
IMA Journal of Applied Mathematics(2009)74, 827−850
doi:10.1093/imamat/hxp028
Advance Access publication on October 27, 2009

Chaotic synchronization in lattices of two-variable maps coupled with
one variable

WEN-WEI LIN†

Departmentof Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan,
Republic of China

CHEN-CHANG PENG‡

Departmentof Applied Mathematics, National Chiayi University, Chiayi City 60004, Taiwan,
Republic of China

AND

YI-QIAN WANG§

Departmentof Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

[Received on 4 October 2007; revised on 8 September 2009; accepted on 30 September 2009]

In this paper, we study chaotic synchronization in 1D lattices of two-variable maps coupled with one
variable. We give a rigourous proof for the occurrence of chaotic synchronization of spatially homo-
geneous solutions in such coupled map lattices (CMLs) of lattice sizen = 4 with suitable coupling
coefficients. For the case of lattice sizen > 4, we demonstrate numerical results of synchronized chaotic
behaviour of the CMLs. Moreover, we show numerically that the difference between two variables man-
ifests chaotic behaviour. This behaviour combined with the special coupling method in the CMLs guar-
antees high security in applications using our new model.
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1. Introduction

Secure communication faces more and more serious challenges. In recent years, decryption techniques
have been developed very rapidly. For example, as an Internet standard, MD5 (message-digest algorithm
5) has been employed in a wide variety of security applications and is also commonly used to check the
integrity of files.Wang & Yu (2005) demonstrated collision attacks against MD5, SHA-0 (SHA stands
for secure hash algorithm) and other related hash functions. Later,Wanget al. (2005) found a method
to find collisions in the SHA-1 hash function, which is used in many of today’s mainstream security
products. Their attack is estimated to require far fewer operations than previously thought needed to
find a collision in SHA-1. Although no attacks have yet been reported on the SHA-2 variants, which
are algorithmically similar to SHA-1, a new hash function, to be known as SHA-3, is currently under
development. It shows the necessity of developing alternative methods in secure communication.

With the combination of synchronization and unpredictability, chaotic synchronization has attracted
a lot of attention since 1990 for its promising potential in secure communication. A secret message can
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828 W.-W. LIN ET AL.

bemodulated on the chaotic signal of a sender, and a receiver with an identical system which is driven
by the modulated signal can decrypt this message. Many encryption models based on chaotic synchro-
nization have been proposed (seePecora & Carroll, 1990;Vohra et al., 1992;Cuomo & Oppenheim,
1992,1993;Wu & Chua, 1994;Heagyet al.,1995;Pecoraet al.,1997).

On the other hand, it has been pointed out that the proposed chaos-based communication systems
have many flaws and need to be improved (seePérez & Cerdeira,1995;Yang et al., 1998;Short &
Parker, 1998;Zhou & Lai, 1999;Li et al., 2005;Hu & Guo, 2008). Prompted by these decryption meth-
ods, many countermeasures have been developed to improve the security of communication systems
based on chaotic synchronization. Although some of them have been shown to be insecure still, more
and more complicated and effective countermeasures have been proposed. For example,Kanteret al.
(2008a) showed that for non-identical partners which use private commutative filters and can synchro-
nize, it may be difficult for the attacker to synchronize and to reveal the time-dependent output signal
of the parties. Another work ofKanteret al. (2008b) even maps the task of the attacker onto the nonde-
terministic polynomial time-complete problems, for which all known deterministic algorithms require
running time that is exponential with some tunable parameters of the problem. Thus, it is computation-
ally infeasible for an attacker to extract the message from the transmitted signal.

These works stimulated intensive research on communication with synchronized chaos which is still
ongoing. For example, communication with chaos synchronization has recently been demonstrated with
semiconductor lasers which were synchronized over a distance of 120 km in a public fiber network in
Greece (seeArgyris et al.,2005).

In this paper, we consider chaotic synchronization in coupled map lattices (CMLs) which can be
considered as systems of interacting maps, where the individual map is characterized not only by its
internal state but also by the position in the physical space. CMLs are, in general, the intermediate
between partial differential equations (PDEs) and cellular automata which form a wide class of extended
dynamical systems. PDEs are usually used to describe the physical phenomenon of spatial-temporal
dynamical systems. However, the analytic study of solutions of PDEs suffers from extreme difficulty
with complex behaviour. On the other hand, the computer simulation is utilized as an effective and
powerful tool to study dynamical systems with complex behaviour. In such a study, the dynamical
system shall be discretized in space as well as time. This is one of the motivations to introduce new
models of CMLs (seeAfraimovich & Bunimovich, 1993;Bunimovich, 1997;Bunimovich & Carlen,
1995;Giberti & Vernia, 1994;Kaneko, 1993).

The simplest type of chaotic synchronization of CMLs occurs in stable spatially homogeneous
regimes corresponding to the existence of attractive spatially homogeneous solutions. In other words,
in such cases, there is a large (open) set of initial conditions such that a solution starting from an initial
condition in the set becomes spatially homogeneous as the discrete timek becomes very large, i.e. the
coordinates of the individual maps become almost equal to each other (and the differences approach to
0 ask → ∞). In established regimes, individual maps become indistinguishable and we observe exact
perfect synchronization. Recently, synchronization in a lattice of one-variable maps has been studied in
Lin et al. (1999),Lin & Wang (2002) andJost & Joy(2002). The model in these 1D CMLs is given by

xi (k + 1) = f (xi (k)) + c( f (xi −1(k)) + f (xi +1(k)) − 2 f (xi (k))) (1.1)

for 1 6 i 6 n, with periodic boundary conditionsf (x0(k)) = f (xn(k)) and f (xn+1(k)) = f (x1(k)).
Here, f : [0, 1] → [0, 1] is a 1D map. For instance,f is usually chosen to be the well-known logistic
map:

x(k + 1) = f (x(k)) = γ x(k)(1 − x(k)), 0 < γ 6 4. (1.2)
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 829

It is known that (Gleick,1987) the logistic map (1.2) has a chaotic attractor forγ ∈ (γ∞ ≈ 3.57,4]. Lin
et al. (1999) gave a rigourous proof for chaotic synchronization of (1.1) and (1.2) withn = 2,3,4 and
γ ∈ (γ∞, 3.82] ∈ (γ∞, 4], provided the coupling coefficientc is sufficiently close to 1/3. The result
is generalized byLin & Wang (2002) forγ ∈ (γ∞, 4] by the Lyapunov function method.Lin et al.
(1999) also provided a complete numerical experiment for chaotic synchronization of 1D and 2D CMLs
of (1.1) and (1.2) with various lattice sizes.Jost & Joy(2002) gave a necessary and sufficient condition
for the occurrence of local synchronization as well as a sufficient condition for the occurrence of global
synchronization of (1.1) with more general one-variable maps.

In the following, we propose a model on synchronization of discrete hyperchaotic systems:





xi (k + 1) = g(xi (k), yi (k)) + c(g(xi −1(k), yi −1(k))

+ g(xi +1(k), yi +1(k)) − 2g(xi (k), yi (k))),

yi (k + 1) = h(xi (k), yi (k)), for 16 i 6 n,

(1.3)

with periodic boundary conditions(x0(k), y0(k)) = (xn(k), yn(k)) and (x1(k), y1(k)) = (xn+1(k),
yn+1(k)), where

{
g(x, y) = fγ (x) + θ( fδ(y) − fγ (x)),

h(x, y) = fδ(y) + θ( fγ (x) − fδ(y))
(1.4)

definedon [0,1]2 with 0 < θ < 1, 1 < δ, γ < 4 andδ 6= γ , in which fγ (x) = γ x(1 − x) and
fδ(y) = δy(1 − y) arethe logistic maps.

In the CMLs of (1.3), we put two-variable maps of (1.4) on thei th node of a circle lattice,i =
1, . . . ,n, and only couple thexi -variable withxi −1- andxi +1-variables of its two neighbours. In other
words, in the CMLs of (1.3), theyi -variable connects only with thexi -variable in thei th node, and the
coupling occurs only through thexi -variable with the nearest nodes. The topological structure of the
CMLs of (1.3) with lattice sizen = 4 is shown in Fig.1.

In (1.4), we construct a two-variable map by connecting two logistic maps with the parameter
θ ∈ (0,1). We shall prove that the two-variable system (1.4) is chaotic in the type of snap-back re-
peller (Marotto, 1978) for some suitableθ and show the fast fourier transformation (FFT) values of
the difference ofx(k) and y(k) ask → ∞ which forms a chaotic behaviour. We shall also prove the
occurrence of chaotic synchronization of (1.3), i.e.

lim
k→∞

(|xi (k) − xj (k)| + |yi (k) − yj (k)|) = 0, (1.5)

for i, j = 1,2, . . . , n, with some suitable coupling strengthsc and the lattice sizen = 4.
It is worth pointing out that usually it is a difficult task to find an analytic proof for globally chaotic

synchronization in CMLs. In fact, the study of an uncoupled discrete chaotic dynamical system itself
is still a challenge to mathematicians. For example, one of the most important works of the Wolf prize
winner Carleson isBenedicks & Carleson(1985), a partial result on the logistic map. Moreover, in
CMLs, one cannot obtain synchronization by increasing the coupling strength, which is often the reason
for the occurrence of synchronization in coupled continuous systems. Thus, the proof for the occurrence
of global synchronization in CMLs seems more difficult. We note that by now most of the mathematical
results in this area focus on the local stability of the synchronous manifold. Thus, from the point of view
of mathematics, these results cannot predict whether or when synchronization will occur.
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830 W.-W. LIN ET AL.

FIG. 1. Topological structure of CMLs with the lattice sizen = 4.

Here are some motivations for the study of chaotic synchronization of the CMLs (1.3) and (1.4).

(a) In many applications, such as in secure communication, in contrast to the CMLs of (1.1) and
(1.2), the duplexing coupling ofxi -variables in (1.3) induces the chaotic synchronization of
yi -variables which can be used to make a chaotic mask of message and send it out to the
neighbours viayi -variables. Then, the secret message can be decoded by the synchronization of
yi -variables. For example, when synchronization is obtained, Node 1 encodes the secret message
mk by y-variable to obtain the signal̃mk = mk + y1(k) and sends it to Node 2. Then, Node 2 can
recover the message easily bym̃k−y2(k) sincey1(k) andy2(k) are synchronized with each other.
On the other hand, since onlyx-variables of all nodes are transmitted to induce synchronization,
an eavesdropper knows nothing abouty-variables. Thus, he cannot recover the message.

(b) The logistic map used in (1.4) is a well-studied simple model which has chaotic behaviour over
a wide range of parameters in(γ∞, 4].

(c) In contrast to the other two-variable maps, such as theHénon(1976) map, the differences of
xi (k) andyi (k) in (1.3) form a chaotic behaviour. Thus, one channel (duplexingly coupled with
xi -variables) makes the CMLs of (1.3) synchronized and the other channel (simplexingly con-
nected withyi -variables) is used to realize secure communication. On the contrary, the Hénon
map has the relationxi (k + 1) = yi (k) which cannot be used in secure communication because
the values ofyi (k) can be encoded by the duplexing coupling ofxi -variables.

In practice, we have further measures against general attacks. For example, a variational logistic
map (VLM) has been proposed (Chenet al.,2008) with a large parameter space without windows. The
VLM with a disturbing method can pass the most stringent statistical testing suite in TestU01. With
up to 3200 Mbps throughput and complex output properties, VLM is suitable for security applications.
A chaotic cryptographical scheme (Schneier,1996), constructed by coupling four VLMs, generates the
output sequence with a minimal length equal to 2128 by a 128-bit external key.
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 831

Besidessecure communication, chaotic synchronization has the same importance in biology and
life science, which is another reason why we focus on this area. For example, people found that fireflies
are able to synchronize the timing of their light emission within a flashing population by adjusting the
frequency and phase of their own flashing (seeMirollo & Strogatz, 1990). For fireflies, this kind of
capability plays a critical role in the processing of mating. People believe that modelling networks after
such biological systems may potentially be more efficient than current networking schemes allow. In
the last decade, many people have pointed out that synchronization among large groups of neurons is
a fundamental mechanism that allows us to understand how the brain solves the binding problem. For
instance, Parkinsonian tremor and epileptic seizures are believed to be caused by such a mechanism
(seeGray,1999;Haken, 2002;Singer,1999a,b;Tasset al.,1998). Recently, Kaneko and his coauthors
obtained a lot of results in studying a series of biology-related problems with chaotic synchronization
theory, such as the origin of heredity, cell differentiation, universal features of a cell with recursive
growth, stability and irreversibility in the development of cell societies, pattern formation and the origins
of positional information and multicellular organisms, etc. (seeFurusawa & Kaneko, 2000,2001,2003;
Kaneko & Yomo, 1997,2002).

This paper is organized as follows.Marotto(1978) introduced the ‘snap-back repeller’ of a differen-
tiable map and proved that the existence of a snap-back repeller is sufficient to imply chaotic behaviour
of the map. In Section2, based on the theorem ofMarotto (1978) and a generalized version (Shiraiwa
& Kurata, 1979), we give a rigourous proof for the chaotic behaviour of the CMLs (1.3) and (1.4) for
3.678 < γ ≈ δ < 4. In Section3, we prove that the system (1.3) and (1.4) is synchronized, i.e. the
conditions in (1.5) hold or a spatially homogenous solution of (1.3) exists forn = 4, c ∈ (0.41,0.43),
θ ∈ (0.62,0.64) andγ ≈ δ ∈ (3.7 − ε, 3.7 + ε) with 0 < ε << 1. In Section4, we show numerical
results for the chaotic synchronized behaviour of (1.3) and (1.4).

2. Chaos for the two-variable map

In this section, we shall prove the chaotic behaviour for a two-variable map of (1.4). The proof is based
on a theorem ofMarotto(1978) and a generalized version inShiraiwa & Kurata(1979).

DEFINITION 2.1 (Marotto) LetF :RN → RN beaC1-map.Let z∗ bea fixed point ofF such that all the
eigenvalues ofDF(z∗) have absolute values larger than 1. Then,z∗ is called a snap-back repeller if there
exists a pointz0 in Wu

loc(z
∗), the local unstable set ofz∗, and some integerm such thatFm(z0) = z∗ and

detDFm(z0) 6= 0.

THEOREM 2.1 (Marotto) LetF : RN → RN beaC1-map.Let z∗ bea snap-back repeller ofF . Then,
the following holds:

(i) There is a positive integerp0 suchthat for eachp > p0, F hasa point of periodp.

(ii) There is an uncountable setS ⊂ RN containingno periodic points ofF such that

(iia) F(S) ⊂ S;

(iib) for everyξ, η ∈ Swith ξ 6= η,

lim sup
k→∞

|Fk(ξ) − Fk(η)| > 0;
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832 W.-W. LIN ET AL.

(iic) for everyξ ∈ Sand any periodic pointη of F ,

lim sup
k→∞

|Fk(ξ) − Fk(η)| > 0;

(iii) There is an uncountable subsetS0 ⊂ Ssuchthat for everyξ , η ∈ S0,

lim inf
k→∞

|Fk(ξ) − Fk(η)| = 0.

Conditions (i)–(iii) were first defined as ‘chaos’ of a one-variable map and proved as necessary
conditions of a ‘period-3’ map byLi & Yorke (1975).

Note that the original proof ofMarotto (1978) has some logical error which has been corrected
recently byChenet al. (1998).

REMARK Shiraiwa & Kurata (1979) proved that conditions (i)–(iii) in Theorem2.1hold by modifying
the assumption as follows:
‘Let z∗ ∈ RN bea hyperbolic fixed point ofF such that

(1) there exists a pointz1 ∈ Wu
loc(z

∗) (z1 6= z∗) and a positive integerm such thatFm(z1) ∈
Ws

loc(z
∗);

(2) there exists au-dimensional diskBu embeddedin Wu
loc(z

∗) suchthat Bu is a neighbourhood of
z1 in Wu

loc(z
∗), Fm|Bu: Bu → RN is an embedding andFm(Bu) intersectsWs

loc(z
∗) transversely

at Fm(z1), whereu = dimWu
loc(z

∗) > 0’.

In caseu = dimRN and f m(z1) = z∗, the above assumptions reduce to the snap-back repeller of
the original Marotto’s theorem.

In the following, we use the generalized version ofShiraiwa & Kurata(1979) to prove the existence
of chaotic behaviour of (1.4).

2.1 Two-variable map connected with logistic maps

Consider a special case of a two-variable map connected with logistic maps as in (1.4):

F(x, y) =

(
(1 − θ) fγ (x) + θ fγ (y)

(1 − θ) fγ (y) + θ fγ (x)

)

(2.1)

with γ = δ.
We give an elementary stability analysis of fixed points of (2.1), which is useful in Section2.2 to

determine if a snap-back repeller exists for a two-variable map (1.4).

LEMMA 2.1 In the invariant region [0, 1] × [0, 1], the fixed point
( γ−1

γ , γ−1
γ

)
of (2.1) exists for all

16 γ 6 4, 06 θ 6 1.

Proof. Obvious. �

LEMMA 2.2

(i) If γ < 3, then the fixed point
( γ−1

γ , γ−1
γ

)
is a stable point.
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 833

(ii) If γ > 3 and 0< θ < γ−3
2(γ−2) or 1 > θ > γ−1

2(γ−2), then the fixed point
( γ−1

γ , γ−1
γ

)
is a repelling

fixed point.

(iii) If γ > 3 and γ−1
2(γ−2) > θ > γ−3

2(γ−2), then the fixed point
( γ−1

γ , γ−1
γ

)
is a saddle fixed point of

the map F as in (2.1).

Proof. The Jacobian matrix at
( γ−1

γ , γ−1
γ

)
of (2.1) is

J = DF =

[
(θ − 1)(−2 + γ ) −θ(−2 + γ )

−θ(−2 + γ ) (θ − 1)(−2 + γ )

]

.

The eigenvaluesλ1 andλ2 of J canbe computed by

λ1 = 2 − γ, λ2 = (−1 + 2θ)(−2 + γ ).

Therefore, we have the following:

(i) |λ1| < 1, |λ2| < 1 for γ < 3, i.e. the fixed point
( γ−1

γ , γ−1
γ

)
is a stable point.

(ii) |λ1| > 1, |λ2| > 1 for γ > 3 andθ > γ−1
2(γ−2) or θ < γ−3

2(γ−2), i.e. the fixed point
( γ−1

γ , γ−1
γ

)
is a

repelling fixed point.

(iii) |λ1| > 1, |λ2| < 1 for γ > 3 and γ−1
2(γ−2) > θ > γ−3

2(γ−2), i.e. the fixed point
( γ−1

γ , γ−1
γ

)
is a

saddle fixed point.
�

2.2 Snap-back repeller of two-variable maps

In this section, we shall prove the existence of a snap-back repeller of (1.4).
We first prove that the fixed pointx∗ = γ−1

γ of the logistic map is a snap-back repeller forγ > γ ∗ ≈
3.678.

Let ξ = fγ (x) = γ x(1 − x). Then,

x =
γ ±

√
γ 2 − 4γξ

2γ
.

We choose pre-images of the fixed pointx∗ from backward orbits (if they exist) by the following ‘best’
way:

x−1 =
γ −

√
γ 2 − 4γx∗

2γ
∈ f −1(x∗),

x−( j +1) =
γ +

√
γ 2 − 4γx− j

2γ
∈ f −1(x− j ), for j = 1,2, . . . . (2.2)

REMARK The above way for choosing pre-images ofx∗ is the best in the sense that if we choose

x̃−1 = γ−
√

γ 2−4γx∗

2γ , x̃−2 = γ−
√

γ 2−4γ x̃−1
2γ , x̃−( j +1) =

γ+
√

γ 2−4γ x̃− j
2γ , for j = 2,3, . . . , then it is easy

to show thatx̃−3 > x−2. Since a pointx ∈ (0,1) has no pre-image if and only ifx ∈ (γ /4,1), it is
easily seen that ifx−k, chosen by the best way, does not exist for somek, then x̃−(k+1) doesnot exist
either.
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834 W.-W. LIN ET AL.

From the best way for the choice of{x− j }, we havex− j > 1
2 as j > 2 (if they exist). Moreover,

x−1 = 1
γ and x−2 = γ+

√
γ 2−4

2γ always exist. However,x− j may not exist asj > 3. The following
lemma is a criteria for the existence ofx−3.

LEMMA 2.3 If γ > 3.678,thenx−2 = γ+
√

γ 2−4γx−1
2γ < γ

4 , wherex−1 = 1
γ .

Proof. It is easily seen thatx−2 < γ
4 if and only if f (x−2) > f

( γ
4

)
, i.e. x−1 = f (x−2) > f

( γ
4

)
,

which is equivalent toγ−1
γ > f 2

( γ
4

)
= f 3

(1
2

)
. By direct computation,γ−1

γ > f 3
(1

2

)
is equivalent to

γ − 1 − γ f 3
(1

2

)
> 0. DenoteΓ (γ ) = γ − 1 − γ 3 f

(1
2

)
. Then,

Γ (γ ) = γ − 1 − γ 3 f

(
1

2

)
= γ − 1 −

γ 4

4

(
1 −

γ

4

)
[

1 −
γ 2

4

(
1 −

γ

4

)
]

= γ − 1 −
1

4
γ 4 +

1

16
γ 6 −

1

32
γ 5 +

1

16
γ 5 +

1

256
γ 8

=
1

256
(γ 8 − 8γ7 + 16γ6 + 16γ5 − 64γ4 + 256γ − 256)

=
1

256
(γ + 2)(γ3 − 2γ2 − 4γ − 8)(γ − 2)4.

Sinceγ ∈ [0, 4], we haveΓ (γ ) > 0 if and only if γ 3 − 2γ2 − 4γ − 8 > 0 andγ 6= 2. Denote
Γ1(γ ) = γ 3 − 2γ2 − 4γ − 8. Then,Γ ′

1(γ ) = 3γ2 − 4γ − 4 = 0 implies thatγ = 2 or γ = −2
3.

Obviously, Γ
′′

1 (2) > 0 andΓ
′′

1

(
− 2

3

)
< 0. SinceΓ1(0) = −8, Γ1(2) = −16 andΓ1(4) > 0, by the

intermediate value theorem, there exists aγ ∗ ∈ (2,4) suchthatΓ1(γ
∗) = 0.By numerical computation,

we haveγ ∗ ≈ 3.678.SoΓ1(γ ) > 0, for γ ∈ (γ ∗, 4] andΓ1(γ ) 6 0, for γ ∈ [0, γ ∗]. �

THEOREM 2.2 If γ > 3.678, thenx∗ = γ−1
γ is a snap-back repeller of the logistic mapfγ (x).

Proof. We prove thatx∗ satisfiesthe conditions as in Definition2.1.

(i) x∗ is a fixed point of fγ , i.e. | f ′
γ (x∗)| > 1.

(ii) For all ε > 0, there exists aξ ∈ B(x∗, ε) such thatf m
γ (ξ) = x∗ for somem.

(iii) |( f m
γ (x∗))′| 6= 0.

Condition (i) is easy to check. To prove (ii) and (iii), we perform the following six steps.

Step 1: Since f −1
γ (x∗) =

{ 1
γ , x∗

}
, from the best way we choose, we choosex−1 = 1

γ < γ−1
γ = x∗.

Step 2: Since f −1
γ (x−1) = {x−2, 1 − x−2}, wherex−2 > 1

2 and fγ is strictly increasing on [0, 1/2]

with fγ
([

0, 1
2

])
=
[
0, γ

4

]
, thereexists aξ∗ ∈

[
0, 1

γ

]
suchthat fγ (ξ∗) = 1

γ = x−1. It is easily seen that

ξ∗ = 1 − x−2 and0 < 1 − x−2 < 1
γ . This implies thatx∗ < x−2 < 1.

Step3: Sincex−3 = γ+
√

γ 2−4γx−2
2γ and f ′

γ (x) < 0 for x ∈ [x∗, 1], by Lemma2.2, we have1
2 < x−3 <

x∗.
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 835

Step4: Since f −1
γ (x−3) = {x−4, 1 − x−4}, f −1

γ

(1
2

)
∩
[
0, 1

2

]
< 1 − x−4 < 1

r and f −1
γ

( 1
γ

)
∩
[
0, 1

2

]
<

f −1
γ

(1
2

)
∩
[
0, 1

2

]
, wehavex−2 > x−4 > x∗.

Step 5: Supposex−3 > x−5 > x∗. Then, x−2 = fγ (x−3) 6 fγ (x−5) 6 fγ (x∗) = x∗, which
contradicts thatx−2 > x∗. So 1

2 < x−3 < x−5.

Step6: Since f −1
γ (x−5) = {x−6, 1 − x−6} and f −1

γ (x−5) ∩
[
0, 1

2

]
< 1 − x−6 < 1

r , we havex−4 >
x−6 > x∗.

Accordingto the above steps, we have

x−2 > x−4 > x−6 > ∙ ∙ ∙ > x∗,

x−1 > x−3 < x−5 < ∙ ∙ ∙ < x∗.

It is easily shown that limn→∞ x−2n = x∗ andlimn→∞ x−(2n−1) = x∗. For anyε > 0, there exists a
ξ ∈ B(x∗, ε) such thatf m

γ (ξ) = x∗ for somem, thus (ii) holds. Sincef ′
γ (x) = 0 if and only if x = 1

2,
condition(iii) is satisfied. �

In the following, we shall prove that the two-variable map (2.1) has a snap-back repeller.

THEOREM 2.3 If γ > 3.678, then
( γ−1

γ , γ−1
γ

)
is a snap-back repeller of the two-variable map (2.1).

Proof. We prove that
( γ−1

γ , γ−1
γ

)
satisfies(i)–(iii) as in Theorem 1. From Lemma2.2, we know that

for γ > 3.678,u = dimWu
loc

( γ−1
γ , γ−1

γ

)
> 1, so condition (i) is satisfied. Obviously,F

( γ−1
γ , γ−1

γ

)
=

(
fγ
( γ−1

γ

)

fγ
( γ−1

γ

)
)

. In Theorem 2.5, we proved that the fixed pointx∗ = γ−1
γ of fγ (x) is a snap-back repeller.

So for anyε > 0, there exists aξ ∈ B(x∗, ε/2) such thatf m
γ (ξ) = γ−1

γ = x∗ for somem. Therefore,

(ξ, ξ) ∈ B
(( γ−1

γ , γ−1
γ

)
, ε
)

such thatFm(ξ, ξ) =
( γ−1

γ
γ−1
γ

)
. Hence, condition (ii) is satisfied. From

Lemma2.3, it follows thatWu
loc(x

∗, x∗) and Ws
loc(x

∗, x∗) aresmall deformations of the manifold of
{(x, y)| x = y} and the manifold of{(x, y)|x + y = 1}, respectively, on a neighbourhood of(x∗, x∗). It
is easily seen that condition (iii) is satisfied. Hence, we complete the proof. �

Now, we consider (1.4) withγ 6= δ. Rewrite (1.4) as

F̃((x, y), γ, δ) =

(
(1 − θ) fγ (x) + θ fδ(y)

(1 − θ) fδ(y) + θ fγ (x)

)

, (2.3)

where fγ (x) = γ x(1 − x) and fδ(y) = δy(1 − y).

THEOREM 2.4 If γ ≈ δ > 3.678, then the fixed point ‘near’
( γ−1

γ , γ−1
γ

)
is a snap-back repeller of

(2.3).

Proof. We shall check that the three conditions (i)–(iii) as in Theorem2.2 hold. If γ = δ > 3.678,
then from Theorem 2.6, we proved that the fixed point

( γ−1
γ , γ−1

γ

)
= (x∗, x∗) is a snap-back repeller

of (2.3). Therefore, whenγ = δ, we have the following:

(a) D F̃(x∗, x∗, γ, γ ) has an eigenvalue with absolute value larger than 1, i.e. dimWu
loc(x

∗, x∗) > 1.

(b) For anyε > 0, there exists a point(ξ∗
1 , ξ∗

2 ) ∈ Bu
loc(x

∗, x∗, ε) such thatF̃m(ξ∗
1 , ξ∗

2 ) = (x∗, x∗)
for somem.
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(c) detD F̃m((ξ∗
1 , ξ∗

2 ), γ, γ ) 6= 0.

For a fixedγ , let δ = γ + η and we defineZ((x, y), η) by

Z((x, y), η) = F̃((x, y), η) − (x, y) = F̃((x, y), γ, γ + η) − (x, y). (2.4)

It is easy to check that

Z ∈ C1, Z((x∗, x∗), 0) = F̃((x∗, x∗), 0) − (x∗, x∗) = (0,0) (2.5)

andthe matrix

D(x,y)Z((x, y), η) = D(x,y) F̃((x, y), η) − I2

is invertible at(x, y) = (x∗, x∗) andη = 0.
By the implicit function theorem and (a), for sufficiently smallη, there exists aq1 > 0 and a

function ζ ∗ on (−q1, q1) suchthat Z(ζ ∗(η), η) = 0 for η ∈ (−q1, q1), i.e. F̃(ζ ∗(η), η) = ζ ∗(η)
with ζ ∗(0) = (x∗, x∗) andD(x,y)Z(ζ ∗(η), η) has a positive eigenvalue, i.e.D(x,y) F̃(ζ ∗(η), η) has an
eigenvalue with absolute value larger than 1 forη ∈ (−q1, q1). Thus, condition (i) holds. Next, we
define a functionW((x, y), η) by

W((x, y), η) = F̃m((x, y), η) − ζ ∗(η). (2.6)

From (b), we have

W ∈ C1, W((x∗, x∗), 0) = F̃m((x∗, x∗), 0) − ξ∗(0) = (0,0)

and

D(x,y)W((x∗, x∗), 0) = D(x,y) F̃
m((x∗, x∗), 0) invertible.

By the implicit function theorem, there exists aq2 with 0 < q2 < q1 anda functionω defined
on (−q2, q2) suchthat ω ∈ C1 with ω(0) = (x∗, x∗) and W(ω(η), η) = 0 for η ∈ (−q2, q2), i.e.
F̃m(ω(η), η) = ζ ∗(η). Thus, condition (ii) is satisfied. SincẽFmandω ∈ C1, from (c), there is aq3
with 0 < q3 < q2 suchthat detD(x,y) F̃m(ζ ∗(η)) 6= 0 andω(η) ∈ (−q1, q1), for all η ∈ (−q3, q3).
If we chooseη < q3, then condition (iii) is satisfied. We complete the proof. �

3. Synchronization for 1D CMLs of two-variable maps coupled with one variable

In this section, we shall prove that the chaotic synchronization occurs for 1D CMLs of two-variable
maps coupled with one variable as in (1.3) and (1.4) withn = 4.
First, we state a proposition and a lemma.

PROPOSITION 3.1 For c ∈ [0, 1], d ∈ [0, 1/2] and every(x1(0), y1(0),x2(0), y2(0),x3(0), y3(0),
x4(0), y4(0)) ∈ (0,1)8, there exists ak0 ∈ N suchthat for allk > k0,

(x1(k), y1(k), x2(k), y2(k), x3(k), y3(k), x4(k), y4(k))

generatedby (1.3) and (1.4) lie in

D0 = [(4 − max(γ, δ))/4,max(γ, δ)/4]8.

Proof. The proof is similar to Theorem2.3 in Lin et al. (1999). �
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Fromthis proposition, we w.l.o.g. assume that (1.3) and (1.4) are defined onD0.

LEMMA 3.1 Consider the map

Xi (k + 1) = fi (X(k), Ci ) (3.1)

with i = 1,2, . . . , N, whereCi areparameters,X(k) = (X1(k), . . . , XN(k)) with Xi (k) ∈ RM and
the differential function vectorf = ( f1, . . . , fN) possessthe proposition: ifX1 = ∙ ∙ ∙ = XN and
C1 = ∙ ∙ ∙ = CN , then fi = f j , i, j = 1,2, . . . , N. Then, for anyl ∈ N, X(k) = (X1(k), . . . , XN(k))
andC = (C1, . . . , CN), there exists ac′

l > 0 such that it holds that

|Xi (k + l ) − X j (k + l )| 6 c′
l (|Xi (k) − X j (k)| + |Ci − Cj |).

Proof. Since fi (X1, . . . , X1, Ci ) = fi +1(X1, . . . , X1, Ci ), we have

|Xi (k + 1) − X j (k + 1)|

= | fi (X(k), Ci ) − fi (X1, . . . , X1, Ci ) + f j (X1, . . . , X1, Ci ) − f j (X(k), Cj )|

6 | fi (X(k), Ci ) − fi (X1, . . . , X1, Ci )| + | f j (X1, . . . , X1, Ci ) − f j (X(k), Cj )|,

which implies this lemma forl = 1. The case forl > 2 is similar. �
Define the setNη,η′ to be the subset ofD0 whichsatisfies the following:

(i) |xi − xj | + |yi − yj | < η2 for |i − j | is even,

(ii) |xi − xj | + |yi − yj | < η for |i − j | is odd and

(iii) |xi − yj | < η′ for 16 i, j 6 4,

wherei, j = 1,2,3,4.

THEOREM 3.1 Assumeγ, δ ∈ (3.7− ε, 3.7+ ε) with ε > 0, the connected parameterθ ∈ (0.62,0.64)
and the coupling coefficientc ∈ (0.41,0.43), respectively, whereε > 0. Then, there exist anε0 > 0
suchthat for any 0< ε < ε0, the spatially homogeneous chaotic solutions for (1.3) and (1.4) withn = 4
are stable, i.e. there exist anη0 > 0 and anη′

0 > 0 such that for any initial points inNη0,η
′
0
, it holds that

lim
k→∞

|xi (k) − xj (k)| = 0, lim
k→∞

|yi (k) − yj (k)| = 0, i, j = 1,2,3,4. (3.2)

REMARK

(i) Here, the spatially homogeneous solution is of the form

{(x1, y1, x2, y2, x3, y3, x4, y4)∈ D0| xi = xj , yi = yj , i, j = 1,2,3,4}.

(ii) Fromε0 � 1,we haveδ ≈ γ . For this case, almost synchronization can occur betweenx-variables
and y-variables, i.e.|xi (k) − yj (k)| � 1 for k large enough. However, perfect synchronization
never occurs between them ifδ 6= γ . In fact, numerical results in Section4show that|xi (k)−yj (k)|
is chaotic, which shows that almost synchronization betweenx-variables andy-variables does not
influence the security of the CMLs in (1.3) and (1.4).

The proof of Theorem3.1can be reduced to the following theorem.
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THEOREM 3.2 There existK0 ∈ N, ε1 > 0,η1 > 0 andη′
1 > 0 such that for every 06 ε < ε1,

0 6 η < η1 and0 6 η′ < η′
1, we haveΦK0(Nη,η′) ∈ Nη/2,η′ , whereΦ is the map defined by (1.3) and

(1.4).

Proof of Theorem3.1. DefineK0, η1 andη′
1 asin Theorem3.2. From (1.3) and (1.4), we have

|xi (k + 1) − xj (k + 1)| + |yi (k + 1) − yj (k + 1)| 6 ci, j (|xi (k) − xj (k)| + |yi (k) − yj (k)|)

for |i − j | is even and

|xi (k + 1) − xj (k + 1)| + |yi (k + 1) − yj (k + 1)| 6 ci, j

4∑

i, j =1

(|xi (k) − xj (k)| + |yi (k) − yj (k)|),

whereci, j areconstants independent ofk.
From Lemma3.1, for the mapΦ, we obtain that there exist anη2 > 0 and anη′

2 > 0 such that for
any 0< η < η2, 0 < η′ < η′

2 andk 6 K0, there exists ac8 > 0 independent ofη andη′ suchthat for
any initial point(x1(0), y1(0), . . . , x4(0), y4(0)) in Nη,η′ , it holds that

|xi (k) − xj (k)|6 c2
11η

2, for |i − j | even,

|xi (k) − xj (k)|6 c8η, for |i − j | odd. (3.3)

Setη0 = max(η1, η2) andη′
0 = max(η′1, η

′
2). From Theorem3.2, we haveΦ(K0)(Nη,η′) ⊂ Nη/2,η′

for 0 6 η < η0 and0 6 η′ < η′
0. By iteration, we haveΦ(l K0)(Nη,η′) ⊂ N η

2l ,η′ . Hence,for any given
ε > 0, there exists anl0 ∈ N suchthat if l > l0, thenΦ(l K0)(Nη,η′) ⊂ Nε/c8,η′ . Combiningthis with
(3.3), we have

|xi (k) − xj (k)|6 ε2, for |i − j | even,

|xi (k) − xj (k)|6 ε, for |i − j | odd, (3.4)

for everyi > l0K0. This completes the proof of Theorem 3.1. �
The remaining part of this section is devoted to the proof of Theorem 3.2. Following the idea inLin
& Wang (2002), we shall use the Lyapunov method to show the synchronization for 1D CMLs. Due to
the complicated topological structure of (1.3) and (1.4), the construction of the appropriate Lyapunov
function is much more complicated than that ofLin & Wang (2002), and thus, we can only obtain the
local synchronization of (1.3) and (1.4).

By direct computation, we have

x1(k + 1) − x3(k + 1)= (1 − 2c)(g(x1(k), y1(k)) − g(x3(k), y3(k)))

= (1 − 2c)(1 − θ)γ (1 − (x1(k) + x3(k)))(x1(k) − x3(k))

+(1 − 2c)θδ(1 − (y1(k) + y3(k)))(y1(k) − y3(k))

and

y1(k + 1) − y3(k + 1)= h(x1(k), y1(k)) − h(x3(k), y3(k))

= (1 − θ)δ(1 − (y1(k) + y3(k)))(y1(k) − y3(k))

+θγ (1 − (x1(k) + x3(k)))(x1(k) − x3(k)).
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From|γ − δ| < 2ε, we obtain that

x1(k + 2) − x3(k + 2)

= (1 − 2c)2(1 − θ)2γ 2(1 − (x1(k + 1) + x3(k + 1)))(1 − (x1(k) + x3(k)))(x1(k) − x3(k))

+(1−2c)2θ(1 − θ)γ 2(1 − (x1(k + 1) + x3(k + 1)))(1−(y1(k + 1)−y3(k + 1)))(y1(k) − y3(k))

+(1 − 2c)θ(1 − θ)γ 2(1 − (y1(k + 1) − y3(k + 1)))(1 − (y1(k) + y3(k)))(y1(k) − y3(k))

+(1 − 2c)θ2γ 2(1−(y1(k + 1) −y3(k + 1)))(1−(x1(k) + x3(k)))(x1(k) − x3(k)) +εc1dist13(k),

wheredist13(k) = |(x1(k) − x3(k))| + |(y1(k) − y3(k))| andc1 is a constant independent ofε. In the
last inequality, we use the fact that|γ − δ| < 2ε. Similarly, we have

y1(k + 2) − y3(k + 2)

= (1 − θ)2δ2(1 − (y1(k + 1) + y3(k + 1)))(1 − (y1(k) + y1(k)))(y1(k) − y3(k))

+(1 − θ)θγ 2(1 − (y1(k + 1) + y3(k + 1)))(1 − (x1(k) + x3(k)))(x1(k) − x3(k))

+(1 − 2c)(1 − θ)θγ 2(1 − (x1(k + 1) + x3(k + 1)))(1 − (x1(k) + x3(k)))(x1(k) − x3(k))

+(1 − 2c)θ2δ2(1 − (x1(k + 1) + x3(k + 1)))(1 − (y1(k) + y3(k)))(y1 − y3) + εc2dist13(k),

wherec2 is a constant independent ofε.
After direct computation by using the definition ofNη,η′ , we have

x1(k + 3) − x3(k + 3)= A(x1(k) − x3(k)) + B(y1(k) − y3(k)) + c3(ε + η + η′)dist13(k),

y1(k + 3) − y3(k + 3)= C(x1(k) − x3(k)) + D(y1(k) − y3(k)) + c4(ε + η + η′)dist13(k) (3.5)

with dist13(k) = |x1(k) − x3(k)| + |y1(k) − y3(k)|, wherec3 andc4 areconstants independent ofε,
η andη′ andA, B, C andD areof the form:

A = mAγ 3(1 − (x1(k + 2) + x3(k + 2)))(1 − (x1(k + 1) + x3(k + 1)))(1 − (x1(k) + x3(k))),

B = mBγ 3(1 − (y1(k + 2) + y3(k + 2)))(1 − (y1(k + 1) + y3(k + 1)))(1 − (y1(k) + y3(k))),

C = mCγ 3(1 − (x1(k + 2) + x3(k + 2)))(1 − (x1(k + 1) + x3(k + 1)))(1 − (x1(k) + x3(k))),

D = mDγ 3(1 − (y1(k + 2) + y3(k + 2)))(1 − (y1(k + 1) + y3(k + 1)))(1 − (y1(k) + y3(k))), (3.6)

in which

mA = (1 − 2c)(1 − θ)[(1 − 2c)2(1 − θ)2 + 2(1 − 2c)θ2 + θ2],

mB = (1 − 2c)3(1 − θ)2θ + (1 − 2c)2(1 − θ)2θ + (1 − 2c)θ(1 − θ)2 + (1 − 2c)2θ3,

mC = θ(1 − θ)2 + θ(1 − θ)2(1 − 2c) + θ(1 − θ)2(1 − 2c)2 + θ3(1 − 2c),

mD = (1 − θ)3 + 2(1 − θ)θ2(1 − 2c) + (1 − θ)θ2(1 − 2c)2.
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For any pointζ(k) = (x1(k), y1(k), x2(k), y2(k), x3(k), y3(k), x4(k), y4(k)) ∈ Nη,η′ , we define a
Lyapunov functionL13 asfollows:

L13(ζ(k)) =
|x1(k) − x3(k)|

√
(x1(k) + x3(k))(2 − (x1(k) + x3(k)))

+
|y1(k) − y3(k)|

√
(y1(k) + y3(k))(2 − (y1(k) + y3(k)))

.

(3.7)

Substituting(3.5) into (3.7), we obtain that

L13(ζ(k + 3)) =
|x1(k + 3) − x3(k + 3)|

√
(x1(k + 3) + x3(k + 3))(2 − (x1(k + 3) + x3(k + 3)))

+
|y1(k + 3) − y3(k + 3)|

√
(y1(k + 3) + y3(k + 3))(2 − (y1(k + 3) + y3(k + 3)))

6
|(mA + mC)γ 3(1 − (x1(k + 2) + x3(k + 2)))(1 − (x1(k + 1) + x3(k + 1)))(1 − (x1(k) + x3(k)))|

√
(x1(k + 3) + x3(k + 3))(2 − (x1(k + 3) + x3(k + 3)))

×|x1(k) − x3(k)|

+
|(mB + mD)γ 3(1−(y1(k + 2) + y3(k + 2)))(1 − (y1(k + 1) + y3(k + 1)))(1−(y1(k) + y3(k)))|

√
(y1(k + 3) + y3(k + 3))(2 − (y1(k + 3) + y3(k + 3)))

×|y1(k) − y3(k)|

6
(mA + mC)γ 3(1 − 2x1(k + 2))(1 − 2x1(k + 1))(1 − 2x1(k))

√
2x1(k + 3)(2 − 2x1(k + 3))

|x1(k) − x3(k)|

+
(mB + mD)γ 3(1 − 2y1(k + 2))(1 − 2y1(k + 1))(1 − 2y1(k))

√
2y1(k + 3)(2 − 2y1(k + 3))

|y1(k) − y3(k)|

+c5(ε + η + η′)dist13(k)

6
(mA + mC)γ 3/2(1 − 2x1(k))(1 − 2 fγ (x1(k)))(1 − 2 fγ ( fγ (x1(k))))
√

(1 − fγ (x1(k)))(1 − fγ ( fγ (x1(k))))(1 − fγ ( fγ ( fγ (x1(k)))))

×
|x1(k) − x3(k)|

√
(x1(k) + x3(k))(2 − x1(k) − x3(k))

+
(mB + mD)γ 3/2(1 − 2y1(k))(1 − 2 fγ (y1(k)))(1 − 2 fγ ( fγ (y1(k))))
√

(1 − fγ (y1(k)))(1 − fγ ( fγ (y1(k))))(1 − fγ ( fγ ( fγ (y1(k)))))

×
|y1(k) − y3(k)|

√
(y1(k) + y3(k))(2 − y1(k) − y3(k))

+ c5(ε + η + η′)dist13(k),

wherec5 is a constant independent ofε, η andη′. In the last inequality, we use the definition ofNη,η′ .
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LEMMA 3.2 There exist anε2 > 0, anη2 > 0 and anη′
2 > 0 such that for any 0< ε < ε2, 06 η < η2,

06 η′ < η′
2 andanyζ(k) ∈ Nη,η′ , there exists aλ ∈ (0,1) such that

L13(ζ(k + 3))6 λ ∙ L13(ζ(k)).

Proof. We first estimate the following two numbers:

λ1 = (mA + mC)γ 3/2 max
1−γ /46x6γ /4

(1 − 2x)(1 − 2 fγ (x))(1 − 2 fγ ( fγ (x)))
√

(1 − fγ (x))(1 − fγ ( fγ (x)))(1 − fγ ( fγ ( fγ (x))))
,

λ2 = (mB + mD)γ 3/2 max
1−γ /46y6γ /4

(1 − 2y)(1 − 2 fγ (y))(1 − 2 fγ ( fγ (y)))
√

(1 − fγ (y))(1 − fγ ( fγ (y)))(1 − fγ ( fγ ( fγ (y))))
.

Since

max
1−γ /46x6γ /4

(1 − 2x)(1 − 2 fγ (x))(1 − 2 fγ ( fγ (x)))
√

(1 − fγ (x))(1 − fγ ( fγ (x)))(1 − fγ ( fγ ( fγ (x))))
6 0.6

and

mA + mC ≈ 0.169,

wehaveλ1 ≈ 0.9 < 1. Similarly, we can prove thatλ2 ≈ 0.9 < 1. Let

λ = max(λ1, λ2) + 2c5(ε + η + η′)/μ,

where

μ = min
1−γ /46x6γ /4

√
(1 − fγ (x1))(1 − fγ ( fγ (x1)))(1 − fγ ( fγ ( fγ (x1)))) > 0. (3.8)

It is easily seen thatL13(ζ(k + 3))6 λL13(ζ(k)).
Obviously, if

ε2 + η2 + η′
2 < (1 − max(λ1, λ2))μ/(2c5), (3.9)

then0 < λ < 1. This completes the proof of the lemma. �
By direct computation, we have the following equalities:

x1(k + 2) − x2(k + 2)= E(x1(k) − x2(k)) + F(y1(k) − y2(k)) + c6(ε + η + η2)dist12(k),

y1(k + 2) − y2(k + 2)= G(x1(k) − x2(k)) + H(y1(k) − y2(k)) + c7(ε + η + η2)dist12(k). (3.10)

Here,we use the fact that|xi (k) − xj (k)| + |yi (k) − yj (k)| < η2 if |i − j | is even andc6 andc7 are
constantsindependent ofε andη and

E = mEγ 2(1 − (x1(k + 1) + x2(k + 1)))(1 − (x1(k) + x2(k))),

F = mFγ 2(1 − (y1(k + 1) + y2(k + 1)))(1 − (y1(k) + y2(k))),

G = mGγ 2(1 − (x1(k + 1) + x2(k + 1)))(1 − (x1(k) + x2(k))),

H = mHγ 2(1 − (y1(k + 1) + y2(k + 1)))(1 − (y1(k) + y2(k))),
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in which

mE = (1 − 4c)2(1 − θ)2 + (1 − 4c)θ2,

mF = 2(1 − 4c)(1 − θ)θ(1 − 2c),

mG = 2(1 − θ)θ(1 − 2c),

mH = (1 − θ)2 + 2cθ(1 − 4c).

We define a Lyapunov functionL12 in Nη for the first and the second nodes:

L12(ζ(k)) =
|x1(k) − x2(k)|

√
(x1(k) + x2(k))(2 − (x1(k) + x2(k)))

+
|y1(k) − y2(k)|

√
(y1(k) + y2(k))(2 − (y1(k) + y2(k)))

. (3.11)

In a similar way to that of the above discussion, we can also prove the following lemma.

LEMMA 3.3 There exist 0< ε3 < ε2, 0 < η3 < η2, 0 < η′
3 < η′

2 and0 < λ̃ < 1 such that for any
ζ(k) ∈ Nη3,η

′
3
, it holds that

L12(ζ(k + 2))6 λ̃L12(ζ(k)).

LEMMA 3.4 Consider the map

x(k + 1) = (1 − θ) fγ (x(k)) + θ fδ(y(k)), y(k + 1) = (1 − θ) fδ(y(k)) + θ fγ (x(k)), (3.12)

whereθ ∈ (0.62,0.64), γ, δ ∈ (3.7 − ε′, 3.7 + ε′) and fγ and fδ arelogistic maps. Then, for every
ε > 0, there exists anε′

0 > 0 such that for every 0< ε′ < ε′
0 it holds that if|x(0) − y(0)| > ε, then

|x(k) − y(k)| decreases exponentially ask increases until it becomes less thanε.

Proof. Define the Lyapunov function for (3.12):

L(x, y) =
(x − y)2

(x + y)(2 − x − y)
.

Then,there exists ak0 suchthatL(x(k0), y(k0)) < λ′L(x(0), y(0)) with 0 < λ′ < 1 and(x(0), y(0)) ∈
(1 − γ /4, γ /4)2. Hence, ifε′ = 0, thenL(x(k), y(k)) decreases exponentially to zero, which implies
the exponential decrease of|x(k) − y(k)| to zero. Forε′ > 0, we have

L(x(k0), y(k0)) < λ′L(x(0), y(0)) + c13ε
′.

For anyε > 0, let ε′
0 < (1−λ′)νε

c13
. Then,L(x(k0), y(k0)) will decrease exponentially until it becomes

less thanνε, which implies the exponential decrease of|x(k) − y(k)| until it becomes less thanε. �
The following lemma is useful later.

LEMMA 3.5 For any 46 k ∈ N, there exist anηk and an η′
k suchthat Φ i

(
Nηk,η

′
k

)
⊂ Nη3,η

′
3

for
16 i 6 k.
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Proof. It is easy to see that for any initial point inNη4,η
′
4
, whereη4 < 1 andη′

4 < 1 are small positive
numbers determined later, we have

|x1(k + 1) − x3(k + 1)| + |y1(k + 1) − y3(k + 1)|6 c8(|x1(k) − x3(k)| + |y1(k) − y3(k)|)

6 c8η
2
4,

andc9 is independent ofk and

|x1(k + 1) − x2(k + 1)| + |y1(k + 1) − y2(k + 1)|

6 c10(|x1(k) − x2(k)| + |y1(k)−y2(k)|) + c11(|x1(k) − x3(k)| + |y1(k) − y3(k)| + |x2(k) − x4(k)|

+|y2(k) − y4(k)|)

6 c10η4 + 3c11η
2
4,

where we use the definition ofNη,η′ and c9, c10 and c11 are independent ofk. Hence, if η4 <
η0

1+c9+c10+3c11
= η0

C4
, then

|x1(k + 1) − x3(k + 1)| + |y1(k + 1) − y3(k + 1)| 6 η2
3

and

|x1(k + 1) − x2(k + 1)| + |y1(k + 1) − y2(k + 1)| 6 η3.

Similarly, we have

|xi (k + 1) − yi (k + 1)|6 |g(xi (k), yi (k))−h(xi (k), yi (k))| + c|g(xi (k), yi (k))−g(xi −1(k), yi −1(k))|

+c|g(xi (k), yi (k)) − g(xi +1(k), yi +1(k))|

6 c12η4 + c13η
′
4.

If η4 <
η′

3
2c12

andη′
4 <

η′
3

C4
=

η′
3

2c13
, then we have

|xi (k + 1) − yi (k + 1)| 6 η′
3.

It is easy to obtain the similar estimates for

|xi (k + 1) − xj (k + 1)| + |yi (k + 1) − yj (k + 1)|

and

|xi (k + 1) − yj (k + 1)|

for otheri, j = 1,2,3,4.

Let η4 = η3
C4

andη′
4 =

η′
3

C′
4
. The above inequalities imply thatΦ

(
Nη1,η

′
1

)
∈ Nη0,η

′
0
. By induction,

assume that fork ∈ N, there exist aCk anda C′
k suchthat Φ i

(
Nηk,η

′
k

)
∈ Nη3,η

′
3

with ηk = η0
Ck

and

η′
k =

η′
0

C′
k
, for 1 6 i 6 k. Then, similarly we can findCk+1 andC′

k+1 suchthatΦ
(
Nηk+1,η

′
k+1

)
∈ Nηk,η

′
k

with ηk+1 = η0
Ck+1

andη′
k+1 =

η′
0

C′
k+1

. Thus, we haveΦk+1
(
Nηk+1,η

′
k+1

)
∈ Nη3,η

′
3
. This completes the

proof. �
From Lemmas3.2–3.5, we have the following lemma.
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LEMMA 3.6 There existc13 > 0, K1 ∈ N, 0 < η̄ < η3 and0 < η̄′ < η′
3 suchthat for any 06 η < η̄,

06 η′ < η̄′ andinitial points in Nη,η′ , it holds that

(i) |xi (K1) − xj (K1)| + |yi (K1) − yj (K1)| < ν4η2

4 for |i − j | even,

(ii) |xi (K1) − xj (K1)| + |yi (K1) − yj (K1)| < ν2η
2 for |i − j | oddand

(iii) |xi (K1) − yj (K1)| < cK1
13 η′.

Proof of Theorem3.2. DefineK1, η̄ andη̄′ asin Lemma3.5. Obviously, fork > K1, if only |xi (k) −
yj (k)| < η′

3, i, j = 1,2,3,4, then

|xi (k) − xj (k)| + |yi (k) − yj (k)| 6 η2
3/4 for |i − j | even

and

|xi (k) − xj (k)| + |yi (k) − yj (k)| 6 η3/2 for |i − j | odd.

Let K2 bea small positive integer such thatλ′K2cK1
13 < 1/2. Defineη′

0 = 1
2c−(K1+k0)

13 η′
3. Then, we

have

|xi (k) − yj (k)| < η′
3,

wherek = K1 + 1, . . . , K1 + k0 and

|xi (K1 + k0) − yj (K1 + k0)| < λ′|xi (K1) − yj (K1)|.

Hence,we have

|xi (K1 + k0K2) − yj (K1 + k0K2)| < ν ′K2|xi (K1) − yj (K1)| <
1

2
|xi (0) − yj (0)|.

Thus,definingK0 = K1 + k0K2, η0 = η̄ andη′
0 asabove, we finish the proof of Theorem 3.2. �

4. Numerical results

In this section, we present some numerical results to illustrate the chaotic synchronization behaviour
of (1.3) and (1.4) in established regimes (see the last pages). In Figs2–4, we show the regions of
parametersθ and the coupling coefficientsc for which synchronization occurs in 1D CMLs (1.3) and
(1.4) with fixedγ , δ andn = 4. Figure5 shows the region ofθ andc for which synchronization of (1.3)
and (1.4) occurs is very small with the latticen = 8. In Figs6–7, we show the regions of parametersγ
andδ for some fixedθ andc. In Fig. 8, we present the difference ofx(k) − y(k) for CMLs of (1.3) and
(1.4) withn = 4 and plot the FFT of|x(k) − y(k)|. The numerical behaviour shows that the difference
of x(k) andy(k) forms a chaotic behaviour.

5. Conclusion

In this paper, we have designed CMLs of two-variable maps (connected with two logistic maps) cou-
pled with one variable. We have proved that our 1D CMLs with the lattice sizen = 4 have chaotic
synchronized behaviour for some suitable coupling coefficients. We also present the numerical results
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 845

FIG. 2. Range ofc andθ for 1D CMLs withγ = 3.685,δ = 3.68 andn = 4.

FIG. 3. Range ofc andθ for 1D CMLs withγ = 3.9, vδ = 3.75 andn = 4.
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846 W.-W. LIN ET AL.

FIG. 4. Range ofc andθ for 1D CMLs withγ = 3.95,δ = 3.75 andn = 4.

FIG. 5. Range ofc andθ for 1D CMLs withγ = 3.685,δ = 3.68 andn = 8.
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CHAOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 847

FIG. 6. Range ofγ andδ for 1D CMLs withc = 0.8, θ = 0.42 andn = 4.

FIG. 7. Range ofγ andδ for 1D CMLs withc = 0.95,θ = 0.25 andn = 4.
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FIG. 8. The difference ofx(k) andy(k) in CMLs (1.4) withγ = 3.68,δ = 3.681,c = 1/3 andθ = 2/3. The below picture is the
FFT of |x(k) − y(k)|.

of synchronization of 1D cases with various coupling coefficients, connected parameters and lattice
sizes. The two-variable map as in (1.4) connected with logistic maps produces chaotic behaviour over
a certain wide connecting range. Due to the special topological structure of security in private commu-
nication, the new designed topological structure of (1.3) and (1.4) appears to be attractive from both
theoretical and practical points of view.
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