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里德所羅門解碼器之通用型架構設計 

 

學生 : 張富科   

指導教授 : 張錫嘉 

國立交通大學電機工程學系﹙研究所﹚碩士班 

 

 
摘 要       

里德所羅門碼主要用來保護資料來避免在傳輸中可能發生的錯誤，它的

數學演算主要是根據有限場(finite field)的運算。 里德所羅門碼在許多應用

上都有例子，譬如 CD, DVD 光碟機，cable modern 以及 DVB-T 的系統。 然

而在各種應用裡，因應不同的規格要求，每種里德所羅門馬有著完全不同

的參數以及不同的有限場的定義和 p(x)。 而以往的多模式設計，總需要花

上許多的硬體和週期來處理不同有限場定義的問題。  因此本論文提出一

個完全多模式的里德所羅門碼解碼器，它可以同時處理不同的參數包含可

更正的錯誤和有現場的定義。  我們總共提出兩種的架構，第一種架構主

要支援最高有限場次方到 10，第二種架構有限場次方到 8。 除此之外，我

們還應用一些小面積的設計考量於次方為八的架構，使得能夠達到小面積

的設計。 這兩種架構都以 0.13 1P8M 的製程來實現，分別需要 110K 和 53K

個邏輯閘。根據模擬的結果，最快可以達到 220MHz 以及 250MHz 的工作

頻率。 
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Universal Architectures for Reed Solomon 
Error-and-Erasure Decoder 

 

Student: Fuke Chang  

Advisor: Hsie-Chia Chang 

 

Institute of Electronics 
National Chiao Tung University 

ABSTRACT 

Due to protecting the data form random error and burst error during transmission, Reed 

Solomon (RS) code has been widely accepted as the forward error correction scheme, such as 

xDSL, cable modem, and DVB-T.  Because of the different RS specific parameters, a cost 

efficient RS decoder that can support various applications has practical importance to reduce the 

time-to-market and design costs.  This thesis presents two universal architectures for Reed 

Solomon (RS) error-and-erasure decoder that can accommodate any codeword with different 

code parameters and finite field definitions.  The first architecture can support the maximum 

degree to 10, and the second architecture can support to 8.  The area efficient design approach 

is also considered in second architecture.  Implemented with 1.2V 0.13µm 1P8M technology, 

the two decoders can operate at 220 MHZ and 300MHz and reach 2.2Gb/s and 2.4Gb/s data rate, 

respectively.  The total gate counts of two decoders are 110K with core size 0.78mm2 and 54K 

with the core size 0.36mm2. 
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CHAPTER 1 

Introduction 

 

1.1 Background 

 

Figure 1.1: Block diagram of communication system 

The importance of efficient and reliable data transmission in communication system is 

required in recent years.  Fig 1.1 shows the typical communication system which composed 

of source coding, channel coding and modulation [1].  However, we only focus on the 

channel coding block or be named as well as error control coding which is used to resist the 

channel noise during data transmission.  As shown of figure, the error control code is 

composed of channel encoder and channel decoder.  The channel encoder is used to encode 

the information symbol with additional redundancy bits.  The channel decoder can decode the 

encoded codeword and has capable of correcting the errors.  The error control code also can 

be separate form different encoding arithmetic, one is block code and the other is 

convoluitional code.  The Reed Solomon (RS) code which belongs to block code and has 
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cyclic structure [2] will be described in this thesis that includes algorithm research and 

hardware implementation.  

1.2 Motivation 

In recent years, the Reed Solomon code is used in many applications, such as xDSL, cable 

modem, DVD, blue-ray disc, and DVB-T systems.  Table 1.1 shows a list of RS code 

applications and the finite field (FF) definition, and the Table 1.2 indicated the number of 

primitive polynomial with different field degree [3].  From table 1.1, we know that there are 

many different RS specifications in single systems.  For example, the ITU J.83 system which 

includes of two different finite field definitions and the correctable error number has 3 different 

modes.   

Table 1.1: Some application of Reed Solomon decoder and its finite field definition 

 Table 1.2: The number of primitive polynomial with different field degree 

Applications RS code specifications 

LDC (248,216) RS code for GF(28), t=16 Blue-ray 
DISC BIS (62,30) RS code for GF(28), t=16 

Flash (526,518) RS code for GF(210), t=4 

A,B (204, 188) RS code for GF(28), t=8 

C (128,122) RS code for GF(27), t=3 ITU J.83 

D (207,187) RS code for GF(28), t=10 

DVB-T (204, 188) RS code for GF(28), t=8 
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Because of the different RS specific parameters, a cost efficient RS decoder that can support 

various applications has practical importance to reduce the time-to-market and design costs.  

There are many similarities between various applications and the hardware can be shared for 

lower cost design.  This thesis proposes two universal architectures for Reed Solomon 

error-and-erasure decoder that can accommodate any codeword with different code parameters 

and finite field definitions.  The proposed I supports the maximum field degree to ten, and the 

corrective error is eight, and the proposed II can support the maximum field degree to eight, 

and the corrective error is sixteen.  The area efficient approach is adopted for implementing 

the proposed II architecture.  Furthermore, the proposed decoders can support erasure 

correction without increasing any finite field multipliers.   

The design challenge is how to realize a dedicated RS decoder that is suitable for different 

finite field definitions.  The Montgomery multiplication algorithm will be used to deal with 

the relation between different finite field definitions.  In comparison with other reconfigurable 

RS decoders, the proposed design, based on the Montgomery multiplication algorithm, can 

support various finite field degrees, different primitive polynomials, and erasure decoding 

functions.   

Finite field 

degree m 
Primitive polynomial 

number 

5 6 

6 12 

8 34 

10 106 
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1.3 Thesis Organization 

The organization of this thesis is described as follows.  In chapter 2, the Reed Solomon 

code algorithm includes encoding and decoding will be introduced.  Chapter 3 shows the 

Montgomery multiplication algorithm [8], universal finite field multiplier and universal finite 

field inverter.  Additionally, the on-the-fly look-up table is described in subsection 3.3.  The 

proposed universal RS decoder architecture will be addressed in chapter 4.  Each block and 

its design methodology of proposed decoder will be described in detail.  In chapter 5, the each 

subsection will show another area efficient design in proposed II architecture.  The design and 

test consideration and chip implementation is shown in Chapter 6.  We also compare the chip 

performance and size with others architecture in Chapter 6.  Finally, Chapter 7 is the 

conclusion and future work.  
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CHAPTER 2 

Introduction to Reed-Solomon code 

 
Reed Solomon (RS) code which is used to protect the data during transmission has been 

widely accepted as the forward error correction scheme for various optical storage systems and 

communication systems,.  The fundamental arithmetic of RS code is built on the Galois filed 

which denoted with GF [9].  A RS code over GF(2m) can be represented (n, k, t) code which has 

block length n and n-k parity symbols.  The number of maximum correctable errors is t and the 

number of parity symbols is n-k.  Note that the GF(2m) indicates that RS code are non-binary 

code with symbols made up of m-bit sequence, where m is any integer having a value greater 

than two. 

This chapter is organized as follow.  Section 2.1 describes the RS encoding procedure and 

its mathematical arithmetic.  The RS decoding scheme is presented in Section 2.2, and the 

Berlekamp-Massey algorithm and Euclidean algorithm which are used to solve the key 

equation will be introduced [3, 4].   

 

2.1 Reed Solomon Encoding 

It has been know that the GF(pm) which p is a prime number can be represented using 0 and 

(p-1) consecutive powers of a primitive field element a GF(pm).  Symbols from the field GF(2m) 

are used in the construction of Reed Solomon code.  Each of the 2m elements of the finite field 

GF(2m) can be represented as a distinct polynomial of degree m-1.  
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αi = αi(x) = αi,0 + αi,1x + αi,2x2+ ··· + αi,m-1xm-1   , for i = 0 ~ 2m-2             (2.1) 

Let M(x) represented as (mk-1, mk-2, …, m1, m0) be the information symbols with k symbols.  

And the G(x) is the generator polynomial which is the product of the associated minimal 

polynomial.   

G(x) = (x+αb)(x+αb+1)·····(x+αb+2t-2)(x+αb+2t-1)                                (2.2) 

Where the degree of G(x) is equal to the number of parity symbols, and the b is a constant.  

Therefore, for an (n, k, t) RS code, the nonsystematic encoding procedure can be expressed as 

follow: 

C(x) = G(x)·M(x)  

= (x+ab)(x+ab+1)·····(x+ab+2t-1)* M(x)                                       (2.3) 

Where the C(x) is the codeword that has 2t roots of αb+1 ~ αb+2t. 

Another encoding approach to encode the information symbols is the systematic encoding [4] 

which uses the parity check symbols to form the codeword.  Firstly, the message polynomial 

M(x) is multiplied by x2t and then modular by the generator polynomial G(x) to obtain the 

remainder polynomial R(x). 

R(x) = M(x)·x2t + Q(x)·G(x)                                               (2.4) 

Where the Q(x) is the quotient polynomial of the divided polynomial M(x)·x2t and the divisor 

polynomial G(x) which has degree less than 2t-1.  The systematic polynomial can be expressed 

as follow: 

 

C(x) = M(x) x2t +R(x)  

= G(x) Q(x)                                                        (2.5) 
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We can think of shifting a message polynomial M(x) into the rightmost k location of a 

codeword and appending 2t parity check symbols in the leftmost location.  Fig. 2.1 shows the 

typical systematic encoding circuit with 2t register, where the g0, g1, …,g2t-1 is the coefficient of 

generator polynomial.  The output symbols are the message M(x) during the first k clock cycles.  

The remaining n-k cycles, the parity symbols R(x) are moved to output.  The total number of 

required clock cycles is equal to n. 

g1g0 g2 g2t-1

m(x) C(x)
 

Figure 2.1: The systematic RS encoding architecture 

 

2.2 RS Code Decoding with Erasure Correction 

As mentioned early, the codeword polynomial is C(x) and the error polynomial is e(x).  The 

received polynomial r(x) can be expressed as follow: 

r(x) = C(x) + e(x)                                                        (2.6) 

Fig. 2.2 shows the error-only RS decoding flow chart which can be divided into four steps: 1) 

calculation of the syndrome S(x) form the received codeword, 2) computation of the error 

locator polynomial σ(x) and the key equation Ω(x) with Berlekamp-Massey algorithm [5, 6] or 

Euclidean algorithm, 3) search of the error location by Chien search approach, and 4) 

evaluation of error value.   
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)(xΩ

)(xS

 

Figure 2.2: The systematic RS decoding scheme 

The syndrome is the result of a parity check performed on received polynomial r(x) to 

determine whether r(x) is a valid member of the codeword set.  If the received polynomial has 

no errors, then the syndrome polynomial S(x) is always 0.  On the other hands, any nonzero 

value of syndrome indicates the presence of errors.  The computation of a syndrome symbols 

can be describes as follows: 

2
1

1
( ) ( )

t
i i

i
S x r xα −

=

= ∑                                                   (2.7) 

S1 = r(α1) = e(α1) = e1χ1+ e2χ2+…+evχv 

S2 = r(α2) = e(α2) = e1χ1
2 + e2χ2

2 +…+evχv
2 

… 

S2t = r(α2t) = e(α2t) = e1χ1
2t + e2χ2

2t +…+evχv
2t                               (2.8) 

 

Where the ei represents the i-th error value and the v is the occurred error number, and the 

χi represents the error location number.  When a nonzero syndrome vector has been computed, 

it signifies that an error has occurred.  Then, the error locator polynomial σ(x) and the key 

equation Ω(x) will be computed.  An error locator polynomial and key equation are defined as 
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σ(x) = (1+β1x) (1+β2x)····(1+βvx) 

= σ0 +σ1x +σ2x2 + σ3x3 + ····+σvxv                                     (2.9) 

Ω(x) = S(x) σ(x) mod xn-k 

= e1χ1(1-χ2x)(1-χ3x)····(1-χvx)  

+ e1χ2(1-χ1x)(1-χ3x)····(1-χvx)  

+ e1χ3(1-χ1x)(1-χ2x)····(1-χvx)  

+…                                                             (2.10) 

 
Berlekamp Massey algorithm 

In 1960, Peterson provided the first explicit description of a decoding algorithm for binary 

BCH code.  He uses the relation of error locator polynomial and syndrome vector to solve the 

key equation.  The relation can be rewritten as a matrix form: 

1 2 3 1

2 3 4 1 21

3 4 5 2

1 2 2 1 21

...

...

... .
... .

...

v vv

v vv

v

v v v v v

S S S S S
S S S S S
S S S S

S S S S S

σ
σ

σ

+

+ +−

+

+ + −

⎡⎡ ⎤−⎤ ⎡⎤
⎢⎢ ⎥⎥ ⎢⎥ −⎢⎢ ⎥⎥ ⎢⎥
⎢⎢ ⎥⎥ ⎢⎥ =
⎢⎢ ⎥⎥ ⎢⎥
⎢⎢ ⎥⎥ ⎢⎥
⎢⎢ ⎥⎥ ⎢⎥ −⎢ ⎦⎦ ⎣⎣ ⎦⎣

               (2.11) 

But this algorithm is inefficient for large correctable error number code.  Consequently, 

the error locator polynomial and error evaluate polynomial are always computed by 

Berlekamp-Massey algorithm or modified Euclidean algorithm in the past.  The 

Berlekamp-Massey algorithm which is developed by Berlekamp and explained by Massey 

with linear feedback register has regular property for decoding key equation.  The entire 

Berlekamp-Massey algorithm is shown as: 
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The δ is the discrepancy which is the convolution of syndrome vector and error locator 

polynomial and the γ is the dummy nonzero discrepancy that keeps the value of previous 

discrepancy.  The discrepancy is used to verify that the linear feedback shift register generates 

corresponding the given syndrome sequence at each step.  If the discrepancy is equal to zero, 

it represents that we don’t update the error locator polynomial and the dummy discrepancy.  

For operating the Berlekamp-Massey algorithm, it totally costs 2t iteration. 

 
 

Euclidean Algorithm 

In 1975 Sugiyama et al. showed that Euclidean algorithm can decode Reed Solomon code.  

The Euclidean algorithm originally is used to calculating the greatest common divisor of two 

1) Initially   
( ) ( ) ( )( ) 1, ( ) 1, 0, 1, 1b a kx x l k γΛ = Λ = = = =  

2) Compute (a) ( ) ( )( ) ( )a ax x xΛ ←⎯⎯ Λ  and  
( )

0

l
b

j k j
j

Sδ −
=

= Λ∑  

(b) 
( ) ( ) ( )( ) ( ) ( )c b ax x xδ

γ
Λ = Λ + Λ  

(c) If 0 2 1and l kδ ≠ ≤ −   

Set 
( ) ( )( ) ( ), ,a bx x l k l γ δΛ = Λ = − =  

(d) ( ) ( )( ) ( )b cx xΛ = Λ  

 
3) Set k = k+1. If k < d, then go step 2.   
 
4) Stop 
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polynomials.  For rewriting the key equation, the Euclidean algorithm can be applied to 

produce the correct sets of solutions (σ(x), Ω(x)) that satisfy as 

n-k

n-k

(x) = S(x) (x) mod x
=>   Q(x) x + S(x) (x) = (x)

σ

σ

Ω ⋅

⋅ ⋅ Ω
                                 (2.12) 

Where the Q(x) is the quotient polynomial of the dividend polynomial S(x)σ(x) and divisor 

polynomial xn-k.  The Q(x) is not available for us, but the pair (σ(x), Ω(x)) is the interested 

solution.  The Ω(x) computation is similar as calculating the GCD polynomial of xn-k and 

S(x). 

1 1

2 1 2

3 1 2 3

2 1

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
....

( ) ( ) ( ) ( )

d

n n n

R x x S x Q x
R x S x R x Q x

R x R x R x Q x

x R x R x Q x− −

= +
= +

= +

Ω = +

                                    (2.12) 

where the Q(i)(x) is i-steps quotient polynomial and R(i)(x) is the i-steps remainder polynomial.  

At each step, the division operation of polynomial is performed.  According to the Euclidean 

algorithm, the computation of error locator polynomial is shown as 

1 1

2 1 2

3 1 2 3

2 1

( ) 0 1 ( )
( ) 1 ( )
( ) ( ) ( ) ( )

....
( ) ( ) ( ) ( )n n n

x Q x
x Q x
x x x Q x

x x x Q x

σ
σ σ
σ σ σ

σ σ σ− −

= +
= +
= +

= +

                                  (2.13) 

Where the Q(x) is same as the result of computing error evaluate polynomial.  From the 

equation (2.12), it is known that the error locator polynomial can be calculated by given 

quotient polynomial and previous error locator polynomial.  For performing Euclidean 
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algorithm, the degree increasing of σ(x) is in opposition to the degree of Ω(x).  Hence, the 

Euclidean decoding procedure terminates when the degree of σ(x) is larger than the degree of 

Ω(x).   

Because of the regularity of Berlekamp Massey algorithm, the proposed universal 

architecture is implemented by applying this algorithm.  After the key equation and error 

equation have been calculating, the next step is finding the error location roots by Chien search 

approach.  The methodology of Chien search is substitution of error locator polynomial with 

finite field elements to check the result equals zero or not. 

σ(α-i) =0  for i = 0, 1, 2,  , N.                                            (2.14) 

Then, according to Forney algorithm [7], the error value can be computed as follow: 

1

1

( )
'( )

l
l

l

xe
xσ

−

−

Ω
=                                                         (2.15) 

The xl and the σ’(x) are the location root at the Chien search step and the derivative of error 

locator polynomial σ(x) respectively. 

Erasure is a type of error with the position information. A RS decoder with erasure 

correction will improve the performance in various systems.  For a (n, k, t) RS code, the erasure 

correction capability of the code is  

s = dmin-1 = n-k                                                        (2.16) 

where the dmin is the minimum distance between any two codewords.  For RS code the 

minimum distance is given by  

dmin = n – k +1                                                         (2.17) 
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Simultaneous error correction and erasure correction capability can be expressed by the 

requirement that 

2v+s < dmin < n-k                                                      (2.18) 

where v is the number of symbol error that can correct, and the s is the number of symbol 

erasure that can be corrected.  For decoding erasure, it is shown that the error and erasure 

locator polynomial (errata locator polynomial) can be obtained directly by initiating an 

inverse-free BM algorithm with the erasure locator polynomial.  Consequently, we just 

consider the expansion of erasure locator polynomial.  The erasure locator polynomial is 

computed by the following equation. 

2( ) (1 ) modi tT x x xα= +∏                                       (2.19) 

Hence, the error-erasure locator polynomial Λ(x) (or say errata locator polynomial) and key 

equation W(x) of erasure correction can be rewritten respectively as follows: 

n-k( ) (x) T(x) mod xx σΛ = ⋅                                         (2.20) 

n-k(x) = S(x) (x) mod xW ⋅Λ                                         (2.21) 
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CHAPTER 3 

Universal Finite Field Operator 
 

This Chapter describes the Montgomery multiplication algorithm [8] and indicates the 

implementation of universal finite field operators.  The basic idea to achieve universal 

property is applying the universal finite field multiplier which can accommodate different finite 

field definition [20].  In comparison with others proposed approach, the universal finite field 

multiplier only cost two cycles to realize the finite field multiplication for various definitions.  

What if the input of universal FFM multiplies is replaced with the corrective factor at first, it 

only requires one cycle to perform the operation.  Additionallly, the universal finite field 

inverter is the last step to realize the Forney algorithm.  Two approaches are presented in 

subsection 3.3, the Fermat’s algorithm [10] with universal multiplier and on-the-fly lookup 

table with SRAM. 

 

3.1 Montgomery Multiplication Algorithm 

An element A of the field GF(qm) with a prime q can be interpreted as the polynomial 

representation.  In the polynomial representation, multiplication in GF(qm) corresponds to 

the multiplication of polynomials module an irreducible polynomial of degree m. Suppose A 

and B are two elements in GF(qm), and p(x) is the corresponding primitive polynomial of this 

field. Then, the multiplicative operation C=AB can be defined as follows: 

( ) ( ) ( ) mod ( )C x A x B x p x=                                     (3.1) 

Where C is also an element of GF(qm).   
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Actually, the finite field addition and subtraction are just excursive OR operations.  

Therefore, what we interested is the multiplication and division (or say, the inverse operation) in 

finite field.  According to the modular multiplication property in (3.1), we can adopt 

Montgomery multiplication algorithm to calculate the product C(x).  The Montgomery 

multiplication algorithm has been proven that this algorithm can replace the modular operation 

with a series multiplication.  The following equation defines the Montgomery product of A and 

B: 

*ˆ ( ) ( ) ( ) ( ) mod ( )C x A x B x R x p x=                                   (3.2) 

The polynomial R*(x) here is a fixed element of GF(qm) satisfying R(x)R*(x) =1 mod p(x) 

while R(x)=xm . Note that the requirement of R(x) and p(x) being relatively prime is always 

consistent. It has been proven by [8] that the result )(ˆ xC of (3.2) can be obtained by following 

equations: 

*( ) ( ) ( ) ( ) mod ( )Q x A x B x p x R x=                                   (3.3) 

ˆ ( ) [ ( ) ( ) ( ) ( )] / ( )C x A x B x Q x p x R x= +                              (3.4) 

The polynomial p*(x) in (3.3) is defined as p(x)p*(x)=1 mod R(x). As compared with (3.2), 

it is evident that modulo p(x) operation is replaced by modulo R(x) and division by R(x) 

operations. Since R(x)=xm , implementation of (3.3) and (3.4) are much easier than that of 

(3.2). Furthermore, as A is interpreted in polynomial form and R*(x)= x-m mod p(x), (3.2) can 

be rewritten as: 

 
1 2

1 2

0

ˆ ( ) [ ( ) mod ( )] [ ( ) mod ( )]

... [ ( ) mod ( )]
m m

m

C x a B x x p x a B x x p x

a B x x p x

− −
− −

−

= +

+ +
           (3.5) 

Rearrange this equation, an iterative representation comes out: 
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1 1

1 1 0

1

ˆ ( ) [ ( ) [..[ ( ) [ ( ) mod ( )]]

mod ( )]...] mod ( )
mC x a B x a B x a B x x p x x

p x x p x

− −
−

−

= + +
               (3.6) 

Based on this equation and the transformation from (3.4) to (3.6), the Montgomery 

multiplication algorithm is derived as:  

 

Montgomery multiplication algorithm: 

0

*

1

( ) 0;
( 0; ; ){

( ) [( ( ) ( )) ( )]mod ;
( ) [ ( ) ( ) ( ) ( )] / ;

}
ˆ ( ) ( );

i i i

i i i i

m

S x
for i i m i

x S x a B x p x x
S x S x a B x x p x x

C x S x

ρ
ρ+

=

= < + +

= +

= + +

=                   (3.7)

 

The term p*(x) is the multiplicative inverse of p(x) under modulo x multiplication. 

In GF(2m), elements are often represented in binary digits, and the coefficients ai are referred 

to the bits of A. The binary representation will cause some reduction to Montgomery 

multiplication algorithm. Since p(x) is irreducible, the results of p(x) mod x and p*(x) mod x are 

both equal to 1. The p*(x) term in the Montgomery multiplication algorithm can be eliminated, 

which leads ρi(x) to equal the least significant bit of the sum Si(x)+ aiB(x).  

The number of recursive operation in Montgomery multiplication depends on the field 

degree m. However, some modification can be proposed to remove the effect of unexpected 

variable m.  In equation (3.3) and (3.4), R(x) is modified to be Rd(x)=xd, and d is a constant 

integer such that d≧m. Since the result of R*
d(x) mod p(x) is an element of GF(qm), there exists 

an element R*
d(x) in the field GF(qm) that satisfies Rd(x)R*

d(x)=1 mod x.  Therefore, the 

modified Montgomery multiplication algorithm for GF(2m) with m≦d is constructed: 
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Modified Montgomery multiplication algorithm: 

0

1 0

( ( ), ( ), ( )){
  ( ) 0;
  ( 0; ; ){
  ( ) 0;
  ( ) ( ) ( );
  ( ) [ ( ) ( )] / ;
  }

ˆ  ( ) ( );
}

i

i i

i

d

MM A x B x p x
S x
for i i d i

if i m a
T x S x a B x
S x T x t p x x

C x S x

+

=
= < + +

≥ =
= +

= +

=

                                (3.8)

 

The term t0 is the least significant bit of the temporal element T(x). If the field degree is less 

than d, the most significant bits of A is set to zero.  The final result will be multiplying the 

normal finite field product A(x)B(x) by a constant element R*
d(x) of GF(2m). The output of 

Montgomery multiplier involves a constant factor R*
d(x) mod p(x) with the standard product. 

Such constant factor can be canceled by applying one additional Montgomery multiplier. 

Calculation of the product C(x)=A(x)B(x) is completed using: 

2( )  mod ( )dK x x p x=                                           (3.9) 

ˆ ( ) ( ( ), ( ), ( ))C x MM A x B x p x=                                     (3.10) 

ˆ( ) ( ( ), ( ), ( ))C x MM C x K x p x=                                     (3.11) 

where K(x) is treated as a constant value for a given p(x). 

 

3.2 Universal Finite Field Multiplier 

As mentioned in chapter 2, to design a universal finite field multiplier, the circuit 

complexity mainly depends on the module operation for different primitive polynomial.  To 

achieve universal finite field operation, the methodology proposed in the past is using a series 
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shift and multiplication operations to replace the modular operation.  However, this approach 

costs two or more cycles to operate than original dedicated finite field operation.  This section 

presents a new multiplier architecture that can accommodate different finite field definition. 

The proposed universal finite field multiplier is built on the Montgomery multiplication and 

only cost two cycles to operate the finite field multiplication.  

According to this modified algorithm, the bit-level multiplier architecture can be 

implemented easily.  The t0 indicate the LSB bits of T(x), and the division of x replaces as a 

left shift operation.  The Montgomery multiplier architecture for GF(2m) with m≦4 is shown 

in Fig. 3.1.  Fig. 3.1(a) and Fig. 3.1(b) indicate the function unit and the Fig.3.1(c) illustrates the 

overall architecture in GF(24).  The signal ai and bi are the bits of two input element A and B, 

which can be expressed as A=(a3a2a1a0) and B=(b3b2b1b0) respectively.  Besides, mi is used to 

indicate the i-th bits of the primitive polynomial and Si is the i-th output bits.  

 

Figure 3.1: Montgomery multiplier structure for GF(2m) while m≦4 

As the multiplier for maximum field degree d has been implemented, any multiplication of 

GF(2m) with field degree less than d and corresponding primitive polynomial is applicable.  As 
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shown in Fig. 3.1(c), the proposed bit-parallel multiplier dispenses with additional control 

circuit due to the regular structure.  

Table 3.1: The comparison of universal finite field multiplier 

Instruction cycle 

 Critical path
C=AB C=A/B i

n

i
i BAC ∑

−

=

=
1

0

L. Song [11] 
8TAND 

+11TXOR 3 4m-4 3n-2 

Proposed 

[20] 

9TAND 

+15TXOR 2 m 2n 

As compared to another universal finite field multiplier proposed by [11], our approach 

needs no additional pre and post-shifting circuit.  Table 3.1 compares the required instruction 

cycle between the proposed universal finite field multiplier [20] and the multiplier of [11] while 

operating over GF(2m) with a multiplier that supporting maximum field degree of 8.  Note that 

one instruction cycle here indicates a single shift operation, multiplication, or addition.  And 

the finite field division in Table 3.1 is based on Fermat’s algorithm.  In this table, it is clear that 

our proposed multiplier cost less cycles for calculating the finite field operation. 

 

3.3 Universal Finite Field Inverter 

The implementation of Forney algorithm requires a universal finite field inverse operation.  

Two methods for realizing the inverse operation are generally used, one is using Fermat 
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algorithm which replaces inversion with a series of square and multiply operations [10], and the 

other is the looking up table.   

Fermat’s algorithm 

Fermat’s algorithm 

2222

....))1(21(2

2....22

221

...)))*(...((

12

ββββ

β

β

ββ

=

=

=

=

++

+++

−−

−m

m

                                            (3.12) 

Based on this algorithm, the inversion in GF(2m) can be replaced by serial square and 

multiply operations.  In additional, the Fermat algorithm shows us that inverse operation 

needs m-1 cycles which include two Montgomery multiplications in each cycle. For example, 

in GF(16), β-1= β16-2= β2+4+8= β2(1+2(1+2))= (β(ββ2)2)2 , three cycles are required.   

Fig. 3.2 shows the architecture of inverter which is composed with two universal FFM.  

The control unit is added to realize the inverse operation, the Montgomery multiplier A is taken 

as a squarer and the multiplier B perform the finite field multiplication. 

 

Figure 3.2: The finite field inverter based on Fermat’s algorithm.  
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On-the-fly Inversion Table 

Since the Fermat algorithm needs many cycles to calculate the error value, leading to a larger 

FIFO buffer.  Therefore, for high speed computation, the on-the-fly look-up table composed of 

2m*m SRAM, universal α generator and universal α−1 generator, is proposed as shown in Fig. 

3.3. 

According to different finite field definition, the universal α generator and α−1 generator will 

update the finite field element and its corresponding inverse value respectively at syndrome 

calculating stage.  At error evaluator stage, the inversion table is available for Forney algorithm.  

Hence, the total decoding stage can be kept on 4 and can decrease the length of FIFO buffer. 

 

Figure 3.3: On-the-fly inversion table 
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CHAPTER 4 

Proposed Universal Architectures 

As mentioned in Chapter 2, the RS erasure decoder consists of syndrome calculator, erasure 

locator polynomial expansion, key-equation solver, Chien-search block and error-value 

evaluator, and a finite field inverter.  The syndrome calculator computes the syndrome vector to 

key equation block.  When the syndrome value is equal zero, the following decoding procedure 

will be terminated.  If not, the erasure locator polynomial will be computed and the key 

equation block will calculate the error locator polynomial based on inverse Berlekamp-Massey 

algorithm [12].  The error location and the location roots will be known at Chien search step.  

Finally, according to the Forney algorithm, the error evaluate block calculate the error and 

erasure values.  Besides, the FIFO buffer is used to keeps the received codeword which size is 

increasing with code block length. 

The proposed architecture of universal RS erasure decoder is presented in this chapter.  All 

of these components implementation mentioned early will be detailed in the following 

subsections.  In subsection 4.1, the universal syndrome and erasure value calculator is 

addressed.  For erasure correction, the corresponding erasure value must be kept to compute 

erasure locator polynomial at syndrome stage and transmit the erasure value to next stage, key 

equation block.  For key equation block design, the authors present a decomposed inversionless 

BM architecture that can reduce the complexity significantly in paper [13, 14].  The proposal in 

[15, 16] requires 2t~3t finite field multiplier.  However, the decomposed architecture only 

requires 3 finite field multipliers without any finite field inverter to implement.  For decoding 

erasure, the key equation must replace the initial condition with the erasure locator polynomial.  

Therefore, the expansion hardware of erasure locator polynomial must work before operating 
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the Berlekamp Massey algorithm.  For area efficient design, the combination of erasure locator 

polynomial expansion and decomposed Berlekamp-Massey architecture is presented in 

subsection 4.2.  In subsection 4.3, the Chien search and error evaluator architecture is shown.  

This architecture can search the error and erasure roots of errata locator polynomial with any 

variable parameters. 

 

4.1 Universal Syndorme and Erasure Value Calculator 

This section presents universal syndrome architecture design.  For design syndrome 

calculator in the past, the Horner’s rule is applied to reduce the substitution hardware area.  

Let the R(x) be the received polynomial, and the syndrome value can be obtained by substituting 

the finite field elements α1, α2, ...., α2t.  This substitution of syndrome value can be expressed 

as follows: 

i

1 2 3 2 1

= ( )

(..(( ) ) ...... )  for i=1~2t

i

i i i i
n n n

S R

R R R R R

α

α α α α− − −= + + + +      (4.1)
 

For adopting the property of universal finite field multiplier, the syndrome has to be 

modified as: 

m m i
iS = R( ) for i=1~2tα α α                                              (4.2) 

,where the αm is the corrective factor for universal finite field multiplier.  Hence, for 

implementing a syndrome calculator cell, a universal finite field multiplier is required.  This 

cell architecture is shown in fig. 4.1.  Assuming the correctable errors are equal eight, sixteen 

syndrome cells are needed. 
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Figure 4.1: The syndrome cell of syndrome calculator 

Fig. 4.2 shows the entire universal syndrome and erasure value calculator block with 

correctable erasure is 16.  Expect calculating the syndrome value, this stage also calculates 

erasure vectors.  If the erasure flag is valid, the erasure occurs, and the corresponding erasure 

value must be saved.  According to different correctable error and erasure number, the 

syndrome selector has to transmit the appropriate syndrome vector to key equation block. 

 

Figure 4.2: Universal Syndrome Block 
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4.2 Erasure Locator Polynomial Expansion and Key Equation Solve 

block 

Decomposed Berlekamp-Massey Architecture 

As has been mentioned in chapter 2, the key-equation block can be implemented by two 

algorithms, Euclidean algorithm and Berlekamp-Massey algorithm.  For implementing 

Berlekamp Massey algorithm, a lot of parallel architectures have realized in the past which 

required 2t ~3t finite field multiplier.  However, a decomposed architecture which only three 

finite field multipliers required has proposed to reduce the circuit complexity significantly in 

[13], and this architecture is based on the inversionless Berlekamp-Massey algorithm.   

In the inversionless Berlekamp-Massey algorithm, the finite filed inverter is replaced by a 

multiplier and doesn’t have any influence on computing the correct result.  The decomposed 

architecture slows down the key equation without impacting the decoding speed, and the each 

iteration of equation can be decomposed as following: 

( )
0( )

( ) ( ) ( )
1

( 1)
( 1) ( )

1 3 1

, 0

, 1

0 , 0
, 1

b
c

j b i a
j j i

i
j i c

j i j j i

for j

for j s v

for j
S for j s v

γ

γ δ

δ
δ

−

+
+

− − + −

⎧ ⋅Λ =⎪Λ = ⎨
⋅Λ + ⋅ Λ ≤ ≤ +⎪⎩

=⎧⎪= ⎨ + ⋅Λ ≤ ≤ +⎪⎩

        (4.5) 

where Λ(a)
j is the coefficient of Λ(a)(x) and δj

(i) is the i-steps partial result in computing the 

discrepancy.  From above equation, only two finite field multipliers are used to computing the 

error locator polynomial Λ(x) and one finite field multiplier is needed to calculating the 

product of syndrome value and the coefficient of error locator polynomial.   
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Figure 4.3: The decomposed key equation architecture for calculate the error locator 

polynomial. 

Because of the regularity of Berlekamp Massey algorithm, the universal key equation 

block can be realized easily by replacing the dedicated finite field multiplier with universal 

finite field multiplier.  Fig. 4.3 shows the error decoding steps of decomposed key equation 

architecture with three finite field multipliers.  The register buffer with length (4t+1)*m bits 

is used to keep the latest error locator polynomial Λ(b)(x) and previously error locator 

polynomial Λ(a)(x).  Each initial coefficient such as discrepancy δ, previous discrepancy γ, 

and error locator polynomial Λ(a)(x) and Λ(b)(x) must multiply the corresponding corrective 

factor αm respectively to obtain the correct result. 

 

Expansion Hardware of Erasure Locator Polynomial 

The paper [17] shows that the error-erasure locator polynomial (errata locator polynomial) 

can be obtained directly by initiating an inverse-free BM algorithm with the erasure locator 

polynomial.  Hence, for implementation of erasure correction, only the erasure polynomial 

expansion hardware must be considered.   
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In paper [18, 19], it shows two approach to implement the expansion hardware.  One is 

the parallel architecture which costs n-k finite field multipliers and another is the serial 

architecture which needs two finite field multipliers.  Additionally, after calculating of erasure 

locator polynomial, the initial discrepancy of erasure locator polynomial and syndrome vector 

must be computed as the inversionless Berlekamp-Massey algorithm coefficient.  This step 

also needs additional penalty to realize.  Therefore, to achieve a regular and minimum area 

design, the modified inversionless Berlekamp-Massey algorithm with erasure locator 

polynomial expansion is shown as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Initially   

( ) ( )

( )

( ) 1, ( ) 1,
0, 1, 1, 0

b a

k

x x
l k decodeγ

Λ = Λ =

= = = =  

2) If k<s decoder=0, set 
( ) ( )1, , ( ) ( ) ( )a b

kZ x x x x xδ γ= = Λ = Λ = Λ  

 Compute ( ) ( ) ( )( ) ( ) ( ) (1 ) ( )c b a
kx x x Z x xγ δΛ = Λ + Λ = + Λ  

         and 
( )

0

l
c

j k j
j

Sδ −
=

= Λ∑  

 Set k=k+1, 
If k<s repeat step (2), Else set decoder =1 and go step (3) 

3) Compute (a) ( ) ( )( ) ( )a ax x xΛ ←⎯⎯ Λ  and  
( )

0

l
b

j k j
j

Sδ −
=

= Λ∑  

(b) ( ) ( ) ( )( ) ( ) ( )c b ax x xγ δΛ = Λ + Λ  

(c) If 0 2 1and l kδ ≠ ≤ −   

Set 
( ) ( )( ) ( ), ,a bx x l k l γ δΛ = Λ = − =  

(d) ( ) ( )( ) ( )b cx xΛ = Λ  

 
Set k = k+1. If k < d, then go step 3.   
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,where k is iteration number, s is the erasure number, Zk is the erasure value provided by the 

previous syndrome stage, and Λ(x) is the error and erasure locator polynomial (or say errata 

locator polynomial).  The δ is the latest discrepancy and the γ is the previous discrepancy.   

In this algorithm, if the decoder=0 at the beginning and the iteration number is smaller than 

erasure number (k < s), the decomposed architecture will calculate the erasure locator 

polynomial.  Then, the signal decode will be asserted, and the inversionless Berlekamp-Massey 

algorithm will be performed.  Note that at step (2) and step (3), the computation of Λ(x) 

equation has the similar computation form.  According to this property, the erasure locator can 

be computed by the same architecture with additional control circuit.  Consequently, the 

erasure locator polynomial can be obtained regularly without increasing additional finite field 

multipliers.  Besides, the extra cycles aren’t required to deal with the problem of the initial 

discrepancy.  Fig. 4.4 shows the decomposed architecture state that computes the erasure 

locator polynomial. 

 

Figure 4.4: Using decomposed architecture to compute the erasure locator polynomial. 
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Computation for Errata Evaluator Polynomial 

The paper [13] has also indicated that the errata evaluator polynomial can be computed by 

decomposed architecture.  After the errata locator polynomial is obtained, the errata evaluator 

polynomial can be derived as following: 

2

(0) (1) ( 1) 1

( )
1 0 1 1

( ) ( ) ( ) mod t

v v

i
i i i

W x S x x x
W W x W x

W S S S

− −

+

= Λ

= + + ⋅⋅⋅⋅ +

= Λ + Λ + ⋅⋅⋅+ Λ
                                 (4.6) 

where the v is the degree if the errata locator polynomial and the W(i) represents the coefficient 

of the errata evaluator polynomial.  To compute the errata evaluator polynomial is similar to 

compute the discrepancy, which also requires a multiply-and-addition hardware to implement.  

The errata evaluator polynomial also can be decomposed like calculating discrepancy, which is 

show as follows: 

1 0( )
( )

1 1

, 0
W

, 1
ii

j i
j i j j

S for j

W S for j i
+

− − +

Λ =⎧⎪= ⎨ + ⋅ Λ ≤ ≤⎪⎩
                            (4.7) 

Obviously, this decomposed format is same to compute the discrepancy (equation (4.7)).  

Hence, the same hardware is used to solving the error evaluator polynomial after obtaining the 

errata locator polynomial. 

 

4.3 Chien search and Error Evaluator Block 

Chien search block 

The Chien search is used to check the roots of errata locator polynomial which equals to 

zero or not.  If Λ(α-i)=0, this is represent that there is an error or erasure at the i-th location of 

received codeword.  Similar to the syndrome block, the Chien search and error evaluator block 
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are also implemented through the Horner’s rule.  However, for universal Chien-search 

architecture design, the dedicated FFM is replaced with universal FFM for each cell.  Fig. 

4.5(a) shows the circuit of the Chien search cell.  Because of the maximum field of our 

proposed design is ten, the one stage FIFO buffer must have length 1024x10 bits and costs 

large area.  For reducing the FIFO buffer length, the double check Chien search is used to 

find the roots twice at a time.  Fig. 4.5(b) shows the entire Chien structure with n-k Chien 

search cells. 

 

 

Figure 4.5: (a) the double check Chien search cell. (b) Chien search architecture with 

correctable erasure is n-k. 
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Error value evaluator 

The Foney algorithm mentioned in Chapter 2 is used to evaluate the error value.  The 

Foney algorithm can be expressed as follows:  

j

j
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'( )l

W
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β
β

=
Λ                                                    (4.8)

 

where the βj indicates the root of errata location polynomial Λ(x) and the Λ’(x) is represent 

the first derivative of Λ(x).  In finite field arithmetic, the derivative can be replaced with simple 

format which is composed of original odd coefficient.  It is shown as follows: 
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where the todd represents the maximum degree of Λ(x).  Hence, the Forney algorithm can be 

rewritten as: 

j j j
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( ) ( )
, 1 ~

'( ) ( )l
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W W
e for j t

β β β
β β

⋅
= = =

Λ Λ                  (4.10) 

There are two solutions to realize the error evaluator block.  One is parallel approach 

which is similar as the Chien search architecture, and another serial structure is using one FFM 

to implement.  However, the large FIFO buffer length is the penalty of serial architecture.  

Fig. 4.6 shows the serial error evaluator architecture.  Where the UFFI represents a universal 

finite field inverter and βj indicates the roots of errata locator polynomial.  The finite field 
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inverter is used to calculate the inversion of finite field elements.  This architecture can 

calculate the W(βj) and 1/Λ(βj) at same time. 

 

Figure 4.6: The serial error evaluator architecture with one FFM. 

 

4.4 Summary 

In this chapter, the universal RS erasure decoder is proposed.  If a (n, k, t, m) universal 

erasure RS decoder is designed.  The any (n’, k’, t’, m’) RS code with n’≤ n, k’≤ k, t’≤ t, m’≤ 

m parameters can be decoded by our proposed architecture. 

 

Figure 4.7: The Timing Diagram for propose I architecture. 
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The decoding timing scheme of proposed RS decoders is shown in fig. 4.7.  As the fig.4.7 

shows, the double check Chien search is used to reduce the search cycles and serial error 

evaluator architecture can be applied.  And, the finite field inverter of proposed I architecture 

is based on Fermat’s algorithm.  

 

Figure 4.8: Block diagram of proposed I RS decoder. 

 

Fig 4.8 shows the block diagram of proposed architecture I.  The proposed architecture I 

can support the maximum field degree to 10, and the corrective error is 8.  Two 2048x10 

SRAMs are used to store the received codeword.  Because the syndrome cell and Chien 

search cell are implemented by universal FFM, the total gate count of proposed architecture I 

is large.  Hence, for implementing the error evaluator block and finite filed inverter, the serial 

computation architectures is used.  
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CHAPTER 5 

Area Efficient Design Approach  

The RS erasure decoder consists of syndrome calculator, erasure locator polynomial 

expansion, key-equation solver, Chien-search block and error-value evaluator.  However, in 

proposed architecture I, the design has larger design-cost than typical single mode RS decoder.  

In proposed architecture II, constant universal finite field multiplier will be used to reduce the 

gate count.  In this chapter, the modified syndrome calculator is introduced in subsection 5.1 

and the parallel Chien search and error evaluator architecture is shown in subsection 5.2.  The 

parallel Chien search and error evaluate architecture can search the error and erasure roots and 

calculate the error value simultaneously.  The key equation architecture is same as proposed 

architecture 1.  Because of the implementation of constant universal FFM, the total area cost 

of syndrome block and Chien search block is improved obviously.  Finally, the improving of 

the decoder function that can correct 16 errors is described in subsection 5.3.  

 

5.1 Universal Syndorme and Erasure Value Calculator 

The syndrome value represents the error information of received codeword.  The Horner’s 

rule is applied to compute the syndrome value.  Hence, the typical substitution form of 

syndrome value is shown as following: 

i

1 2 3 2 1

= ( )

(..(( ) ) ...... )  for i=1~2t

i

i i i i
n n n

S R

R R R R R

α

α α α α− − −= + + + +      (5.1)
 

It is because that the universal finite field multiplier cost larger area than a dedicated 

constant multiplier.  In order to achieving area efficient design, a constant UFFM (CUFFM) 
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can be constructed by replacing one input value of UFFM with fixed finite field element xi.  It 

can be expressed as following: 

*
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1 1 1

1

( )

1

( ) ( ) ( ) ( ) mod ( )
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α
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−
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−

− −
=

=

=

= + + +

=

⋅
              (5.2) 

It is shown that the α(i-m) represents a constant UFFM (CUFFM) function. 

However, for adapting to constant UFFM function, the original substitution of syndrome 

polynomial must be modified.  According the Horner’s rule, each codeword symbols must 

multiply the constant αm*n before entering the syndrome cell, where n represents the location of 

codeword symbols.  The following equation indicates the detail modified syndrome 

substitution procedure. 

i i*n-1 i*n-2
n-1 n-2 0

( +(i- ))*n-1 ( +(i- ))*n-2
n-1 n-2 0

*n (i- ) *n-1 (i- ) (i- )
n-1 n-2 0

R( ) = R  + R  +....+ R  

    = R  + R a +...+ R  

   = (...((R + R ) +..)..) + R

m m m m

m m m m m m m

m m m m m m

α α α α α α α

α α α α

α α α α α α
  (4.4) 

Based on above equation form, the modified syndrome calculator is constructed in Fig 4.1.  

Fig. 5.1(a) indicates each cell of syndrome architecture and Fig. 5.1(b) shows the entire 

universal syndrome and erasure value calculator block with correctable erasure is 16.  Since the 

area and critical path of CUFFM increase in proportion to the minus degree of α(i-m), the 

maximum minus degree of CUFFM is kept at eight.   
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Figure 5.1: The universal Syndrome and Erasure Value Calculator 

 

5.2 Chien search and Error Evaluator Block 

For area efficient design, the universal FFM can be replaced with constant universal FFM 

in each cell of Chien search and error evaluator block.  Since the area and critical path of 

CUFFM increase with the minus degree of , the errata polynomial form must be modified to 　
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avoid larger minus degree.  Assume the correctable erasure is 16, the modified errata 

polynomial form is shown as follows; 

-i -1 i -2 i -8 i
0 1 2 8

-9 i -10 i -16 i
9 10 16

-1 i -8 i
0 1 8

-1 i --8 2 i -8 i
9

i
10 16

( ) = + ( ) + ( ) +....+ ( ) +

              ( ) + ( ) +....+ ( )

 

 (

         = + ( ) + ....+ ( ) + 

            { ( ) + ( ) +....+ () ) }α

α α α α

α α α

α α

α α α

Λ Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

.                (5.2) 

From the above modified equation format, the maximum α minus degree is always 8 and the 

Chien search block can be implemented easily based on this polynomial form.  Fig. 5.2 shows 

the area efficient Chien-search architecture for t=8.  The cell’s output value whose alpha 

degree is large than 8 will multiply the corrective factor α-8. 

 

Figure 5.2: The parallel Chien-search block with constant UFFM 
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For the error evaluator polynomial, its implementation is same as the error locator 

polynomial that is shown as follows:  

-i -1 i -2 i -8 i
0 1 2 8

-9 i -10 i -16 i
9 10 16

-1 i -8 i
0 1 8

-1 i --8 2 i -8 i
9

i
10 16

( ) = + ( ) + ( ) +....+ ( ) +

              ( ) + ( ) +....+ ( )

 

 (

         = + ( ) + ....+ ( ) + 

            { ( ) + ( ) +....+ () ) }α

α α α α

α α α

α α

α α α

Ω Ω Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

               (5.3) 

 

Figure 5.3: The parallel error evaluator block with constant UFFM 

Figure 5.3 shows the parallel error evaluator architecture.  The inversion RAM which will 

be described in next subsection is used to store the corresponding finite field inverse.  Each 

cell is constructed by one const universal FFM.  As compared with serial architecture in Fig. 

4.6, because the function of Chien search and error evaluate can be performed at same time, 
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this architecture will reduce one stage FIFO buffer.  However, it totally costs N cycles to 

operate the error evaluator function. 

 

5.3 8 ≤ t ≤ 16 Error-only Correction 

Since the proposed design supports the maximum 16 correctable erasure, it can be 

configured to correct 9~16 errors without any erasure.  The basic idea is calculating the 

syndrome twice which costs 2n (n is the block length) cycles.  At first N cycles, the syndrome 

S1~S16 will be calculated.  However, if the first half of syndrome S1~S16 are equal zero, the 

S17~S32 will all equal zero, and the following decoding process, includes 16 syndrome 

calculation , key equation solve, and Chen search block can be terminated.  Based on this 

property, the power consumption can be reduced significantly.  If syndrome S1~S16 are not 

equal zero, the syndrome S17~S32 will be executed.  The syndrome block will read the received 

codeword again from the FIFO buffer, and the next codeword will be hold.  Fig 5.4 shows the 

hardware structure between syndrome block and FIFO buffer, and fig. 5.5 indicates the 

decoding procedure of 16 error-only correction. 

 

Figure 5.4: Block diagram of 16 errors correction. 
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Figure 5.5: Decoding timing diagram for 16 errors-only correction. 

 

5.5 Summary 

 

Figure 5.6: The Timing Diagram for propose II architecture. 

In this chapter, the area efficient architecture of universal RS erasure decoder is introduced.  

The proposed architecture II can support the maximum field degree to 8, and the corrective 

error is 16.  The decoding timing scheme of proposed decoder II is shown in fig. 5.6.  As this 

figure shows, the maximum latency is 4N+4 and two 512x8 SRAMs are applied.   

Fig. 5.7 shows the block diagram of proposed architecture II.  The area efficient approach 

is adopted for implementing the proposed II architecture.  A 256x8 SRAM is used to realize 

the on-the-fly inversion table, and parallel Chien-search and error evaluate block is adopted for 
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high speed computation.  Besides, some methodology like gated CLK circuit is adopted to 

reduce the power consumption.  The on-the-fly SRAM can support the parallel chien search 

and error evaluate block with high speed computation.  Additionally, more power 

consumption issue is considered in proposed architecture II. 

 

Figure 5.7: Block diagram of proposed II RS decoder. 
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CHAPTER 6 

Chip Implementation Result 

 

This chapter will describe the CHIP implementation and its design methodology.  In 

subsection 6.1, we will describe the design and test consideration.  Then, there are two 

implementations of proposed universal RS erasure decoders are shown in subsection 6.2 and 

6.3.  The proposed I architecture can support the field degree to ten and correctable errors to 

eight.  The proposed II architecture implemented by area efficient approach can support the 

maximum field degree eight and correctable error is sixteen.  Besides, the simulation result of 

two proposed architecture will do some comparisons with other single-mode or reconfigurable 

RS decoder published in the past. 

 

6.1 Design and Test Consideration 

Fig. 6.1 presents the entire design and testing flow with various CAD tools.  At first, we can 

use the high level language like C/C++ or MATLAB to construct the software simulation 

environment and generate a lot of random codewords with AWGN noise.  Hence, after the 

RTL coding, the hardware-software co-simulation ensure the correction of behavior model.  

Fig 6.2 shows the relation of hardware-software co-simulation. 

The verilog description language is chosen as the RTL implementation.  After the RTL 

level, the gate level implementation will be performed by Synopsys Design Analyzer synthesis 

tools.  And, the synthesis standard library of proposed architecture is 0.13mm 1P8M CMOS 
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technology.  The clock rate and the performance in 0.13µm technology are improving 

significantly.  And, the memory size of FIFO buffer and inversion table decreases obviously.  

After the gate level synthesis, the pre-layout simulation will be performed to verify the gate level 

performance.  In deep submicron process, the wire delay plays an important role of circuit 

speed.  Hence, the pre-layout simulation can not calculate the circuit speed precisely.  

Besides for pre-layout simulation with nc-verilog complier, the primetime is also an effective 

CAD tool to calculate the critical path. 

 

Figure 6.1: The entire design flow 
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Figure 6.2: The simulation environment 

For successful pre-layout simulation, the place and route will be performed through the 

SOC Encounter tool.  In deep-submicron design, many problems like signal integrity (SI), IR 

drop, and wire delay must be considered carefully.  The power consumption, RC extraction, 

and timing estimation will be computed exactly at place and route procedure.  Finally, the 

post layout simulation includes DRC (design rule check) and LVS (layout versus schematic) 

can verify the chip layout integrity.   

 

6.2 CHIP Implemenation for Proposed Architecture 1 

The proposed I architecture can support the maximum field degree to 10, and the 

maximum correctable error is 8 (maximum correctable erasure is 16).  In syndrome block, the 

universal FFM is applied in 16 syndrome cell.  In Chien search block, the double check 

architecture is used to reduce the search cycles.  And, the error evaluator block is designed by 

the serial architecture.  Two 2048x10 SRAMs is used to realize the FIFO buffer, and the 

inverter is implemented based on Fermat algorithm.  In this design, the circuit complexity 
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isn’t considered that syndrome cell and Chien cell are implemented by universal FFM.  This 

architecture is implemented by 0.13µm 1P8M standard cell technology.  The critical path of 

synthesized gate level model exists in the key equation block.  Fig 6.3 shows chip die photo 

of proposed I architecture.   

Table 6.1 shows the chip summary of proposed decoder I.  The total gate count is about 

110K and the maximum clock rate is 222 MHz.  And, the core size is 1.25 x 0.63 mm2.  The 

maximum power consumption is 23mW at clock rate 222 MHz.  The chip is packaged in a 84 

CLCC package. 

 

Figure 6.3: The die photo of proposed I architecture 
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Table 6.1: The chip summary of proposed I universal RS decoder. 

Design Universal RS Erasure Decoder 

maximum field degree 10 

Corrective error 1 ~ 8 

Memory size 40 K bits 

Core area (mm2) 0.78 

Total gate count 75K  

+ 35K FIFO RAM 

Maximum Operating Frequency 220 MHz 

Date rate (M bits/s) 2200 

Average Power (supply voltage) 23.2 (1.2V) 

 

6.3 CHIP Implemenation for Proposed Architecture II 

The proposed II universal RS erasure decoder is implemented by area efficient design.  

This architecture can support the maximum field degree to 8, and the maximum correctable 

error is 16 as well as maximum correctable erasure.  Two 512x8 SRAMs is used to realize the 

FIFO buffer, and a 256x8 SRAM is used to construct the finite field inversion table.  The 

error evaluator block is designed by the parallel architecture which performs the Forney 
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algorithm at Chien search stage.  For circuit complexity consideration, that syndrome cell and 

Chien cell are implemented by constant UFFM.  Therefore, the total area of entire RS code 

has smaller overhead than a single mode RS decoder.   

This decoder is also implemented by 0.13mm 1P8M standard cell technology.  Fig. 6.4 

shows layout view of proposed decoder II.  The critical path of synthesized gate level model 

also exists in the key equation block. 

Table 6.2 shows the chip summary of proposed II decoder.  The total gate count is about 

54K with FIFO buffer 14K, and the maximum clock rate is 300 MHz.  And, the core size is 

0.36 mm2.  The maximum power consumption is 20.2mW at clock rate 222 MHz.  The chip 

is packaged in a 68 CLCC package. 

 

Figure 6.4: The layout view of proposed II architecture 
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Table 6.2: The chip summary of proposed II architecture 

Design Universal RS Erasure Decoder 

maximum field degree 8 

Corrective error 1 ~ 16 

Memory size 10 K bits 

Core area (mm2) 0.36 

Total gate count 39K  

+ 14K FIFO 

Maximum Operating Frequency 300 MHz 

Date rate (M bits/s) 2400 

Average Power (supply voltage) 20.2 (1.2V) 

 

6.4 Comparison 

Table 6.3 lists various mode RS comparison.  From this table, it is obviously that our 

proposed architecture can support the maximum correctable errors, erasure correction, and the 

complete reconfigurable capability.  As compared the same universal decoder proposed in 

[23], our proposed decoder can improve about 50 times decoding speed with parallel decoding 

scheme.  Additionally, out proposed design has more flexibility and much higher decoding date 

rate. 
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 Table 6.3: The comparison of various mode RS decoder 

 

 [21] [22] [23] Proposed I Propose II 

Mode single 
Variable 

(n, t) 

Universal  

(n, t, m p(x))

Universal  

(n, t, m p(x)) 

Universal  

(n, t, m p(x))

M 8 8 1~8 1~10 1~8 

T 8 1~8 1~8 1~8 1~16 

Erasure No No No Yes Yes 

P(x) Single Single Variable Variable Variable 

Data rate 
1600 

(200MHz) 
(parallel) 

800 

(100MHz) 
(parallel) 

48 

 
(serial) 

2200 

(220MHz) 
(parallel) 

2400 

(300MHz) 
(parallel) 

Gate count 21 K 34K 44K 
75K 

+ 35K FIFO 

39K 

+ 14K FIFO 

Technology 0.25 0.35 0.25 0.13 0.13 
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CHAPTER 7 

Conclusion 

 

In this paper, two universal architectures for RS error-and-erasure decoder are presented.  

The proposed architecture can accommodate variable codeword length, correctable errors, 

different finite field degrees, and different primitive polynomials.  The proposed I architecture 

can support the maximum field degree to ten, and the corrective error is eight.  The proposed 

II architecture can support the maximum field degree to eight, and the corrective error is 

sixteen.   

To achieve the universal property, the design challenge is to realize a dedicated RS decoder 

that can accommodate different finite field definition.  Hence, the main solution is applying 

Montgomery multiplication algorithm which described in section 2.1.  Based on this 

algorithm, the universal finite field operator includes multiplier and inverter can be 

implemented.  In consideration of complexity, a universal constant multiplier will be applied 

in syndrome block and Chien search block to reduce the area size.  Besides, we combine the 

erasure locator expansion and Berlekamp-Massey algorithm to achieve the erasure correction 

with increasing additional universal FFM. 

In design approach view, the software simulation is built first, and then the RTL code can 

be verified in according to software result.  The Verilog description language is chosen as the 

RTL implementation.  After the RTL level, the gate level implementation will be performed 

with the synthesis standard library of proposed architecture is 0.13µm 1P8M CMOS 

technology.  Finally, the layout will be constructed by the SOC Encounter software.  
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APPENDIX 

Hardware Sharing Design for (528, 518) RS 
codec IP 

In this chapter, an area-efficient Reed-Solomon (RS) codec IP with composite-field inverter 

is presented.  For some specific applications such as flash memory controller, the RS decoder 

will stop receiving any new codeword until the on-going erroneous codeword to be corrected.  

It is that the circuit complexity can be reduced by sharing the registers and finite-field operation 

units.  The proposed hardware sharing architecture also includes the RS encoder function.  

Moreover, for area consideration, the composite field inverter is constructed in error evaluator. 

Porposed Hardware Sharing Architecture 

In flash memory controller, the RS (528, 518) code over GF(210) is used to mitigate the 

errors that may be introduced during manufacturing or by user damage.  Note that there are 

totally 518 message bytes in each codeword of 528 coded bytes.  Since the specified RS code is 

constructed over GF(210), these 10 parity-checking bytes imply that the number of correctable 

errors is 4. 

In this section, firstly the RS encoder & syndrome calculator, key-equation solver, as well as 

Chien-search & error-value evaluator are introduced in following subsections. Then the 

hardware sharing architecture will be addressed to optimize the usage of registers and operation 

units. 

By means of linear system theory transformations, Fettweis proposed a combined 

methodology to implement both the RS encoder block and the syndrome calculator [24].  In 

key equation solver, the decomposed inversionless Berlekamp-Massey architecture uses 3 



 

 - 52 -

finite-field multipliers (FFM) without any finite-field inverter (FFI).  However, one FFI is 

always needed in the error-value evaluator block.  Thus the key-equation solver is implemented 

according to the Berlekamp-Massey algorithm within two FFMs and one FFI in our hardware 

sharing architecture.  Furthermore, the composite-field is introduced to realize the FFI since the 

look-up table for GF(210) cost too much circuit complexity [26]. 

A. RS Encoder & Syndrome Calculatork 

The RS encoder & syndrome calculator block are combined according to [24].  Figure 

A.1(a) shows the combined circuit of RS encoder & syndrome calculator for t=4, and figure 

A.1(b) is the function cell(SCi) of figure A.1(a).  Additionally, this combined circuit uses eight 

syndrome registers s1 ~ s8. 

 

Figure A.1: (a) Encoder/Syndrome calculator block, (b) Syndrome cell (SCi). 

B. Key-Equation Solver 

The key-equation solver is used to calculate the error-locator polynomial Λ(x) and 

error-evaluate polynomial Ω(x).  The Berlekamp-Massey algorithm has been mentioned in 

chapter 2.  It is because that the error-value evaluator block needs one finite field inverter. 

Therefore, for achieving the hardware-sharing design, this inverter can be merged into 

decomposed key architecture base on Berlekamp-Massey algorithm.  Figure A.3 shows the 
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original decomposed BM architecture with two FFMs [25]. When implementing the original 

BM algorithm, two FFMs and one FFI are needed. 

 

Figure A.2: The decomposed Berlekamp-Massey architecture with finite field inverter. 

C. Chien-search Block and Error-value Evaluator 

REG Ki

α-i

 

Figure A.3：Chien-search and error-value evaluator block. 
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Similar to the syndrome calculator, the Chien-search & error-value evaluator block can also 

be realized through the Horner’s rule.  Figure A.3 is the Chien-search and error-value evaluator 

block architecture for t=4. 

Through using one FFI and one FFM, the Forney algorithm, which is used to obtain the error 

value, can be realized.  When performing the Chien-search and error-value evaluator, the data 

flow of inverter and multiplier is similar to the dotted line shown in Figure A.2. 

D. The Hardware Sharing Architecture 

 

Figure A.4: The hardware sharing architecture. 

Figure A.4 shows the entire hardware-sharing block diagram.  This architecture integrates 

the blocks from Figure A.1 to figure A.3 to realize hardware-sharing design.  The syndrome 

registers s1~ s8 are used to calculate the parity-checking symbols and syndrome symbols, and 
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the key registers k1 ~ k9 are used to compute the key equation, Chien search and error evaluate 

operation.  The finite field operation units are accessed through the finite state machine 

controlling.  Additionally, the 8 syndrome registers also store the 4 error values and 4 error 

locations at Chien-search and error evaluate step. 

Table A.1：Comparison of required registers and finite-field function units.  The C-S and E-E 

represent the Chien search block and error evaluator, respectively. 

 Syndrome 
Key 

for BM 
C-S and 

E-E 
Output 

Register 
Original 
Design 

Our 
proposed 

Register 2t 2t+1 2t 2t 8t+1 4t+1 

FFM 0 3 1 0 4 2 

FFI 0 0 1 0 1 1 

 

Table A.1 shows the information of register numbers and finite field operation units.  

Through using hardware sharing architecture, we reduce 4t registers and two finite field 

multipliers. 

 

Composite Field Inverter 

The composite field is a type of extension field whose subfield is defined over GF(2n) rather 

than GF(2). Given a finite field GF(2k) where k=nm, we can construct a isomorphic composite 

field over GF((2n)m) by introducing a monic primitive polynomial which has order m and 

coefficients from GF(2n). Composite field arithmetic is a combination of subfield calculations. 
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As a result, we can apply composite field to the field GF(2k) and implement the GF(2k) 

arithmetic architecture with subfield arithmetic circuits. The complexity of the subfield 

arithmetic circuits is small so that efficient hardware implementation is achievable. 

Finite field inverse over GF(210) requires a large amount of hardware area in case 

implemented with a lookup table.  Our design employed the composite field GF((25)2) to the 

field GF(210).  This allows us to realize the inverse function with a smaller lookup table over 

GF(25) [27].  After being mapped to the composite field, every element of GF(210) can be 

written as a polynomial of the first degree with coefficients from GF(25), i.e., bx+c, b,c ∈  

GF(25).  Denoting the primitive polynomial as x2+Ax+B, the multiplicative inverse for an 

arbitrary polynomial bx + c is given by 

(bx+c)-1=b(b2B+bcA+c2)-1x+(c+bA)(b2B+bcA+c2)-1 

The problem of calculating the inverse in GF(210) is now translated to calculating the inverse 

in GF(25) and performing some multiplications, squaring, and additions in GF(25). The inverse 

in GF(25) can be stored in a small table. We use a standard basis for the subfield GF(25) 

computations and the primitive polynomial defining GF(25) is x5+x2+1. Moreover, we select A 

equal to the unity (denoted 00001) to further simplify the operation. Follow gives a schematic 

representation of the required calculations. 

 

Figure A.5：Composite field inverter over GF(210) 
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Finally, in order to transform GF(210) into GF((25)2), the transform matrix and the monic 

primitive polynomial have to be determined.  There exist effective algorithms for resolving 

both problems [27].  In our case, the monic primitive polynomial of GF((25)2) is x2+x+w3 (w3 

denoted 01000, where w is the primitive root with respect to GF(25)). 

Implementation Result 

After implementing by 0.18µm 1P6M standard cell slow library, the RS (528, 518) codec IP 

totally requires 2 finite-field multiplier, 1 composite-field inverter and 17(=4t+1) registers, 

where t is the number of correctable errors. In contrast with other architectures, at least 42% 

circuit complexity can be reduced in our proposal. 

Table A.2 compares the implementation for various key algorithms at 0.18um cell library 

process.  In combination circuit, the hardware sharing circuit uses 2 finite field multipliers 

(FFM), 1 composite filed inverter (CFI) and additional finite state machine control circuit.  In 

synchronous circuit, the proposed architecture has only 17 register. Therefore, at least 42% 

circuit complexity can be reduced by our proposed hardware sharing architecture. 

Table A.2：The comparison table for (528,518) RS codec with different key-equation block 

Process 
(0.18um) 

Components 
Combinational 

gates count 
Synchronous 
gates count 

Total 
gates count

Original 
with BM 

4 FFM+1 CFI
33 REGs 

6K 4.8K 
10.8K 
(1.42) 

Original with 
Euclidean 

4 FFM+1 CFI
44 REGs 

7.2K 5.6K 
12.8 K 
(1.68) 

Our proposal 
2 FFM+1 CFI

17 REGs 
4.8K 2.8K 

7.6K 
(1) 
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Conclusion 

In this chapter, an area-efficient methodology is presented to reduce RS codec area for some 

applications.  The circuit complexity can be reduced through sharing registers and finite-field 

operation units. And the RS encoder can be also combined with the syndrome calculator. 

Furthermore, the composite-inverter over GF(210) is implemented to replace the original 

look-up table. As a result, it can be achieved to reduce at least 42% circuit complex. If the 

number of correctable errors is large, the reducing area will raise linearly. 
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