-l states,
resulting in reduction of core penetration [7]. That is, the low-l
states contributing significantly near the ion core experience a
stronger interaction with the core. Hence, electrons in low-l states
would quickly disappear through various relaxation processes.
From Tables 1 and 2, we can see that the transition rate decreases
significantly as l increases for both rotational and vibrational autoi-
onization. Consequently, after a long period of delay time, only the
states with higher l would survive and be observed in ZEKE exper-
iments. In the case of l ¼ 3, the lifetime of rotational autoionization
from high Rydberg state is about 1 ls, and that of vibrational autoi-
onization is about one order of magnitude smaller. The autoioniza-
tion in this range might be observed in the ZEKE experiments with
comparable delay time.

6. Discussion

It should be noted that in Section 2 in discussing the theory of
ZEKE spectroscopy we calculate the optical absorption rate
constant W ðav!cwmÞ for various transitions like ðavÞ ! ðcwmÞ as a
function of laser intensity, pulse-duration, laser-polarization and
laser-wavelength. However, in ZEKE spectroscopy, the ZEKE signal
is obtained by, in addition to this optical pumping (or absorption),
the extraction of ZEKE electrons by a discriminating field and an
extraction electric field, and thus the signal can often be interfered
by autoionizations. In field extraction of ZEKE electrons, tunneling
ionization might play some role.

The rotational and the vibrational autoionization have often
been evaluated based on the multipole interaction (MI) model
[23–27], which was first pointed out by Russek et al. [23] and fol-
lowed by Jungen and Miescher [24] and Eyler [25]. For example, for
the Fermi golden rule expression of autoionization cwm! cw0k
due to V 0q the rate can be expressed as

W ðcwm!cw0kÞ ¼
2p
�h

Wcw0k V 0q
��� ���Wcwm

D E��� ���2qðEkÞ ð6:1Þ

It follows that

v 0þN0þJMJðkl0Þ V 0q
��� ���vþNþJMJðnlÞ

D E
¼�ehvv 0þ jQðRÞjvvþ ihRkl0 jr�3jRnli

� 4p
5

X
mMþ

X
m0M0þ

X
�m

C
JMJ

mMþC
JMJ

m0M0þ hYl0m0 jY2 �mjYlmi YN0þM0þ Y�2 �m

�� ��YNþMþ
� �" #

ð6:2Þ

Numerical calculations have been performed to compare the above
expression with ours based on the use of IBOA. The results are given
in Tables 1 and 2 denoted as MI. We can see that the agreement for
both vibrational and rotational autoionization rates is excellent.
Next, we shall compare the formulations between the two models
as discussed by Russek et al. [23].

Referring to Eqs. (2.7) and (2.8), we can obtain the unperturbed
Hamiltonian by neglecting the higher order interactions:bH0

ionH
0
cw ¼ U0

cwH0
cw ð6:3Þ

bT e �
e2

r


 �
U0

m ¼ E0
mU0

m ð6:4Þ

We note that to the zeroth-order, this representation is the same as
the traditional Hund’s case (d). From Eq. (6.4), we can derive that
U0
f V 0q
��� ���bT eU

0
i

D E
� bT eU

0
f V 0q
��� ���U0

i

D E
¼ E0

i � E0
f

� 

U0

f V 0q
��� ���U0

i

D E
ð6:5Þ

Also notice that

� �h2

2me
r2

eU
0
f V 0q
��� ���U0

i

D E
¼� �h2

2me
U0

f V 0q
��� ���r2

eU
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i

D E
þ2 U0

f reV 0q�
��� ���reU

0
i

D E
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f r2
e V 0q

��� ���U0
i

D Eh i
ð6:6Þ

To derive Eq. (6.6), we need to perform integration by parts two
times to pass re to the right side. Substituting Eq. (6.6) to Eq.
(6.5), we obtain

U0
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��� ���U0

i

D E
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2me

1

E0
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i
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� 2 U0
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0
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f r2
e V 0q
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i

D Eh i
ð6:7Þ

Because the quadrupole interaction involves the core dependence,
we shall multiply both sides of Eq. (6.7) by the ionic wavefunctions
and integrate over the ionic coordinates. Then, we obtain the autoi-
onization matrix element used in the MI model

H0
cw0 U0

f V 0q
��� ���U0

i

D E��� ���H0
cw

D E
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2me
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E0
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� 2 H0

cw0 U0
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��� ���reU

0
i

D E��� ���H0
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D Eh
þ H0

cw0 U0
f r2

e V 0q
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i

D E��� ���H0
cw

D Ei
ð6:8Þ

Switching the sequence of the two integrals, the first term on the
right-hand side is in accordance with the matrix element in Eq.
(4.2) in the formulation of IBOA, while the second term is evidently
zero for the quadrupole term is a solution of Laplace equation in the
electronic coordinate. Here we shall stress that this derivation is
based on the use of multipole expansion, in which we employed
the unperturbed wavefunction and its first-order correction. The
generality of Eq. (6.8) should be examined for other assumptions
and conditions. In fact, the origins of the two formulations (Eqs.
(4.2) and (6.1)) are quite different and the results are not necessarily
equivalent. At any rate, we see that the IBOA approach is more ver-
satile and can be systematically generalized to include other higher
order interactions. As emphasized previously [23,25], the present
model works mainly for non-penetrating states. For penetrating
states, higher order terms need to be included.

It is also interesting to compare our IBOA to the MQDT [3,4,9–
11], which has been employed to study high Rydberg states. The
MQDT is a scattering theory while our IBOA is based on eigenfunc-
tion expansion; i.e., a bound state description. Using the IBOA, the
interactions between the Rydberg electron and the ion core can be
systematically included and calculated. Therefore, the IBOA in this
sense is useful in providing an alternative approach to the MQDT to
better understand the many faces of high Rydberg states.
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