Chapter 2

Theory

2.1 Electron Tunneling Spectroscopy

In classical mechanics, a particle whose total energy is below the energy potential
of a barrier can not penetrate through it. But.in quantum mechanics, the particle
has finite probability to pass through the barrier {22].

Consider two metal leads separated-by a thin insulator which serves as a potential
barrier as shown in Fig. 2.1 (a). Its"band diagram is shown in Fig. 2.1 (b). In Fig.
2.1 (b), a electron wave incident from‘theleft, defined as e***, suffers partial reflection
with amplitude R at z = 0, is exponential decaying, e™"*, in the interval 0 < x < ¢,
and emerges for x > t as Te. D, the transmission factor, is defined as the ratio
of the incident probability current fik/m; to the transmission probability current

T?hq/ms. In the case of small transmission, the exact expression for D is [23, 24]:

D(E,) = ge ¥, (2.1)

where

16kqr?
= 2.2
ST o 2
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Figure 2.1: (a) A M-I-M tunnel junction. (b) The band diagram of the M-I-M tunnel
junction.



K = /t/i(x,Ex)dx, (2.3)

KB = () UG~ B, (2.4
E, = h; :fj (2.5)

where m is the effective mass of the tunneling electron, U(z) is the potential energy
of the barrier, and F, and k, are the energy and wavevector of the tunneling electron
in the tunneling direction (the Z direction) respectively.

The magnitude of the transmission factor is dependent on the thickness and
height of the barrier. The thicker the barrier thickness or the higher the potential

energy, the smaller the magnitude.

2.1.1 Tunneling between Two Free-Electron Metals

The General Expression for the Tunneling Current

The electrons in either one lead can-tunnel through the barrier to the other one.
The net current is obtained by"subtracting one*from the other. Without any bias,
the magnitudes of these two opposite current are equal, and the net current is zero
since in this case the Fermi energy of these two lead are equal (p; = ps). But if a
nonzero bias voltage is applied between these two leads, the Fermi energy of them
are not equal. In this case the magnitudes of these two opposite current are not
equal and will cause a net current.

As shown in Fig. 2.1 (b), if a positive bias is applied to lead 2 (i.e. treating
lead 1 as ground), it will lower the Fermi level of lead 2 by eV. Here we use the

convention e > 0, i.e., e = 1.6 x 107! Coul.. Therefore we have

po = g — €eV. (2.6)
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The Fermi-Dirac distribution function in these two leads are

1
fi = —— = f(E), (2.7)
1+ e kBT
1 1
fo = — = e = (E+eV), (2.8)

14+e®T 1+e *8T
and the transmission factor D is a function of E, and V under nonzero bias, ex-
pressed as D(E,, V).
The electrical current density tunneling from lead 1 to lead 2, J;_5, can be

expressed as [23]

—2e
healV) = o /k /k /k dkadleydheov, D(Ey, V) f(E)1 = f(E+eV)].  (2.9)
Since
o i
(27_‘_)2 _ptdEt: (210)
and
1oF
i ﬁ(?_kw’ (2.11)

where p; and E;, is the two dimensional density of states and the energy corresponding
to wavevector k; respectively in the transverse direction which is perpendicular to

Z, substituting these in (2.9), we obtain

JH,(W:% / /E dE,dE,D(E,, V) f(E)[l — f(E+eV).  (2.12)

Similarly, the electrical current density tunneling from lead 2 to lead 1 can be ex-

pressed as

Joa (V) = _Qlfpt/ /EdEsztD(EI,V)f(EJreV)[l — f(E)]. (2.13)
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The net current density from lead 2 to lead 1, J(V'), can be obtained as

JV) = Jooa(V) = Jia(V)

= ,c /E ABAED(E, VIIF(E) — f(E V)] (214

Note that for positive bias applied to lead 2, the net current from lead 2 to lead 1 is
positive which can be seen from (2.14), and this is in agreement with our common
sense.

At low temperature limit, 7" — 0, all electrons lie below Fermi energy, and only
the electrons whose total energy E (= E, + E;) is between pu — eV (here we let

p1 = p ) and p can participate in tunneling. In this case, (2.14) can be reduced to

2
J(V) = ‘Z’t / /E dE,dE,D(E,,V), (2.15)

and the integral is taken within the range ji'— eVo < F = E, + E; < pu. As shown
in Fig. 2.2, the region of integral can-be divided into two parts, region 1 and 2.

Therefore (2.15) can be writtern.as

26pt p—eVv p—Eg
JV) = [/ D(Em,V)dEx/ dE; Region I
h 0 p—eV—E;
I p—Es
+/ D(Ex,V)dEx/ dE;] Region II. (2.16)
pn—eV 0

After performing the transverse integral, (2.16) reduces to

B% /OMGVD(Ex,V)dEIJr DBV — BB (217)

pn—eV

_ 2ep

Iy ==

Note that the derivation of (2.17) is based on the assumption 7" — 0, and the
expression is valid whether the barrier is symmetric or not. Actually, the barrier

information has been included in D(E,, V).
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Figure 2.2: The integration range of Eq. (2.15).
Simmon’s Simplification

Simmons [25] calculated (2.17) further. He'defined the barrier height ¢(z) as

(2.18)
For simplification, he roughly estimated the average value ¢ of the barrier height

1 [t
¢:Z/O¢($)d$-

(2.19)
From (2.3), (2.4), (2.18), and (2.19),

(2.20)
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where (3 is a correction factor which is usually near unity.

Under the application of positive V' to lead 2, the average value of the barrier

height is
- I eV
o(V) = 5 [ ola) - ——du
0
I eV [
= 3 i o(z)dr — - xdx
- -2 (2.21)

K(V)

Q

_ ((5 S - Em)%, (2.22)

if ¢ in (2.20) is replaced with-¢(¥) in (2:21). Using the approximation ¢ ~ 1 and
substituting (2.22) in (2.1), he obtamed

D(E.) ~ expl~ (T EN@ (6 — -+ p— E2)b) (2.23)

[T

Substituting (2.23) in (2.17), the tunneling current density as a function of bias

voltage J(V') is obtained as

B e - eV A3t 1o eV
J(V) = W{<¢ = o )exp[=——(2m)2(¢ — —-)?]
6+ Sepl- T am) b6+ ), 2.24)
which, for low voltages, reduces to
JV)=aV +4V3+..., (2.25)

12



where a and v are given by

o = P (Cgtenp(-agh) (220
A ) R (2.27)
a 969 3293 '

Therefore, the differential conductance can be obtained as

oJ

GV)= E

=a+3yWVi. (2.28)

which is a parabolic function of V' and is symmetric to zero-bias.
Note that the parabolic behavior in (2.28) is due to the low voltages approx-
imation and its symmetry to zero-bias is due to the average barrier height ¢(V)

simplification in (2.22) therefore in transmission factor (2.23).
BDR Model

Let us consider a metal-insulatot-metal tunnel junction with an asymmetric barrier
as shown in Fig. 2.3. Without application of bias'and in thermal equilibrium, the
Fermi levels in metal 1 and in metal 2-are equalas shown in Fig. 2.3. The barrier
height seen from these two leads are different due to their unequal work functions,
and are ¢; from lead 1 and ¢y from lead 2 respectively. According to Simmons’
derivation, the tunneling current J(V') is asymmetric to V' and therefore the dif-
ferential conductance G(V') is symmetric to V' whether the barrier is symmetric or
not, which can be seen in (2.25) and (2.28) respectively. But in our common sense,
the magnitudes of J(V') and J(—V') should not be equal (i.e. J(V)# —J(=V)) due
to the asymmetric barrier. For an asymmetric barrier, J(V') is not asymmetric and
therefore G(V) is not symmetric. The contradiction comes from Simmons’ ¢(V)

simplification in (2.21) ~ (2.24).
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Brinkman, Dynes, and Rowell [26] used a simple model of an asymmetric barrier
(BDR model) as shown in Fig. 2.3. The barrier height measured from the Fermi

level in lead 1 under the application of bias V' to lead 2 is

¢(x, V) = ¢1 + %(052 —eV —¢1). (2.29)

After substituting (2.29) in (2.1) to get D(E,,V) and then substituting the calcu-
lated D(E,,V) in (2.17), they obtained J(V'). Differential conductance G(V') was
obtained through calculating 0.J/0V, and they got, for low voltages,

ApA¢ 04,2

G(V) = GO~ ([gm)eV + (e (V)] (230
where
é — ¢1‘5¢2’ (2.31)
Ap = ¢g— ¢, (2.32)
1/2
AN % (2.33)

and G(0) is the conductance at zero-bias.

Note that in low temperature limit and for low voltages, G(V') calculated by
BDR model which considered an asymmetric barrier is approximately a parabolic
function of V' and its minimum does not occur at zero-bias. For a symmetric barrier,
Ap = ¢1 — ¢o = 0, G(V) is symmetric to zero-bias which is obvious in (2.30) and

this is in agreement with our common sense.
Thermal Effect

The derivations above (both Simmons’ simplification and BDR model) are under

the T' — 0 approximation. What is the temperature dependence of the tunneling
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Figure 2.3: The asymmetric barrier.
(a) V= 0, the Fermi levels in these two leads are equal, py = ps = p. The
barrier height seen from lead 1 is just a function of z, ¢(x) = ¢; + z/t(¢ds — ¢1) (b)
With a positive bias applied to lead 2, the Fermi level in lead 2 is lowered by eV,
and the barrier height seen from lead 1 is not only a function of x but also of V,

(x,V) = g1+ x/t(d2 — eV + ¢1).
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current? Simmons [27] included the temperature effect in his calculation which was

based on ¢(V) simplification, and obtained

where

Therefore,

Q

Q

7TC1]€T

JV,0) ————
V. )sin(wclk:T)

J(V,0)[1+ é(ﬂclk‘T)Q +.-,

~ @(2&)1/2_

C1 3 ¢

aJ(V,T)
ov

8I(V,0) merkT
AV __ sin(mc kT

wekT
SV sin(rc k)

GV, 0)[1 + é@rclm? b

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Although Simmons’ simplification*can “not-explain the offset of the parabolic de-

pendence of G(V'), the temperature dépendernce (2.39) is correct, in an asymmetric

barrier case. Therefore, combined with BDR model (2.30) (in (2.30), G(0) now

becomes G(0,0)), we have

GV, T)

where

{G(0,0)[1 = (

G(0,7)[1 —(

e kT
sin(me kT
Ao 94,>
2977 Ne, 0
602V + (583
AoAg 94,2
— V -
602V + (1583
7TC1/{?T
G(0,T) = G(0,0)———_.
(0.7) (0. )sin(ﬂclkT)
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Note that the result (2.39) is based on the assumption that the two leads sep-
arated by the potential barrier are free-electron metals. In addition, (2.39) can be
employed to determine the height and width of a barrier. Fitting the G(V,T) curve
at some fixed T by (2.39), Ay, ¢, and A¢, and therefore the width , ¢1, and ¢,
(through (2.31) ~ (2.33)), can be obtained.

2.1.2 Density of States Effect and Assisted Tunneling

In section 2.1.1, we considered the tunneling current in a tunnel junction with two
free-electron metal leads. The transmission factor depended on just the height and
thickness of the barrier and on the energy of the incident electron. The calculation
was carried out using a stationary-state methed: If these two leads are not free-
electron metals (the density of states effeef should beé considered) or some additional
interaction exerting on the tunneling electrons (not only the influence of barrier but
also the contribution of the interactionrshould be considered), how these affect the

tunneling current?

Transfer Hamiltonian Calculations

Let us consider the tunneling effect in another viewpoint as shown in Fig. 2.4 (a).
The leads are two nearly independent portions separated by the barrier, and the
weak coupling between them can be treated by a perturbing Hamiltonian H¢. If
electrons tunnel through a barrier with an additional interaction exerted on them,
HC® can be viewed as the superposition of two parts, the contribution due to the

barrier, H?, and due the additional interaction, H’™. The total Hamiltonian can
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Figure 2.4: (a) Transfer-Hamiltonian model. (b) G(V) as T"— 0.
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be expressed as

H = H,+H,+ H® (2.41)

= H,+ H,+ (H? + H'™), (2.42)

where H; and H, are the Hamiltonians of the electrons in lead 1 and lead 2 respec-
tively, and HY = HZ + H™. Then the transition rate chl,m from a given state |k;)

in lead 1 with energy €; to a state |ks) with energy €, in lead 2 is

27
W/ng - E|<k2|Hc|k1> +oee |25(€/€1 - Ekz)
2T
= ;I(’fz\(HB + H™) k) + - [P0 (er, — €ry)
27
= f|<k‘2|HB|k1> + (halH PR ) + - - [P0 (er, — €xy)
27
= g(|</<?2|1LIB|7€1>|2 (R H T Kg) |* 4 5 5 )0 (e, — €xy)
= WZ2 + W i (2.43)
where
S 2ﬂ- S
Wt = f!<k2|HB|k1>!25(€k1 — €r,) = Pt 0 (e, — €ny), (2.44)
n S 27T n S
Wkllkt; to= €|<k2|H/|k1>|25(€k1 - ek’z) = Plgllktg,l t5(€k1 - Ekz)a (245)

are the transition rates in first order from state |k;) in lead 1 to state |ks) in lead 2
due to the barrier and the additional interaction respectively, P,ff }j;t and P,ff,gl‘% are
the corresponding matrix elements’ squares which are proportional to the transition

” represents the second and higher order coefficients in Born’s approxima-

rates, 7. - -
tion and therefore ”* x *” includes the interference between them.

Under the application of a positive bias V' to lead 2, the electrical current density
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tunneling from lead 1 to lead 2, J;_.o, can be expressed as [23]

Jioa(V) = =2e > W fe)[1 = flex, + V)] (2.46)
k1,k2
A —2e Z (ng}:;t + Wklﬁczlﬂ)f(eklﬂl - f(€k2 + GV)]
k1,k2
= JlB—>2(V) + J{EQ(V) (2-47)

where the pre-factor 2 is due to the spin degeneracy, and

TPo(V) = —2e > Wi fler)[1 — flew, + V)], (2.48)
k1,k2

JM(V) = =2e > WiRet flew )L — fler, + V). (2.49)
k1,k2

Here e is the positive electron chaige (e = 1.6:x 107! Coul.), f is the Fermi-Dirac
distribution, V' is the applied: voltage-| Similarly, the electrical current tunneling

from lead 1 to lead 2, Js_.1, can be expressed as

J2_,1(V) = JQB—>1(V) + Jgfﬁfl(v) (2-50)
where
JPA(V) = =2e > Wi fler, + V)L — fler)]. (2.51)
k1,k2
(V) = =20 Winet flen, + eV)[L = fler,)]. (2.52)
k1,k2

Subtracting J; .o from J5_,1, we get the net electrical current
JV) = Joq(V) = Ji_e(V)
= [JQB—>1(V) - JF—Q(V)] + [leif1(v> - JfZZ(V)]
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— 2 3 WIS fle) — flew + V)

ks
+2e > W f(ery) — fler, +€V))]
e »
where
JEWV) = 26;}; Wil 1 (er) = fler, + V), (2.54)
JV) = 26;; Wine ™ [f (en) = flen, +eV)], (2.55)

are the tunneling current due to the barrier and due to the additional interaction
respectively. In the above derivation, we used the relations W,f ;j;t = W,i ’klft and
W,fﬁ;m = W,f:,:l’m, which are obvidus from (2.44) and (2.45) respectively. Using
(2.44), (2.54) can be expressed a8

JE(V) = 2 / / WAL 8y, ) o GtV I (1) No sy + €V )der dey

— 2 / / PP, Tl S (e + V)
Ni(eg, ) No(€x, + €V )deg, dey,

= 2e [ PAMS(0n) = Flews + V)N et Naler, + eV
= 2 / PP f(e) — fe+ eV)Ni(e)Na(e + €V)de. (2.56)
Similarly, using (2.45), (2.55) can be expressed as
T (V) = 2 / PIISU £(0) — f(e + V) Ny () Na(e + eV)de. (2.57)

For generality, we assume lead 1 and lead 2 may not be free-electron metals, and

the DOS in them can be expressed as the summation of the DOS for a free-electron
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metal (NY) and the corresponding correction (AN), i.e. Ni(e) = NP(e) + AN;(e)
and Ny(€) = NJ(€) + ANy(€) respectively. Here NY and NY are the corresponding
DOS for the free-electron metal case, and therefore have little dependence on energy.

Then, the net tunneling current density can be expressed as:

J(V) = JBV)+ J"(B)
2 [ P - Tk VN + A0
x [N2(e + eV) + ANy(e + eV)]de
_ / PP f(e) — f(e + V)N ()N (e + V) de
PEYf(e) — fe+ V)N (€) ANy (e + eV )de

pB. 1st — fledeV)| AN (e) N3 (e + eV )de

PEIS A Fle e VAN, (€) ANy (e + eV)de

PP leyeifile+ eV)ND (€) AN,y (e + eV )de

plnt. 1“ — fle+eV)]ANi(e)NJ (e + eV )de

k1ko

Pklﬁctzlst f((—: + eV)]AN1( )AN2(6 —+ eV)de.

w2
/*
/
/ P e —Flet el N () NO(e + eV )de
w2
/
/

(2.58)

As T — 0, (2.58) can be reduced to
0
J(V) = 2e / PBYINO(e)ND (e + eV )de
—eV

0
19 / PB,lstN{)<€)AN2<€ + eV)de

—eV
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. . B 1st Int,1st
where we use the approximation £,7;" =P8 and P, "*" = P! Here

Trree(V)

Tan, (V)

Tan (V)

Tany.an, (V)

Tt (V)

ree

PBAIIAN, ()N (e + eV)de
—}—26/ PEIAN, (€)ANy(e 4 eV)de
—eV
0
—|—26/ PIESENO (YN (€ 4 eV )de
—eV
PIEISENO (AN (e + eV )de

P AN, () N9 (e + eV)de
—eV
0

— —

+2e PIISEAN| (€) ANy (e + eV )de

—eV

Jﬁee(v> + JfNQ(V) + JABNl(V) + JENl,ANQ (V)

+IE (V) + TR, (V) + TN (V) + TR an,(V),

0
= 26/ PBEIND() NS (et eV)de,
—eV

0
= 2 P21 NO (AN, (€ + eV )de
—eV

eV

PPN (0) AN, (¢')de',
PBIAN ()N (€ + eV)de

y PPLAN, (€) N3 (0)de,
PBAAN, () ANy (e + €V )de,
PIttst (e 1 eV YN (€) N3 (e + eV)de

—eV
eV

PIMS (¢ ND(0) NS (0)de'

|
c\\\%\c\\
=

23

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)



0
AN, (V) = 2e / PIntIst(e 4 eV YNY(e) AN, (e + eV)de

7eV'
— / PIASE () NO(0) AN, (€')de, (2.65)
0
0
T (V) = 2 / PIMISAN, () N9(e + eV)de, (2.66)
I jan, (V) = 2e / VPW LEAN, (€) ANy (e + eV )de, (2.67)

where we use the approximations Ny (¢) = N7Y(0) since the DOS for a free-electron
metal has little dependence on energy, and the the Fermi energy is set to be 0. We
note J7..,(V), as expressed in (2.60), can be reduced to (2.17) [24] and therefore the

corresponding differential conductance G¥.__ (V) is parabolic for low voltages.

free

Now, we will consider the following two cases.
Case 1:

There is no additional interaction exerted on the tunneling electrons (H™ = 0

and therefore P15t = 0). “In this ease, J{¥ (V) = JAN (V) = JAR (V) =

ree

J g}fh an, (V) =0, and therefore the nettunneling current density

J(V) = Jﬁee(v)+J£N2(V)+JABN1(V)+JABN1,AN2(V>

Three(V) + JZn, (V) + JEn, (V)

Q

eV
= JBL(V)+2 / PPISUNO(0) ANy(€')de!
0
0
+2e / PEIEAN, ()N (0)de. (2.68)
—eV
Here we neglect the term J ENI’ AN, (V) since it contains second order correction as

shown in (2.63). The differential conductance

oJ

G(V) = 7
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Q

GPe(V) + GgNQ(V) + GﬁNl(V)

free

= GB .. (V) +22PEIND(0) AN, (V)

free

+2e2 PEHEAN, (—eV)NJ(0). (2.69)

[t means that in this case, through the G(V') measurements, the obtained spectra
contain the magnitudes of the correction of the DOS in lead 1 and lesd 2 respectively

superposed on a parabolic background, GZ __(V), as shown in (2.69).

free

Case 2:

Lead 1 and lead 2 are free-electron metals, and there is an additional interaction

exerted on the tunneling electrons. In this case, AN; = AN, = 0, and therefore

JABNZ(V) = Jle(V) = JgNl,ANQ(V) = g}\tb(v) = K}{‘}I(V) = K]L\tH,ANg(V) =0,
which are obvious from (2.61), (2.62), (2.63),-(2.65), (2.66), and (2.67), respectively.

Then, the net tunneling current

J(V) = Jﬁee(V)wLJI”t

ree

(/)
= Jp.(V)+2 / : PGS Y NI(0) NS (0)de'. (2.70)

The differential conductance

aJ
oV
= G (V)+GH.(V)

free free

G(v)

= GB_ (V) +2e*PIt1s (V)N (0)ND(0). (2.71)

free

It means that in this case, through the G(V') measurements, the obtained spec-

Int

free(V), which is proportional to the transition rate due to the

trum contains G
additional interaction exerted on the tunneling electrons, superposed on a parabolic

background, G& __(V).

free
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2.2 Kondo Effect in Bulk Samples
2.2.1 Weak Coupling Regime

In 1964, J. Kondo [7] considered the problem that how free electrons interact with
the dilute localized magnetic impurities. He write the total Hamiltonian as the sum-
mation of the free electron energy, Hy, and the interaction between the free electrons
and the localized magnetic impurities, H’. The interaction between these impurities
can be neglected since the their concentration is dilute. The total Hamiltonian H

can be expressed as

H=Hy+H, (2.72)
where
Hy = Z fka};aakm
ko
kk’

Here J > 0 for antiferromagnetic ‘coupling. He treated H' as a perturbative term
and calculated the scattering rate (transition rate) from an initial state ¢ to a final

state n, W,_,,, to second order Born’s approximation:

2 H H .
o A —|H —nmTTmi |2 E, — E; 274
2 roHgH!
h [ ni--in + ( — El _ Em + c.C )]5( n ’L)? ( 75)
where the first and second terms in the ”|---|” of (2.74) are the first and second

order Born’s approximation respectively. The second term in the square brackets of

(2.75) is the interference between the first and second order Born’s approximation.
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After substituting (2.73) in to (2.75), the scattering rate can be calculated, and
therefore the resistance can be obtained as

kpT
Rya(T) = Rig(1—2Jp log%), (2.76)

where p is the density of states around Fermi surface in the host metal. D is the
conduction band width in the host metal. Rj, is the resistance contributed from
the 1st order Born’s approximation, while Ry42Jp log(kgT /D) is the resistance
contributed from the interference between the 1st and 2nd Born’s approximation.

Note that Rjy is constant to T', and Ry (T') has —logT dependence.

2.2.2 Strong Coupling Regime

As mentioned above, for noninteractifig localized spins in bulk samples, the addi-
tional resistance R,y due the s — d exchange interaction can be calculated perturba-
tively to second order Born’s approximation; and can be expressed as (2.76). If we
inspect the second term ”—2.Jp log%” in'the parentheses of (2.76), we will find it
is positive because J > 0 and log(kpT/D) <0 (. kgT < D), and its magnitude
increases as T' decreases. Eventually the second term will be comparable to the first

term at some sufficient low temperature, namely Kondo temperature, Tx. Ty is

defined as
kpT,
—2Jp log—2=E =1, (2.77)
D
Solve (2.77) and we will obtain
D
Ty = —e 7. (2.78)
kg

Below Tk, the second term in the parentheses of (2.76) will be larger than the first

term, and the perturbation method starts to lose its validity. Moreover, the second
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term will diverge and cause an infinite resistance as 7' — 0. The unphysical result is
due to only the leading order in the perturbation calculation was included in (2.76),
and can be avoided by a complete summation of all the orders in the perturbation
[28, 29, 30, 31]. Considering all the parquet diagrams, Hamann [29] obtained an

approximate expression for the resistivity:

ftenann (1) = 50 ey + wess - ope - 47

For T' <« Tk, (2.79) can be expanded to give

72S(S+ 1) 3(r2S(S + 1))?

Reamann(T)|r<1) = Rof{l - 4(In(T/Tx))? " 16(In(T/Tk))*

o) (2.80)

which is an even function to T, and can be fitted to a simple power law,

1 T
RHamann<T)|T<<TK — Ro{l 8 (%)2 + O(ﬂ)4 + .. }
T
~ Kl = (7]
R
=" a— bT"; (2.81)

Therefore, in the low temperature limit, the resistance has 7% dependence, and this
can be explained by the Fermi liquid theory [32].

As T = 0, the system reaches to its ground state. What is the nature of the
ground state? Yosida [9], using variational methods and considering the S = 1/2
model, demonstrated that the ground state is singlet for the antiferromagnetic cou-
pling.

Although Hamann considered all the parquet diagrams, and obtained (2.79)
which can approximately describe the resistance from weak to strong coupling

regime, the more precise results can be acquired by the numerical renormalization
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group (NRG) methods [32, 13, 33]. An empirical expression for the NRG calculation

is [21):
77

RNRG,empirical(T) = RO(W)Q7 (282)
0

where Tj relates to Tk through

Ty = T/ V2V — 1, (2.83)

and o ~ 0.2 £ 0.01 for the S = 1/2 case.
The expressions (2.79) for S = 1/2 and (2.82) are plotted together in Fig. 2.5.

We can see that for 0.5 < T/Tx < 5, these two expressions are very close, but

~Y

(2.79) fails at low temperatures. We should note that at low temperatures, these

two expressions both have ” —T?” dependence as shown in Fig. 2.5.

2.3 Kondo Effect in Tunnel Junctions
2.3.1 Weak Coupling Regime

In 1967 Appelbaum [2] considered the’preblem what is the influence on the tunneling
current if some magnetic impurities localized inside the barrier as shown in Fig. 2.6.

The Hamiltonian can be written as

2
H= Z%‘FZV(Xi)—F%;W(Xi—Xj), (2.84)
i i i#j

in second-quantized form it becomes

H = Hy+ Hj, (2.85)
= [+ Y Ve, (2:86)
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Figure 2.5: The plots of of Ryamann(T/Tk) and Ryra(T/Tk).
For 0.5 < T/Tx <5, these two expressions are very close, but Rygmann fails at low
temperatures. We should note that at low temperatures, these two expressions both
have ”—T72” dependence.
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Region a. Region b.

;

Oxide barrier

Figure 2.6: A schematic representation of a tunnel junction which contains a mag-
netic impurity in its barrier.
1
Hi =5 [ ' GG )i o (x) s, (287)

where

Y00 = D@D bivi(x), (2:88)

U0 = 3 el () + > byl (x). (2.89)

(2

The 1¢(x) are a complete set of states in the region a of Fig. ?? and the 1?(x) are

a complete set of states in the region b. Therefore,
P(X) =D ety (X) + Y Doty (x) + Y dotbas(x) (2.90)
k,o k/,o’ o

where {¢f, (x)} and {¢g (x)} are the conduction electron states on side a and b

respectively, and {14, (x)} are the localized electron states. Here only one localized
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state is assumed for simplicity. ayx, and by, are destruction operators for an electron
with momentum k and spin ¢ on side a and b respectively, and d,, is the destruction
operator for an electron in a localized state. Substitute 1 (x) and ¢T(x) into (2.85)

~ (2.87), the following form can be obtained:

H:H1+HQ+H3—|—H4+"', (291)
where
Hy =) €yl + Y erobli,bio, (2.92)
k,o k,o

This is the single-particle conduction-electron energies.

Hy, = Z (Tkk/aLabk/a + Tk’kb;rclgaka) (293)
k k' .o
+ YT ilag,ds + dfax,) (2.94)
k,o
D0 T a bl i), (2.95)
k,o

H, arises from single-particle terms in the Hamiltonian. (2.93) is due to the direct
overlap of the conduction electron states on sides a and b as they tail into the barrier.
(2.94) and (2.95) are due to the overlap of the localized d states with the conduction

electrons on the a and b sides respectively.

Hy =Y Eqng + Ungn_,, (2.96)

where U is the direct Coulomb integral between the localized electrons, Ej; is the

appropriate single particle energies for the localized electrons and n, = dd,.
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H5 = Z Wd7k;d’k/d:r7altg,dg/ak/g (297)

k. k' 0,0’

+> Ve (diaw + al,dy). (2.98)

Since the localized electron is near to side a, the coupling between electrons on side b
and the localized electron is very small. A term which is first order in this coupling,
the product of three electron operators for side b and one localized electron operator
is retained. Therefore he obtained
He =Y W (dibe, + bl,do). (2.99)
k.o
H; includes terms in which conduction-eléctron operators for sides a and b along

with localized electrons operators appears]fAmong 'these he retained only

H, = Z kad;k/,dalodz,bk/ofda+Hermiticm conjugate (2.100)
k.k/ 0,0’
+ > W Ldl,d bedeHermiti jugate.  (2.101
K did k' Qgd. Ao b= Hermitian conjugate.  (2.101)
k.k/ 0,0’

He replaced the d operator by spin operator in (2.97) and (2.100), obtaining

Ja Z{SZ(CLLTCLWT - aLlak/l) + S+aLlak/T + S_GLTak’i}

k,k’
+Tja Z{SZ[(aLTbk'T + bI{’TakT> — (ahbk/i + bL,lakl)]
kk’
+S+(alek/T + bL,lakT) + ST (CLLTbk/l + bLTle)}’ (2.102)

in addition he had

T (afybio + bgtno) + To D (ak,bies + blyy ko). (2.103)

kXK o kk'o
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The first term of (2.103) is just (2.93), and the second term represents all the

nonexchange mechanisms for the tunneling of an electron from side a to side bin

which the conduction electron interacts with the localized electron. Equations (2.91),

(2.102) and (2.103) together make up the complete model Hamiltonian.

In a magnetic field H, and with a bias voltage V applied to side a, the Hamilto-

nian of the system can be written as

H

Hy

H/

HI

Hy+ H',

Z gﬁaaﬂaakg + Z Ei,abLaka + glluB|S : H7
k,o k,o

HT + H!,

Tra » {S:-l(alybwr + bluay) — (af by + b ax)]
Kk’

+5™ (af, by bl ) 8 (@ by + b0}

+T ) (afgbwo + bustia) + T Y _ (af,bwo + bl 0xs).
KK o KK o

Ja Z{SZ<CLLTak/T — aLlak/l) i S+aLlak/T + S_aLTak’l}7
k,k’

where €2 and €} _ implicitly include the Zeemann energy and

~a __ _a
€ro = €xo + V.

Assume H = HZ, the last term in (2.105) takes the form

gluslS-H = AS,,

where the Zeemann splitting energy A = gugH.

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

The total current J,;, between sides a and b can be calculated by multiplying

the current j,, which is due to a single magnetic impurity by N,, the number of
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localized spin on side a. ju can be calculated from

Jab = €ZPM > Wionwornr f(ef)(1 = f(Eryr))] (2.113)
k,k’ 0,0’
—62 Py Y Waorsrmont f(€gr)(1 = f(ef,))], (2.114)
k. k0,0’
where e is the charge of the electron (e = —1.6 x 107 coul.), Py is the statis-

tical probability for S, = M, and f(ex) is the Fermi-Dirac distribution function.
Wyonr o 1s the transition probability per unit time that a conduction electron
in state (k, o) on side a scatters into state (k’,0’) on side b, with the localized spin

undergoing the transition M — M’. Since spin is conserved
o+ M=o+ M (2.115)

Wiiormrkem has a similar meaning for transition: from side b to side a.

In the weak coupling regime; similar t6 the method used by Kondo [7], Appel-
baum [2] calculated the transition rate W -te-second order Born’s approximation,
and obtained the tunneling current. The tunneling current contains three parts, the
contribution of the s —d exchange interaction, J%*, the contribution of the assisted
tunneling due to the existence of localized states (the potential scattering with the

impurities), J2¢®* and the contribution of the interference between the former two,

imp
weak weak weak : :
Jinter ference- Smce Jgr® and Jimt are odd functions to bias V, they can be com-
bined to J¥%*. The corresponding differential conductance, G¥%* = 9.Juca* /9V | is

an even function to V. GY% is obtained as

Gueek — q@ 4 g®) (2.116)
2) dme? b 2 2 2
GY = P (0)p”(0){T* + N[2TT, +T; + S(S+1)T7,
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where

C=—

M A A —
—I—T}a% X (tanh eV T a4

G+ 6P + Gy
ar)
S(S+1)  25(5+1)
A—eV AteV
ST ) + tanh o
c (M?) (M)
“n
2t 55Ty T3
xF(eV 4+ A),
C (M2) (M) A—eV
DAL T R
xF(eV —A),

{1 -

X (tanh

8mre?

h

S8+ 1)l (er)p(er) Na T3, JuF (eV).

The conductance G¥¢% can be reduced to

where

g3

g31

g32

even

Gueakl CYVIIEEGH V) G3(V),

even

/_OO gn(w)mdw7

o ow

ay,
(M) w+ A A—w
1 h h

as[S(S+1)+ 5 (tan T + tan T )],
az(gs1 + ga2 + g33),
S(5+1) — (M)

1 w+ A A—w
+§(M> X (tanh ST + tanh T ) F(w),
1 A
SIS(S + 1) 4 (M) + (M) tanh “ 21 F(w + A),
2 2kgT
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(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)



—w+A
2ksT

g3z = %[S(S+1)+(M2>+(M>tanh |Flw—A). (2.130)

where

o f(E) -

F(w) = - E
0

2dE (2.131)

Ey is a cutoff parameter used to prevent well-known ultraviolate divergence difficul-

ties. And
M=S
(M) = Z PyM
M

— (S + 1) coth[(S + 1)727), if H #0 (2.132)

LS(S 1), if H=0
- { ?M)2 — (S + %)QCSCh2[(S+ S T] 34 CSCh2<2k =), if H #((? 133)

In the zero magnetic field, we substitute-A-= 0,7(2.132), and (2.133) in (2.126)
0 (2.130), and get

g = aS(S+1), (2.134)
g = [S(S+1)— (M*]F(w), (2.135)
gr = SIS(S+ 1)+ (MA]F(), (2.136)
g = SIS +1) — (MAF(e), (2.137)

g3 = as(gs1 + gs2 + g33) = az2S(S + 1) F(w). (2.138)

Therefore, if H = 0,

G(V) = /_Oo AL P (2.139)



—00

Ga(V) = / ¥ 028(5 + R 2=V g,

oo Oow
= 2a35(S—|—1)/ F(w)wmu, (2.141)
where
Fo Fo 1 _ ! Eo tanh
F(w) = f(zEsz—;/ 1=27t) ,Q_f(e)de'zé/ T (_2’“ T)de.
—E, W Eo € W —E, e w
(2.142)
Therefor
oo rEo tanh —
Gs(V) :a35(5+1)/ [/ (i) g 2w = V) | (2.143)
oo dog, € w Ow

And then we can get

Gueek(VY = Gy(V) #G3() HGe )=

even

= —a; —aS(S+1)

taS( ) /:XJ [/EO tanh(ngT>d€]3f(w _ eV)dw

g € —w ow

_ A—B/_oo [/EO i €% T>de]af(°”_ev)dw. (2.144)

B, €-w Ow

where A = —a; — a,5(S + 1), and B = a3S(S + 1). The proof that G¥%*(V) is an

even
even function is left in Appendix A.

weak

After deriving the even conductance, Goeor,

in the weak coupling regime, we turn

to the interference term. The tunneling current contributed from the interference

effect, Jie  enee, Was calculated as [3]:
6reT,T; [ .
TeithieneV) = T [T {f(0) = o+ eV + V)
w _ a g 2 a\2
X tanh2k T(l 6.Jp ln|D])7r (Jp*)~}dw. (2.145)
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Jweak

inter ference 18 an even function to V, and therefore the corresponding differential

conductance, GY* is an odd function to V, and can be obtained as:

aJ’l’l;)Legf erence
Goii(V) = —mgleens
6m3e*T, T —8f w —|— eV
= —— ) / (2w )
X tanth T(l —6Jp 1H|E|)}dw

* —0f(w+e€V) w w
h 1— “In|—-
a/_oo (V) tan 2k3T< 6.Jp n|E0])dw

(2.146)

where

6m3e?T, T “ "
a = ———20"(0)p"(0)(Jp")". (2.147)

2.3.2 Strong Coupling Regime

In the low temperatures limit, the system inin the strong coupling regime and the
perturbation approach used above.in mot applicative. Appelbaum [3] utilized the
self-consistent solution to the bulk Konde-effect, which was given by Nagaoka [8],
to calculate the tunneling current in the strong coupling regime. Similar to the
weak coupling case, the tunneling current contains three parts, the contribution of
the s — d exchange interaction, J% ", the contribution of the assisted tunneling

due to the existence of localized states (the potential scattering with the impurities),

Jfg; "9 and the contribution of the interference between the former two, J; " Herence:
They can be expressed as:
4eT?
Jstrong 174 — v
G) = e | AU = S+ eV
b A’
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trong 4 Tc? >
Ty = T [l @) - o ev)
2
x p’(w + eV)pa(w)h}dw, (2.149)
strong - 8€TaTJ > i
Jinterference(v) - h|Jpa| /Oo{[f(w) f(w + GV)]
A
x phw + ev>pa(w)A2—+“’w2}dw, (2.150)

respectively. Here A = kgTk.

The corresponding differential conductance can be obtained as:

Gy = o) [P
| xﬁ:ﬂ]dw
2 O (2.15)
XA2w—:w2]dw
= 47Te—;T‘?,Ob(O)p“L(O)N(jL(()jv)Q, (2.152)
G V) = S0 0) [ 200 L)
xAQA—:’wQ]dw (2.153)
- SeLL, BeV (2.154)

AT p’( )P“(O)m-

It is obvious from (2.152), (2.153) and (2.154) that G57°" and G5"°" symmetric to

imp

. strong . . strong strong .
Vo while Gyer ference 18 @symmetric. Therefore G, ™ and Gy, can be combined
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to an even function as

Gstrong (V)

even

where

a; =

o =

— GI) + GIV)

a; X (eV)? 4 ay x A?
(eV)? 4+ A? ’

(2.155)

T2p"(0)p"(0),
4e?

ST5p%(0)p°(0),

ha (Jp*)
kpTx.

(2.156)

41





