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order controllers are much more simple and introduce less simulation error. Numerical
simulations are given for new Mathieu–Van der Pol system and new Mathieu–Duffing
system to show the effectiveness of this strategy.
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1. Introduction

Since Ott et al. [1] gave the famous OGY control method in 1990, the applications of the various methods to control a
chaotic behavior in natural sciences and engineering are well known. For example, the adaptive control [2–5], the method
of chaos control based on sampled data [6], the method of pulse feedback of systematic variable [7], the active control [8,9]
and linear error feedback control [10,11]. However, when Lyapunov stability of zero solution of states is studied, the stability
of solutions on the whole neighborhood region of the origin is demanded.
In this paper, a new strategy to achieve chaos control by GYC partial region stability theory is proposed [12,13]. Using

the GYC partial region stability theory, the new Lyapunov function is a simple linear homogeneous function of error states
and the lower order controllers are much more simple and introduce less simulation error.
The layout of the rest of the paper is as follows. In Section 2, chaos control scheme by GYC partial region stability theory

is proposed. In Section 3, new Mathieu–Van der pol system and new Mathieu–Duffing system are presented. In Section 4,
three simulation examples are given. In Section 5, conclusions are drawn. The partial region stability theory is enclosed in
Appendix.

2. Chaos control scheme

Consider the following chaotic system

ẋ = f(t, x) (2.1)

where x = [x1, x2, . . . , xn]T ∈ Rn is a state vector, f : R+ × Rn → Rn is a vector function.
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Fig. 1. Partial regionsΩ andΩ1 .

The goal system which can be either chaotic or regular, is

ẏ = g(t, y) (2.2)

where y = [y1, y2, . . . , yn]T ∈ Rn is a state vector, g : R+ × Rn → Rn is a vector function.
In order to make the chaos state x approaching the goal state y, define e = x− y as the state error. The chaos control is

accomplished in the sense that [13–22]:

lim
t→∞

e = lim
t→∞

(x− y) = 0. (2.3)

In this paper, we will use examples in which the error dynamics always happens in the first quadrant of coordinate
system and use GYC partial region stability theory which is enclosed in the Appendix. The Lyapunov function is a simple
linear homogeneous function of error states and the controllers are simpler because they are in lower order than that of
traditional controllers.

3. New Chaotic Mathieu–Van der pol system and new chaotic Mathieu–Duffing system

This section introduces new Mathieu–van der Pol system and new Mathieu–Duffing system, respectively.

3.1. New Mathieu–Van der Pol system

Mathieu equation and van der Pol equation are two typical nonlinear nonautonomous systems:{
ẋ1 = x2
ẋ2 = −(a+ b sinωt)x1 − (a+ b sinωt)x31 − cx2 + d sinωt

(3.1){
ẋ3 = x4
ẋ4 = −ex3 + f (1− x23)x4 + g sinωt.

(3.2)

Exchanging sinωt in Eq. (3.1) with x3 and sinωt in Eq. (3.2) with x1, we obtain the autonomous new Mathieu–Van der Pol
system:

ẋ1 = x2
ẋ2 = −(a+ bx3)x1 − (a+ bx3)x31 − cx2 + dx3
ẋ3 = x4
ẋ4 = −ex3 + f (1− x23)x4 + gx1

(3.3)

where a, b, c, d, e, f , g are uncertain parameters. This system exhibits chaos when the parameters of system are a = 10,
b = 3, c = 0.4, d = 70, e = 1, f = 5, g = 0.1 and the initial states of system are (x10, x20, x30, x40) = (0.1,−0.5, 0.1,−0.5).
Its phase portraits are shown in Fig. 2.
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Fig. 2. Chaotic phase portraits for new Mathieu–Van der Pol system.

3.2. New Mathieu–Duffing system

Mathieu equation and Duffing equation are two typical nonlinear nonautonomous systems:{
ż1 = z2
ż2 = −(a1 + b1 sinωt)z1 − (a1 + b1 sinωt)z31 − c1z2 + d1 sinωt

(3.4){
ż3 = z4
ż4 = −z3 − z33 − e1z4 + f1 sinωt.

(3.5)

Exchanging sinωt in Eq. (3.4) with z3 and sinωt in Eq. (3.5) with z1, we obtain the autonomousmaster newMathieu–Duffing
system:

ż1 = z2
ż2 = −(a1 + b1z3)z1 − (a1 + b1z3)z31 − c1z2 + d1z3
ż3 = z4
ż4 = −z3 − z33 − e1z4 + f1z1

(3.6)

where a1, b1, c1, d1, e1 and f1 are uncertain parameters. This system exhibits chaos when the parameters of system are
a1 = 20.30, b1 = 0.5970, c1 = 0.005, d1 = −24.441, e1 = 0.002, f1 = 14.63 and initial states is (−2, 10,−2, 10). Its phase
portraits are shown in Fig. 3.

4. Numerical simulations

The following chaotic system
ẋ1 = x2 − 200
ẋ2 = −(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200)
ẋ3 = (x4 − 200)
ẋ4 = −e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)

(4.1)

is the new Mathieu–Van der pol system of which the old origin is translated to (x1, x2, x3, x4) = (200, 200, 200, 200)
in order that the error dynamics happens always in the first quadrant of error state coordinate system. This
translated new Mathieu–Van der pol system presents chaotic motion when initial conditions is (x10, x20, x30, x40) =
(210.1, 209.5, 210.1, 209.5) and the parameters are a = 10, b = 3, c = 0.4, d = 70, e = 1, f = 5, g = 0.1.
In order to lead (x1, x2, x3, x4) to the goal, we add control terms u1, u2, u3 and u4 to each equation of Eq. (4.1), respectively.

ẋ1 = x2 − 200+ u1
ẋ2 = −(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200)+ u2
ẋ3 = (x4 − 200)+ u3
ẋ4 = −e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)+ u4.

(4.2)
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Fig. 3. Chaotic phase portraits for new Mathieu–Duffing system in the first quadrant.

Fig. 4. Phase portrait of error dynamics for Case I.

CASE I. Control the chaotic motion to zero.
In this case we will control the chaotic motion of the new Mathieu–Van der pol system (4.1) to zero. The goal is y = 0.

The state error is ei = xi − yi = xi, (i = 1, 2, 3, 4) and error dynamics becomes
ė1 = ẋ1 = x2 − 200+ u1
ė2 = ẋ2 = −(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3

− c(x2 − 200)+ d(x3 − 200)+ u2
ė3 = ẋ3 = (x4 − 200)+ u3
ė4 = ẋ4 = −e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)+ u4.

(4.3)

In Fig. 4, we can see that the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive

definite function in first quadrant as:

V = e1 + e2 + e3 + e4. (4.4)
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Fig. 5. Time histories of errors for Case I.

Its time derivative through error dynamics (4.3) is

V̇ = ė1 + ė2 + ė3 + ė4
= (x2 − 200+ u1)+ (−(a+ b(x3 − 200))(x1 − 200)
− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200)+ u2)+ (x4 − 200+ u3)

+ (−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)+ u4). (4.5)

Choose

u1 = −(x2 − 200)− e1
u2 = (−(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200))− e2
u3 = −(x4 − 200)− e3
u4 = (−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200))− e4.

(4.6)

We obtain

V̇ = ė1 + ė2 + ė3 + ė4 < 0

which is negative definite function in first quadrant. The numerical results are shown in Fig. 5. After 10 s, the error trajectories
approach the origin.

CASE II. Control the chaotic motion to a regular function.
In this case we will control the chaotic motion of the new Mathieu–Van der pol system (4.1) to regular function of time.

The goal is yi = Fiesinωt , (i = 1, 2, 3, 4). The error equation

ei = xi − yi = xi − Fiesinωt , (i = 1, 2, 3, 4) (4.7)
lim
t→∞

ei = lim
t→∞

(xi − Fiesinωt) = 0, (i = 1, 2, 3, 4)

where F1 = F2 = F3 = F4 = F = 10 and ω = 0.5.
The error dynamics is

ė1 = x2 − 200+ u1 − F1ωesinωt(cosωt)
ė2 = −(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3

− c(x2 − 200)+ d(x3 − 200)+ u2 − F2ωesinωt(cosωt)
ė3 = (x4 − 200)+ u3 − F3ωesinωt(cosωt)
ė4 = −e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)+ u4 − F4ωesinωt(cosωt).

(4.8)

In Fig. 6, the error dynamics always exists in first quadrant.
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Fig. 6. Phase portraits of error dynamics for Case II.

By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive
definite function in first quadrant as:

V = e1 + e2 + e3 + e4.

Its time derivative is

V = ė1 + ė2 + ė3 + ė4 = (x2 − 200+ u1 − F1ωesinωt(cosωt))+ (−(a+ b(x3 − 200))(x1 − 200)
− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200)+ u2 − F2ωesinωt(cosωt))
+ ((x4 − 200)+ u3 − F3ωesinωt(cosωt))+ (−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)

+ g(x1 − 200)+ u4 − F4ωesinωt(cosωt)). (4.9)

Choose

u1 = −(x2 − 200− F1ωesinωt(cosωt))− e1
u2 = −(−(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3

− c(x2 − 200)+ d(x3 − 200)− F2ωesinωt(cosωt))− e2
u3 = −((x4 − 200)− F3ωesinωt(cosωt))− e3
u4 = −(−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)− F4ωesinωt(cosωt))− e4.

(4.10)

We obtain

V̇ = −e1 − e2 − e3 − e4 < 0

which is a negative definite function in first quadrant. The numerical results are shown in Figs. 7 and 8. After 10 s, the errors
approach zero and the chaotic trajectories approach to regular motion.

CASE III. Control the chaotic motion of the newMathieu–Van der pol system to chaotic motion of the newMathieu–Duffing
system.
In this case we will control chaotic motion of the new Mathieu–Van der pol system (4.1) to that of the new chaotic

Mathieu–Duffing system. The goal system for control is new Mathieu–Duffing system with initial states (−2, 10,−2, 10),
system parameters a1 = 20.30, b1 = 0.5970, c1 = 0.005, d1 = −24.441, e1 = 0.002 and f1 = 14.63.

ż1 = z2
ż2 = −(a1 + b1z3)z1 − (a1 + b1z3)z31 − c1z2 + d1z3
ż3 = z4
ż4 = −z3 − z33 − e1z4 + f1z1.

(4.11)

The error equation is ei = xi − zi, (i = 1, 2, 3, 4). Our aim is limt→∞ ei = 0, (i = 1, 2, 3, 4).
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Fig. 7. Time histories of errors for Case II.

The error dynamics becomes

ė1 = ẋ1 − ż1 = (x2 − 200− z2)+ u1
ė2 = ẋ2 − ż2 = (−(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3

− c(x2 − 200)+ d(x3 − 200)− (−(a1 + b1z3)z1 − (a1 + b1z3)z31 − c1z2 + d1z3))+ u2
ė3 = ẋ3 − ż3 = (x4 − 200− z4)+ u3
ė4 = ẋ4 − ż4 = (−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)
+ g(x1 − 200)− (−z3 − z33 − e1z4 + f1z1))+ u4.

(4.12)

In Fig. 9, the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive

definite function in first quadrant as:

V = e1 + e2 + e3 + e4.

Its time derivative is

V̇ = ė1 + ė2 + ė3 + ė4 = ((x2 − 200− z2)+ u1)+ ((−(a+ b(x3 − 200))(x1 − 200)
− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)+ d(x3 − 200)− (−(a1 + b1z3)z1 − (a1 + b1z3)z31
− c1z2 + d1z3))+ u2)+ ((x4 − 200− z4)+ u3)+ ((−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)

+ g(x1 − 200)− (−z3 − z33 − e1z4 + f1z1))+ u4). (4.13)

Choose

u1 = −(x2 − 200− z2)− e1
u2 = −(−(a+ b(x3 − 200))(x1 − 200)− (a+ b(x3 − 200))(x1 − 200)3 − c(x2 − 200)

+ d(x3 − 200)− (−(a1 + b1z3)z1 − (a1 + b1z3)z31 − c1z2 + d1z3))− e2
u3 = −(x4 − 200− z4)− e3
u3 = −(−e(x3 − 200)+ f (1− (x3 − 200)2)(x4 − 200)+ g(x1 − 200)− (−z3 − z33 − e1z4 + f1z1))− e4.

(4.14)

We obtain

V̇ = −e1 − e2 − e3 − e4 < 0
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Fig. 8. Time histories of x1 , x2 , x3 , x4 for Case II.

Fig. 9. Phase portraits of error dynamics for Case III.

which is negative definite function in first quadrant. The numerical results are shown in Figs. 10 and 11. After 10 s, the
errors approach zero and the chaotic trajectories of the new Mathieu–Van der pol system approach to that of the new
Mathieu–Duffing system.

5. Conclusions

In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve chaos control. Using the
GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and
the lower order controllers are much more simple and introduce less simulation error. The new chaotic Mathieu–Van der
pol system and new chaotic Mathieu–Duffing system system are used as simulation examples which confirm the scheme
effectively.
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Fig. 10. Time histories of errors for Case III.

Fig. 11. Time histories of x1 , x2 , x3 , x4 and z1 , z2 , z3 , z4 for Case III.

Appendix. GYC partial region stability theory

A.1. Definition of the stability on partial region

Consider the differential equations of disturbed motion of a nonautonomous system in the normal form

dxs
dt
= Xs(t, x1, . . . , xn), (s = 1, . . . , n) (A.1)

where the function Xs is defined on the intersection of the partial regionΩ (shown in Fig. 1) and∑
s

x2s ≤ H (A.2)

and t > t0, where t0 and H are certain positive constants. Xs which vanishes when the variables xs are all zero, is a real-
valued function of t , x1, . . . , xn. It is assumed that Xs is smooth enough to ensure the existence, uniqueness of the solution
of the initial value problem. When Xs does not contain t explicitly, the system is autonomous.
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Obviously, xs = 0 (s = 1, . . . , n) is a solution of Eq. (A.1). We are interested to the asymptotical stability of this zero
solution on partial region Ω (including the boundary) of the neighborhood of the origin which in general may consist of
several subregions (Fig. 1).

Definition 1. For any given number ε > 0, if there exists a δ > 0, such that on the closed given partial regionΩ when∑
s

x2s0 ≤ δ, (s = 1, . . . , n) (A.3)

for all t ≥ t0, the inequality∑
s

x2s < ε, (s = 1, . . . , n) (A.4)

is satisfied for the solutions of Eq. (A.1) onΩ , then the zero solution xs = 0 (s = 1, . . . , n) is stable on the partial regionΩ .

Definition 2. If the undisturbed motion is stable on the partial region Ω , and there exists a δ′ > 0, so that on the given
partial regionΩ when∑

s

x2s0 ≤ δ
′, (s = 1, . . . , n). (A.5)

The equality

lim
t→∞

(∑
s

x2s

)
= 0 (A.6)

is satisfied for the solutions of Eq. (A.1) on Ω , then the zero solution xs = 0 (s = 1, . . . , n) is asymptotically stable on the
partial regionΩ .

The intersection ofΩ and region defined by Eq. (A.5) is called the region of attraction.
Definition of functions V (t, x1, . . . , xn): Let us consider the functions V (t, x1, . . . , xn) given on the intersectionΩ1 of the
partial regionΩ and the region∑

s

x2s ≤ h, (s = 1, . . . , n) (A.7)

for t ≥ t0 > 0, where t0 and h are positive constants. We suppose that the functions are single-valued and have continuous
partial derivatives and become zero when x1 = · · · = xn = 0.

Definition 3. If there exist t0 > 0 and a sufficiently small h > 0, so that on partial region Ω1 and t ≥ t0, V ≥ 0 (or ≤0),
then V is a positive (or negative) semidefinite, in general semidefinite, function on theΩ1 and t ≥ t0.

Definition 4. If there exists a positive (negative) definite functionW (x1 . . . xn) onΩ1, so that on the partial regionΩ1 and
t ≥ t0

V −W ≥ 0 (or− V −W ≥ 0), (A.8)

then V (t, x1, . . . , xn) is a positive definite function on the partial regionΩ1 and t ≥ t0.

Definition 5. If V (t, x1, . . . , xn) is neither definite nor semidefinite onΩ1 and t ≥ t0, then V (t, x1, . . . , xn) is an indefinite
function on partial regionΩ1 and t ≥ t0. That is, for any small h > 0 and any large t0 > 0, V (t, x1, . . . , xn) can take either
positive or negative value on the partial regionΩ1 and t ≥ t0.

Definition 6. Bounded function V .
If there exist t0 > 0, h > 0, so that on the partial regionΩ1, we have

|V (t, x1, . . . , xn)| < L

where L is a positive constant, then V is said to be bounded onΩ1.

Definition 7. Function with infinitesimal upper bound.
If V is bounded, and for any λ > 0, there exists µ > 0, so that onΩ1 when

∑
s x
2
s ≤ µ, and t ≥ t0, we have

|V (t, x1, . . . , xn)| ≤ λ

then V admits an infinitesimal upper bound onΩ1.
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A.2. GYC theorem of stability and asymptotical stability on partial region

Theorem 1. If there can be found a definite function V (t, x1, . . . , xn) on the partial region for Eq. (A.1), and the derivative with
respect to time based on these equations are:

dV
dt
=
∂V
∂t
+

n∑
s=1

∂V
∂xs
Xs. (A.9)

Then, it is a semidefinite function on the partial region whose sense is opposite to that of V , or if it becomes zero identically, then
the undisturbed motion is stable on the partial region.
Proof. Let us assume for the sake of definiteness that V is a positive definite function. Consequently, there exists a
sufficiently large number t0 and a sufficiently small number h < H , such that on the intersection Ω1 of partial region
Ω and∑

s

x2s ≤ h, (s = 1, . . . , n)

and t ≥ t0, the following inequality is satisfied

V (t, x1, . . . , xn) ≥ W (x1, . . . , xn),

whereW is a certain positive definite functionwhich does not depend on t . Besides that, Eq. (A.9) may assume only negative
or zero value in this region. �

Let ε be an arbitrarily small positive number. We shall suppose that in any case ε < h. Let us consider the aggregation of
all possible values of the quantities x1, . . . , xn, which are on the intersection ω2 ofΩ1 and∑

s

x2s = ε, (A.10)

and let us designate by l > 0 the precise lower limit of the functionW under this condition. By virtue of Eq. (A.8), we shall
have

V (t, x1, . . . , xn) ≥ l for (x1, . . . , xn) on ω2. (A.11)
We shall now consider the quantities xs as functions of time which satisfy the differential equations of disturbed motion.
We shall assume that the initial values xs0 of these functions for t = t0 lie on the intersectionΩ2 ofΩ1 and the region∑

s

x2s ≤ δ, (A.12)

where δ is so small that
V (t0, x10, . . . , xn0) < l. (A.13)

By virtue of the fact that V (t0, 0, . . . , 0) = 0, such a selection of the number δ is obviously possible. We shall suppose that
in any case the number δ is smaller than ε. Then the inequality∑

s

x2s < ε, (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t − t0, since the functions xs(t)
very continuously with time. We shall show that these inequalities will be satisfied for all values t > t0. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant t = T for which this inequality would
become an equality. In other words, we would have∑

s

x2s (T ) = ε,

and consequently, on the basis of Eq. (A.11)
V (T , x1(T ), . . . , xn(T )) ≥ l. (A.15)

On the other hand, since ε < h, the inequality (Eq. (A.7)) is satisfied in the entire interval of time [t0, T ], and consequently,
in this entire time interval dVdt ≤ 0. This yields

V (T , x1(T ), . . . , xn(T )) ≤ V (t0, x10, . . . , xn0),
which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality (Eq. (A.4))must be satisfied for all values of t > t0,
hence follows that the motion is stable.
Finally, we must point out that from the view-point of mathematics, the stability on partial region in general does not

relate logically to the stability on the whole region. If an undisturbed solution is stable on a partial region, it may be either
stable or unstable on the whole region and vice versa. In specific practical problems, we do not study the solution starting
withinΩ2 and running out ofΩ .
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Theorem 2. If in satisfying the conditions of Theorem 1, the derivative dVdt is a definite function on the partial regionwith opposite
sign to that of V and the function V itself permits an infinitesimal upper limit, then the undisturbedmotion is asymptotically stable
on the partial region.

Proof. Let us suppose that V is a positive definite function on the partial region and that consequently, dVdt is negative
definite. Thus on the intersectionΩ1 ofΩ and the region defined by Eq. (A.7) and t ≥ t0 there will be satisfied not only the
inequality (Eq. (A.8)), but the following inequality as well:

dV
dt
≤ −W1(x1, . . . , xn), (A.16)

whereW1 is a positive definite function on the partial region independent of t .
Let us consider the quantities xs as functions of timewhich satisfy the differential equations of disturbedmotion assuming

that the initial values xs0 = xs(t0) of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion is
stable in any case, the magnitude δ may be selected so small that for all values of t ≥ t0 the quantities xs remain withinΩ1.
Then, on the basis of Eq. (A.16) the derivative of functionV (t, x1(t), . . . , xn(t))will be negative at all times and, consequently,
this function will approach a certain limit, as t increases without limit, remaining larger than this limit at all times. We shall
show that this limit is equal to some positive quantities different from zero. Then for all values of t ≥ t0 the following
inequality will be satisfied:

V (t, x1(t), . . . , xn(t)) > α (A.17)

where α > 0.
Since V permits an infinitesimal upper limit, it follows from this inequality that∑

s

x2s (t) ≥ λ, (s = 1, . . . , n), (A.18)

whereλ is a certain sufficiently small positive number. Indeed, if such anumberλdidnot exist, that is, if the quantity
∑
s xs(t)

is smaller than any preassigned number no matter how small, then the magnitude V (t, x1(t), . . . , xn(t)), as follows from
the definition of an infinitesimal upper limit, would also be arbitrarily small, which contradicts Eq. (A.17).
If for all values of t ≥ t0 the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16) shows that the following inequality will be

satisfied at all times:
dV
dt
≤ −l1,

where l1 is a positive number different from zero which constitutes the precise lower limit of the function
W1(t, x1(t), . . . , xn(t)) under condition (Eq. (A.18)). Consequently, for all values of t ≥ t0 we shall have:

V (t, x1(t), . . . , xn(t)) = V (t0, x10, . . . , xn0)+
∫ t

t0

dV
dt
dt ≤ V (t0, x10, . . . , xn0)− l1(t − t0),

which is, obviously, in contradiction with Eq. (A.17). The contradiction thus obtained shows that the function
V (t, x1(t), . . . , xn(t)) approaches zero as t increases without limit. Consequently, the same will be true for the function
W (x1(t), . . . , xn(t)) as well, from which it follows directly that

lim
t→∞

xs(t) = 0, (s = 1, . . . , n),

which proves the theorem. �
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