Expert Systems with Applications 36 (2009) 12095-12103

Contents lists available at ScienceDirect g 4
S
Expert Systems with Applications i

journal homepage: www.elsevier.com/locate/eswa

A GA methodology for the scheduling of yarn-dyed textile production
Hsi-Mei Hsu®*, Yai Hsiung®!, Ying-Zhi Chen®?, Muh-Cherng Wu 3

2 Department of Industrial Engineering and Management, National Chiao Tung University, Hsin-Chu, Taiwan, ROC
b Department of Information Management, Ta Hwa Institute of Technology, Hsin-Chu, Taiwan, ROC

ARTICLE INFO ABSTRACT

Keywords: This paper presents a scheduling approach for yarn-dyed textile manufacturing. The scheduling problem

Scheduling is distinct in having four characteristics: multi-stage production, sequence-dependent setup times, hier-

Sequ?nce-depend611t setup archical product structure, and group-delivery (a group of jobs pertaining to a particular customer order

TM”ltF‘l'Stage must be delivered together), which are seldom addressed as a whole in literature. The scheduling objec-
extile

tive is to minimize the total tardiness of customer orders. The problem is formulated as a mixed integer
programming (MIP) model, which is computationally extensive. To reduce the problem complexity, we
decomposed the scheduling problem into a sequence of sub-problems. Each sub-problem is solved by
a genetic algorithm (GA), and an iteration of solving the whole sequence of sub-problems is repeated
until a satisfactory solution has been obtained. Numerical experiment results indicated that the proposed
approach significantly outperforms the EDD (earliest due date) scheduling method—currently used in the
yarn-dyed textile industry.

Genetic algorithm
Group-delivery
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1. Introduction

Yarn-dyed textiles are distinct in their manufacturing processes
in which yarn must be dyed before weaving, while most other tex-
tiles are first woven and then dyed. A yarn-dyed textile product, for
example a shirt, contains several patterns cloths. A pattern cloth
manifests itself by a particular pattern of colors. In a colorful shirt,
its sleeve may be a single-color pattern while its pocket may be a
three-color pattern. A three-color pattern is composed of three dif-
ferent color yarns, with each color yarn being individually dyed.
Only when the three different color yarns have been dyed, they
could be weaved into the three-color pattern cloth.

Group-delivery is an essential characteristic in the dyeing pro-
cess. Referring to the shirt shown in Fig. 1, we have five different
color yarns to be dyed in the dyeing stage. To weave each pattern
cloth, all its composing yarns have to be delivered to the weaving
machine in a group manner. That is, only when all the composing
yarns of a particular pattern cloth arrive at the weaving machine,
can the weaving of the pattern cloth be carried out.

Likewise, group-delivery is also an essential characteristic in the
weaving process. See the shirt shown in Fig. 1, we have three pat-
tern-cloths to be woven. For effectively making the shirt, the three
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pattern-cloths also have to be delivered in a group manner. That is,
only when all the three pattern-cloths have shipped to the down-
stream shirt-maker, can the shirt-maker starts to manufacture the
shirt.

In addition, the dyeing process is distinct in having a setup
dependency characteristic. Before dyeing a yarn, we need to clean
the dyeing tank—the machine that processes the yarn to be dyed.
The clean time (setup time) required to prepare for dyeing a com-
ing job can be different, dependent upon the colors of the coming
yarn and the one just finishing dyeing. Consider two consecutive
dyeing jobs. If the preceding job is dark-color (e.g. black) and the
following one is light-color (e.g. yellow), then we need a thorough
cleaning for the dyeing tank. That is, before dyeing the light-color
job, the dark-coloring agent in the tank should be completely re-
moved. In contrast, if the preceding job is light-color and the fol-
lowing one is dark-color, then we need only a rough cleaning for
the dyeing tank. The time required for a thorough cleaning is much
longer than that for a rough cleaning. This feature indicates that
the dyeing process is sequence-dependent in setup time.

In summary, the manufacturing of the yarn-dyed textiles essen-
tially involves two consecutive production processes—dyeing and
weaving. These two processes are distinct in three points: (1)
group-delivery in the dyeing process, (2) group-delivery in the
weaving process, and (3) sequence-dependent in the dyeing pro-
cess. To our knowledge, scheduling problems concerning these
three features as a whole have not been examined in literature.

This paper formulated the scheduling problem for the yarn-
dyed textile manufacturing process as a mixed integer program,
and developed a genetic algorithm based approach to solve the
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A shirt
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Fig. 1. Hierarchical product structure of a shirt example.

scheduling problem. Numerical experiments indicated that the
proposed GA method significantly outperforms the EDD (earliest
due date) scheduling method, which is most commonly used in
the yarn-dyed textile industry.

The remainder of this paper is organized as follows: Section 2
gives a review on relevant literature. Section 3 explains the sched-
uling problem in more detail. Section 4 presents a mathematical
formulation of the scheduling problem. Section 5 describes the
solution architecture and the genetic algorithm (GA) used in each
module of the architecture is presented in Section 6. Numerical
experiments are presented in Section 7 and concluding remarks
are in the last section.

2. Literature review

Our scheduling problem has three distinct features: multiple-
stage production, sequence-dependent setup times, and group-deliv-
ery. Relevant literature is reviewed below and categorized into
two groups: scheduling on textile production, and scheduling with
sequence-dependent setup times.

2.1. Scheduling on textile production

Numerous studies on the scheduling of textile manufacturing
have been published. Some addressed single-stage systems, and
some others addressed multiple-stage systems.

Numerous textile scheduling studies on a single-stage system
have been published. Tang, Hammond, and Abernathy (1994) pro-
pose a scheduling model for an apparel production system in order
to allocate production capacity and schedules jobs for each produc-
tion line. Saydam and Cooper (1995) develop a computer-based
system for the scheduling of dyeing textile fabrics in order to max-
imize the machine utilization. Ford and Rager (1995) develop an
expert system to aid the design of textile manufacturing process.
Shiroma and Niemeyer (1998) present a scheduling method, for a
textile company with multiple factories, in order to distribute
and schedule production jobs among the factories. Wong, Chan,
and Ip (2000) present a method to solve the job sequencing prob-
lem in the garment industry, in particular for spreading and cutting
machines.

Some other literature studies the scheduling on multiple-stage
textile systems. Sun and Chisman (1991) develop a simulation
model to assist production scheduling for a multiple-stage tex-
tile-belt manufacturing process. Tomastik, Luh, and Liu (1996)
present a scheduling approach especially for cellular manufactur-
ing in apparel industry, in order to determine when to set up a cell
and when to release garments into the cell. Min and Cheng (2006)
address a textile scheduling problem, in which the due date is a
decision variable; and they attempt to find an optimal due date
as well as an optimal schedule in order to minimize the total cost.
Guo, Wong, Leung, Fan, and Chan (2006) deal with a scheduling

problem for apparel manufacturing by formulating it as a mixed
integer programming model and use genetic algorithm to solve
the problem.

Many scheduling studies on multiple-stage textile systems have
been published. Yet, only a few address the effects of sequence-
dependent setup times. For example, Karacapilidis and Pappis
(1996) addressed the scheduling for a textile manufacturing pro-
cess with a sequence-dependent setup feature; however, their tex-
tile products are not yarn-dyed. That is, yarns are weaved before
dyed in their process. Such a weaving-before-dyeing process sim-
plifies the dyeing tasks, and therefore does no have the group-
delivery feature.

2.2. Scheduling with sequence-dependent setup time

Scheduling problems with sequence-dependent setup times have
been widely investigated, with a few survey papers having been
available (Allahverdi, Gupta, & Aldowaisan, 1999; Cheng, Gupta,
& Wang, 2000; Yang & Liao, 1999).

Some of these studies examine the scheduling of a single-stage
production system. They are varied in dealing with a single objective
function (Luo & Chu, 2006; Wang & Wang, 1997), with a multiple-
objective function (Lee & Asllani, 2004), or with parallel-machines
in the production system (Dastidar & Nagi, 2005).

Some others study the scheduling with sequence-dependent set-
up for a multiple-stage production system. Examples solution ap-
proaches to these studies include the use of integer programming
(Liu, 1996), the use of immune algorithm (Zandieh, Ghomi, & Hus-
seini, 2006), and the use of genetic algorithm (Ruiz & Maroto,
2006; Ruiz, Maroto, & Alcaraz, 2005).

Noticeably, most prior scheduling studies with sequence-
dependent setup time have an implicit assumption: all the jobs
to be scheduled are independent in their due assignment. This im-
plies that all the scheduled jobs have no group-delivery feature.
That is, there does not exist a BOM (bill of materials) to interrelate
these jobs.

In summary, for the three scheduling features—multiple-stage
production, sequence-dependent setup time, and group-delivery,
previous studies only addressed some of them partially. Our re-
search is unique in addressing the three scheduling features as a
whole.

3. Production process of yarn-dyed textile

As shown in Fig. 2, the manufacturing process of yarn-dyed tex-
tiles involves three major stages. Yarns are firstly colored in the
dyeing stage; subsequently through a stage for treatment/starch-
ing; and are finally sent to the weaving stage to make cloth pat-
terns. With relatively lower equipment costs, the capacity of
treatment/starching stag is typically equipped much higher than
demand; and the production cycle time is a constant. We therefore
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consider only the dyeing and the weaving stages in investigating
the scheduling problems on yarn-dyed textiles.

3.1. Hierarchical structure of an order

Apparel companies are the downstream customers for a yarn-
dyed textile manufacturer. While receiving a customer order, the
yarn-dyed manufacturer has to formulate a particular BOM (bill
of materials) for the order. As shown in Fig. 3, such an order may
involve several pattern-cloths for making apparels; a pattern cloth
is composed of several fabric rolls; and a fabric roll contains several
different colored yarns. For each colored yarn used in an order, only
one dyeing job can be designated to ensure color uniformity. A
dyeing job therefore may support more than one fabric rolls.
Fig. 3—an elaboration of Fig. 1 emphasized that a weaving task, if
with a large volume, is decomposed into several smaller weaving
jobs (each job is called a fabric roll) in order to reduce the weaving
cycle time.

Noticeably, for a pattern cloth, each of its fabric rolls can be
independently processed on a weaving machine. However, their
dyeing tasks have to be processed dependently or so called in a
batch manner. That is, the colored yarns to be used for different
fabric rolls for a particular pattern cloth have to be dyed on the
same machine in order to maintain color consistency. For example,
fabric rolls A1 and A2 can be weaved on different machines; but
each of their component yarns (e.g. color Aa) has to be dyed on
the same machine.

3.2. Group-delivery characteristics

Group-delivery is an essential feature in the weaving process. In
weaving process, an order’s on-time delivery is determined by a
group of fabric rolls. See Fig. 3, a customer order, involving several
pattern cloths, is in turn composed of several fabric rolls. Only
when all the fabric rolls are completed, can all the pattern-cloths
of an order be delivered to the customer. This group-delivery

requirement implies that the latest completion time of fabric rolls
is critical to an order’s on-time delivery.

The group-delivery characteristic also appears in the dyeing
process. A fabric roll—a weaving job, for producing a particular pat-
tern cloth, may involve several different colored yarns, each of
which should be produced in one dyeing job to keep color unifor-
mity. To weave a fabric roll, all its associated dyeing jobs have to be
completed in advance. That is, all the dyeing jobs of a particular
fabric roll must be delivered in a group manner.

3.3. Jobs and machines

In the weaving process, there are numerous parallel weaving
machines. A fabric roll, a weaving job, can be processed by any of
the parallel machines. Once a weaving job is started on a machine,
it cannot be preempted until it is completed. Compared to the dye-
ing process, the weaving process for a typical job is relatively long-
er in production time. The duration for weaving a fabric roll is
around 10 days in general.

In the dyeing process, a particular color of yarn represents a
production job. A dyeing machine is a container. To dye a job,
raw yarns are put into the container filled with color liquid and
stay for a period of time, about 8 h typically. Based on the container
size, dyeing machines are classified into four types: small, medium,
large, and extra large. Each of the four types may be equipped with
several identical dyeing machines.

Some assumptions and constraints about the dyeing process are
presented. Before proceeding the scheduling of the dyeing process,
we assume that each dyeing job has been assigned to a particular
type of machine. Of the machines in the assigned type, exactly
which one to use is left to decision. Noticeably, a dyeing job can
only be processed on a single machine; that is, the job cannot be
shared by two or more dyeing machines.

Dyeing different jobs on a particular dyeing machine needs a
setup, which is essentially for cleaning the container. The setup
time is sequence-dependent. For example, dyeing a dark-color
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job followed by a light-color one needs more setup efforts. This is
to ensure the complete removal of dark-pigment residual in order
not to contaminate the light-color job. In contrast, dyeing a light-
color job followed by a dark-color one needs less setup efforts—be-
cause a few amount light-pigment residual would not hurt the
dyeing quality of the dark-color job.

4. Problem formulation

The scheduling problem is formulated as a mixed integer pro-
gramming (MIP) model. The objective is to determine the starting
time of each job at the dyeing and weaving stages for minimizing
total tardiness of orders. The problem decisions involve assign-
ment of jobs to machines and sequence of jobs for each machine.
Wang and Wang (1997) have proposed a 0-1 mixed integer pro-
gram for single-machine scheduling with sequence-dependent set-
up time. We extend their model by additionally considering the
group-delivery requirement and expand the application domain to
a multi-stage scenario. The problem is formulated using the follow-
ing notations.

Indices

order index (1 <i< )

k  production stage index; k = d represents dyeing stage; and
k = w represents weaving stage

ji  production job index (1 <Ji <ﬁ<>

g, machine type index (1 < g < Gy)

g mth machine in machine type g, (1 < gf* < g¥)

Sets
J(&r) a set of jobs which can be processed by machine type g;
](;{) a set of jobs which belong to order i in stage k
Com(jiv) the dyeing components of a weaving job jf,v—a set of
dyeing jobs which must be completed before performing
a weaving job j,
Parameters
A total number jobs of order i in stage k
Djign processing time of job j;( at machine gy’
kSk
0; due date of order i
Sji gm time required for setting up a weaving machine gj; for
- processing job j.,
S —jgn time required for setting up a dyeing machine g’ to
process job j while job j is scheduled immediately behind
job j's (7)) ,
lj; traveling time required for a dyeing job j; which moves

from dyeing stage to weaving stage

Decision variables

. 1 b
nng,’J' { 0,

Dii—iep {1, if jobj is scheduled immediately behind job j’
at machine g0, otherwise.

if job j;'{ is assigned to machine g’
otherwise

H.-M. Hsu et al./Expert Systems with Applications 36 (2009) 12095-12103

Intermediate variables

qrj. gm the earliest starting time for a weaving job jf,v at machine
g, by considering the availability of machine g
erfw g the earliest starting time for a weaving job jf,v at machine
g, by considering the availability of dyeing components,
Com (]f,,,)
Tji g starting time for job j}; at machine g}
k
jj.;(g,,, completion time for job ji at machine gJ
k
1, if job j' is scheduled ahead of job j at gI"
Vi jgm (notice : j* is not necessarily immediately ahead of j)
0, otherwise
JEe) a set of jobs which are assigned to machine gj!

To formulate the scheduling problem, two fictitious jobs u and v
are introduced (Wang & Wang, 1997). The two jobs are both with
zero processing/setup times; u must be firstly processed, and v
must be lastly processed. That is, sw g = Sj-ugn = 0,Pyign =
Puign = 0, Tuign :f"ig'k" = 0. The scheduling problem can be formu-
lated as follows:

I
Min Z=3" Max {Max(0, f; , — o)} M
i=1 Jwel(y, o
M )
s.t. an;{gr =1, Vjyelg), Ve (2)
m=1
Z d)(j'aj)gi" =1Yj e](g;f) u{v}, Ve 3)
Jel(gr)utuyi'=i
Yo by =LY €J(gl) u{u}, Ve @
Jel (g )uivhi=

E‘Lg;" = Z

hej (g )ufu}

¥ njer >

Sy—migy * P —mgy T Prign
el (g )uiuyi'#h

o,z
J g yulu g #i

Sg—gp - Pii—pey + pjgggl) , Viel(gd) u{vy,

vg? (where j = jj) (5)

ar;

el = Z

Je(gm)uiuyi'#i

o-pen Fiiay

Viel(gn u{v}, ven (wherej=j,) (6)
T = Max (frar +1s ) Vi (7)
Tign = Max(qrj&gw,crjugw), ij,v (8)
E‘ivgw =Tign T (siivgw TP j‘wg’v’é>’ Vjiv ®)

Tigns Py—gps Vi-ng €101} (10)
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Eq. (1) states that the objective function is to minimize the total tar-

diness of orders, where Maxj, ){Max[O, (Fi gn 70,»)]} denotes

(i
that the tardiness of each order i.

Eq. (2) constrains that each job should be only assigned to one
machine, for both dyeing and weaving stages. Egs. (3) and (4) en-
sure that each job has only one predecessor job, and has only
one successor job. Eq. (5) computes the completion time for dyeing
job j, where the first term denotes the time epoch when the ma-
chine for processing job j becomes available, and the second term
denotes the setup/processing times for job j.

Eq. (6) computes the time epoch when the machine for process-
ing weaving job j is available. Eq. (7) computes the time epoch
when the dyeing components of weaving job j has been ready for
weaving. Eqs. (6) and (7) ensure that the starting time of a weaving
job must be later than the ready times of its dyeing components as
well as its processing machine. Egs. (8) and (9), respectively, deter-
mines the starting time and the completion time of the weaving
jobs. Eq. (10) declares the binary variables.

5. Solution architecture

The addressed scheduling problem is essentially NP-hard in
complexity. To reduce problem complexity, we decompose the
scheduling problem into two sub-problems. Each sub-problem is
solved by a genetic algorithm (GA). The ultimate solution for the
scheduling problem is obtained by solving the two sub-problems
in an iterative manner.

The decomposition of the scheduling problem is shown in Fig. 4,
where the first sub-problem is called weaving module (WM), and
the second one is called dyeing module (DM). The scheduling prob-
lem is solved in an iterative manner. In a particular iteration, the
solution of WM is fed to DM to obtain a solution for the second
sub-problem, which in turn is fed back to WM to obtain a new
solution for the first sub-problem in the next iteration. The itera-
tive procedure is repeated until a satisfactory solution is obtained.

The procedure for iteratively solving the two sub-problems,
called Weaving_Dyeing_Scheduling, is presented below with its
notation firstly introduced.

A 4

Weaving Module
(WM)

!

Dyeing Module
(DM)

Terminating test
satisfied?

Fig. 4. Solution architecture.
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iy total tardiness of weaving jobs obtained
in nth iteration in WM

2 total tardiness of dyeing jobs obtained
in nth iteration in DM

nr predefined maximum number of
iterations

h predefined threshold value for

terminating the iterative procedure

W E planned starting time of weaving job ji,
v obtained in nth iteration ‘
,‘;VME_rj,- earliest starting time of weaving job ji,
" obtained in nth iteration .
] j; completion time of weaving job j,
" obtained in nth iteration A
Q’V’rji : planned starting time of dyeing job j
‘ obtained in nth iteration _
QMEJ].L earliest starting time of dyeing job j;
obtained in nth iteration
2 completion time of dyeing job j;
= obtained in nth iteration
lew time required for dyeing jobj; moving
from dyeing to weaving stages
0; due date of order i
Vg, planned due date of dyeing job j;

obtained in nth iteration

GA solution obtained in the WM module
in nth iteration
GA solution obtained in the DM module
in nth iteration

is a procedure that computes 2Mo ; from

WM, Ja

n it

X Jw

is a procedure that computes nW+"Q’E_rj.-
DM &

from 2 fj;

Procedure Weaving Dyeing_Scheduling

Initiation
n=1;
Termination = ‘No’;
nWME_r}.; = 0 for each weaving job j., in each order i;
Q’V’E,rj,-dw: 0 for each dyeing job j; in each order i;

While (Termination = ‘No’) Do
(,IWMZ,,,WMfﬂV ,gVMerV) —f (HWME,rjiv ,o,»); [*Solving Module WM*/
DM _ WM .
n 0 =& (” rjiv>’
<2MZ,5Mf_, ,’,?’V’r_,) =f (QME,r.i ,DMg >: [*Solving Module

Ja Ja Ja Ja

DM*/
Wi — 5 (2, ):
[+ Check Termination Status */
If n = ny, then Termination = ‘Yes’

[*Interface from WM to DM */

[*Interface from DM to WM?*/

Elseif n>2 and Max ™Er, —"Er;, |<h then
Termination = ‘Yes’; Hw
Else n=n+1; [*repeat iteration */
Endif
Endwhile

In the iteration loop, the first statement (nWMZ ,Z"ij_ W’V’rj, ) =

ion
w

fi (HWMEJ],V 0,—) denotes the input/output of the GA in the WM mod-
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ule. Given nWME_rji and o;, the GA in WM module determines a near-

optimal weaving job sequence (represented by job starting time

WMy ), and in turn computes Mf. and (*MZ) of the job sequence.
Jw Jw

Notice that the GA has to ensure ,‘j""”rj, > WME.r; . This means that
the starting time (nWMrji ) planned by the GA should be later than

the earliest starting time WME_r, , which is a constraint imposed
by initialization or the previous iteration. The details of the GA
are explained in the next section.
The second statement QMoj, =g (nWM r ) denotes that once
d w
nWMrj,- has been obtained from the WM module, a procedure g,
could be used to determine planned due dates for dyeing jobs
D 0 Notice that the relationship between dyeing jobs and weav-
d
ing jobs is a many-to-many mapping (Fig. 3). That is, a weaving job
may need more than one dyeing jobs, and a dyeing job may be used
in many weaving jobs. To set up a planned due date for a dyeing

job jid, we first have to identify all the weaving jobs that use job

J; Define Par(jfj) as the set of weaving jobs that use dyeing job ]'d
The function g; can then be described as follows:

DMo _ WMp o]
=) = Min (-t )
Similar to the logical structure of the first statement, the third state-
(DMZ DM f DMr ) _f2<DMEr DMO >
x n il
put of the GA in the DM module. Given ?ME_r; and ’,f"”oji, the GA
4 4

in DM module determines a near-optimal dyeing job sequence (rep-

ment denotes the input/out-

resented by job starting time oM r ), and in turn computes 27 and
d

,ﬁ’""fji of the job sequence. Likewise, the GA has to ensure
d

f,”"’rji > PMEr; . This means that the starting time PV
4 d

the GA should be later than the earliest starting time QME,rj.-d. Notice

DM .

that ] Er;

dyeing scheduling starts at t = 0.
Similar to the logical structure of the second statement, the

fourth statement MEr, =g, ’,?ij,
w ]

iy planned by
d

= 0 for each dyeing job jﬁ, in each order i because the

wi denotes that once Qij,-d has
been obtained from the DM module, a procedure g, could be used
to determine ME_ T (earliest starting time for weaving jobs in the
next iteration). As stated, a weaving job may need more than one
dyeing jobs. To determine "ME_ ri. we first have to 1der1t1fy all
the dyeing jobs that are input materlals of weaving job j,. Define
Com(j,,) as the set of dyeing jobs that are input materials of weav-

ing job le The function g, can then be described as follows:

WMET —gz(DMf ) = Max (DMf +1 )
i ECom( ) —w
For the termination check in the iteration loop, the statement

WM wM
Max 1 E- T —n E,rj,w

< h denotes that the iterative procedure

termlnates whenever ,‘f"ME_rj, (earliest starting time of weaving
w

jobs—results obtained in nth iteration) is close to WME_ ri (earliest

n+1
starting time of weaving jobs—results obtained in n+ 1th
iteration). Such a termination condition may not occur. Therefore,
we terminate the procedure by defining a maximum iteration
number ny.

6. Genetic algorithms
The two sub-problems in the WM and DM modules are

essentially integer programming problems. Solving the two inte-
ger programs is computationally extensive. By using CPLEX
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installed on a personal computer, we attempted to solve the
WM module of a numerical example, described in Section 7. Re-
sults showed that the solution cannot be obtained by CPLEX
after 19 h of computation. GAs are therefore developed to solve
the WM and DM modules. GA, a stochastic search technique,
has been widely applied to various areas including scheduling
problems (Guo et al., 2006; Lee & Asllani, 2004; Ruiz & Maroto,
2006; Ruiz et al., 2005).

A GA involves four major parts: chromosome representation,
fitness function, genetic operators, and selection procedure. For
the two GAs in WM and DM modules, a chromosome denotes a
scheduling solution. The fitness function of a chromosome denotes
its performance—total tardiness of all scheduled jobs. Genetic
operators are procedures designed to create new chromosomes.
Selection procedure is designed to screen good or promising
chromosomes.

A GA proceeds in an iterative manner. In each iteration, new
chromosomes are created by applying genetic operators on a set
of original chromosomes. And good or promising chromosomes
are selected and taken as the original chromosomes of the next
iteration. The iterative procedure continues until termination con-
ditions are met. A typical GA iterative procedure is stated below
(Gen & Cheng, 2000), where the procedure terminates if t > tnax
or a particular chromosome has been the best solution for over a
finite number of iterations.

Procedure GA

Step 1: Initialization. Generate Py, a set of N chromosomes, and
sett=0

Step 2: Use genetic operators to create a set of new chromo-
somes, called S;

Step 3: Select N chromosomes out of those in M,
them in P, 4

Step 4: Termination Check

= P. US,. Place

If a termination condition meets, stop and output the best chro-
mosome in P, Else t =t + 1, go to Step 2.

6.1. GA in the WM module

The GA in the WM module is to obtain nWMrJ_,. as stated in the
Procedure Weaving_Dyeing_Scheduling. For thi$ GA, its chromo-
some representation, fitness function, genetic operators, and selec-
tion procedure are described below.

To model W"”rl , we represent a chromosome by WX = [X,..., %]
where X; = (X1, ..., Xij, ..., Xim;), in which xu denotes the planned
starting time of weavmg job] in order i(1 < k) and order i has
m; weaving jobs. Here x;; is a positive integer in an interval
[LB,UB], where UB = 0; and LB = HWME_rj,-W (refer to the notation in
Section 5).

Notice that a chromosome may be an infeasible solution. With
,‘j""”rju (the release times of weaving jobs) being available, a chro-

mosome in fact denotes a particular schedule, which can be used
to determine the capacity demand profile over time for weaving
machines. If the demand profile exceeds the available tool capacity
in any day, then this chromosome denotes an infeasible solution;
otherwise it is a feasible one and its resulting tardiness (fitness
function) can be easily obtained from the demand profile.

Two genetic operators are developed in the GA. The first
one is a modified version of the crossover operator, which is
used to generate two new chromosomes (called children) from
two given ones (called parents). Let A = (as,...,q;,...,a,) and
B = (by,...,bi,...,b,) be two parent chromosomes. For each child
.,cn) generated based on A and B, each gene
value c¢; has only two possible outcomes (either a; or b;) and is
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randomly determined. Notice that a newly-created chromosome
may be an infeasible scheduling solution. For a pair of parent
chromosomes, the modified crossover operator is repeatedly per-
formed until two children of feasible solutions are created.

The other genetic operator is a modified version of the muta-
tion operator, which is used to generate one new chromosome
from a parent chromosome. Let A = (ay,...,4a;,...,a,) be the par-
ent chromosome. Out of its n genes, we randomly select one, say
gene i, and replace its value by two alternative methods. The first
one (called r-method) is by randomly selecting a value from the
feasible range of gene i. The second one (called d-method) is by
deducting the gene value by 1; that is, the new value of gene i
is a; — 1, which implies that a weaving job is started 1 day earlier
and as a result would reduce tardiness. Of the two methods, we
determine which to use by probability; that is, the probability
of using d-method is 0.8 and that of using r-method is 0.2. For
a parent chromosome to be mutated, the modified mutation
operator is repeatedly performed until one child of feasible solu-
tion is generated.

As stated, we have to select N chromosomes out of those in M,
in order to form P.,;. The selection operator proceeds as follows.
Firstly, we rank all the chromosomes in M, based on their fitness
functions, and place the 1st rank chromosome in P, ;. Secondly,
following the ranking order, we successively determine whether
a chromosome should be selected. For the ith rank (i > 2) chromo-
some, the probability of being selected is a(1 —a)2, where
0 < a < 1is a predefined constant.

6.1.1. GA in the DM module

In the DM module, for a set of dyeing jobs (J;) to be scheduled,
we attempt to obtain a well-performed dyeing schedule in terms of
total tardiness, where the tardiness of each job jfi € J4 is measured
against its planned due date (QMoj,-d). To do so, we have to compute

bM i (planned completion time) for each job in a particular dyeing

schedule, which in fact can be easily obtained if the corresponding
sequence of the dyeing jobs has been known, as explained below.

Consider a dyeing shop with G machine types and M jobs to be
scheduled. Each job can only be processed by a particular machine
type, and the earliest starting time is t = 0. Define m(y) as the num-
ber of jobs processed by machine type g. For these jobs at machine
type g, define a job sequence by 78 = [ré‘])., - rf’mg)], where rﬁ.) de-
notes the rank of job j in the sequence. For example, a job sequence
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chine types (say, « and ), the performances of 7* and n* are com-
pletely independent. That is, 7* has no effect on the performance of
7#, and vice versa.

This implies that © is composed of G segments of independent
sub-chromosomes. Therefore, in the creation of a new chromo-
some, we generate each new sub-chromosome by independently
applying the genetic operators, and finally join them together as
an aggregated new chromosome in order to compute the total tar-
diness of the dyeing schedule.

In creating new sub-chromosomes, two types of genetic opera-
tors are used. The first one is called a modified crossover operator,
which is designed to create two new sub-chromosomes from a pair
of randomly chosen parents. The genetic operation involves two
steps. Firstly, we randomly choose a crossover point, and create
two new sub-chromosomes by swapping portions of the parents.
For example, let P, =[1, 2, 3,4, 5] and P, =[5, 4, 3, 2, 1] be the par-
ents. Suppose the 2nd gene is the crossover point, two new sub-
chromosomes C; =[1,2,3,2,1] and C,=[5,4,3,4,5] can be
formed. Secondly, we attempt to “tune” C; and C, to make each
of them a valid sequence; that is, each gene value in C; and G,
can appear only once. To obtain so, we resolve the tie by giving a
new order. For example, C; can be tuned by firstly resolving the
tie between 1st and 5th gene, which may lead to a new
C, =[1,2,3,2,2]. By fixing the values of 1st and 5th genes, we
can further tune C; by resolving the tie between 2nd and 4th gene,
which may result in a valid sequence C; = [1,3,5,4,2].

The second genetic operator is called inversion mutation opera-
tor (Wong et al., 2000), which is designed to create a new sub-chro-
mosome from an existing one. The operation proceeds by
randomly choosing two genes and exchanging their values. For
example, let P = [4,3, 1,2, 5] be the chromosome chosen for creat-
ing a new one. Suppose 2nd and 4th genes are picked for exchange,
a new sub-chromosome C = [4,2,1,3,5] is then obtained.

7. Numerical example

The proposed approach is tested by scheduling examples pro-
vided by a yarn-dyed factory. The factory involves 60 weaving ma-
chines, which are functionally identical. That is, each weaving job
can be processed on any weaving machine. The factory involves

Table 2
Schedules obtained in the first three iterations.

[rfl),rf2>,r(g3)] =[3,1,2] denotes that job 2 should be firstly pro- W DI
cessed, followed by job 3, finally by job 1. }:trégir:sts"zgays) 17 483
To obtain the planned cpmpletion time.of gach job ip g, we Running time (s) 944 337
proceed as follows. According to 78, each job is successively as- GA generations 20,000 20,000
signed to a dyeing machine (type g), which is the earliest available ond iteration
and capable to dye the job. In the machine assignment, sequence- Tardiness (days) 19 4.54
dependent setup time is considered. At the epoch of a job being Running time (s) 168 50
assigned to a machine, we can easily determine its planned starting A generations 2000 2000
time as well as its planned completion time. 3rd iteration
Therefore, in the GA of the DM module, we represent a chromo-  12rdiness (days) 17 s
Running time (s) 1012 50
some by 7 = [!,..., n¢], where 78 = [rfw o rfmg)] denotes a job GA generations 20,000 2000
sequence at machine type 1 < g < G. For any two different ma-
Table 1
Information of orders.
Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
Due day 8 10 10 10 10 10 15 10 12 14 30 12 15 10 5 20
Patterns 2 2 3 7 2 8 3 1 1 4 3 4 1 1 6 3 51
Fabric rolls 2 2 3 7 2 8 10 10 10 26 6 21 1 2 6 38 154
Color yarns 5 8 5 9 8 32 7 4 2 15 6 8 3 3 7 11 133
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Table 3

Tardiness in each order.

Order 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 Total
1st run

WM 0 0 0 0 0 0 0 0 6 0 5 0 0 0 6 17
DM 0 0 0 0 0 2.58 2.25 0 0 0 0 0 0 0 0 4.83
2nd run

WM 0 0 0 0 0 0 0 0 8 0 5 0 0 0 6 19
DM 0 0 0 0 0 0 3.29 0 1.25 0 0 0 0 0 0 4.54
3rd run

WM 0 0 0 0 0 0 0 0 6 0 5 0 0 0 6 17
DM 0 0 0 0 0 0 3.29 0 1.25 0 0 0 0 0 0 4.54
Table 4 problem complexity, we decompose the scheduling problem into

Results comparison between our approach and EDD.

Scheduling algorithm

EDD 26
Proposed approach 17

Total tardiness (days)

four types of dyeing machines. Each dyeing job can only be pro-
cessed by a particular type. Each type is composed of 1-3 dyeing
machine and there are seven dyeing machines in total.

As shown in Table 1, a scheduling example involves 16 cus-
tomer orders, which can be further deployed into 51 pattern-
cloths, 154 fabric rolls (weaving jobs) and 133 color-yarn jobs
(dyeing jobs). The BOM and due date of each order is also shown
in the table. For example, the due date of order 1 is 8th day, and
the order involves two color patterns, two fabric rolls, and five col-
or yarns.

We use a personal computer (Pentium IV) to schedule the or-
ders. The solution procedure as shown in Fig. 4 terminates at the
third iteration. Results obtained in each of the first three iterations
are shown in Table 2. From the table, readers may wonder why the
results obtained in the first iteration appear to be slightly better
than those obtained in the second iteration. This is due to an impli-
cit assumption made at the first iteration—the earliest starting
time for each weaving job is t = 0. This in fact is infeasible because
any dyeing job has not been processed at this epoch. Detailed tar-
diness information for each customer order is shown in Table 3.

Table 2 also indicates that it takes about 42 min computation
time to proceed through the three iterations. This time span is
acceptable to industry according to our interviews with the yarn-
dyed factory production planner. As stated, the scheduling in the
WM module is an integer program. We use proprietary software
CPLEX to solve the WM module, but cannot obtain a solution after
taking 19 h of computation. This again confirms the merit of our
GA approach.

We also justify the effectiveness of the proposed scheduling ap-
proach by the benchmark of using earliest due date (EDD) schedul-
ing rule, which had been used in the example factory. Table 4
indicates that our approach significantly outperforms EDD, approx-
imately 35% reduction in tardiness.

8. Conclusions

This paper presents a scheduling approach for yarn-dyed textile
manufacturing. The scheduling problem is distinct in four points:
multi-stage production, sequence-dependent setup times, hierar-
chical product structure, and group-delivery. These four scheduling
features have not been considered as a whole in literature. The
scheduling objective is to minimize the total tardiness of orders.

We formulate the scheduling problem as a mixed integer pro-
gramming (MIP) model, which is NP-hard in complexity. To reduce

two sub-problems. A solution procedure for iteratively solving
the two sub-problems is proposed, where a GA is developed to
solve each sub-problem.

The proposed model is tested by numerical examples provided
by a yarn-dyed factory. Using the proposed method to solve a typ-
ical scheduling problem in the factory takes about 42 min by using
a personal computer. The proposed approach significantly outper-
forms the EDD method—the one that had been widely used in the
yarn-dye industry.
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