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In this paper, we study chaotic synchronization in 1D lattices of two-variable maps coupled with one
variable. We give a rigourous proof for the occurrence of chaotic synchronization of spatially homo-
geneous solutions in such coupled map lattices (CMLs) of latticersize 4 with suitable coupling
coefficients. For the case of lattice size- 4, we demonstrate numerical results of synchronized chaotic
behaviour of the CMLs. Moreover, we show numerically that the difference between two variables man-
ifests chaotic behaviour. This behaviour combined with the special coupling method in the CMLs guar-
antees high security in applications using our new model.
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1. Introduction
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Secure communication faces more and more serious challenges. In recent years, decryption techniques
have been developed very rapidly. For example, as an Internet standard, MD5 (message-digest algor|thn§-
5) has been employed in a wide variety of security applications and is also commonly used to check the&
integrity of files.Wang & Yu (2005) demonstrated collision attacks against MD5, SHA-0 (SHA stands
for secure hash algorithm) and other related hash functions. VNateryet al. (2005) found a method
to find collisions in the SHA-1 hash function, which is used in many of today’s mainstream security
products. Their attack is estimated to require far fewer operations than previously thought needed to
find a collision in SHA-1. Although no attacks have yet been reported on the SHA-2 variants, which
are algorithmically similar to SHA-1, a new hash function, to be known as SHA-3, is currently under
development. It shows the necessity of developing alternative methods in secure communication.

With the combination of synchronization and unpredictability, chaotic synchronization has attracted
a lot of attention since 1990 for its promising potential in secure communication. A secret message can
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bemodulated on the chaotic signal of a sender, and a receiver with an identical system which is driven
by the modulated signal can decrypt this message. Many encryption models based on chaotic synchro-
nization have been proposed (deecora & Carroll 1990; Vohraet al,, 1992; Cuomo & Oppenheim
1992,1993;Wu & Chug 1994;Heagyet al.,1995;Pecoreet al.,1997).

On the other hand, it has been pointed out that the proposed chaos-based communication systems
have many flaws and need to be improved (Beeez & Cerdeira1995; Yang et al., 1998; Short &

Parker 1998;Zhou & Lai, 1999;Li et al, 2005;Hu & Guo, 2008). Prompted by these decryption meth-

ods, many countermeasures have been developed to improve the security of communication systems
based on chaotic synchronization. Although some of them have been shown to be insecure still, more
and more complicated and effective countermeasures have been proposed. For ekaniptet al.

(2008a) showed that for non-identical partners which use private commutative filters and can synchro-
nize, it may be difficult for the attacker to synchronize and to reveal the time-dependent output signal
of the parties. Another work dfanteret al. (2008b) even maps the task of the attacker onto the nonde-
terministic polynomial time-complete problems, for which all known deterministic algorithms require
running time that is exponential with some tunable parameters of the problem. Thus, it is computation-
ally infeasible for an attacker to extract the message from the transmitted signal.

These works stimulated intensive research on communication with synchronized chaos which is still
ongoing. For example, communication with chaos synchronization has recently been demonstrated with
semiconductor lasers which were synchronized over a distance of 120 km in a public fiber network in
Greece (sed@rgyris et al.,2005).

In this paper, we consider chaotic synchronization in coupled map lattices (CMLs) which can be
considered as systems of interacting maps, where the individual map is characterized not only by its
internal state but also by the position in the physical space. CMLs are, in general, the intermediate
between partial differential equations (PDEs) and cellular automata which form a wide class of extended
dynamical systems. PDEs are usually used to describe the physical phenomenon of spatial-temporal
dynamical systems. However, the analytic study of solutions of PDEs suffers from extreme difficulty
with complex behaviour. On the other hand, the computer simulation is utilized as an effective and
powerful tool to study dynamical systems with complex behaviour. In such a study, the dynamical
system shall be discretized in space as well as time. This is one of the motivations to introduce new
models of CMLs (sedé\fraimovich & Bunimovich 1993;Bunimovich 1997;Bunimovich & Carlen,
1995;Giberti & Verniag, 1994;Kanekq 1993).

The simplest type of chaotic synchronization of CMLs occurs in stable spatially homogeneous
regimes corresponding to the existence of attractive spatially homogeneous solutions. In other words,
in such cases, there is a large (open) set of initial conditions such that a solution starting from an initial
condition in the set becomes spatially homogeneous as the discretk tiemmes very large, i.e. the
coordinates of the individual maps become almost equal to each other (and the differences approach to
0 ask — 00). In established regimes, individual maps become indistinguishable and we observe exact
perfect synchronization. Recently, synchronization in a lattice of one-variable maps has been studied in
Lin et al.(1999),Lin & Wang (2002) andJost & Joy(2002). The model in these 1D CMLs is given by

Xi(k+1) = f(xi(k) + c(f(xi-1(k) + f(xi11(k)) — 2 (xi (k) (1.1)

for 1 < i < n, with periodic boundary condition§(xp(k)) = f (xn(k)) and f (Xp4+1(k)) = f(x1(k)).
Here, f: [0, 1] — [0, 1] is a 1D map. For instancd, is usually chosen to be the well-known logistic
map:

x(k+1)= f(x(k)) = yx(k)(L-x(k)), O0<y <4 (1.2)
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It is known that Gleick, 1987) the logistic mapl(2) has a chaotic attractor fere (yo, &~ 3.57,4]. Lin
etal. (1999) gave a rigourous proof for chaotic synchronization of (1.1) arit) vithn = 2, 3,4 and
7 € (700, 3.82] € (70, 4], provided the coupling coefficiert is sufficiently close to 13. The result
is generalized by.in & Wang (2002) fory e (y«,4] by the Lyapunov function methodlin et al.
(1999) also provided a complete numerical experiment for chaotic synchronization of 1D and 2D CMLs
of (1.1) and (1.2) with various lattice sizemst & Joy(2002) gave a necessary and sufficient condition
for the occurrence of local synchronization as well as a sufficient condition for the occurrence of global
synchronization of (1.1) with more general one-variable maps.

In the following, we propose a model on synchronization of discrete hyperchaotic systems:

Xi (K+1) = g(xi (K), ¥i (K)) + c(g(Xi—1(K), ¥i-1(K))
+ 9(Xi+1(k), Yi+1(K)) — 29(xi (K), yi (K))), (1.3)
Yik+1) =h(xi(k),yi(k), forl<i<n,

with periodic boundary conditionég(k), yo(k)) = (Xn(K), yn(k)) and (x1(k), y1(K)) = (Xn+1(K),
Yn+1(K)), where

[ 9(x, y) = f, (x) +0(fs(y) = f, (X)),
(1.4)

h(x,y) = fs(y) +0(f, (x) — fs(y))

definedon [0,1]? with0 < § < 1,1 < 6,y < 4 andd # y, in which f,(x) = yx(1 - x) and
fs(y) = oy(1 — y) arethe logistic maps.

In the CMLs of (L.3), we put two-variable maps of.@) on theith node of a circle latticei, =
1,...,n, and only couple the;-variable withx; _1- andx;_1-variables of its two neighbours. In other
words, in the CMLs of {.3), they; -variable connects only with the-variable in the th node, and the
coupling occurs only through thg-variable with the nearest nodes. The topological structure of the
CMLs of (1.3) with lattice sizen = 4 is shown in Fig1l.

In (1.4), we construct a two-variable map by connecting two logistic maps with the parameter
6 € (0,1). We shall prove that the two-variable systein4) is chaotic in the type of snap-back re-
peller (Marotto, 1978) for some suitablé and show the fast fourier transformation (FFT) values of
the difference of(k) andy(k) ask — oo which forms a chaotic behaviour. We shall also prove the
occurrence of chaotic synchronization f3), i.e.

Jim (1 () =} (9] + 13 (0 = ; (1) =, (L5)

fori, ] =1,2,...,n, with some suitable coupling strengthand the lattice siza = 4.

It is worth pointing out that usually it is a difficult task to find an analytic proof for globally chaotic
synchronization in CMLs. In fact, the study of an uncoupled discrete chaotic dynamical system itself
is still a challenge to mathematicians. For example, one of the most important works of the Wolf prize
winner Carleson iS8enedicks & Carlesoif1985), a partial result on the logistic map. Moreover, in
CMLs, one cannot obtain synchronization by increasing the coupling strength, which is often the reason
for the occurrence of synchronization in coupled continuous systems. Thus, the proof for the occurrence
of global synchronization in CMLs seems more difficult. We note that by now most of the mathematical
results in this area focus on the local stability of the synchronous manifold. Thus, from the point of view
of mathematics, these results cannot predict whether or when synchronization will occur.
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FIG. 1. Topological structure of CMLs with the lattice size= 4.

Here are some motivations for the study of chaotic synchronization of the CMBrgnd (1.4).

(&) In many applications, such as in secure communication, in contrast to the CMLslp&a(d
(1.2), the duplexing coupling of;-variables in {.3) induces the chaotic synchronization of
yi-variables which can be used to make a chaotic mask of message and send it out to the
neighbours viay; -variables. Then, the secret message can be decoded by the synchronization of
yi-variables. For example, when synchronization is obtained, Node 1 encodes the secret message
mk by y-variable to obtain the signaly, = my + y1(k) and sends it to Node 2. Then, Node 2 can
recover the message easilyty — y2 (k) sincey; (k) andy2(k) are synchronized with each other.
On the other hand, since ortyvariables of all nodes are transmitted to induce synchronization,
an eavesdropper knows nothing abgutariables. Thus, he cannot recover the message.

(b) The logistic map used i (4) is a well-studied simple model which has chaotic behaviour over
a wide range of parameters (i, 4].

(c) In contrast to the other two-variable maps, such asHbeon(1976) map, the differences of
X (k) andy; (k) in (1.3) form a chaotic behaviour. Thus, one channel (duplexingly coupled with
X;-variables) makes the CMLs oi 3) synchronized and the other channel (simplexingly con-
nected withy; -variables) is used to realize secure communication. On the contrary&tenH
map has the relatior (k + 1) = v; (K) which cannot be used in secure communication because
the values ofy; (k) can be encoded by the duplexing coupling«ef/ariables.

In practice, we have further measures against general attacks. For example, a variational logistic
map (VLM) has been proposed (Chenal.,2008) with a large parameter space without windows. The
VLM with a disturbing method can pass the most stringent statistical testing suite in TestUO1. With
up to 3200 Mbps throughput and complex output properties, VLM is suitable for security applications.
A chaotic cryptographical schem8&chneier1996), constructed by coupling four VLMs, generates the
output sequence with a minimal length equal to 2128 by a 128-bit external key.
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Besidessecure communication, chaotic synchronization has the same importance in biology and
life science, which is another reason why we focus on this area. For example, people found that fireflies
are able to synchronize the timing of their light emission within a flashing population by adjusting the
frequency and phase of their own flashing (8&eollo & Strogatz, 1990). For fireflies, this kind of
capability plays a critical role in the processing of mating. People believe that modelling networks after
such biological systems may potentially be more efficient than current networking schemes allow. In
the last decade, many people have pointed out that synchronization among large groups of neurons is
a fundamental mechanism that allows us to understand how the brain solves the binding problem. Forg
instance, Parkinsonian tremor and epileptic seizures are believed to be caused by such a mechanisrg
(seeGray,1999;Haken 2002;Singer,1999a,b;Tasset al.,1998). Recently, Kaneko and his coauthors 2
obtained a lot of results in studying a series of biology-related problems with chaotic synchronization
theory, such as the origin of heredity, cell differentiation, universal features of a cell with recursive
growth, stability and irreversibility in the development of cell societies, pattern formation and the origins
of positional information and multicellular organisms, etc. (Seeusawa & Kanekd000,2001,2003;
Kaneko & Yomq 1997,2002).

This paper is organized as followgarotto(1978) introduced the ‘snap-back repeller’ of a differen-
tiable map and proved that the existence of a snap-back repeller is sufficient to imply chaotic behaviour
of the map. In Sectiog, based on the theorem bfarotto (1978) and a generalized versidbhfraiwa
& Kurata, 1979), we give a rigourous proof for the chaotic behaviour of the CML3)(and (.4) for
3.678 < y &~ J < 4. In Section3, we prove that the system.@) and {.4) is synchronized, i.e. the
conditions in (.5) hold or a spatially homogenous solution df3) exists fom = 4, ¢ € (0.41,0.43),

6 € (0.62,064)andy ~ d € (3.7—¢,3.7+ ¢) with 0 < € << 1. In Sectior4, we show numerical
results for the chaotic synchronized behaviourlo8) and (1.4).

2. Chaos for the two-variable map

In this section, we shall prove the chaotic behaviour for a two-variable map4) (The proof is based
on a theorem oflarotto (1978) and a generalized versionShiraiwa & Kurata(1979).

DEFINITION 2.1 (Marotto) LetF: RN — RN beaC!-map.Let z* bea fixed point ofF such that all the
eigenvalues oD F (z*) have absolute values larger than 1. Thehis called a snap-back repeller if there
exists a pointg in W .(z*), the local unstable set af, and some integem such that™(zp) = z* and
detDF™(zp) # 0.

THEOREM 2.1 (Marotto) LetF: RN — RN bea C!-map.Let z* bea snap-back repeller . Then,
the following holds:
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(i) There is a positive integgtp suchthat for eachp > po, F hasa point of periodp.
(i) There is an uncountable s&tc RN containingno periodic points of such that

(i) F(S CS

(iib) for everyé, n € Swith & # 5,

lim sup|FX(&) — F*(p)| > 0;
k— 00
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(iic) for every¢ e Sand any periodic poing of F,

lim sup|F¥ (&) — F*(p)l > 0;

k— o0

(iii) There is an uncountable subs®f c Ssuchthat for every, 5 € &,
lim inf [F*(&) — F*(y)| = 0.
k— o0

Conditions (i)—(iii) were first defined as ‘chaos’ of a one-variable map and proved as necessary
conditions of a ‘period-3’ map bii & Yorke (1975).

Note that the original proof ofMarotto (1978) has some logical error which has been corrected
recently byChenet al. (1998).

REMARK Shiraiva & Kurata (L979) proved that conditions (i)—(iii) in Theoreil hold by modifying
the assumption as follows:
‘Let z* € RN bea hyperbolic fixed point oF such that

(2) thgre exists a point; € WZ.(z*) (z2 # z*) anda positive integem such thatF™(z;) e
Wige(Z);

(2) there exists a-dimensional diskB" embeddedn W3 (z*) suchthat BY is a neighbourhood of
z1in Wi (z), FMBY: BY — RN is an embedding anB™(BY) intersecta\Vs .(z*) trans\ersely
atF™(z1), whereu = dimW_ (z*) > 0.

In caseu = dimRN and f™(z;) = z*, the above assumptions reduce to the snap-back repeller of
the original Marotto’s theorem.

In the following, we use the generalized versiorStiiraiwa & Kurata(1979) to prove the existence
of chaotic behaviour ofl(4).

2.1 Two-variable map connected with logistic maps

Consider a special case of a two-variable map connected with logistic mapsla)in (
@A-6)f,(x)+06f,(
F(x, y)=( N o0 y)) (2.1)
A-06)f, (y)+0f,(x)

with y = 4.
We give an elementary stability analysis of fixed points2fl}, which is useful in SectioB.2 to
determine if a snap-back repeller exists for a two-variable maf).(

LEMMA 2.1 In the invariant region [01] x [0, 1], the fixed point(”/y;l, VT_l) of (2.1) exists for all
1<y €4,0<60<1.

Proof. Obvious. 0
LEMMA 2.2

() If y < 3, then the fixed poin(t}’y;l, yT_l) is a stable point.
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(i) If y >3and0< @ < 2( 2) orl> 09 > 2(
fixed point.

@iy If y >3 andzq 2) >0 > Z(y 2), then the fixed pom(VT, /T) is a saddle fixed point of
the map F as |n2( 1).

Proof. The Jacobian matrix e(tyLl %1) of (2.1) is

2), then the fixed p0|n(VT, VT) is a repelling

J:DF:(H—l)(—2+V) —0(=2+7) .
—0(=2+y) @ -D(=2+7y)

The eigenvalues; and4, of J canbe computed by
=2—y, A2=(-1420)(-2+vy).
Therefore, we have the following:

@) 121l < 1,]42] < 1fory < 3,i.e. the fixed poinl{y—_1 V—_l) is a stable point.

(i) |A1] > 1,|42] > 1fory > 3 andd > 2( 2) oré < Z(y 2), i.e. the fixed pom( /_1) isa
repelling fixed point.

@iy [A1] > 1,]42] < 1fory > 3 andz(/ 5 > 0 > 3= 2),le the fixed point == ) is a
saddle fixed point. .

2.2 Snap-back repeller of two-variable maps

In this section, we shall prove the existence of a snap-back repell&rdf (

We first prove that the fixed point* = =2 of the logistic map is a snap-back repeller for>  *
3.678.
Leté = f, (X) = yx(1—x). Then,
x= LEVIZ—4p¢
2y )
We choose pre-images of the fixed patritfrom backward orbits (if they exist) by the following ‘best’
way:
— ./ 2_4 *
X_]_: y y2 yx = f_l(X*),
4
Y+ 72— Ayx
X_(j+1) = 5 e flxj), forj=1,2,.... (2.2)
7y

REMARK The above way for choosing pre-imagesxf is the best in the sense that if we choose

X —H% ¢ V 2—4x_
xl—yz—/x,x_zz% (1) = YL for j = 2,3, then itis easy

to show thatk_3 > X_». Since a poinx € (0, 1) has no pre image if and onlyn‘ e (y/4,1),itis
easily seen that ik_x, chosen by the best way, does not exist for stmihenX_ 1) doesnot exist
either.
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Fromthe best way for the choice ¢k_j}, we havex_j > % asj > 2 (if they exist). Moreover,

5 [y 2_ . . . .
X_1 = *andx_, = ”2—34 always exist. Howevert_j may not exist asj > 3. The following
lemma is a criteria for the existencexfs.

2_
LEMMA 2.3 If y > 3.678,thenx_p = LIy —2rX1 w2y4yx—1 < &, wherex_; = /l

Proof. It is easily seen thax_» < % if and only if f(x_2) > f(%),ie.x_1 = f(x_2) > f(%),
whichis equivalent toyy;1 > f2(4) = £3(3). By direct computation,”y;1 > £3(3) is equivalent to

y —1—y3(3) > 0.Denoter (y) =y —1—y3f(3). Then,

ror=r 1% () = -1 ) 1 ()|

1, 1 1 1 1
g _ta e 15 15 1 s
’ 2/ T1e’ T3 T1e T 258

1

256
1

256

(78 —8y" + 1695 + 1695 — 64y* + 256y — 256)
0 +2G%-2y2 -4y —8)(y — 2"

Sincey € [0, 4], we havel'(y) > Oifand only if y3 — 292 —4y —8 > Oandy # 2. Denote
N(y) =y%—2y2 -4y —8.Then,I](y) = 3y2 — 4y — 4 = Oimplies thaty = 2 ory = —3.
Obviously, 77 (2) > 0 andZy (— §) < 0. Sincel1(0) = —8, I1(2) = —16 and/1(4) > O, by the
intermediate value theorem, there exisis‘as (2,4) suchthat/1(y *) = 0. By numerical computation,
we havey * ~ 3.678.S0/71(y) > 0,fory € (y*,4]andl1(y) <0, fory € [0, y*]. O

THEOREM2.2 If y > 3.678, therx* = YT_l is a snap-back repeller of the logistic mé&p(x).
Proof. We prove thak* satisfieghe conditions as in Definitio&.1.

(i) x*isafixed point off, , i.e.| fy’ (x"] > 1.
(i) Foralle > 0, there exists & € B(x*, ¢) such thatfym(f) = x* for somem.

(i) 1(f,"(x™)’| # 0.

Condition (i) is easy to check. To prove (ii) and (iii), we perform the following six steps.

Step 1: Since fy‘l(x*) = {yl, x*}, from the best way we choose, we choosg = /l < ”T_l = Xx*.

Step2: Since fy‘l(x_l) = {X_2, 1 — X_»}, wherex_, > % and f, is strictly increasing on [01/2]
with f, ([0,3]) = [0, %], thereexists &* € [0, yl] suchthat f, (¢*) = 71 = X_1. Itis easily seen that
F*=1-xoand0<1l—x_< yi This implies thatx* < x_» < 1.

Step3: Sincex_g = V7 Z4rX2 ”;y_w andf)(x) < Oforx e [x*, 1], by Lemma2.2, we hav% < X-3 <
X*.

¥102 ‘vz 1udy uo Arlqi Aslealun Bun celyd euoieN e /610'seuinolpiosxo ewew i/ :dny wolj papeojumod


http://imamat.oxfordjournals.org/

CHAQOTIC SYNCHRONIZATION IN LATTICES OF TWO-VARIABLE MAPS 835

Step4: Since f1(x_3) = {X_4, 1 — X_4}, ‘1(%) N[0.3] <1-x_4<?tand fy‘l(yl) nfo.3] <
fy—l(%) N[0, 3], wehavex_ > x_4 > x*

Step 5: Supposex_3z > Xx_5 > Xx*. Then,x_2 = f,(x_3) < f,(x_5) < f,(x*) = x*, which
contradicts thak_, > x*. S0% < x_3 < X_s.

Step6: Since f " (x_5) = {x_6,1— x_g} and f 1 (x_5) N [0,3] < 1—x_6 <
X_g > X*.

r, we havex_sg >

Accordingto the above steps, we have

*

X2>X_4>X_g>->X",

*

X1 > X3 < Xg<--- <X,

It is easily shown that lif oo X—2n = X* @andlimn_, o X—(2n—1) = X*. For anye > 0, there exists a

¢ € B(x*, ¢) such thatfym(f) = x* for somem, thus (ii) holds. Since‘y’ (x) = O0ifand only if x = %

condition(iii) is satisfied. O
In the following, we shall prove that the two-variable m&pl( has a snap-back repeller.

THEOREM2.3 If y > 3.678, then(y_ — 1) is a snap-back repeller of the two-variable map (2.1).

Proof. We prove that(}’_l V_l) satisfies(i)—(iii) as in Theorem 1. From Lemm2a.2, we know that

fory > 3.678,u = dimvvlgc(; /T) 1, so condition (i) is satisfied. Obwoule(— VT_l) =

fo(r=t
( fy Eyy_lg). In Theorem 2.5, we proved that the fixed potrit= Z T L of f, (x) isa snap-back repeller.
y 5
So for anye > 0, there exists & € B(x*, ¢/2) such thatf)[“(f) = /T_l = x* for somem. Therefore,
r=1
(&, 8) € B((V -1 Vyl),e) such thatFM(¢&, ¢) = (yy 1) Hence, condition (ii) is satisfied. From

Lemma2.3, it follows thatW.(x*, x*) and W3 .(x*, x *) aresmall deformations of the manifold of

{(X, y)| x = y} and the manifold of(x, y)|x + y = 1}, respectively, on a neighbourhood(@f, x*). It

is easily seen that condition (iii) is satisfied. Hence, we complete the proof. O
Now, we considerX.4) withy # J. Rewrite (1.4) as

1=0)f, () + Gfa()’))
1 =0)f5(y) + 01, (x)
wheref, (x) = yx(1 —x) and f5(y) = oy(1 —y).

F((X,Y),7,9) =( (2.3)

THEOREM 2.4 If y ~ § > 3.678, then the fixed point ‘neal(’yT_l, VT_l) is a snap-back repeller of
(2.3).

Proof. We shall check that the three conditions (i)— (iii) as in Theoizthold. If y = § > 3.678,
then from Theorem 2.6, we proved that the fixed pcéilhf— ) = (x*, x*) is a snap-back repeller
of (2.3). Therefore, whep = 4, we have the following:

(@) DF(x*, x*,y,y) has an eigenvalue with absolute value larger than 1, i.eVdimix*, x*) > 1

(b) For anye > 0, there exists a point}, &) € By .(x*, x*, €) such thaﬂfm(ff,f;) = (X*, x*)
for somem.
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(c) detDF™((&f,&5),7,7) #0.
For a fixedy, leto = y + 5 and we defin& ((x, y), n) by
Z((% Y),m) = F( ), m) = (%, Y) = F(, ), 7,7 + 1) = (X, ). (2.4)
It is easy to check that
ZelCl  Z((x*, x*),0) = F((x*, x*),0) — (x*, x*) = (0,0) (2.5)
andthe matrix
Dx,y Z((%, ), 1) = Dixyy F (X, V), 1) = 12

isinvertible at(x, y) = (x*, x*) andy = 0.
By the implicit function theorem and (a), for sufficiently small there exists a; > 0 and a

function ¢* on (—qu, 0u) suchthat Z(¢*(n), 7) = 0 for n € (=1, ), i.e. F( (), n) = ¢*(n)
with ¢*(0) = (x*, x*) andDx,y) Z(¢* (1), ) has a positive eigenvalue, i.B y)F((*(#), ) has an
eigenvalue with absolute value larger than 1 foe (—qi, 1). Thus, condition (i) holds. Next, we
define a functioWW((x, y), ) by

W((x, ¥), ) = F™((X, ), m) = £* (). (2.6)
From (b), we have
Wecl, w(x*,x*),0)=FM(x*, x*),0) — &*(0) = (0,0)
and
Dix.yy W((X*, X*), 0) = D(x.y) F™((x*, x*), 0) invertible

By the implicit function theorem, there existsga with 0 < g2 < g1 anda functionw defined
on (=g, g2) suchthatw e C! with @(0) = (x*,x*) andW(w(y), 7) = 0 for n € (=0, Qp), i.€.
F™(w(n), 7) = ¢*(n). Thus, condition (ii) is satisfied. Sinde™andw e C1, from (c), there is ajs
with 0 < g3 < g suchthat detl)(x,y)lfm((*(n)) # 0 andw(n) € (—q1, q1), for all y € (—qz, gz).
If we choose; < qs, then condition (iii) is satisfied. We complete the proof. O

3. Synchronization for 1D CMLs of two-variable maps coupled with one variable

In this section, we shall prove that the chaotic synchronization occurs for 1D CMLs of two-variable
maps coupled with one variable as in%) and (.4) withn = 4.
First, we state a proposition and a lemma.

PropPOSITION3.1 Forc € [0,1],d € [0,1/2] and every(x1(0), y1(0), x2(0), y2(0), x3(0), y3(0),
x4(0), y4(0)) € (0, 1)8, there exists &y € N suchthat for allk > ko,

(x1(k), y1(K), x2(K), y2(K), X3(K), y3(K), Xa(K), ya(K))
generatedby (1.3) and (1.4) lie in
Do = [(4 — max(y, 9))/4, max(y, 6) 418
Proof. The proof is similar to Theorer®.3in Lin et al. (1999). O
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Fromthis proposition, we w.l.0.g. assume that (1.3) and (1.4) are definé&hon

LEMMA 3.1 Consider the map

Xi(k+1) = fi(X(Kk),Ci) (3.1)
withi = 1,2,..., N, whereC; areparametersX (k) = (X1(k), ..., Xn(K)) with X;(k) € RM and
the differential function vectorf = (f1,..., fN) possesshe proposition: ifX; = --- = Xy and
Ci=.--=Cp,thenfi = fj,i,j =1,2,...,N. Then, foranyl € N, X(k) = (X1(k), ..., Xn(k))

andC = (Cy, ..., Cn), there exists & > 0 such that it holds that
IXi(k+1) = Xjk+ DI < (1Xi (k) = XjK)| +ICi = Cj)).
Proof. Since fj (X1, ..., X1, Cj) = fi;1(Xq, ..., X1, Cj), we have
IXi(k+1) = Xj(k+ 1)l
=|fi(X(k), Ci) — fi(X1,..., X1, Ci) + fj(Xq,..., X1, Cj) — fj(X(k), Cj)|
< fi(X(K), Ci) — fi(Xe,..., X1, C)| + [ fj (X1, ..., X1, Ci) = fj(X(K), Cj)I,

whichimplies this lemma fot = 1. The case fok > 2 is similar. ]
Define the seN, ,/ to be the subset dDo which satisfies the following:

() 1% —Xjl+ |y —yjl < p?for i — j|iseven,
@) Ix —xjl+1yi —yjl <nfor|i —j|is odd and
(i) Ixi —yjl <n' forl<i,j <4,

wherei, j =1,2,3,4.

THEOREM3.1 Assumey, o € (3.7 — ¢, 3.7+ ¢) with € > 0, the connected parametee (0.62,0.64)
and the coupling coefficiertt € (0.41,0.43), respectively, where > 0. Then, there exist afrp > 0
suchthat for any O< ¢ < ¢g, the spatially homogeneous chaotic solutions o8] and {.4) withn = 4

are stable, i.e. there exist gp > 0 and arnv, > 0 such that for any initial points iIN”O%, it holds that

lim |x (k) = xj(K) =0, lim |yi(k) —yjK)| =0, i, j=1,23,4. (3.2)
k— o0 k—o0
REMARK
(i) Here, the spatially homogeneous solution is of the form
{(X1, Y1, X2, Y2, X3, ¥3, X4, Ya)€ Dol Xi = X, Vi =VYj,i,] =1,2,3,4}.

(i) Fromep <« 1,we have) = y . For this case, almost synchronization can occur betweeriables

andy-variables, i.e]x; (k) — yj (k)| « 1 for k large enough. However, perfect synchronization

never occurs between themdit£ y . In fact, numerical results in Sectidrshow thafx; (k) —y;j (K)|

is chaotic, which shows that almost synchronization betwegariables ang/-variables does not

influence the security of the CMLs id (3) and (1.4).

The proof of Theoren3.1 can be reduced to the following theorem.
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THEOREM 3.2 There existKg € N, e7 > 0,71 > 0 and#} > 0 such that for every < € < ey,
0< 7 <nand0< i < nj, wehavedXo(N, ) € N,/ ,/, whered is the map defined by (1.3) and
(1.4).

Proof of Theoren8.1. DefineKo, 71 andz} asin Theorem3.2. From (1.3) andi(4), we have
IXi (k+1) = Xj(k+ DI + yi(k + 1) — yj(k + D] < ¢i,j(Ixi (k) — % (K)] + i (k) — yj (K)])

for]i — j|isevenand

4
X+ 1) = xjk+ DI+ yik+ D) —yjk+ DI < cij D (%K) =X K)]+ ¥ k) = yj (),
i,j=1

whereg; j areconstants independent lof

From Lemma3.1, for the mapp, we obtain that there exist a2 > 0 and any/, > 0 such that for
any 0< 7 < 72,0 < ' < 1, andk < Ko, there exists &g > 0 independent off and#’ suchthat for
any initial point(x1(0), y1(0), . .., X4(0), y4(0)) in N,, ,, it holds that

Ixi (K) — X (K)| < 2102, for|i — j| even
Ixi (k) — xj (k)| <cgy,  forl|i — j|odd. (3.3)

Setno = max (i, 72) and;y0 = max(#4, ). From Theoren8.2, we havep (N, ,) ¢ N, 2,
for 0 < # < noand0 < ' < . By iteration, we havep (KO(N, /) ¢ N, Hence for any given

€ > 0, there exists aly € N suchthat if| > lg, then@(Ko(N, ) ¢ NE/C8 ,- Combiningthis with
(3.3), we have

Ixi (k) — xj (k)| <€, for|i — j| even
Ixi (k) — xj (k)| <e, for|i —j|odd, (3.4)

for everyi > 1pKg. This completes the proof of Theorem 3.1. O
The remaining part of this section is devoted to the proof of Theorem 3.2. Following the idéa in
& Wang (2002), we shall use the Lyapunov method to show the synchronization for 1D CMLs. Due to
the complicated topological structure df.8) and {.4), the construction of the appropriate Lyapunov
function is much more complicated than thatlaf & Wang (2002), and thus, we can only obtain the
local synchronization ofl(3) and (1.4).

By direct computation, we have

x1(k+1) = x3(k + 1) = (1 = 20)(g(x1(k), y1(k)) — g(x3(k), y3(k)))
=(1-201-0)y (1 — (x1(k) + x3(k))) (x1(K) — x3(K))
+(1—2005(1 — (yr(k) + y3(k))) (y1(k) — ys(k))
and
yi(k+1) — ys(k + 1) = h(x1(k), y1(k)) — h(x3(k), ys(k))
=1 =0)0(1 = (ya(k) + y3(K))(yr(k) — ys(k))
+07 (1 — (x1(k) + x3(K))) (X1(k) — X3(K)).
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From|y — J] < 2¢, we obtain that
x1(K + 2) — xa(k + 2)
= (1-20%(1—60)*y*(1— (xak + 1) + x3(k + D)) (L — (xa(K) + x3(K))) (xa(K) — x3(K))
+(1-20%0(1 - 0)y *(1 = (xa(k + 1) + x3(k + 1)) A—=(ya(k + D)—ya(k + 1)) (y1(k) — ya(K))
+(1=200(1—0)y 21— (ya(k+ 1) — yak + 1)) (A = (ya(k) + y3(K))) (ya(k) — ya(k))
+(1 = 200% 21— (ya(k + 1) —ya(k + 1)) (1—(x1(K) + X3(K))) (x1.(K) — x3(K)) +eCadistia(k),

wheredist;a(k) = |(x1(K) — x3(K))| + [(y1(K) — y3(k))| andc; is a constant independent of In the
last inequality, we use the fact that — J| < 2¢. Similarly, we have

yi(k+2) — ys(k + 2)
= (1-0)%0*(1 = (ya(k + 1) + ya(k + D)L = (1K) + Y1) (ya(k) — y3(K))
+(1 = 0)07%(L— (yak + 1) + ya(k + 1)L — (xa (k) + x3(K)) (xa(K) — x3(K))
+(1—20)(1 - 0)0y *(1 = (a(k + 1) + xa(k + 1)) (L — (xa(k) + x3(K))) (xa(K) — xa(K))
+(1 = 200%5*(1 = (xa(k + 1) + xa(k + 1)) (A — (ya(K) + y3(K))(y1 — ¥3) + eCadistiz(k),

wherec; is a constant independent of
After direct computation by using the definition f, ,/, we have

X1(K + 3) — x3(k + 3) = A(x1(K) — x3(K)) + B(y1(K) — y3(K)) + ca(e + n + 7")distiz(k),
ya(k+3) — y3(k + 3) = C(x2(K) — xa(K)) + D(y(k) — y3(K)) + Ca(e + 7+ r)distia(k)  (3.5)

with distyjz(k) = |x1(K) — x3(K)| + |y1(k) — ys(k)|, wherecz andc, areconstants independent of
nandn andA, B, C andD areof the form:

A=may3(1— (xa(k +2) + xa(k + 2))) (L — (xa(k + 1) + xa(k + 1)) (A = (xa (k) + x3(K))),
B=mgy3(1— (ya(k +2) + ya(k + 2))) (L — (yr(k + 1) + ya(k + D)) (A = (y1(k) + y3(k))),
C=mcy3(1— (xa(k+2) + xa(k + 2))) (L — (xa(k + 1) + xa(k + 1)) (A — (x(k) + x3(K))).
D=mpy3(1— (yak+ 2) + ya(k + 2)) (L — (yak + 1) + ya(k + D) (L — (y1(k) + ya(k))), (3.6)
in which

ma = (1—20)(1—6)[(1— 2021 —06)>+ 2(1 — 20)6? + 67,

me = (1 —20)3(1 — 6)%0 + (1 — 20)%(1 — 6)%0 + (1 — 20)0(1 — 0)? + (1 — 2¢)?6°,

mc =0(1—0)?+0(1 — 0)%>(1 — 2¢) + (1 — 0)*(1 — 20)> + 6°(1 — 20),

mp = (1—0)%+2(1 — 0)6%(1 — 2¢) + (1 — 0)*(1 — 20)°.
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For any pointy (k) = (x1(k), ya(k), X2(K), y2(k), x3(K), y3(K), Xa(k), ya(k)) € Ny, we define a
Lyapunov functiorL 13 asfollows:

[X1(K) — x3(K)| ly1(k) — y3(K)|

V(X1 (k) + x3(k)) (2 = (x1(K) + x3(K))) " Vi® + y3&)2 = (1K) + y3(K))
(3.7)

L13(¢ (k) =

Substituting(3.5) into (3.7), we obtain that

Ix1(k 4+ 3) — x3(k + 3)|
Vxak+3) + x3(k + 3))(2 — (xa(k + 3) + x3(k + 3)))

n lyi(k +3) — y3(k + 3)|
Vyi(k+3) + yak + 3))(2 — (yi(k+ 3) + y3(k + 3)))

Li3(¢(k+3)) =

_ lma+me)y 3@ = Catk +2) + xak +2)) @ = (ak +1) + xa(k + 1) @ = (xa.(k) +x3(k)))]
h Vak+3) + x3(k + 3)) 2 — (xa(k + 3) + x3(k + 3)))

x[x1(K) = x3(K)|

n (Mg + Mp)y 3(L—(y1(K +2) + ya(k + 2)) (X = (ya(k + 1) + y3(k + 1)) A=(y1(K) + y3(K)))|
Vyi(k+3) + ys(k+ 3)) (2 — (yr(k + 3) + ys(k + 3)))

x|y1(K) — y3(K)|

_ (Mma+me)y 3 =2k +2)@ = 2xa(k+ 1)1 = 2x(K))
h V2x1(k+3)2 = 2x1(k + 3))

[X1(K) — X3(K)|

n (Mg + mp)y 3(1 — 2y1(k + 2))(L — 2y1(k + 1)L — 2y1(K))
V2y1(k+3)(2 - 2y1(k + 3))

ly1(k) — y3(K)|

+cs(e + 7+ 1')distra(k)

_ (Ma+me)y 321 = 2a(K) (L = 2f, (k) (A = 21, (1, (xa(k)))
S @= 6, 0aNE = T, (F, o) = T, (F, (F, 0a(0))

N [X1(K) — x3(K)|
V(X1 (K) + x3(k)) (2 — x1(k) — x3(k))

(Mg + mp)y ¥2(1 = 2y1(k) (1 = 21, (y1(K) (1 = 2f, (f, (11(K))))
VA= 1, (k)@ = T, (F, (k)@ = £, (F, (F, (Y1 (K)))))

N [y1(k) — y3(K)|
V(1K) + y3(k) (2 — y1(k) — y3(k))

wherecs is a constant independent €f 7 andy’. In the last inequality, we use the definitionf, .

+ cs(e + 7+ #')dista(k),
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LEMMA 3.2 There exist am > 0,an#,, > Oand ary, > Osuch thatforany O< e < €2,0< 7 < 72,
0< 7' <nyandany((k) € N, ,, there exists d € (0, 1) such that

L13(¢(k+3)) < 4 - L13(¢(K)).

Proof. We first estimate the following two numbers:

(1- 20)(1 - 21, (x) (L — 21, (f, ()
T 3/2 y y (hy
r=Matme)r ™, I8 e S T o) A= T (F, 0O = F.(F, (T, 00
1 (e oy 92 e (- 29— 26, ()L - 26, (F, (1)

1y /a<y<y /4 /(L= T, (yn@ = T, (F, yn @ - §, (F, (F, )
Since
max (1-2x)(1-2f, (x))(1—2f, (f, (x)))
1—y/A<X<y /4 \/(1 - fy x)A - fy ( fy ) - fy ( fy ( fy (x)))) h

and

ma + mc ~ 0.169,
we have/li ~ 0.9 < 1. Similarly, we can prove that; ~ 0.9 < 1. Let

A =max(a, 22) + 2c5(e + 1+ 1)/ u,

where
=, min = 60— 6 (h G)A= (o) > 0. (38)
Itis easily seen thdt13(¢(k + 3)) < AL13(¢(K)).
Obviously, if
€2+ n2 + 15 < (1 —max(/a, 22)) 1/ (205), (3.9)
then0 < 1 < 1. This completes the proof of the lemma. O

By direct computation, we have the following equalities:
x1(K+ 2) = Xa(k 4+ 2) = E(xa(K) — X2(K)) + F (y1(K) — Y2(K)) + Cs(€ + 7 + n*)disti2(K),
y1(k+ 2) = ya(k + 2) = G(xa(K) — x2(K)) + H(ya(k) — y2(K)) + C7(e + 7 + n)distia(k). (3.10)

Here,we use the fact thak; (k) — xj (K)| + [yi (k) — yj (k)| < n%if |i — j| is even anctg andcy are
constantsndependent of andz and

E=mey?(L - (ak+ 1)+ xo(k+ 1)L = (xa(k) + x2(K))),
F=mey?(1— (yok+ 1) + Yok + D) A = (ya(K) + y2(K))),
G=mgy (L — (a(k+ 1)+ X2k + 1)) = (xa(K) + x2(K))),
H=muy (L — ik + 1)+ ya(k + 1)L - (ya(K) + y2(K))),
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in which
me = (1 — 40)%(1 — 6)® + (1 — 4¢)62,
me =21 — 40)(1 — 6)0(1 — 20),
me =2(1 — 6)6(1 — 20),
my = (1 — )% + 209(1 — 4c).
We define a Lyapunov functioby, in N, for the first and the second nodes:

[X1(K) = x2(K)|
V(X1 (K) + x2(k)) (2 — (x1(K) + x2(k)))

[y1(K) = y2(K)|
VYK + y2(k) 2 = (1K) + y2(K)

In a similar way to that of the above discussion, we can also prove the following lemma.

L12(¢ (k) =

(3.11)

LEMMA 3.3 There exist 0< €3 < €2,0 < n3 < 12,0 < 55 < 75 and0 < /. < 1 such that for any

k) e N”Mé, it holds that

L12(¢(k +2)) < AL12( (K).
LEMMA 3.4 Consider the map
xk+1)=@1-0)f, (x(K)+0f:(y(k)), yk+1)=1-0)fs(yk) +0f, (xk), (3.12)

whered € (0.62,0.64), y,0 € (3.7 —€,3.7+ ¢') and f, and fs arelogistic maps. Then, for every
€ > 0, there exists ar; > 0 such that for every O< €’ < ¢ it holds that if|x(0) — y(0)| > ¢, then
Ix(k) — y(k)| decreases exponentially lnéncreases until it becomes less than

Proof. Define the Lyapunov function for (3.12):
(x —y)?
X+y2-x-y)

Then,there exists &g suchthatL (x(kp), (ko)) < A'L(x(0), y(0))with 0 < 2’ < Land(x(0), y(0)) €
(1 —y /4,7 /42 Hence, ife¢’ = 0, thenL(x(k), y(k)) decreases exponentially to zero, which implies
the exponential decrease|afk) — y(k)| to zero. For’ > 0, we have

L(x,y) =

L(x(ko), (ko)) < A'L(x(0), y(0)) + c13¢”.

For anye > 0, lete| < (l—_c‘/ﬁ Then, L (X(ko), Y(ko)) will decrease exponentially until it becomes

less tharnve, which implies the exponential decreasdxafk) — y(k)| until it becomes less than [
The following lemma is useful later.

LEMMA 3.5 For any 4< k € N, there exist amy andan 7, suchthat @' (N

. C N’?S”’Ié for
1<i <k

nk,n’k)
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Proof. It is easy to see that for any initial point i
numbers determined later, we have

X1 (K4 1) = x3(K 4+ 1)| + |ya(k + 1) — ya(k + 1)| < cg(|x1(K) — x3(K)| + [y1(K) — y3(K)|)

sty wherens < 1andy, < 1are small positive

< Ca3,
andcg is independent ok and
[X1(k + 1) = xa(k + )| + [ya(k + 1) — ya(k + 1)
< c1o(Ixa(K) — x2(K)| + [y1(K)—y2(K)|) + c11(Ix1(K) — X3(K)| + [y1(K) — ya(K)| + [X2(k) — Xa(K)]
+1y2(k) — ya(k)[)
< Crona + 3cuanz,
where we use the definition oN, , andce, c10 andcy; are independent ok. Hence, ifns <
TreTosTae; = G then
xa(k + 1) = xa(k + DI + [ya(k + 1) = ya(k + 1| < 73
and
X1k + 1) —xo(k+ DI + [ys(k + 1) — ya(k + 1)| < 713

Similarly, we have
1% (K + 1) = yi (K + D)l < [9(xi (K), ¥i (K)—=h(xi (K), i (K)| + clgxi (K), ¥i (k) —=g(Xi—1(K), Yi-1(K))]

+clg(xi (k), ¥i (k) — g(Xi+1(K), Yi+1(K))|

< C1274 + C1317}.

3 Tg _ '7_
If 74 < s andn) < C =2 , then we have

IXi(k+1)—yi(k+ 1| <73
It is easy to obtain the similar estimates for
IXi(kK+1) = xj(k+ D+ yi(k+ 1) — yj(k+ 1)
and
IXi (k+1) = yj(k+ 1)]
for otheri, j =1,2,3,4.

Let s = & ands) = &}. The above inequalities imply that(N,, ,7/) € Ny.,- BY induction,
assume that fok e N, there exist & anda Cj, suchthat @' (N”k,”k) € Ny, with i = -’7— and
N = (”:‘,’ ,for 1 <i < k. Then, similarly we can fin€x;1 andCy ,, suchthat®(N,, ,1k+1) € N,7k "

with 7xp1 = 6’7—1 andpj,, = CZO+1. Thus, we haveiﬁ"“(NnkH,,ﬁM) € N,y This completes the

proof. O
From Lemmas3.2—-3.5, we have the following lemma.
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LEMMA 3.6 There existiz > 0,K1 € N,0 < 7 < yz3and0 < i’ < »5 suchthat for any 0< » < 7,
0 < #’ < i’ andinitial points inN, ,/, it holds that

(i) 1% (K1) — X} (K)| + [ (K2) — yj (Kp)| < 22 for |i — j| even
(i) 1% (K1) — Xj (K9)l + yi (K1) — yj (K1)| < %2 for |i — j| oddand
(iii) 1% (K1) — yj (K1) < cidr.

Proof of Theoren8.2. DefineKq, 7 and#’ asin Lemma3.5. Obviously, foikk > Ky, if only |xj (k) —
yj(K)| < n5,i,j =1,2,3,4,then

1% () = X} ()] + 1% (k) — Y (K)| < n3/4for |i — j| even
and
1% (k) = xj (k)| + Iy (k) — yj (K)| < m3/2for |i — j| odd.
) Let K2 bea small positive integer such thﬂf<2cf3} < 1/2. Defineny = %cl_éK“kO)n’g. Then, we
ave

Ixi (k) — yj (K)| < 73,
wherek = K1 +1,..., K1 + kg and
1% (K1 + ko) — yj (K1 +ko)| < A'Ixi (K1) — yj (K1)|.

Hence we have
, 1
Ixi (K1 + koK2) — yj (K1 + koK2)| < v/K2|xi (K1) — yj(Kp)| < §|Xi 0) - y;j (0.

Thus,definingKo = K1 + koK2, 170 = 77 andy;, asabove, we finish the proof of Theorem 3.2.  [J

4. Numerical results

In this section, we present some numerical results to illustrate the chaotic synchronization behaviour
of (1.3) and (1.4) in established regimes (see the last pages). In2Figswe show the regions of
parameterg and the coupling coefficientsfor which synchronization occurs in 1D CML4.38) and

(1.4) with fixedy , 0 andn = 4. Figure5 shows the region af andc for which synchronization ofl(.3)

and (1.4) occurs is very small with the lattine= 8. In Figs6—7, we show the regions of parameters

ando for some fixed? andc. In Fig. 8, we present the difference »tk) — y(k) for CMLs of (1.3) and

(1.4) withn = 4 and plot the FFT ofx(k) — y(k)|. The numerical behaviour shows that the difference

of x(k) andy(k) forms a chaotic behaviour.

5. Conclusion

In this paper, we have designed CMLs of two-variable maps (connected with two logistic maps) cou-
pled with one variable. We have proved that our 1D CMLs with the lattice size 4 have chaotic
synchronized behaviour for some suitable coupling coefficients. We also present the numerical results
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FiG. 8. The difference ok (k) andy(k) in CMLs (1.4) withy = 3.68,0 = 3.681,c = 1/3 andd = 2/3. The below picture is the
FFT of [x(k) — y(K)|.

of synchronization of 1D cases with various coupling coefficients, connected parameters and lattice
sizes. The two-variable map as ih.4) connected with logistic maps produces chaotic behaviour over

a certain wide connecting range. Due to the special topological structure of security in private commu-
nication, the new designed topological structure o8] and (.4) appears to be attractive from both
theoretical and practical points of view.
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