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Abstract Inflationary higher derivative scalar-tensor the-
ory is analyzed in this paper in a de Sitter background
space. A useful model-independent formula of the Fried-
mann equation is derived and used to study the stability
problem associated with the anisotropic perturbations of the
inflationary solution. The stability conditions of the de Sit-
ter solution are derived for a general class of models. For
a simple demonstration, an induced gravity model is con-
sidered in this paper for the effects of the higher derivative
interactions including a cubic term.

PACS 98.80.Cq · 04.20.-q · 04.20.Cv

1 Introduction

The physical universe is a highly homogeneous and isotropic
[1, 2] space known as the Friedmann–Robertson–Walker
(FRW) space [3–6]. The cosmological problems, such as
the flatness, the monopole, and the horizon problem, associ-
ated with the standard big bang model can be resolved by a
successful inflationary mechanism [7–10].

Moreover, the Einstein–Hilbert models are expected to
acquire higher derivative modifications near the Planck scale
[11, 12]. For example, the quantum gravity and the string
theories both show that the higher derivative terms could
have interesting cosmological implications [11, 12] in the
high energy domain. On the other hand, the higher deriva-
tive terms can also be interpreted as the quantum corrections
of the matter fields [13–15]. Therefore, the possibility of de-
riving inflation from the higher derivative corrections has
been a focus of research interest for a long time [14–18]. In
addition, a general analysis on the stability conditions of the
gravity theories is also useful in the search of the compatible
physical models with our physical universe. For example,
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the stability conditions for a variety of pure gravity theories
as a potential candidate of inflationary universe in the flat
Friedmann–Robertson–Walker (FRW) space has been dis-
cussed in detail in Refs. [16, 17, 19–24].

It is known that any stable isotropically expanding solu-
tion should also be stable against any anisotropic perturba-
tion. In fact, our physical universe could be anisotropic in
the early stage of the evolution. It is therefore interesting to
study the stability conditions derived from the anisotropic
perturbations against a de Sitter expanding space during the
early epoch. For instance, it has been shown that an infla-
tionary solution does exist for an NS-NS model with a met-
ric, a dilaton, and an axion field [25] in a Bianchi space.
This inflationary solution can be shown to be stable against
small anisotropic perturbations [26]. Similar analysis has
also been studied for a variety of models [27].

Recently, there are growing interests in the study of the
Kantowski–Sachs (KS) type spaces [28–30]. We will hence
propose to study the existence and stability problem of the
inflationary solution in a KS space. In particular, we will
focus on the effects of the higher derivative terms in the KS
space. Note that the stability analysis for a large class of pure
gravity models admitting an inflationary KS/FRW solution
was presented in Refs. [31, 32]. It is shown that the stability
conditions of the de Sitter background space are closely re-
lated to the choice of the coupling constants in these models.
For later convenience, any KS type solution that approaches
asymptotically to a FRW final de Sitter state will be referred
to as the KS/FRW solution in this paper.

The perturbation equations for any small anisotropic per-
turbations in a KS type space are identical to the perturba-
tion equations for any small isotropic perturbations against
the isotropic de Sitter space in the inflationary phase [16,
17, 19, 20]. Therefore, the existence of an unstable mode
of the perturbation equations will ensure a proper resolution
for the graceful exit problem both for the anisotropic per-
turbations and the isotropic perturbations in the inflationary
phase as long as they both approach the same final de Sitter
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state. In certain models, unstable modes may not exist for
the pure gravity models. A slow roll-over scalar field could
hopefully provide a possible alternative to this problem. The
slow roll-over scalar field will hold the de Sitter phase stable
for a brief moment before the inflationary phase comes to
an end. The anisotropic perturbations of these models may,
however, not be compatible with the slow changing scalar
field. Therefore, we need to solve the perturbation equations
carefully in order to find out possible constraints on the cou-
pling constants in these models. Once the inflation is over,
the stable modes will ensure that the de Sitter space can
remain stable and anisotropy will not grow out of control.
Therefore, the absence of an unstable mode in the post in-
flationary era is also critical to the stability of the de Sitter
background.

To be more specifically, an inflationary de Sitter solution
in a scalar-tensor theory must have at least an unstable mode
for the perturbation in δφ or some linear combinations of the
δH and δφ. Accordingly, the inflationary era will come to an
end once the unstable mode takes over after a brief period
�t of inflationary expansion. If this period �t is not long
enough to derive 60-e fold inflationary expansion, the infla-
tionary phase will be ended and wipe out the effect of the
slow-rolling scalar field. Therefore, a unstable mode with a
reasonable large unstable period �t is needed for the grace-
ful exit problem. We will show that the scalar field does pro-
vide a proper resolution to the graceful exit problem in this
paper for in the higher derivative induced gravity models.

This paper will be organized as follows: (1) the derivation
of a simple and model-independent formula of the Fried-
mann equation for a pure gravity theory will be reviewed
briefly in Sect. 2; (2) a more general and model-independent
stability analysis of the higher derivative scalar tensor mod-
els will be presented in Sect. 3; (3) in Sect. 4, we will fo-
cus on the higher derivative induced model with a cubic La-
grangian as an explicit example; (4) the conclusions will be
presented in Sect. 5.

2 The Friedmann equation and the Bianchi identity
in a KS space

The metric of the Kantowski–Sachs type space can be writ-
ten as

ds2 = −dt2 + c2(t) dr2 + a2(t)
(
d2θ + f 2(θ) dϕ2) (1)

with f (θ) = (θ, sinh θ, sin θ) denoting the flat, open and
close anisotropic space. More specifically, the Bianchi I
(BI), III (BIII), and Kantowski–Sachs (KS) space corre-
sponds to the flat, open and closed model respectively. This
metric can also be written as

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dθ2

)
+ a2

z (t) dz2 (2)

with r and θ the polar coordinates, and z as the z-coordinate.
Note that k = 0,1,−1 stands for the flat, open and closed
universes similar to the FRW space when a = az.

Writing Hμν ≡ Gμν − Tμν , the Einstein equation can be
written as DμHμν = 0 by incorporating the Bianchi iden-
tity, DμGμν = 0, and the energy momentum conservation,
DμT μν = 0. Here Gμν and T μν represent the Einstein ten-
sor and the energy momentum tensor coupled to the sys-
tem respectively. With the metric (2), it can be shown that
the r component of the equation DμHμν = 0 implies that
Hr

r = Hθ
θ . This result also says that any matter coupled to

the system must have the symmetric property T r
r = T θ

θ . In
addition, the equations DμHμθ = 0 and DμHμz = 0 both
vanish identically for all kinds of energy momentum ten-
sors. The most interesting information comes from the t

component of this equation. It says that (∂t + 3H)Ht
t =

2H1H
r
r + HzH

z
z . This equation asserts that (i) Ht

t = 0 im-
plies that Hr

r = Hz
z = 0 and (ii) Hr

r = Hz
z = 0 only implies

(∂t + 3H)Ht
t = 0 instead of Ht

t = 0. The case (ii) can be
solved to give Ht

t = constant × exp[−a2az] that approaches
zero when a2az → ∞.

For an anisotropic KS space, the metric contains two
independent variables a and az. The Einstein field equa-
tions have, however, three non-vanishing components, i.e.,
Ht

t = 0, Hr
r = Hθ

θ = 0 and Hz
z = 0. The Bianchi identity

implies that the t t component is not redundant and hence
must be retained for a complete analysis. Ignoring either one
of the rr or zz components will not, however, affect the final
result of the system. In short, the Ht

t = 0 equation, known
as the generalized Friedmann equation, is a non-redundant
field equation as compared to the Hr

r = 0 and Hz
z = 0 equa-

tions.
By restoring the gtt component b2(t) = 1/B1 will be

helpful in deriving the non-redundant field equation associ-
ated with Gtt that will be shown shortly. More specifically,
we will introduce the generalized KS metric:

ds2 = −b2(t) dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dθ2

)

+ a2
z (t) dz2 (3)

for the following reasons. In principle, the Lagrangian of the
system should reduce from a functional of the metric gμν ,
or equivalently L(gμν), to a simpler function of a(t) and
az(t), namely L(a(t), az(t)) ≡ a2azL(gμν(a(t), az(t))).
The equation of motion as a function of a(t) and az(t)

should be derivable from the variation of the effective La-
grangian L(t) with respect to the variable a and az. The
result is, however, incomplete because the variation of a

and az are related to the variation of grr and gzz respec-
tively. The field equation from the variation of gtt cannot be
derived from the effective Lagrangian without restoring the
variable b(t) in advance. This is the motivation to introduce
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the metric (3) such that the effective Lagrangian L(t) ≡
ba2azL(gμν(b(t), a(t), az(t))) restores the non-redundant
information hidden in the Ht

t = 0 equation associated with
the variation of the gtt equation. The non-redundant Fried-
mann equation can hence be reproduced by setting b = 1
after the variation of b(t) has been done.

Note that all non-vanishing components of the curvature
tensor can be computed as [31, 32]

Rti
tj =

[
1

2
Ḃ1Hi + B1

(
Ḣi + H 2

i

)]
δi
j (4)

R
ij
kl = B1HiHjε

ijmεklm + k

a2
εijzεklz (5)

with Hi ≡ (ȧ/a, ȧ/a, ȧz/az) ≡ (H1,H2 = H1,Hz) for r, θ ,
and z component respectively.

Given a pure gravity model with a reduced Lagrangian
L = √

gL = L(b(t), a((t), az(t)), it can be shown that

L = a2az√
B1

L
(
Rti

tj ,R
ij
kl

) = a2az√
B1

L
(
Hi, Ḣi, a

2) (6)

with B1 = b−2 for convenience. As mentioned earlier the
Friedmann equation can be derived from the variational
equation with respect to the δB1(= δb−2 = −2δb/b3)-
equation of the reduced Lagrangian L. Our task here is to
replace all δB1 and δḂ1 effectively with δHi and δḢi such
that before we can set B1 = 1 freely without any trouble and
write the Friedmann equation free of the function b(t). As a
result, we can derive the field equations directly from the gij

components more easily without bothering the restoration
of the gtt information any more. As a result, the Friedmann
equation can be obtained from the above method by replac-
ing δL/δB1 and δL/δḂ1 with some proper combinations of
δL/δHi and δL/δḢi .

As a result, the Friedmann equation for the pure gravity
model L can be shown to be [31, 32]

DL ≡ L + Hi

(
d

dt
+ 3H

)
Li − HiLi − ḢiL

i = 0 (7)

DzL ≡ L +
(

d

dt
+ 3H

)2

Lz −
(

d

dt
+ 3H

)
Lz = 0 (8)

Here Li ≡ δL/δHi , Li ≡ δL/δḢi , and 3H ≡ ∑
i Hi . The

second equation is derived from the variation equation δaz.
For simplicity, we have written L as L in the above equa-
tions. Note again that the δa1 equation is redundant follow-
ing the Bianchi identity shown above.

The proof follows from an observation that Ḃ1 always
shows up as a combination of Ḃ1Hi +2B1(Ḣi +H 2

i ). There-
fore δL/δḂ1 = HiδL/[2δḢi]. Here we have set B1 = 1
whenever it will not affect the final result. Moreover, the
summation over repeated indices is not written explicitly.
In addition, δL/δB1 = HiδL/[2δHi] + ḢiδL/δḢi if L =

L(B1(a
iḢi + aijHiHj )) for any arbitrary “constant” coef-

ficients ai and aij . In fact, it can be shown that this result
holds for all anisotropic Bianchi type spaces including the
KS type spaces shown in (4)–(5). Indeed, the term B1Ḣi will
always show up together with B1HiHj from the dimension
analysis. Therefore the Friedmann equation derived above is
a universal formula holds for all homogeneous Bianchi type
spaces.

3 Higher derivative scalar tensor model

With an additional scalar field Lagrangian Lφ coupled to the
scalar tensor Lagrangian Lg , we will have

L =
∑

a

fa(φ)L(a) + Lφ

≡
∑

a

fa(φ)L(a)(Hi, Ḣi) − 1

2
∂μφ∂μφ − V (φ) (9)

with fa(φ) some polynomial functions of φ and L(a) some
ath order pure gravity Lagrangian. These models are also
known as modified gravity theories. For example, f1(φ) =
εφ2/2, L(1) = −R, f2 = −α, L(2) = R2, f3(φ) = γφ−2

and L(3) = R3 stand for the induced gravity model of the
Einstein–Hilbert action, the quadratic term and the cubic La-
grangian of the system. Here V (φ) denotes the scalar field
potential coupled to the gravitational system.

The Friedmann equation becomes

D

[∑

i

fa(φ)L(a)

]

=
∑

a

fa(φ)DL(a) +
[∑

a

Hif
′
a(φ)φ̇

]
Li

(a)

= 1

2
φ̇2 + V (φ) (10)

for this model. In addition, the scalar field equation can be
shown to be

φ̈ + 3H0φ̇ + V ′ =
∑

a

f ′
a(φ)L(a) (11)

We will focus on the stability problem of an inflationary
de Sitter background solution Hi = H0 and φ = φ0 with a
constant Hubble parameter H0 and a constant initial scalar
field φ0. Let Hi = H0 + δHi and φ = φ0 + δφ be the
anisotropic perturbations against the constant de Sitter back-
ground space. As a result, we have
∑

a

fa(φ0)DL(a)(Hi = H0) = V (φ0) (12)

V ′(φ0) =
∑

a

f ′
a(φ0)L(a) (13)
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as the leading zeroth-order equations of the perturbation
equations.

The first-order perturbation equations of the pure gravity
part of DL can be shown to be

δ(DL) = 〈
HiL

ij δḦj

〉 + 3H
〈
HiL

ij δḢj

〉

+ 3H
〈(
HiL

i
j + Lj

)
δHj

〉 + 〈
HiL

i
〉
δ(3H)

− 〈HiLij δHj 〉 (14)

for any DL(a) defined by (7) with all functions of Hi eval-
uated in the de Sitter background Hi = H0. From now on,
the notation 〈AiBi〉 ≡ ∑

i=1,z AiBi denotes the summation
over i = 1 and z for repeated indices. Note that we have ab-
sorbed the information of i = 2 into i = 1. They contributes
equally to the field equations in the KS type spaces. In addi-
tion, Li

j ≡ δ2L(a)/δḢiδHj and similarly for Lij and Lij .

Here the upper index i and the lower index j denote the
variation with respect to Ḣi and Hj respectively for conve-
nience. Note that the perturbation equation associated with
(8) can also be shown to be the same as (14) in the de Sitter
space due to the symmetry of the de Sitter background space
[7–10].

In addition, it can be shown that 〈HiL
i1〉 = 2〈HiL

iz〉,
〈HiL

i
1〉 = 2〈HiL

i
z〉, L1 = 2Lz, 〈HiLi1〉 = 2〈HiLiz〉, and

L1 = 2Lz for a KS type space approaching the inflationary
de Sitter background metric with Hi = H0. As a result, the
stability equations (14) can be greatly simplified. For conve-
nience, we will also define the operator DL as

DLδH ≡ 〈
HiL

i1〉δḦ + 3H
〈
HiL

i1〉δḢ

+ 3H
〈
HiL

i
1 + L1〉δH + 2

〈
HiL

i
〉
δH

− 〈HiLi1〉δH (15)

This equation hence becomes

DLδH = H0
[〈
Li1〉δḦ + 3H0

〈
Li1〉δḢ

+ (
3
〈
H0L

i
1 + L1〉 + 2

〈
Li

〉 − 〈Li1〉
)
δH

]
(16)

= H0
〈
Li1〉

[
δḦ + 3H0δḢ (17)

+
(

3〈H0L
i
1 + L1〉 + 2〈Li〉 − 〈Li1〉

〈Li1〉
)

δH

]

when the constant Hubble parameter is written explicitly.
For convenience, we will also write DL(a)

δH = DaδH . As
a result, the stability equation can be written as

δ(DL(a)) = Da

(
δH1 + δHz

2

)
= 3

2
Da(δH) (18)

with H = (2H1 + Hz)/3 as the mean value of all Hi .

Hence the first-order perturbation equation in δH and δφ

of the Friedmann equation can be shown to be

3

2

∑

a

fa(φ0)DaδH =
[
V ′(φ0) −

∑

a

f ′
a(φ0)DL(a)

]
δφ

− 3

2

[∑

a

H0f
′
a(φ0)

]
L1

(a)δφ̇ (19)

Therefore, we will be solving the following equation:

3

2
H0

〈
Li1〉[δḦ + 3H0δḢ + KH 2

0 δH
]

=
[
V ′(φ0) −

∑

a

f ′
a(φ0)DL(a)

]
δφ

− 3

2

[∑

a

H0f
′
a(φ0)

]
L1

(a)δφ̇ (20)

with

K ≡ 3〈H0L
i
1 + L1〉 + 2〈Li〉 − 〈Li1〉

〈Li1〉H 2
0

,

and L = ∑
a fa(φ0)L(a) the total coefficient K and the to-

tal gravitational Lagrangian respectively in the constant φ0

and H0 background space. The explicit expression of K de-
pends on the models being considered. The values of K

plays, however, some crucial rolls in the stability problem
of the corresponding de Sitter universe. Some general selec-
tion rules can be obtained in a straightforward way. Simi-
larly, the first order perturbation equation of the scalar field
can be shown to be

δφ̈ + 3H0δφ̇ + JH 2
0 δφ

= 3

2

∑

a

f ′
a(φ0)

[
L1

(a)δḢ + L(a)1δH
]

(21)

with

J =
[
V ′′

0 −
∑

a

f ′′
a (φ0)L(a)

]
H−2

0

In addition, the variational equation of δaz can be shown
explicitly to be redundant in the limit Hi = H0 + δHi and
φ = φ0 + δφ following the Bianchi identity. In summary,
the values of J and K will affect the stability of the de Sit-
ter solution. The above equations hence provide a model-
independent method in determining whether a model is
compatible with the inflationary de Sitter universe.

Indeed, by assuming that δH = exp[hH0t]δH0 and δφ =
exp[pH0t]δφ0 for some constants h and p, we can write the
above equations as

3

2
H 3

0

〈
Li1〉[h2 + 3h + K

]
δH
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= −3

2

∑

a

H 2
0 f ′

a(φ0)L
1
(a)[p − J1]δφ (22)

H 2
0

(
p2 + 3p + J

)
δφ

= 3

2

∑

a

f ′
a(φ0)L

1
(a)H0[h + K1]δH (23)

with K1 = [∑a f ′
a(φ0)L(a)1]/[∑a f ′

a(φ0)L
1
(a)H0] and

J1 = 2
V ′(φ0) − ∑

a f ′
a(φ0)DL(a)

3
∑

a H 2
0 f ′

a(φ0)L
1
(a)

Note that the perturbation equation of δH shown on the left-
hand side of (22) is the same as the pure gravity model with
similar coupling constants. This equation is also the same as
the perturbation equation in their isotropic limit.

We will show that the stability of the anisotropic space
depends on the coefficient K . Indeed, (22) and (23) indicate
that there are two decaying modes for δH and δφ with

2h = −3 ± √
9 − 4K = −2K1 (24)

2p = −3 ± √
9 − 4J = 2J1 (25)

As a result the modified gravity models are subjected to
strong constraints in order to accommodate a consistent per-
turbative de Sitter inflationary solution:

Hi = H0 + Ai exp[−K1H0t] (26)

φ = φ0 + δφ0 exp[J1H0t] (27)

Here Ai and δφ0 are small initial perturbations at t = 0. Oth-
erwise, the only consistent perturbative solution would be
the trivial solution with δφ = 0 and/or δHi = 0.

Note that an unstable mode with p = J1H0 indicates that
the perturbative solution will remain stable for a brief period
of time of the order of 1/(J1H0). This means that the de
Sitter solution will not be stable once �t > 1/(J1H0). The
exact decaying process will, however, also depend on the
dynamics of the scalar field. For a slow roll-over scalar field,
the system may remain close to the de Sitter phase for a
brief period of time in competition with the instability period
�t ∼ 1/(J1H0) derived from the unstable mode p = J1H0.

4 Higher derivative induced gravity model

For a simple demonstration in this section, we will focus on
the higher derivative induced gravity model given by

L = −ε

2
φ2R − αR2 − βRμ

ν Rν
μ

+ γ

φ2
R

μν
βγ Rβγ

σρ Rσρ
μν − 1

2
∂μφ∂μφ − V (φ)

≡ ε

2
φ2L1 + L2 + γ

φ2
L3 + Lφ (28)

with L1 = −R, L2 = −αR2 − βR
μ
ν Rν

μ, L3 = R
μν
βγ R

βγ
σρ R

σρ
μν

and Lφ = − 1
2∂μφ∂μφ − V (φ) denoting the lowest order

curvature coupling, the higher order terms, and the scalar
field Lagrangian, respectively. By definition the induced
gravity models assume that all dimensionful parameters and
all coupling constants, except the symmetry breaking scale
parameter φ0, are induced by some proper choices of the
dynamical fields. For example, the gravitational constant
is replaced by 8πG = 2/(εφ2) as a dynamical field. In
addition, the cosmological constant becomes V (φ) in this
model. There is no need for any induced parameters for the
quadratic terms R2 and R2

μν because the coupling constants
α and β are both dimensionless by themselves. The action
of this system is also invariant under the global scale trans-
formation gμν → Λ−2gμν and φ → Λφ with some arbitrary
constant parameter Λ.

The corresponding Lagrangian can be shown to be

L = εφ2(2A + B + 2C + D)

− 4α
[
4A2 + B2 + 4C2 + D2 + 4AB + 8AC + 4AD

+ 4BC + 2BD + 4CD
] − 2β

[
3A2 + B2 + 3C2 + D2

+ 2AB + 2AC + 2AD + 2BC + 2CD
]

+ 8
γ

φ2

[
2A3 + B3 + 2C3 + D3]

+ 1

2
φ̇2 − V (φ) (29)

in the Kantowski–Sachs type spaces. Here A = Ḣ1 + H 2
1 ,

B = H 2
1 + k/a2, C = H1Hz, D = Ḣz + H 2

z . This La-
grangian can be shown to reproduce the de Sitter models
when we set Hi → H0 in the isotropic limit.

The Friedmann equation (10) reads

1

2
εφ2DL1 + DL2 + γ

φ2
DL3 + εφφ̇HiL

i
1 − 2

γ

φ3
φ̇HiL

i
3

= 1

2
φ̇2 + V (φ) (30)

for the induced gravity model. In addition, the scalar field
equation (11) can be shown to be:

φ̈ + 3H0φ̇ + V ′ = εφL1 − 2
γ

φ3
L3 (31)

As a result, the leading order Friedmann equation and the
scalar field equation can be shown to be

V0 ≡ V (φ0) = 3ε0φ
2
0H 2

0 (32)

V ′(φ0) = 12ε0φ0H
2
0 (33)

in the presence of the de Sitter solution with φ = φ0 and
Hi = H0 for all directions. Here ε0 ≡ ε[1 − 8γH 4

0 /(εφ4
0)].
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The conventional approach assumes that the scalar field is
a slow roll-over field obeying φ̈ 
 V ′ and H0φ̇ 
 V ′ near
the inflationary phase. It can be shown that in the de Sit-
ter inflationary phase, the dynamical part of the scalar field
equation evolves as φ̈ + 3H0φ̇ ∼ 0. This equation leads to
the approximate solution

φ ∼ φ0 + φ̇0

3H0

[
1 − exp(−3H0t)

]
(34)

This result is clearly consistent with the slow roll-over as-
sumption we just made. In summary, the zeroth order equa-
tions lead to a few constraints on the field parameters:

4V0 = φ0
∂V

∂φ
(φ = φ0) = 12ε0φ

2
0H 2

0 (35)

An appropriate effective spontaneously symmetry breaking
potential V of the form

V (φ) = λ

4

(
φ2 − φ2

0

)2 + 6ε0H
2
0

(
φ2 − φ2

0

) + 3ε0H
2
0 φ2

0 (36)

with arbitrary coupling constant λ, can be shown to be a
good candidate satisfying all the scaling conditions (35).

The value of H0 can be chosen to induce enough inflation
for a brief moment as long as the slow roll-over scalar field
remains close to the initial state φ = φ0. The de Sitter phase
will hence remain valid and drive the inflationary process
for a brief moment governed by the decaying speed of the
scalar field.

The inflationary Hubble parameter H0 is related to γ, ε0,

and V0 by the following equation:

H 6
0 − εφ2

0

8γ
H 2

0 + V0

3εφ2
0

= 0 (37)

This equation can be solved to give

H 2
0 =

√
εφ2

0

6γ
cos

[
θ0 ∓ π

3

]
(38)

with cos θ0 ≡ √
6γ /εV0/[εφ3

0 ]. As a result,

ε0 = ε

[
1 − 4

3φ2
0

cos2
(

θ0 ∓ π

3

)]
(39)

A different choice of ε0 is therefore equivalent to a different
choice of initial state V0 and vice versa. For the practical rea-
sons, we can take either ε0 or V0 related by above equation
as a free parameter.

Note that the local extremum of this effective potential
can be shown to be φ = 0 (local maximum) and φ2 = φ2

m =
φ2

0 −12ε0H
2
0 /λ < φ2

0 (local minimum). In addition the min-
imum value of the effective potential can be shown to be

Vm = V0 − 36ε2
0H 4

0 /λ < V0 (40)

The constraint Vm > 0 implies that λφ2
0 > 12ε0H

2
0 . Or

equivalently, it implies that φ2
m > 0. In addition, we will set

εφ2
m/2 = 1/(8πG) = 1 in Planck units for convenience in

this paper.
When the scalar field settles down to the local minimum

φm of the effective potential at large time in the post infla-
tionary era, it will oscillate around the local minimum and
kick off the reheating process. The scalar field will eventu-
ally become a constant background field and induces a small
cosmological constant Vm = V (φm).

The final state φ = φm requires the identity

ε0H
2
0 = εmH 2

m (41)

for the consistency of a stable final state. Here εm ≡ ε[1 −
8γH 4

m/(εφ4
m)]. By solving H 2

m as a function of H 2
0 , we can

obtain

H 2
m =

√
εφ4

m

6γ
cos

[
θm ∓ π

3

]
(42)

with the following constraint:

cos θm =
[

54γ

εφ4
m

]1/2[
1 − 8γH 4

0

εφ4
0

]
≤ 1 (43)

Hence we have

ε0

ε
≤

[
εφ4

m

54γ

]1/2

=
[

2

27εγ

]1/2

(44)

This implies the inequality (27ε2
0 − 16H 4

0 /φ4
0)γ ≤ 2ε0.

Therefore, we have

γ ≤ 2ε0

27ε2
0 − 16H 4

0 /φ4
0

(45)

if the denominator 27ε2
0 − 16H 4

0 /φ4
0 is positive. Otherwise,

the inequality (27ε2
0 − 16H 4

0 /φ4
0)γ ≤ 2ε0 is automatically

satisfied. In addition, the leading order perturbation equation
in δH and δφ of the Friedmann equation in this model can
be shown to be

4

(
3α + β − 6γ

H 2
0

φ2
0

)(
δḦ + 3H0δḢ + KH 2

0 δH
)

= ε

(
1 − 24

γH 4
0

εφ4
0

)
φ0[δφ̇ − H0δφ] (46)

with

K = 24γH 4
0 /φ2

0 − εφ2
0

4(3α + β − 6γH 2
0 /φ2

0)H 2
0

Similarly, the leading perturbation equation of the scalar
field can be shown to be

δφ̈ + 3H0δφ̇ + JH 2
0 δφ = 6ε0φ0(δḢ + 4H0δH) (47)
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with

J =
(

V ′′ − 12ε0H
2
0 − 384γ

H 6
0

φ4
0

)
H−2

0

The variational equation of az can be shown explicitly to
be redundant in the limit Hi = H0 + δHi and φ = φ0 + δφ

following the Bianchi identity.
Assuming that δH = exp[hH0t]δH0 and δφ =

exp[pH0t]δφ0 for some constants h and p, we can write
the above equations as

ε

(
1 − 24

γH 4
0

εφ4
0

)
φ0[p − 1]δφ

= 4

(
3α + β − 6γ

H 2
0

φ2
0

)
H0

[
h2 + 3h + K

]
δH (48)

H0
[
p2 + 3p + J

]
δφ = 6ε0φ0[h + 4]δH (49)

These equations are consistent when all coefficients vanish
simultaneously. This implies that h = −4 and p = 1. This
set of solution (h,p) = (−4,1) hence imposes two addi-
tional constraints:

ε − 16(3α + β)
H 2

0

φ2
0

+ 72γ
H 4

0

φ4
0

= ε0 − 16(3α + β)
H 2

0

φ2
0

+ 80γ
H 4

0

φ4
0

= 0 (50)

λ = 192γ
H 6

0

φ6
0

− 2
H 2

0

φ2
0

(51)

with 2λφ2
0 = V ′′

0 − 12ε0H
2
0 .

The coupling constant λ has to positive in order for the
effective potential V (φ) to be free from run-away negative
global minimum at φ → ∞. As a result, the constraints
ε0 > 0 and λ > 0 imply that

φ4
0

96H 4
0

< γ <
(3α + β)φ2

0

5H 2
0

(52)

Together with the constraint (45),

γ ≤ 2ε0

27ε2
0 − 16H 4

0 /φ4
0

the physical parameters such as γ can be chosen properly
to accommodate a large class of solutions to the evolu-
tion of our physical universe. As a result, the inflationary
phase will remain stable against small perturbation along the
δH(= exp[−4H0t]δH0) direction. On the other hand, the
inflationary phase also has an unstable mode when we per-
turb the system along the δφ(= exp[H0t]δφ0) direction that
will hold the de Sitter phase stable only for a brief moment

�t ∼ 1/(pH0) = 1/H0. This brief period is apparently not
enough for a complete inflationary phase. As indicated from
(34), φ does not evolve appreciably during the inflationary
phase if the unstable mode will not break the stability of the
system. In short, enough inflation will require an unstable
mode with a long enough �t before the exit of the inflation-
ary phase.

In addition to the above trivial solution, there are some
other perturbation solutions. Note that the perturbation
equations can also be cast in the form

DδΨ = D

(
δH

δφ

)

=
(

A1(h
2 + 3h + K) −C1(h − 1)

B1(h + 4) −(h2 + 3h + J )

)(
δH

δφ

)

= 0 (53)

with δH ≡ kH exp[hH0t], δφ ≡ kφ exp[hH0t]. Here we
have assumed that δH = ∑

i ki exp[hiH0t] and δH =∑
i ji exp[hiH0t] such that

DδΨ =
∑

i

D

(
ki

ji

)
exp[hiH0t] = 0 (54)

Hence solving the perturbation equations amounts to solv-
ing the eigenvalue problem given by (53). It is also un-
derstood that h written in (53) represents the eigenvalue
h of the operator ∂t operating on its eigenstate, namely,
∂t exp[hH0t] = hH0 exp[hH0t]. In order to simplify the
derivation, we will extract all dimensionful parameters by
defining ϕ0 = φ2

0/H 2
0 , β1 = (3α + β)/ϕ0, γ1 = γ /ϕ−2

0 and
λ1 = λϕ0. As a result, the coefficients A1,B1,C1, J and K

can be written as

A1 = 4(β1 − 6γ1)ϕ0 (55)

B1 = 6(ε − 8γ1)
√

ϕ0 (56)

C1 = (ε − 24γ1)
√

ϕ0 (57)

J = 2λ1 − 384γ1 (58)

K = 24γ1 − ε

4(β1 − 6γ1)
(59)

The perturbation equations have a non-trivial solution only
when detD = 0, which can be written as

�2 + F� + G = 0 (60)

with � ≡ h2 + 3h and

F = (24γ1 − ε)(1 + 6ε − 48γ1)

4(β1 − 6γ1)
+ 2λ1 − 384γ1 (61)

G = (24γ1 − ε)(λ1 − 12ε − 96γ1)

2(β1 − 6γ1)
(62)
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Therefore, we can solve the perturbation equations and ob-
tain the eigenvalue h as

h = −3 ± √
9 + 4�

2
(63)

with

� = −F ± √
F 2 − 4G

2
(64)

Hence we find four independent solutions to the perturba-
tion equations (53). The graceful exit requires the exist of at
least an unstable mode with h > 0. This will be the case if
� > 0. In fact, an inflationary phase for a period �t ∼
60/H0 is required for the universe to undergo enough expan-
sion of roughly exp[60] times before the end of the inflation-
ary phase. This in turns requires that h ∼ 1/60. It is easy to
show that this condition is equivalent to the constraint � ∼
1/5. This condition can be shown to be F + 5G ∼ −1/5.
Hence it can also be written explicitly as

λ1 ∼ (
4(β1 − 6γ1)(1920γ1 − 1) + 5(24γ1 − ε)

×(1080γ1 + 114ε − 1)
)
/
(
10(96γ1 − 5ε + 4β1)

)
(65)

as a constraint on λ1. Note that in the limit γ1 = 0, we have

λ1 ∼ 5ε(1 − 114ε) − 4β1

10(4β1 − 5ε)
(66)

Together with the constraint (45), which is equivalent to

2ϕ2
0 ≥ 27γ1

(
ε − 16γ1 + 64

γ 2
1

ε

)
(67)

the unstable mode can be managed to provide reasonable
resolution to the graceful exit problem for the inflationary
models. For example, we can choose

γ1 >
1 − 114ε

1080
(68)

and either

β1

6
> γ1 >

ε

24
>

1

1920
(69)

or

β1

6
> γ1 >

1

1920
>

ε

24
(70)

as the constraint on the coupling constants ε, β1, and γ1 to
ensure that λ1 > 0. Note that the inequality β1/6 > γ1 >

ε/24 can be shown to imply that 96γ1 − 5ε + 4β1 > 0. We
can also show that (69) implies that ε > 1/80. As a result,
the inequality (68) implies that

γ1 > − 17

43200
>

1 − 114ε

1080

On the other hand, the inequality (70) implies that ε < 1/80.
As a result, the inequality (68) implies that

γ1 >
1 − 114ε

1080
> − 17

43200

Therefore, we can indeed choose proper constraints on the
coupling constants to ensure the resolution of graceful exit
problem in the inflationary universe. Both constraints shown
above can be realized with reasonably chosen coupling con-
stants. Therefore, the scalar field does provide a useful tool
both in inducing proper inflation and providing a natural
mechanism for the graceful exit problem.

Note again that when the scalar field settles down to the
local minimum φm of the effective potential at large time
in the post-inflationary era, it will oscillate around the local
minimum and kick off the reheating process. The scalar field
will eventually become a constant background field with a
small cosmological constant Vm = V (φm). The stability of
the system will then be dominated by the evolution of the
scale factor a. Therefore, we end up with a stable de Sitter
background space in the large time region.

The reason that only the special combination 3α + β

shows up in the stability equation is that two identities
connect the quadratic curvature terms in the 4-dimensional
space time. Indeed, there are a Gauss–Bonnet invariant E

and an additional conformal Weyl invariant at our disposal:

E = Rab
cd Rcd

ab − 4Ra
bRb

a + R2 (71)

C2 ≡ Cab
cd Ccd

ab = Rab
cd Rcd

ab − 2Ra
bRb

a + 1

3
R2 (72)

As a result, we can write

3αR2 + 3βRa
bRb

a = (3α + β)R2 + 3β

2

(
C2 − E

)
(73)

The Gauss–Bonnet term
√

gE is an Euler invariant known
to be a total derivative. Therefore, it will not contribute to
the field equation. In addition, the FRW space is known to
be conformally flat. Hence the conformal Weyl invariant C2

will not contribute to the field equations either. Therefore,
the stability equation will depend only on the combination
3α + β .

The reason that the quadratic terms do not affect the scale
of inflation H0 can be checked readily by showing that any
quadratic Lagrangian of the combinations l1Ḣ

2 + l2(ḢH 2 +
H 4) will not contribute to the Friedmann equation. Here li

are constants. Both R2 and Ra
bRa

b are of this form, hence
they will not contribute to the background Friedmann equa-
tion. Note that the curvature term is assumed to be negligible
in this phase. Alternatively, we can focus on the flat homo-
geneous space for simplicity.
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Indeed, the quadratic terms will contribute to the Fried-
mann equation as a combination of

E2 = L + Hi

(
d

dt
+ 3H

)
Li − HiLi − ḢiL

i

→ L + 3H 2LḢ − HLH (74)

in the de Sitter background with LH ≡ δL/δH and LḢ ≡
δL/δḢ . It is clear that the l1 term vanishes in the de Sitter
space. Furthermore, ḢH 2 terms will not contribute to the
E2 except through the effect of LḢ . Hence HLH → 4L in
the de Sitter space for the quadratic Lagrangian. As a result
E2 → 3(H 2LḢ − L). Therefore, E2 = 0 if and only if the
contributions of ḢH 2 and H 4 in the quadratic Lagrangian
are equal as stated in the form l2(ḢH 2 +H 4) shown above.

In the de Sitter background space, the Riemannian curva-
ture component functions A,B,C,D for the KS type space
defined earlier are related to each other by A = D and
B = C when the curvature term is negligible in the inflation-
ary phase. Therefore any combinations of the forms A2 +B2

and AB all fall into the class of l2(ḢH 2 + H 4). Therefore
it is straightforward to verify that the quadratic Lagrangian
does not contribute to the Friedmann equation in the de Sit-
ter background.

5 Einstein gravity and induced gravity

In order to compare and clarify the differences of the stabil-
ity conditions contributed from the higher derivative terms
and the induced gravity models with respect to the Einstein
gravity, we will also study the stability conditions of the Ein-
stein theory and induced gravity model without higher deriv-
ative terms in this section.

5.1 Leading order induced gravity model

For the induced gravity model, the Lagrangian of the system
is

L = −ε

2
φ2R − 1

2
∂μφ∂μφ − V (φ) (75)

The Friedmann equation (10) reads

1

2
εφ2DL1 + εφφ̇HiL

i
1 = 1

2
φ̇2 + V (φ) (76)

for the induced gravity model (75) with L1 = −R. In addi-
tion, the scalar field equation (11) can be shown to be:

φ̈ + 3Hφ̇ + V ′ = −εφR (77)

As a result, we also end up with the constraint (35),

4V0 = φ0
∂V

∂φ
(φ = φ0) = 12ε0φ

2
0H 2

0

in the presence of the de Sitter background solution with
φ = φ0 and Hi = H0 for all directions.

In addition, the slow roll-over field obeys φ̈ 
 V ′ and
H0φ̇ 
 V ′ near the inflationary phase. It can be shown that
in the de Sitter inflationary phase, the dynamical part of the
scalar field equation also evolves as φ̈ + 3H0φ̇ ∼ 0. This
equation leads to the approximate solution (34)

φ ∼ φ0 + φ̇0

3H0

[
1 − exp(−3H0t)

]

This result is clearly consistent with the slow roll-over as-
sumption we just made. An appropriate effective sponta-
neously symmetry breaking potential V is therefore the
same as the one given in (36):

V (φ) = λ

4

(
φ2 − φ2

0

)2 + 6ε0H
2
0

(
φ2 − φ2

0

) + 3ε0H
2
0 φ2

0

with arbitrary coupling constant λ. As a result, the stability
conditions for the models without higher derivative terms
will therefore be the α = β = γ = 0 limit of the higher
derivative models discussed in Sect. 4. For example, the sta-
bility equations become

−εφ2
0δH = εφ0[δφ̇ − H0δφ] (78)

δφ̈ + 3H0δφ̇ + J0H
2
0 δφ = 6ε0φ0(δḢ + 4H0δH) (79)

with J0 = (V ′′ − 12εH 2
0 )H−2

0 . Similarly, the variational
equation of az can be shown explicitly to be redundant in the
limit Hi = H0 +δHi and φ = φ0 +δφ following the Bianchi
identity. In this case, the trivial solution (h,p) = (−4,1)

will not survive for the independent perturbations δH =
kH exp[hH0t] and δφ = kφ exp[pH0t]. Instead, there is a
consistent solution of the form with δH ≡ kH exp[hH0t],
δφ ≡ kφ exp[hH0t]. Note that the perturbation equations can
also be cast in the form

DδΨ = D

(
δH

δφ

)

=
(

φ0/H0 (h − 1)

6εφ0(h + 4) −H0(h
2 + 3h + J0)

)(
δH

δφ

)

= 0 (80)

Note that non-trivial solutions to the above equation exist
only when detD = 0. Therefore, we can derive the follow-
ing stability equation for h:

h2 + 3h + K0 = 0 (81)

with K0 = [2λφ2
0/H 2

0 − 24ε]/[1 + 6ε]. As a result, the so-
lution h to above stability equation can be shown to be

h = h± = 1

2

{
−3 ±

[
9 − 8

λφ2
0 − 24εH 2

0

(1 + 6ε)H 2
0

]1/2}
(82)
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Consequently, an unstable mode, h+ > 0, exists when
λφ2

0 < 24εH 2
0 . Therefore, the unstable mode can provide a

natural way to end the inflationary phase. Note that the sta-
bility equation (81) is a polynomial equations of degree 2,
a simplified version of the degree 4 polynomial equation
(60) for the higher derivative models. It is therefore straight-
forward to observe the critical role of the higher derivative
terms by comparing these two equations.

5.2 Einstein theory with a scalar field

Let us consider further the Einstein theory with a coupled
scalar field in the absence of the higher derivative terms:

L = −1

2
R − 1

2
∂μφ∂μφ − V (φ) (83)

The Friedmann equation reads

H 2
1 + 2H1Hz = 1

2
φ̇2 + V (φ) (84)

for the induced gravity model (83). Similarly, we have ig-
nored the curvature term during the inflationary era. In ad-
dition, the scalar field equation can be shown to be

φ̈ + 3H0φ̇ + V ′ = 0 (85)

As a result, we also end up with the leading order Friedmann
equation and the scalar field equation as

V0 = 3H 2
0 (86)

V ′(φ0) = 0 (87)

in the presence of the de Sitter solution with φ = φ0 and
Hi = H0 for all directions. The perturbation equations are
δH = 0 and

(
p2 + 3p + V ′′

0 /H 2
0

)
δφ = 0

for δφ ∼ exp[pH0t]. Note that h-mode and p-mode decou-
ple in this set of equations. Therefore, there are only trivial
solutions for these models. Indeed, the h-mode equation im-
plies that the h-mode is a stable mode. Therefore, the scalar
p-mode will have to take care of the graceful exit mecha-
nism in these models. For example, the model with a sym-
metry breaking scalar potential

V = λ
(
φ2 − v2)2

/4 (88)

will ensure the constraints (86) and (87) remain consistent
if the evolution starts with φ0 = 0. Here v is a constant de-
noting the symmetry breaking scale given by the relation
λv4/4 = 3H 2

0 . Indeed, the constrain V ′(φ0) = 0 indicates
that the scalar field in the inflationary era has to start off
from the local maximum, φ = 0, of the scalar potential and

rolls slowly down toward the local minimum, φ = v, of the
scalar potential. Hence the solution of the δφ equation is

p = p± = 1

2

{−3 ± [
9 + 4λv2]1/2} (89)

As a result, p+ > 0 is an unstable mode. Hence the grace-
ful exit can occur if the evolution starts from a field con-
figuration H0 and φ0 = 0 under the effect of the symmetry
breaking potential (88).

Einstein–Hilbert model

If we turn off the scalar field in (83), the system will become
the Einstein–Hilbert model with a cosmological constant Λ:

L = −1

2
R − Λ (90)

The situation is similar to the model with scalar field. The
Friedmann equation reads

H 2
1 + 2H1Hz = Λ (91)

for the pure gravity model (90). Therefore, the system will
remain stable for a long time by itself. This is also the reason
why a scalar field or the higher derivative term is needed for
the graceful exit.

6 Conclusion

The existence of a stable de Sitter background is closely re-
lated to the choices of the coupling constants in the system.
The pure higher derivative gravity model with the quadratic
terms and a cubic interaction is known to admit a stable in-
flationary solution with a proper choice of the field para-
meters [31, 32]. Indeed, proper choice of the coupling con-
stants enables the existence of a de Sitter phase that is sta-
ble against any small isotropic and anisotropic perturbations.
In many cases, there also exists another unstable mode that
will be acting in favor of the graceful exit of the inflationary
models.

It is shown that any small perturbation (against the
isotropic FRW background space) and any small pertur-
bation (against the anisotropic KS type background space)
obey the same perturbation equations. This is also true for
modified gravity models. Therefore, the stable modes will
act in favor of the stability of the background de Sitter space.
These stable modes will also ensure that the anisotropy of
the de Sitter space will not grow out of control. On the other
hand, the unstable mode indicates that the isotropic back-
ground is unstable against any small isotropic or anisotropic
perturbations. Therefore, only a small anisotropy in the early
universe could be generated by arbitrary small anisotropic
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perturbations in both of these models. Hence we are look-
ing for constraints on the field parameters that will ensure
that the system admits at least an unstable mode for the
resolution of the graceful exit problem for the inflationary
solution.

Indeed, we have shown that various constraints must be
observed for the existence of an unstable mode in the modi-
fied gravity models. In particular, we show that, for induced
gravity models, an unstable mode does exist with prop-
erly chosen constraints. As a result, only a small anisotropy
against the de Sitter background can grow during the infla-
tionary phase for this induced model. Indeed, an explicit
model with a spontaneously symmetry breaking φ4 poten-
tial is presented as an example for a simple demonstration.
Accordingly, various constraints are also derived for this
model. In addition, we also compare the higher derivative
models with the models without higher derivative terms. The
differences with respect to the Einstein gravity are also clar-
ified in previous section. As a result, the effect of the higher
derivative terms become more transparent by these compar-
isons.

In summary, we have shown that an unstable mode for a
small (an)isotropic perturbation against the de Sitter back-
ground does exist for the induced gravity model The prob-
lem of a graceful exit can be achieved counting on the unsta-
ble mode of the scalar field perturbation. In addition, we also
explain explicitly the reason that the quadratic terms will not
affect the inflationary solution characterized by the Hubble
parameter H0. These quadratic terms play, however, a criti-
cal role in the stability problem of the de Sitter background
in the modified gravity models.
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