List of Figures

Figure 1-1.	The basic structural components of xylan, and the	9
	hemicellulases responsible for its degradation	
Figure 1-2.	Catalytic mechanism of the Glycohydrolases	10
Figure 1-3.	The three-dimensional structure of bifunctional	11
	α -L-arabinofuranosidase and β -D-xylopyranosidase from	
	Aspergillus kawachii IFO4308	
Scheme 2-1.	The catalytic hydrolysis and transglycosylation of the	26
	bifunctional Abf/Xyl	
Figure 2-1.	The chromatography of the purification of the recombinant of	27
	Abf. The aborbance (-o-) was monitored at 280 nm. The	
	fractions with Abf activity (-•-) was eluted within 150-180	
	mM NaCl (—)	
Figure 2-2.	SDS-PAGE analysis of Abf obtained from different induction	28
	time and the purified protein. Lanes: M, molecular mass	
	markers; 1, recombinant enzyme from day 0 supernatants; 2,	
	recombinant enzyme from day 1 supernatants; 3, recombinant	
	enzyme from day 4 supernatants; 4, pool of active fractions	
	from HiTrap-SP column	
Figure 2-3.	Thermal stability of the recombinant enzyme assay as Abf (a)	29
	and Xyl (b). Enzyme was incubated in various temperature:	
	25 °C (⋄), 35 °C (●), 45 °C (□), 55 °C (■), 60 °C (△), and 65	
	°C (▲)	
Figure 2-4.	The proposed two-step, double displacement mechanism of	30
9	Abf/Xyl	
Figure 3-1.	Proposed reaction mechanism of a retaining	52
8	α-L-arabinofuranosidase	
Figure 3-2.	SDS-PAGE (a) and mass spectrometry (b) analysis of the	53
	recombinant α-L-arabinofuranosidase. Lanes: M, markers; 1,	
	recombinant wild-type Abf	
Figure 3-3.	pH activity profiles of wild-type Abf (0) and the D299N	54
	mutant enzyme (\bullet). The k_{cat} values of wild-type and D299N	
	mutant were measured at the final pH values: 1.9, 2.0, 2.4, 3.3,	
	3.9, 4.2, 5.5, 6.5	
Figure 3-4.	The active site of the GH54-family enzyme from <i>Aspergillus</i>	55
11801100 11	kawachii IFO4308 (1WD4) with arabinofuranose in place. The	33

	are labeled in parentheses	
Figure 3-5.	Data from a multialignment exercise, using partial sequences,	56
	of family GH54 α-L-arabinofuranosidases. Biology	
	WorkBench 3.2 CLUSTALW (San Diego Supercomputer	
	Center, CA, USA) software was used. All enzyme sequences	
	were derived from published gene sequences. GenBank	
	accession details are: U38661 from Hypocrea koningii G-39,	
	AB085904 from A. kawachii IFO 4308, Z69252 from	
	Hypocrea jecorina RutC-30, AF367026 from Penicillium	
	purpurogenum, AB073861 from Aspergillus oryzae RIB40,	
	AB073860 from Aspergillus oryzae HL15, L23502 from	
	Aspergillus niger, U39942 from Aspergillus niger, Y13759	
	from Emericella nidulans argB2, AY495375 from	
	Aureobasidium pullulans, AJ310126 from Fusarium	
	oxysporum f. sp. Dianthi, and AF306764 from Cochliobolus	
	carbonum	
Figure 3-6.	Stereochemical properties and common intermediates of Abf	57
	catalysis. (a) Enzymatic reactions, using various substrates, in	
	the presence of methanol. (b) A partial NMR spectrum	
	(chemical shift 3.4–5.4 ppm) of the end-products. Peak	
	assignment is given in the text	
Figure 3-7.	Brønsted plots of wild-type Abf (0) and D299G (•) mutant	58
116010 5-11	enzyme. (a) Plots of $\log k_{\text{cat}}$ against pK_a of the leaving phenol.	20
	(b) Plots of log k_{cat}/K_m against p K_a of the leaving phenol	

corresponding amino acids in the Trichoderma koningii Abf