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Universal Architectures for Reed Solomon
Error-and-Erasure Decoder

Student: Fuke Chang
Advisor: Hsie-Chia Chang

Institute of Electronics
National Chiao Tung University

ABSTRACT

Due to protecting the data form random error and burst error during transmission, Reed
Solomon (RS) code has been widely accepted: as the forward error correction scheme, such as
xDSL, cable modem, and DVB-E. Because of.the-different RS specific parameters, a cost
efficient RS decoder that can support various-applications has practical importance to reduce the
time-to-market and design costs. ", This*thesis presents two universal architectures for Reed
Solomon (RS) error-and-erasure decoder”that'can accommodate any codeword with different
code parameters and finite field definitions. The first architecture can support the maximum
degree to 10, and the second architecture can support to 8. The area efficient design approach
is also considered in second architecture. Implemented with 1.2V 0.13pum 1P8M technology,
the two decoders can operate at 220 MHZ and 300MHz and reach 2.2Gb/s and 2.4Gb/s data rate,
respectively. The total gate counts of two decoders are 110K with core size 0.78mm2 and 54K

with the core size 0.36mm?.
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CHAPTER 1

Introduction

1.1 Background
information ——»| source coding —L C:oadr;rr:gel |~ modulation
encode encode |

Error control code | .
channel noise

decode decode

|
|
l |
destination <«——] S°Ure coding :: C:oadr;rr:gel | d—| demodulation J

Figure 1.1: Block diagram of communication system

The importance of efficient and reliable data transmission in communication system is
required in recent years. Fig 1.1 shows the typical communication system which composed
of source coding, channel coding and modulation [1]. However, we only focus on the
channel coding block or be named as well as error control coding which is used to resist the
channel noise during data transmission. As shown of figure, the error control code is
composed of channel encoder and channel decoder. The channel encoder is used to encode
the information symbol with additional redundancy bits. The channel decoder can decode the
encoded codeword and has capable of correcting the errors. The error control code also can
be separate form different encoding arithmetic, one is block code and the other is
convoluitional code. The Reed Solomon (RS) code which belongs to block code and has

-1-



cyclic structure [2] will be described in this thesis that includes algorithm research and

hardware implementation.

1.2 Motivation

In recent years, the Reed Solomon code is used in many applications, such as xDSL, cable
modem, DVD, blue-ray disc, and DVB-T systems. Table 1.1 shows a list of RS code
applications and the finite field (FF) definition, and the Table 1.2 indicated the number of
primitive polynomial with different field degree [3]. From table 1.1, we know that there are
many different RS specifications in single systems. For example, the ITU J.83 system which
includes of two different finite field definitions and the correctable error number has 3 different

modes.

Table 1.1: Some application of Reed Solomon decoder and its finite field definition

Applications RS code specifications
Blue-ray LDC (248,216) RS code for GF(2%), t=16
DISC BIS (62,30) RS code for GF(2%), t=16

Flash (526,518) RS code for GF(2™°), t=4

AB (204, 188) RS code for GF(2%), t=8

ITU J.83 C (128,122) RS code for GF(2), t=3
D (207,187) RS code for GF(2%), t=10

DVB-T (204, 188) RS code for GF(2°), t=8

Table 1.2: The number of primitive polynomial with different field degree



Finite field o :
Primitive polynomial
degree m number
5 6
6 12
8 34
10 106

Because of the different RS specific parameters, a cost efficient RS decoder that can support
various applications has practical importance to reduce the time-to-market and design costs.
There are many similarities between various applications and the hardware can be shared for
lower cost design. This thesis«proposes.two universal architectures for Reed Solomon
error-and-erasure decoder that can accommodate any codeword with different code parameters
and finite field definitions. The proposed I'supports the maximum field degree to ten, and the
corrective error is eight, and the proposed-Il ¢an support the maximum field degree to eight,
and the corrective error is sixteen. The area efficient approach is adopted for implementing
the proposed II architecture. Furthermore, the proposed decoders can support erasure

correction without increasing any finite field multipliers.

The design challenge is how to realize a dedicated RS decoder that is suitable for different
finite field definitions. The Montgomery multiplication algorithm will be used to deal with
the relation between different finite field definitions. In comparison with other reconfigurable
RS decoders, the proposed design, based on the Montgomery multiplication algorithm, can
support various finite field degrees, different primitive polynomials, and erasure decoding

functions.



1.3 Thesis Organization

The organization of this thesis is described as follows. In chapter 2, the Reed Solomon
code algorithm includes encoding and decoding will be introduced. Chapter 3 shows the
Montgomery multiplication algorithm [8], universal finite field multiplier and universal finite
field inverter. Additionally, the on-the-fly look-up table is described in subsection 3.3. The
proposed universal RS decoder architecture will be addressed in chapter 4. Each block and
its design methodology of proposed decoder will be described in detail. In chapter 5, the each
subsection will show another area efficient design in proposed II architecture. The design and
test consideration and chip implementation is shown in Chapter 6. We also compare the chip
performance and size with others architecture in Chapter 6. Finally, Chapter 7 is the

conclusion and future work.



CHAPTER 2

Introduction to Reed-Solomon code

Reed Solomon (RS) code which is used to protect the data during transmission has been
widely accepted as the forward error correction scheme for various optical storage systems and
communication systems,. The fundamental arithmetic of RS code is built on the Galois filed
which denoted with GF [9]. A RS code over GF(2") can be represented (n, k, t) code which has
block length 7 and n-k parity symbols. The number of maximum correctable errors is t and the
number of parity symbols is n-k. Note that the GF(2") indicates that RS code are non-binary
code with symbols made up of m=bit sequence, where.m is any integer having a value greater

than two.

This chapter is organized as follow. [ 'Seetion 2.1 describes the RS encoding procedure and
its mathematical arithmetic. The RS decoding scheme is presented in Section 2.2, and the
Berlekamp-Massey algorithm and Euclidean algorithm which are used to solve the key

equation will be introduced [3, 4].

2.1 Reed Solomon Encoding

It has been know that the GF(p™) which p is a prime number can be represented using 0 and
(p-1) consecutive powers of a primitive field element a GF(p™). Symbols from the field GF(2")
are used in the construction of Reed Solomon code. Each of the 2" elements of the finite field

GF(2") can be represented as a distinct polynomial of degree m-1.



o =ax) =+ o x + a7+ A+ ™! , fori=0~2m-2 (2.1)

Let M(x) represented as (my.;, my.s, ..., mj, mg) be the information symbols with & symbols.
And the G(x) is the generator polynomial which is the product of the associated minimal

polynomial.
G(x) — (x+ab)(x+ab+1) _____ (x+ab+2t—2)(x+ab+2t—1) (2.2)

Where the degree of G(x) is equal to the number of parity symbols, and the b is a constant.
Therefore, for an (n, k, t) RS code, the nonsystematic encoding procedure can be expressed as

follow:
C) = Glx)-M(x)
= (x+d’)(x+a" ) (x+a" ) * M) (2.3)
Where the C(x) is the codeword that has 27 roots. of-o.” "' ~ o”".

Another encoding approach to'encede the-information symbols is the systematic encoding [4]
which uses the parity check symbols to‘form the codeword. Firstly, the message polynomial
M(x) is multiplied by x* and then modular by the generator polynomial G(x) to obtain the

remainder polynomial R(x).
R(x) = M(x)x" + O(x)-G(x) (2.4)

Where the O(x) is the quotient polynomial of the divided polynomial M(x)x” and the divisor
polynomial G(x) which has degree less than 2¢-/. The systematic polynomial can be expressed

as follow:

C(x) = M(x) X’ +R(x)

= G() O (2.5)



We can think of shifting a message polynomial M(x) into the rightmost £ location of a
codeword and appending 2¢ parity check symbols in the leftmost location. Fig. 2.1 shows the
typical systematic encoding circuit with 2¢ register, where the gy, g;, ...,g2.; 1s the coefficient of
generator polynomial. The output symbols are the message M(x) during the first k clock cycles.
The remaining n-k cycles, the parity symbols R(x) are moved to output. The total number of

required clock cycles is equal to n.

® ® @ ©
D PO P | @

m(x) Clx)

A\ 4

Figure 2.1: The systematic RS encoding architecture

2.2 RS Code Decoding with Erasure Correction

As mentioned early, the codeword polynomial is C(x) and the error polynomial is e(x). The

received polynomial (x) can be expressed as follow:
r(x) =C(x) +e(x) (2.6)

Fig. 2.2 shows the error-only RS decoding flow chart which can be divided into four steps: 1)
calculation of the syndrome S(x) form the received codeword, 2) computation of the error
locator polynomial ofx) and the key equation £x) with Berlekamp-Massey algorithm [5, 6] or
Euclidean algorithm, 3) search of the error location by Chien search approach, and 4)

evaluation of error value.



FIFO Memory

o(x)

r(X S(x) Erasure Locator | p-| Chien Search
Q—b — Calculation
Syndrome 38 v

Erasur% Calculator | Eresug ) Key Equation Error-value
Flag valu Solver > Evaluator
Q(x) rror Value

Figure 2.2: The systematic RS decoding scheme

The syndrome is the result of a parity check performed on received polynomial »(x) to
determine whether 7(x) is a valid member of the codeword set. If the received polynomial has
no errors, then the syndrome polynomial S(x) is always 0. On the other hands, any nonzero
value of syndrome indicates the presence of ertors. The computation of a syndrome symbols

can be describes as follows:
2t o
S(x)=) r(a')x 2.7)
i=l

S; = r((z]) = e(a]) =eyit+ expt... ey

S, = r(o(z) = e(az) = e;;@z + 62}(22 +...+ev;(V2

Sgt =r 0{29 =e CKZZ) = 61}(12t + 62}(22t +...+€v)(v2t (28)

Where the e; represents the i-th error value and the v is the occurred error number, and the
yirepresents the error location number. When a nonzero syndrome vector has been computed,
it signifies that an error has occurred. Then, the error locator polynomial o{x) and the key

equation £2(x) will be computed. An error locator polynomial and key equation are defined as



otx) = (1+fx) (1+ o) (1+fx)

= op +oix oo’ + oz + o (2.9)
Qx) = S(x) o(x) mod x"*

= eri(1-yx)(1- ) (1- x)

+ea(1-xm)(1-yx)(1-0x)

+ens(1-xm)(1- ) (1-p0x)

+... (2.10)

Berlekamp Massey algorithm

In 1960, Peterson provided the fitst explicit description of a decoding algorithm for binary
BCH code. He uses the relation-of error locator polynomial and syndrome vector to solve the

key equation. The relation can be rewritten as a matrix form:

s0Ss, S .. SNe ] -5,
Sz S3 S4 Sv+1 O, _Sv+2
Sy S, Ss V2 =
Q.11
_Sv S Sii Soall o ] L5, |

But this algorithm is inefficient for large correctable error number code. Consequently,
the error locator polynomial and error evaluate polynomial are always computed by
Berlekamp-Massey algorithm or modified Euclidean algorithm in the past.  The
Berlekamp-Massey algorithm which is developed by Berlekamp and explained by Massey
with linear feedback register has regular property for decoding key equation. The entire

Berlekamp-Massey algorithm is shown as:



D mitially  A”(x)=1L,A“(x)=1,1=0,k=1,y" =1

I
2) Compute (@) A (x)«——xA“(x) and 5:ZAj(b)Sk—j

Jj=0

) AO@ =AY (0)+2 A9 )
V4

@If 0#0 and 21<k-1
Set A(xX)=A"(x), I=k-1I, y=0

@ AP (x)=A"“(x)

3) Set k = k+1. If k < d, then go step 2.

4) Stop

The ¢ is the discrepancy which is the convolution of syndrome vector and error locator
polynomial and the y is the dummy nonzero discrepancy that keeps the value of previous
discrepancy. The discrepancy is used to verify that the linear feedback shift register generates
corresponding the given syndrome sequence at each step. If the discrepancy is equal to zero,
it represents that we don’t update the error locator polynomial and the dummy discrepancy.

For operating the Berlekamp-Massey algorithm, it totally costs 2¢ iteration.

Euclidean Algorithm

In 1975 Sugiyama et al. showed that Euclidean algorithm can decode Reed Solomon code.

The Euclidean algorithm originally is used to calculating the greatest common divisor of two

-10 -



polynomials. For rewriting the key equation, the Euclidean algorithm can be applied to

produce the correct sets of solutions (ofx), £(x)) that satisfy as

Q(x) = S(x)- o(x) mod x™*

‘ (2.12)
= Q) X"+ S(x) 5 (x) = Qx)

Where the Q(x) is the quotient polynomial of the dividend polynomial S(x)o(x) and divisor
polynomial x"*. The Q(x) is not available for us, but the pair (orx), )x)) is the interested
solution. The £(x) computation is similar as calculating the GCD polynomial of x"* and

S(x).

R (x)=x" +5(x)0 (x)
R,(x)=S(x) + R, (x)0,(x)
R;(x) = R (x)+ R, (x)0, (%) (2.12)

Q(x) =R, ,(x)+ R, ,(x)0,(x)

where the Qg)(x) is i-steps quotient polynomial-and R ;(x) is the i-steps remainder polynomial.
At each step, the division operation of polynomial is performed. According to the Euclidean

algorithm, the computation of error locator polynomial is shown as

6,(x) = 0+10,(x)
0,(x)=1+0,0,(x)
0,(x) = 0,(x) + 0,(x)Q;(x)

(2.13)
o(x)=0,,x)+0,,(x)0,(x)

Where the Q(x) is same as the result of computing error evaluate polynomial. From the
equation (2.12), it is known that the error locator polynomial can be calculated by given

quotient polynomial and previous error locator polynomial. For performing Euclidean

-11 -



algorithm, the degree increasing of ofx) is in opposition to the degree of £J(x). Hence, the
Euclidean decoding procedure terminates when the degree of ofx) is larger than the degree of

Ox).

Because of the regularity of Berlekamp Massey algorithm, the proposed universal
architecture is implemented by applying this algorithm. After the key equation and error
equation have been calculating, the next step is finding the error location roots by Chien search
approach. The methodology of Chien search is substitution of error locator polynomial with

finite field elements to check the result equals zero or not.
o(a’)=0 fori=0,1,2 ,N. (2.14)

Then, according to Forney algorithm [7], the error value can be computed as follow:

O(x, )

€ = m (2.15)

The x; and the o’(x) are the location root at the Chien search step and the derivative of error

locator polynomial ofx) respectively.

Erasure is a type of error with the position information. A RS decoder with erasure
correction will improve the performance in various systems. For a (n, k, t) RS code, the erasure

correction capability of the code is
S = duin-1 = n-k (2.16)

where the d,;, 1s the minimum distance between any two codewords. For RS code the

minimum distance is given by

Ain =n—k +1 (2.17)

-12 -



Simultaneous error correction and erasure correction capability can be expressed by the

requirement that
2v+s < dpin < n-k (2.18)

where v is the number of symbol error that can correct, and the s is the number of symbol
erasure that can be corrected. For decoding erasure, it is shown that the error and erasure
locator polynomial (errata locator polynomial) can be obtained directly by initiating an
inverse-free BM algorithm with the erasure locator polynomial. Consequently, we just
consider the expansion of erasure locator polynomial. The erasure locator polynomial is

computed by the following equation.
T(x)=]](+a'x) mod x* (2.19)

Hence, the error-erasure locator polynomial A¢x) (or say errata locator polynomial) and key

equation W(x) of erasure correction can be rewritten respectively as follows:
A(x) = o(x)- T(x) mod x™* (2.20)

W(x) = S(x)- A(x) mod x"* (2.21)

-13 -



CHAPTER 3

Universal Finite Field Operator

This Chapter describes the Montgomery multiplication algorithm [8] and indicates the
implementation of universal finite field operators. The basic idea to achieve universal
property is applying the universal finite field multiplier which can accommodate different finite
field definition [20]. In comparison with others proposed approach, the universal finite field
multiplier only cost two cycles to realize the finite field multiplication for various definitions.
What if the input of universal FFM multiplies is replaced with the corrective factor at first, it
only requires one cycle to performithe operation. Additionallly, the universal finite field
inverter is the last step to realize the Forney algorithm. Two approaches are presented in
subsection 3.3, the Fermat’s algorithm [10] with universal multiplier and on-the-fly lookup

table with SRAM.

3.1 Montgomery Multiplication Algorithm

An element 4 of the field GF(g") with a prime ¢ can be interpreted as the polynomial
representation. In the polynomial representation, multiplication in GF(g™) corresponds to
the multiplication of polynomials module an irreducible polynomial of degree m. Suppose A
and B are two elements in GF(q"), and p(x) is the corresponding primitive polynomial of this

field. Then, the multiplicative operation C=AB can be defined as follows:
C(x)=A(x)B(x) mod p(x) (3.1)

Where C is also an element of GF(g").
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Actually, the finite field addition and subtraction are just excursive OR operations.
Therefore, what we interested is the multiplication and division (or say, the inverse operation) in
finite field. According to the modular multiplication property in (3.1), we can adopt
Montgomery multiplication algorithm to calculate the product C(x). The Montgomery
multiplication algorithm has been proven that this algorithm can replace the modular operation
with a series multiplication. The following equation defines the Montgomery product of A and

B:

C(x) = A(x)B(x)R"(x) mod p(x) (3.2)

The polynomial R'(x) here is a fixed element of GF(¢g™) satisfying R(x)R (x) =1 mod p(x)
while R(x)=x" . Note that the requirement of R(x) and p(x) being relatively prime is always

consistent. It has been proven by [8] that the result *C(x) of (3.2) can be obtained by following

equations:
O(x) = A(x)B(x)p"(x) ‘mod R(x) (3.3)
C(x) =[4(x)B(x) + Q(x) p(x)]/ R(x) (3.4)

The polynomial p"(x) in (3.3) is defined as p(x)p (x)=1 mod R(x). As compared with (3.2),
it is evident that modulo p(x) operation is replaced by modulo R(x) and division by R(x)
operations. Since R(x)=x" , implementation of (3.3) and (3.4) are much easier than that of
(3.2). Furthermore, as A is interpreted in polynomial form and R'(x)= x" mod p(x), (3.2) can
be rewritten as:

C(x)=[a, ,B(x)x"'mod p(x)]+[a,_,B(x)x> mod p(x)]

. (3.5)
+...+[a,B(x)x™" mod p(x)]

Rearrange this equation, an iterative representation comes out:
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é(x) =[a,_B(x)+[..[a,B(x)+[a,B(x)x " ' mod p(x)]]x™"

1 (3.6)
mod p(x)]...]x mod p(x)

Based on this equation and the transformation from (3.4) to (3.6), the Montgomery

multiplication algorithm is derived as:

Montgomery multiplication algorithm:

So(x) =0;
for(i=0;i <m;i++){
p,(x) =[(S,(x) +a,B(x))p’ ()] mod x;
S (0) =[S;(x) + a,B(x) + p,(x) p(x)]/ x;
h

C(x)=S, (x); (3.7)

The term p’(x) is the multiplicative inverse of p(x) under modulo x multiplication.

In GF(2"), elements are often tepresented-in‘binary digits, and the coefficients a; are referred
to the bits of A. The binary representation” will cause some reduction to Montgomery
multiplication algorithm. Since p(x) is irreducible, the results of p(x) mod x and p*(x) mod X are
both equal to 1. The p"(x) term in the Montgomery multiplication algorithm can be eliminated,

which leads p;(x) to equal the least significant bit of the sum S;(x)+ a;B(x).

The number of recursive operation in Montgomery multiplication depends on the field
degree m. However, some modification can be proposed to remove the effect of unexpected
variable m. In equation (3.3) and (3.4), R(x) is modified to be R;(x) =x?, and d is a constant
integer such that d =m. Since the result of R 4(x) mod p(x) is an element of GF(q"), there exists
an element R ¢(x) in the field GF(q") that satisfies Ru(x)R 4(x)=1 mod x. Therefore, the

modified Montgomery multiplication algorithm for GF(2") with m =d is constructed:
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Modified Montgomery multiplication algorithm:

MM (A(x), B(x), p(x)){
So(x) =05
for(i=0i<d;i++){
if (i >m) a, =0;
T'(x)=S,(x)+a,B(x);
Sin(X) =[T(x) +1,p(x)]/ x;

}
C(x)=S,(x);
}

(3.8)

The term t, is the least significant bit of the temporal element 7(x). If the field degree is less
than d, the most significant bits of A is set to zero. The final result will be multiplying the
normal finite field product A(x)B(x).by a constant.clement R 4(x) of GF(2"). The output of
Montgomery multiplier involves-a constant factor R 4(x) mod p(x) with the standard product.
Such constant factor can be canceled-by.-applying one additional Montgomery multiplier.

Calculation of the product C(x)=A4(x)B(x). is completed using:

K(x)=x* mod p(x) (3.9)
C(x) = MM (A(x), B(x), p(x)) (3.10)
C(x) = MM (C(x), K (x), p(x)) 3.11)

where K(x) is treated as a constant value for a given p(x).

3.2 Universal Finite Field Multiplier

As mentioned in chapter 2, to design a universal finite field multiplier, the circuit
complexity mainly depends on the module operation for different primitive polynomial. To

achieve universal finite field operation, the methodology proposed in the past is using a series
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shift and multiplication operations to replace the modular operation. However, this approach
costs two or more cycles to operate than original dedicated finite field operation. This section
presents a new multiplier architecture that can accommodate different finite field definition.
The proposed universal finite field multiplier is built on the Montgomery multiplication and

only cost two cycles to operate the finite field multiplication.

According to this modified algorithm, the bit-level multiplier architecture can be
implemented easily. The ¢y indicate the LSB bits of T(x), and the division of x replaces as a
left shift operation. The Montgomery multiplier architecture for GF(2") with m =4 is shown
in Fig. 3.1. Fig. 3.1(a) and Fig. 3.1(b) indicate the function unit and the Fig.3.1(c) illustrates the
overall architecture in GF (24). The signal a; and b; are the bits of two input element A and B,
which can be expressed as 4=(asaza;ay) and B=(bsb,b;by) respectively. Besides, mi is used to

indicate the i-th bits of the primitive polynomialand §; is the i-th output bits.

mas 0 msbs  m2b:  mibi b s b
ao = ai
gg ai bo = bi

co = s8i@P aibi
bo
Fig. 1(a)

si  mi bi ao = ai
bo = bi
do ai —
Co ci 0 T¢
Mo = mi

mobo so SO = 5i @ aibi Pcimi

Fig. 1(b)

Fig. 1(c)

Figure 3.1: Montgomery multiplier structure for GF(2") while m =4

As the multiplier for maximum field degree d has been implemented, any multiplication of

GF(2™) with field degree less than d and corresponding primitive polynomial is applicable. As
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shown in Fig. 3.1(c), the proposed bit-parallel multiplier dispenses with additional control

circuit due to the regular structure.

Table 3.1: The comparison of universal finite field multiplier

Instruction cycle
Critical path n-l
C=AB C=AIB | C=) 4B,
i=0
Lsong[ia] | 3 4m-4 3n-2
. Song [11] 11T m- n-
Proposed 9T svp 4 5
m n
[20] +15Txor

As compared to another universal finite field multiplier proposed by [11], our approach
needs no additional pre and post-shifting circuit. Table 3.1 compares the required instruction
cycle between the proposed universal finite field multiplier [20] and the multiplier of [11] while
operating over GF(2") with a multiplier that supporting maximum field degree of 8. Note that
one instruction cycle here indicates a single shift operation, multiplication, or addition. And
the finite field division in Table 3.1 is based on Fermat’s algorithm. In this table, it is clear that

our proposed multiplier cost less cycles for calculating the finite field operation.

3.3 Universal Finite Field Inverter

The implementation of Forney algorithm requires a universal finite field inverse operation.

Two methods for realizing the inverse operation are generally used, one is using Fermat
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algorithm which replaces inversion with a series of square and multiply operations [10], and the

other is the looking up table.
Fermat’s algorithm

Fermat’s algorithm

ﬂ—l _ ﬂzm—z

_ ﬂ2+22 +..42m!

=(B-(BB*B)) ..

ﬂ2(1+2(1+"")) (3.12)

Based on this algorithm, the inversion in GF(2") can be replaced by serial square and
multiply operations. In additional, the Fermat algorithm shows us that inverse operation
needs m-1 cycles which include two ‘Mo‘ntgor‘ner‘y multiplications in each cycle. For example,

in GF(16), f'= p'%?= g7 = 212D = (/)’(ﬂﬁz ) ,‘ three cycles are required.

Fig. 3.2 shows the architecture ofinyerterrwhich:is composed with two universal FFM.
The control unit is added to realize the inverse operation, the Montgomery multiplier A is taken

as a squarer and the multiplier B perform the finite field multiplication.

pra’

A 4

square operation multiplication

Figure 3.2: The finite field inverter based on Fermat’s algorithm.
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On-the-fly Inversion Table

Since the Fermat algorithm needs many cycles to calculate the error value, leading to a larger
FIFO buffer. Therefore, for high speed computation, the on-the-fly look-up table composed of
2"*m SRAM, universal « generator and universal o’ generator, is proposed as shown in Fig.

3.3.

According to different finite field definition, the universal ¢ generator and o’ generator will
update the finite field element and its corresponding inverse value respectively at syndrome
calculating stage. At error evaluator stage, the inversion table is available for Forney algorithm.

Hence, the total decoding stage can be kept on 4 and can decrease the length of FIFO buffer.

Universal o
generator I Data in Data out| —————»
m
2" X m
Aodd il
Address

Universal a !
generator

Figure 3.3: On-the-fly inversion table
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CHAPTER 4

Proposed Universal Architectures

As mentioned in Chapter 2, the RS erasure decoder consists of syndrome calculator, erasure
locator polynomial expansion, key-equation solver, Chien-search block and error-value
evaluator, and a finite field inverter. The syndrome calculator computes the syndrome vector to
key equation block. When the syndrome value is equal zero, the following decoding procedure
will be terminated. If not, the erasure locator polynomial will be computed and the key
equation block will calculate the error locator polynomial based on inverse Berlekamp-Massey
algorithm [12]. The error location and the location roots will be known at Chien search step.
Finally, according to the Forney algorithm, the eérror evaluate block calculate the error and
erasure values. Besides, the FIFO buffer is used to keeps the received codeword which size is

increasing with code block length.

The proposed architecture of universal RS erasure decoder is presented in this chapter. All
of these components implementation mentioned early will be detailed in the following
subsections. In subsection 4.1, the universal syndrome and erasure value calculator is
addressed. For erasure correction, the corresponding erasure value must be kept to compute
erasure locator polynomial at syndrome stage and transmit the erasure value to next stage, key
equation block. For key equation block design, the authors present a decomposed inversionless
BM architecture that can reduce the complexity significantly in paper [13, 14]. The proposal in
[15, 16] requires 2¢~3¢ finite field multiplier. However, the decomposed architecture only
requires 3 finite field multipliers without any finite field inverter to implement. For decoding
erasure, the key equation must replace the initial condition with the erasure locator polynomial.

Therefore, the expansion hardware of erasure locator polynomial must work before operating
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the Berlekamp Massey algorithm. For area efficient design, the combination of erasure locator
polynomial expansion and decomposed Berlekamp-Massey architecture is presented in
subsection 4.2. In subsection 4.3, the Chien search and error evaluator architecture is shown.
This architecture can search the error and erasure roots of errata locator polynomial with any

variable parameters.

4.1 Universal Syndorme and Erasure Value Calculator

This section presents universal syndrome architecture design. For design syndrome
calculator in the past, the Horner’s rule is applied to reduce the substitution hardware area.
Let the R(x) be the received polynomial, and the syndrome value can be obtained by substituting

2t

the finite field elements o', o, ...., &  This substitution of syndrome value can be expressed

as follows:

S.=R(a')

=(.(R_a' +R_))a'+RDa'+....R)a' + R, fori=1~2t @

For adopting the property of universal finite field multiplier, the syndrome has to be
modified as:

a™S.= a"R(a') fori=1~2t (4.2)

,where the a™ is the corrective factor for universal finite field multiplier. Hence, for
implementing a syndrome calculator cell, a universal finite field multiplier is required. This
cell architecture is shown in fig. 4.1. Assuming the correctable errors are equal eight, sixteen

syndrome cells are needed.
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l OLmH

UFFM |-—

Rx —» >

L

Figure 4.1: The syndrome cell of syndrome calculator

Fig. 4.2 shows the entire universal syndrome and erasure value calculator block with
correctable erasure is 16. Expect calculating the syndrome value, this stage also calculates
erasure vectors. If the erasure flag is valid, the erasure occurs, and the corresponding erasure
value must be saved. According to:different. correctable error and erasure number, the

syndrome selector has to transmit-the apptq)"]j?rjate:syndrome vector to key equation block.

[
|

Syndrome Selector

Rx 1610 |
Erasure Erasure location Erasure value
Flag Calculator o

Figure 4.2: Universal Syndrome Block
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4.2 Erasure Locator Polynomial Expansion and Key Equation Solve

block

Decomposed Berlekamp-Massey Architecture

As has been mentioned in chapter 2, the key-equation block can be implemented by two
algorithms, Euclidean algorithm and Berlekamp-Massey algorithm.  For implementing
Berlekamp Massey algorithm, a lot of parallel architectures have realized in the past which
required 2t ~3t finite field multiplier. However, a decomposed architecture which only three
finite field multipliers required has proposed to reduce the circuit complexity significantly in

[13], and this architecture is based on the inversionless Berlekamp-Massey algorithm.

In the inversionless Berlekamp-Massey algorithm, the finite filed inverter is replaced by a
multiplier and doesn’t have any influence on computing the correct result. The decomposed
architecture slows down the key-equation without impacting the decoding speed, and the each

iteration of equation can be decomposed as following:

( (b) -
A© _<7-A 0 , for j=0
’ k;/-A(b)j+5(i)-A(”)j_l, for I<j<s+v
( | — 4.5
S _ 0 , for j=0 (4.5)
J o (i+1) (c) .
(0 LS N, Sor 1<j<s+v,

where AY ; 1s the coefficient of A?(x) and é}-w is the i-steps partial result in computing the
discrepancy. From above equation, only two finite field multipliers are used to computing the
error locator polynomial A(x) and one finite field multiplier is needed to calculating the

product of syndrome value and the coefficient of error locator polynomial.
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amAP)(x) »| UFFM

0‘&» UFFM amA@)(x) -‘-» UFFM

m3
D N—

Figure 4.3: The decomposed key equation architecture for calculate the error locator

polynomial.

Because of the regularity of Berlekamp Massey algorithm, the universal key equation
block can be realized easily by replacing:the dedicated finite field multiplier with universal
finite field multiplier. Fig. 4.3:shows the error decoding steps of decomposed key equation
architecture with three finite field*multipliers. The register buffer with length (4¢+1)*m bits
is used to keep the latest error locator polynomial A®(x) and previously error locator
polynomial A“(x). Each initial coefficient such as discrepancy &, previous discrepancy
and error locator polynomial A“(x) and A”(x) must multiply the corresponding corrective

factor " respectively to obtain the correct result.

Expansion Hardware of Erasure Locator Polynomial

The paper [17] shows that the error-erasure locator polynomial (errata locator polynomial)
can be obtained directly by initiating an inverse-free BM algorithm with the erasure locator
polynomial. Hence, for implementation of erasure correction, only the erasure polynomial

expansion hardware must be considered.
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In paper [18, 19], it shows two approach to implement the expansion hardware. One is

the parallel architecture which costs n-k finite field multipliers and another is the serial

architecture which needs two finite field multipliers. Additionally, after calculating of erasure

locator polynomial, the initial discrepancy of erasure locator polynomial and syndrome vector

must be computed as the inversionless Berlekamp-Massey algorithm coefficient. This step

also needs additional penalty to realize. Therefore, to achieve a regular and minimum area

design, the modified inversionless Berlekamp-Massey algorithm with erasure locator

polynomial expansion is shown as follows.

AP (x) =1, A“(x) =1,

D Initially ;o k=1, ® =1, decode=0
2) If k<s decoder=0, set 0 =1, y =12, A(a)(x) = xA" (x) = xA(x)

Compute A (x)=yA? (x)+ A (x) = (1+ Z,x)A(x)

/
and 0= Z Aj(C)Sk—j

J=0

Set k=k+1,
If k<s repeat step (2), Else set decoder =1 and go step (3)

[
3) Compute (@) A (xX)«—xA“(x) and 6= ,N"'S,

=0
) A (x)=yA” (x)+ A (x)
If 6#0 and 2[<k-1
Set N(x)=A"(x), I=k-1, y=6

@ A(x)=A"(x)

Set k= k+1. If k < d, then go step 3.

4) Stop




,where k is iteration number, s is the erasure number, Z; is the erasure value provided by the
previous syndrome stage, and A(x) is the error and erasure locator polynomial (or say errata

locator polynomial). The J'is the latest discrepancy and the yis the previous discrepancy.

In this algorithm, if the decoder=0 at the beginning and the iteration number is smaller than
erasure number (k < s), the decomposed architecture will calculate the erasure locator
polynomial. Then, the signal decode will be asserted, and the inversionless Berlekamp-Massey
algorithm will be performed. Note that at step (2) and step (3), the computation of A(x)
equation has the similar computation form. According to this property, the erasure locator can
be computed by the same architecture with additional control circuit. Consequently, the
erasure locator polynomial can be obtained regularly without increasing additional finite field
multipliers. Besides, the extra cycles aren’t required to deal with the problem of the initial

discrepancy. Fig. 4.4 shows the:decomposed: architecture state that computes the erasure

locator polynomial.
-
a”A(X) »| UFFM
a™S m A o™

b /_»S a"Z,

Erasure Value

Figure 4.4: Using decomposed architecture to compute the erasure locator polynomial.
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Computation for Errata Evaluator Polynomial

The paper [13] has also indicated that the errata evaluator polynomial can be computed by
decomposed architecture. After the errata locator polynomial is obtained, the errata evaluator

polynomial can be derived as following:

W(x) = S(x)A(x)mod x**

WO W Dx 4o gDy (4.6)
WD =S Ay +SA ++SA,
where the v is the degree if the errata locator polynomial and the W represents the coefficient
of the errata evaluator polynomial. To compute the errata evaluator polynomial is similar to
compute the discrepancy, which also requires a multiply-and-addition hardware to implement.
The errata evaluator polynomial also can be, decomposed like calculating discrepancy, which is
show as follows:

WO =

J

S A , for =0
4 o (4.7)
W
J

S0 Ny Jor I<j<u

i—j+1

Obviously, this decomposed format is same to compute the discrepancy (equation (4.7)).
Hence, the same hardware is used to solving the error evaluator polynomial after obtaining the

errata locator polynomial.

4.3 Chien search and Error Evaluator Block

Chien search block

The Chien search is used to check the roots of errata locator polynomial which equals to
zero or not.  If A(a)=0, this is represent that there is an error or erasure at the i-th location of

received codeword.  Similar to the syndrome block, the Chien search and error evaluator block
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are also implemented through the Horner’s rule. However, for universal Chien-search
architecture design, the dedicated FFM is replaced with universal FFM for each cell. Fig.
4.5(a) shows the circuit of the Chien search cell. Because of the maximum field of our
proposed design is ten, the one stage FIFO buffer must have length 1024x10 bits and costs
large area. For reducing the FIFO buffer length, the double check Chien search is used to
find the roots twice at a time. Fig. 4.5(b) shows the entire Chien structure with n-k Chien

search cells.

o l— UFFM >

A t
>
UFFM |
?a-2j
(a)
=
Al(a)=07?
A(x)—
+ _>
A (a-1'+1 ): 0?

(b)

Figure 4.5: (a) the double check Chien search cell. (b) Chien search architecture with
correctable erasure is n-k.
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Error value evaluator

The Foney algorithm mentioned in Chapter 2 is used to evaluate the error value. The

Foney algorithm can be expressed as follows:

)
AB) a5

where the S indicates the root of errata location polynomial A(x) and the A’(x) is represent
the first derivative of A(x). In finite field arithmetic, the derivative can be replaced with simple

format which is composed of original odd coefficient. It is shown as follows:
/
Ax)=(Q A"
k=1

/
= Z kA, X!
k=1
= Ay + A" Fo A Ayl
odd.

1
=—A .. (x)
X

(4.9)

where the t,qq represents the maximum degree of A(x). Hence, the Forney algorithm can be

rewritten as:

el:W(ﬂj)zW(ﬂj)'ﬂi, for j=1~t (4.10)
AB)  Au(B)

There are two solutions to realize the error evaluator block. One is parallel approach
which is similar as the Chien search architecture, and another serial structure is using one FFM
to implement. However, the large FIFO buffer length is the penalty of serial architecture.
Fig. 4.6 shows the serial error evaluator architecture. Where the UFFI represents a universal

finite field inverter and f3; indicates the roots of errata locator polynomial. The finite field
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inverter is used to calculate the inversion of finite field elements. This architecture can

calculate the W(3;) and 1/A(p;) at same time.

_______ : t+s cycles |
| mcycles | o 4
A) UFFI
[ buffer UFFM {) )D N
W(x) buffer

Figure 4.6: The serial error-evaluator architecture with one FFM.

4.4 Summary

In this chapter, the universal RS erasure decoder is proposed. If a (n, k, t, m) universal
erasure RS decoder is designed. The any (n’, k’, t’, m”) RS code with n’<n, k’<k, t'<t, m’<

m parameters can be decoded by our proposed architecture.

> Double check| Evaluate

> Chien search i error value
Syndrome Calculate Key equation solve 'i >
—————— »
Syndrome Calculate Key equation
N 2N solve 3N
on-goin - T -
going Next codeword
codeword

Figure 4.7: The Timing Diagram for propose I architecture.
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The decoding timing scheme of proposed RS decoders is shown in fig. 4.7. As the fig.4.7
shows, the double check Chien search is used to reduce the search cycles and serial error
evaluator architecture can be applied. And, the finite field inverter of proposed I architecture

is based on Fermat’s algorithm.

CLK
RS_EN ’_¢_‘
P Gated CLKI
COE_IN v
> S ~S
RS_SYNC LIS, K0-K16
— »| Syndrome .
Svnd ov Erasure Chien-
RS_DEF and ynd_ov
— »  Erasure > locator search & I
i rror
ERA Expansion | WO0-Wis Error or Value
> Value Era_Value
Calculator » & Key evaluate
COEP > equation
RS_IN[9:0] EraNUM . Key ov
) 4
> 1024X10 SRAM X2 . ( > C(Xl

Figure 4.8: Block diagram of proposed I RS decoder.

Fig 4.8 shows the block diagram of proposed architecture I. The proposed architecture I
can support the maximum field degree to 10, and the corrective error is 8. Two 2048x10
SRAMs are used to store the received codeword. Because the syndrome cell and Chien
search cell are implemented by universal FFM, the total gate count of proposed architecture I
is large. Hence, for implementing the error evaluator block and finite filed inverter, the serial

computation architectures is used.
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CHAPTER 5

Area Efficient Design Approach

The RS erasure decoder consists of syndrome calculator, erasure locator polynomial
expansion, key-equation solver, Chien-search block and error-value evaluator. However, in
proposed architecture I, the design has larger design-cost than typical single mode RS decoder.
In proposed architecture II, constant universal finite field multiplier will be used to reduce the
gate count. In this chapter, the modified syndrome calculator is introduced in subsection 5.1
and the parallel Chien search and error evaluator architecture is shown in subsection 5.2. The
parallel Chien search and error evaluate architecture can search the error and erasure roots and
calculate the error value simultaneously. The Key equation architecture is same as proposed
architecture 1. Because of the implementation of constant universal FFM, the total area cost
of syndrome block and Chien seatch block“is improyed obviously. Finally, the improving of

the decoder function that can correct: 16.errors is.described in subsection 5.3.

5.1 Universal Syndorme and Erasure Value Calculator

The syndrome value represents the error information of received codeword. The Horner’s
rule is applied to compute the syndrome value. Hence, the typical substitution form of

syndrome value is shown as following:

S.=R(a')

=(.(R_a"+R _)D)a'+R Da'+...R)a'+R, fori=1~2t 5.0)

It is because that the universal finite field multiplier cost larger area than a dedicated

constant multiplier. In order to achieving area efficient design, a constant UFFM (CUFFM)
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can be constructed by replacing one input value of UFFM with fixed finite field element x". It

can be expressed as following:

C(x) = A(x)B(x)r"(x) mod p(x)

A(x)=x
= x’B(x)x" mod p(x)
=[0+[..[0+[1-B(x)x" +[..[0B(x)x']...]x"
mod p(x)]]x "' mod p(x)]...]x” mod p(x)
=" B(x)mod p(x)

(5.2)

X=a

It is shown that the o/ represents a constant UFFM (CUFFM) function.

However, for adapting to constant UFFM function, the original substitution of syndrome
polynomial must be modified. According the Horner’s rule, each codeword symbols must
multiply the constant " before enteringithé syndrome cell, where n represents the location of
codeword symbols. The following equation, mdicates the detail modified syndrome

substitution procedure.

a"R(a')=a"R_,a'™" + a"Ropa ™ +...+ a"R,
— amRn-la(m+(i—m))*n—l + 6xm]:{n-za(m-%(i—m))"‘n—Z_i_“._l_ amRO

=(.(R_,a"a"+R _,a"") a"™+.).) a""+R,a"

(4.4)

Based on above equation form, the modified syndrome calculator is constructed in Fig 4.1.
Fig. 5.1(a) indicates each cell of syndrome architecture and Fig. 5.1(b) shows the entire
universal syndrome and erasure value calculator block with correctable erasure is 16. Since the
area and critical path of CUFFM increase in proportion to the minus degree of o™, the

maximum minus degree of CUFFM is kept at eight.
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Figure 5.1: The universal Syndrome and Erasure Value Calculator

5.2 Chien search and Error Evaluator Block

For area efficient design, the universal FFM can be replaced with constant universal FFM
in each cell of Chien search and error evaluator block. Since the area and critical path of

CUFFM increase with the minus degree of , the errata polynomial form must be modified to
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avoid larger minus degree.

polynomial form is shown as follows;

Aa™) = Ayt A@!) + Ay (@) .ot Ag(e™) +

= A+ A(al)+ A A(a®) +

Ao(a_g)i+ Alo(a_lo)i'*'----_" /\16(05_16)i

(a_g)i {Ao(a_l)i"*_ /\10(0‘_2 )i+-~-~+ A16(a_8)i}

Assume the correctable erasure is 16, the modified errata

(5.2)

From the above modified equation format, the maximum a minus degree is always 8 and the

Chien search block can be implemented easily based on this polynomial form. Fig. 5.2 shows

the area efficient Chien-search architecture for t=8. The cell’s output value whose alpha

degree is large than 8 will multiply the corrective factor a®.
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Figure 5.2: The parallel Chien-search block with constant UFFM
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For the error evaluator polynomial, its implementation is same as the error locator

polynomial that is shown as follows:

Qo) = Q)+ Q (@) + Qy (@) +.t Q@) +
Q9(0{'9 )i+ Qm(a’-lo)i"—----"' Qm(a-lé)i
=0 Q@)+t Q)
(@) {Qy(a™)+ Oy (a?) ..t Qi (™)'}

(5.3)

W, ] W, ] —
— CCO01 | —— CC02 H
W
—2 y ccoa H Wa o H
+l— +
W, W,
— 3 CCO05 | —3 CC06 |
W, W,
—3 cco7 (— — CC08/1-
W, — W, o .
—~ y cco9 || (a-S)j —~ y'cc10 | (a-S)J
W10 * W11 ¢
—— CC11 — CC12 |
+ [ UFFM [ + | { UFFM |
W, i
—< 3y CC13 | —N'cc14
W, W15
—3 CC15 224 CC16 [

M@—» Inversion RAM %g

Figure 5.3: The parallel error evaluator block with constant UFFM

Figure 5.3 shows the parallel error evaluator architecture. The inversion RAM which will
be described in next subsection is used to store the corresponding finite field inverse. Each
cell is constructed by one const universal FFM. As compared with serial architecture in Fig.

4.6, because the function of Chien search and error evaluate can be performed at same time,
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this architecture will reduce one stage FIFO buffer. However, it totally costs N cycles to

operate the error evaluator function.

5.3 8 <t <16 Error-only Correction

Since the proposed design supports the maximum 16 correctable erasure, it can be
configured to correct 9~16 errors without any erasure. The basic idea is calculating the
syndrome twice which costs 2n (n is the block length) cycles. At first N cycles, the syndrome
S~S1s will be calculated. However, if the first half of syndrome §;~S;s are equal zero, the
S17~S3; will all equal zero, and the following decoding process, includes 16 syndrome
calculation , key equation solve, and «Chen search block can be terminated. Based on this
property, the power consumption’ can be teduced significantly. If syndrome S;~S;s are not
equal zero, the syndrome S;,~S3,:will be executed. - The syndrome block will read the received
codeword again from the FIFO buffer, and the next'codeword will be hold. Fig 5.4 shows the
hardware structure between syndrome block and FIFO buffer, and fig. 5.5 indicates the

decoding procedure of 16 error-only correction.

>8 ? ~
T>8 S‘I S16
N
—4— —>
Syndrome &
Received stage
codeword $,;~8S,,
— FIFO RAM

Figure 5.4: Block diagram of 16 errors correction.
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Figure 5.6: The Timing Diagram for propose II architecture.

In this chapter, the area efficient architecture of universal RS erasure decoder is introduced.

The proposed architecture II can support the maximum field degree to 8, and the corrective

error is 16. The decoding timing scheme of proposed decoder II is shown in fig. 5.6. As this

figure shows, the maximum latency is 4N+4 and two 512x8 SRAMs are applied.

Fig. 5.7 shows the block diagram of proposed architecture II.

is adopted for implementing the proposed II architecture.

The area efficient approach

A 256x8 SRAM is used to realize

the on-the-fly inversion table, and parallel Chien-search and error evaluate block is adopted for
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high speed computation.

reduce the power consumption.

and error evaluate block with high speed computation.

consumption issue is considered in proposed architecture II.
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Figure 5.7: Block diagram of proposed II RS decoder.
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CHAPTER 6

Chip Implementation Result

This chapter will describe the CHIP implementation and its design methodology. In
subsection 6.1, we will describe the design and test consideration. Then, there are two
implementations of proposed universal RS erasure decoders are shown in subsection 6.2 and
6.3. The proposed I architecture can support the field degree to ten and correctable errors to
eight. The proposed II architecture implemented by area efficient approach can support the
maximum field degree eight and correctable errotis sixteen. Besides, the simulation result of
two proposed architecture will dg-some comparisons with other single-mode or reconfigurable

RS decoder published in the past:

6.1 Design and Test Consideration

Fig. 6.1 presents the entire design and testing flow with various CAD tools. At first, we can
use the high level language like C/C++ or MATLAB to construct the software simulation
environment and generate a lot of random codewords with AWGN noise. Hence, after the
RTL coding, the hardware-software co-simulation ensure the correction of behavior model.

Fig 6.2 shows the relation of hardware-software co-simulation.

The verilog description language is chosen as the RTL implementation. After the RTL
level, the gate level implementation will be performed by Synopsys Design Analyzer synthesis

tools. And, the synthesis standard library of proposed architecture is 0.13mm 1P8M CMOS
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technology. The clock rate and the performance in 0./3um technology are improving
significantly. And, the memory size of FIFO buffer and inversion table decreases obviously.
After the gate level synthesis, the pre-layout simulation will be performed to verify the gate level
performance. In deep submicron process, the wire delay plays an important role of circuit
speed. Hence, the pre-layout simulation can not calculate the circuit speed precisely.
Besides for pre-layout simulation with nc-verilog complier, the primetime is also an effective

CAD tool to calculate the critical path.

Specification

RTL Coding

Y

RTL Simulation/
nLint

¥

Get SDF Pre-layout
Synthesis —» from Timing —» Gate-level —p»
Engine Simulation

Prime Time /
Prime Power

Get SDF from Post-layout Gate-

P&R ’ Timing Engine level Simulation

DRC/ERC/LVS

Figure 6.1: The entire design flow
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Decoder

software
encoder Compare

RTL
>
AWGN noise Decoder

Figure 6.2: The simulation environment

For successful pre-layout simulation, the place and route will be performed through the
SOC Encounter tool. In deep-submieton-design; many problems like signal integrity (SI), IR
drop, and wire delay must be considered carefully.  “The power consumption, RC extraction,
and timing estimation will be computed exactly at place and route procedure. Finally, the
post layout simulation includes DRC. (design rule check) and LVS (layout versus schematic)

can verify the chip layout integrity.

6.2 CHIP Implemenation for Proposed Architecture 1

The proposed I architecture can support the maximum field degree to 10, and the
maximum correctable error is 8 (maximum correctable erasure is 16). In syndrome block, the
universal FFM is applied in 16 syndrome cell. In Chien search block, the double check
architecture is used to reduce the search cycles. And, the error evaluator block is designed by
the serial architecture. Two 2048x10 SRAMs is used to realize the FIFO buffer, and the

inverter is implemented based on Fermat algorithm. In this design, the circuit complexity
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isn’t considered that syndrome cell and Chien cell are implemented by universal FFM. This
architecture is implemented by 0.13um 1P8M standard cell technology. The critical path of
synthesized gate level model exists in the key equation block. Fig 6.3 shows chip die photo

of proposed I architecture.

Table 6.1 shows the chip summary of proposed decoder I. The total gate count is about
110K and the maximum clock rate is 222 MHz. And, the core size is 1.25 x 0.63 mm’. The
maximum power consumption is 23mW at clock rate 222 MHz. The chip is packaged in a 84

CLCC package.

Error Key Equation
Evaluator Solver

2048 x 10
SRAM

Chien-search|| Syndrome
Calculator

2048 x 10
SRAM

Figure 6.3: The die photo of proposed I architecture

-~ 45 -



Table 6.1: The chip summary of proposed I universal RS decoder.

Design Universal RS Erasure Decoder
maximum field degree 10
Corrective error 1~8
Memory size 40 K bits
Core area (mm?) 0.78

Total gate count 75K

+ 35K FIFO RAM

Maximum Operating Frequency 220 MHz
Date rate (M bits/s) 2200
Average Power (supply voltage) 23.2 (1.2Vv)

6.3 CHIP Implemenation for Proposed Architecture I1

The proposed II universal RS erasure decoder is implemented by area efficient design.
This architecture can support the maximum field degree to 8, and the maximum correctable
error is 16 as well as maximum correctable erasure. Two 512x8 SRAMs is used to realize the
FIFO buffer, and a 256x8 SRAM is used to construct the finite field inversion table. The

error evaluator block is designed by the parallel architecture which performs the Forney
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algorithm at Chien search stage. For circuit complexity consideration, that syndrome cell and
Chien cell are implemented by constant UFFM. Therefore, the total area of entire RS code

has smaller overhead than a single mode RS decoder.

This decoder is also implemented by 0.13mm 1P8M standard cell technology. Fig. 6.4
shows layout view of proposed decoder II. The critical path of synthesized gate level model

also exists in the key equation block.

Table 6.2 shows the chip summary of proposed II decoder. The total gate count is about
54K with FIFO buffer 14K, and the maximum clock rate is 300 MHz. And, the core size is
0.36 mm”. The maximum power consumption is 20.2mW at clock rate 222 MHz. The chip

is packaged in a 68 CLCC package.

Figure 6.4: The layout view of proposed II architecture
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Table 6.2: The chip summary of proposed II architecture

Design Universal RS Erasure Decoder
maximum field degree 8
Corrective error 1~16
Memory size 10 K bits
Core area (mm?) 0.36
Total gate count 39K
+ 14K FIFO
Maximum Operating Frequency 300 MHz
Date rate (M bits/s) 2400
Average Power (supply voltage) 20.2 (1.2V)

6.4 Comparison

Table 6.3 lists various mode RS comparison. From this table, it is obviously that our
proposed architecture can support the maximum correctable errors, erasure correction, and the
complete reconfigurable capability. As compared the same universal decoder proposed in
[23], our proposed decoder can improve about 50 times decoding speed with parallel decoding
scheme. Additionally, out proposed design has more flexibility and much higher decoding date

rate.
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Table 6.3: The comparison of various mode RS decoder

[21] [22] [23] Proposed I Propose 11
Variable Universal Universal Universal
Mode single
(n, t) (0, t, mp(x)) | (n,t, mp(x)) | (n,t, mp(x))
M 8 8 1~8 1~10 1~8
T 8 1~8 1~8 1~8 1~16
Erasure No No No Yes Yes
P(x) Single Single Variable Variable Variable
1600 800 48 2200 2400
Datarate | >00MHz) | 100MHz) | (220MHz) | (300MHz)
(parallel) (parallel) (serial) (parallel) (parallel)
75K 39K
Gate count 21K 34K 44K
+ 35K FIFO | + 14K FIFO
Technology 0.25 0.35 0.25 0.13 0.13
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CHAPTER 7/

Conclusion

In this paper, two universal architectures for RS error-and-erasure decoder are presented.
The proposed architecture can accommodate variable codeword length, correctable errors,
different finite field degrees, and different primitive polynomials. The proposed I architecture
can support the maximum field degree to ten, and the corrective error is eight. The proposed
IT architecture can support the maximum field degree to eight, and the corrective error is

sixteen.

To achieve the universal property, the design challenge is to realize a dedicated RS decoder
that can accommodate different finite_field definition: Hence, the main solution is applying
Montgomery multiplication algorithm ‘which ‘described in section 2.1. Based on this
algorithm, the universal finite field operator includes multiplier and inverter can be
implemented. In consideration of complexity, a universal constant multiplier will be applied
in syndrome block and Chien search block to reduce the area size. Besides, we combine the
erasure locator expansion and Berlekamp-Massey algorithm to achieve the erasure correction

with increasing additional universal FFM.

In design approach view, the software simulation is built first, and then the RTL code can
be verified in according to software result. The Verilog description language is chosen as the
RTL implementation. After the RTL level, the gate level implementation will be performed
with the synthesis standard library of proposed architecture is 0.13um I1PS8M CMOS

technology. Finally, the layout will be constructed by the SOC Encounter software.
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APPENDIX

Hardware Sharing Design for (528, 518) RS
codec IP

In this chapter, an area-efficient Reed-Solomon (RS) codec IP with composite-field inverter
is presented. For some specific applications such as flash memory controller, the RS decoder
will stop receiving any new codeword until the on-going erroneous codeword to be corrected.
It is that the circuit complexity can be reduced by sharing the registers and finite-field operation
units. The proposed hardware sharing architecture also includes the RS encoder function.

Moreover, for area consideration, the composite field inverter is constructed in error evaluator.

Porposed Hardware Sharing Architecture

In flash memory controller, the RS:(528,518) code over GF(2'") is used to mitigate the
errors that may be introduced during manufacturing or by user damage. Note that there are
totally 518 message bytes in each codeword of 528 coded bytes. Since the specified RS code is
constructed over GF(2'’), these 10 parity-checking bytes imply that the number of correctable

errors is 4.

In this section, firstly the RS encoder & syndrome calculator, key-equation solver, as well as
Chien-search & error-value evaluator are introduced in following subsections. Then the
hardware sharing architecture will be addressed to optimize the usage of registers and operation

units.

By means of linear system theory transformations, Fettweis proposed a combined
methodology to implement both the RS encoder block and the syndrome calculator [24]. In

key equation solver, the decomposed inversionless Berlekamp-Massey architecture uses 3
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finite-field multipliers (FFM) without any finite-field inverter (FFI). However, one FFI is
always needed in the error-value evaluator block. Thus the key-equation solver is implemented
according to the Berlekamp-Massey algorithm within two FFMs and one FFI in our hardware
sharing architecture. Furthermore, the composite-field is introduced to realize the FFI since the

look-up table for GF(2'%) cost too much circuit complexity [26].
A. RS Encoder & Syndrome Calculatork

The RS encoder & syndrome calculator block are combined according to [24]. Figure
A.1(a) shows the combined circuit of RS encoder & syndrome calculator for t=4, and figure
A.1(b) is the function cell(SCi) of figure A.1(a). Additionally, this combined circuit uses eight

syndrome registers s/ ~ s8.

Syndrome
Rin » Sydnrome registers s1 ~ s8 register Si Rin
A ~ A A N A A A |
AL e T &
; A4 ; Y ; h 4 ; Y ; h & ; Yy ; Y ; ad Q
SC1 [ SC2 B sc3 P} SC4 [ SC5 P SC6 Hsc7 B SC8 > \fﬂ
Y

I A A A 0

(@)

Figure A.1: (a) Encoder/Syndrome calculator block, (b) Syndrome cell (SCi).
B. Key-Equation Solver

The key-equation solver is used to calculate the error-locator polynomial A(x) and
error-evaluate polynomial Q(x). The Berlekamp-Massey algorithm has been mentioned in
chapter 2. It is because that the error-value evaluator block needs one finite field inverter.
Therefore, for achieving the hardware-sharing design, this inverter can be merged into

decomposed key architecture base on Berlekamp-Massey algorithm. Figure A.3 shows the
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original decomposed BM architecture with two FFMs [25]. When implementing the original

BM algorithm, two FFMs and one FFI are needed.

A gala)

Key register k1~k4 >€9 -
‘_ri } |_ErrorValue
S(x) §"§

(]
Key register k5~k9 |

Figure A.2: The decomposed-Berlekamp-Massey architecture with finite field inverter.

C. Chien-search Block and Error-value Evaluator

| Key registers k1 ~ k4
A A A A

Y A

c4| c3| |c2| |c1

Y

Sum_Omega

Key registers k5 ~ k9

A A A

Y A 4 Y Y

c4| (c2| [c3]| |c
1\\\\§m1 INV -
ErrlLoc
+

Y + h J | A )

¢ Zero? Chien-search cell

Figure A.3 : Chien-search and error-value evaluator block.
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Similar to the syndrome calculator, the Chien-search & error-value evaluator block can also
be realized through the Horner’s rule. Figure A.3 is the Chien-search and error-value evaluator

block architecture for t=4.

Through using one FFI and one FFM, the Forney algorithm, which is used to obtain the error
value, can be realized. When performing the Chien-search and error-value evaluator, the data

flow of inverter and multiplier is similar to the dotted line shown in Figure A.2.

D. The Hardware Sharing Architecture

Finite State Machine

' ' '

Chien -
search &
Encode Syndrome Key
error
control control control
evaluate
control

— Register S1~3S8 I— Register K1~ K9

f i

Finite field operation units

© v @ @ @

Error value

: constant finite field composite field inverter over
m |t |er INV = I | ny )
uitpn GF(Zm)

@ :Finite field multiplier

Figure A.4: The hardware sharing architecture.

Figure A.4 shows the entire hardware-sharing block diagram. This architecture integrates
the blocks from Figure A.1 to figure A.3 to realize hardware-sharing design. The syndrome

registers s~ s8 are used to calculate the parity-checking symbols and syndrome symbols, and
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the key registers k1 ~ k9 are used to compute the key equation, Chien search and error evaluate
operation. The finite field operation units are accessed through the finite state machine

controlling. Additionally, the 8 syndrome registers also store the 4 error values and 4 error

locations at Chien-search and error evaluate step.

Table A.1 : Comparison of required registers and finite-field function units. The C-S and E-E

represent the Chien search block and error evaluator, respectively.

Key C-S and Output Original Our
Syndrome . .
for BM E-E Register Design proposed
Register 2t 2t+1 2t 2t 8t+1 4t+1
FFM 0 3 1 0 4 2
FFI 0 0 1 0 1 1

Table A.1 shows the information of register numbers and finite field operation units.
Through using hardware sharing architecture, we reduce 4t registers and two finite field

multipliers.

Composite Field Inverter

The composite field is a type of extension field whose subfield is defined over GF(2") rather
than GF(2). Given a finite field GF(2*) where k=nm, we can construct a isomorphic composite
field over GF((2")") by introducing a monic primitive polynomial which has order m and

coefficients from GF(2"). Composite field arithmetic is a combination of subfield calculations.
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As a result, we can apply composite field to the field GF(2*) and implement the GF(2")
arithmetic architecture with subfield arithmetic circuits. The complexity of the subfield

arithmetic circuits is small so that efficient hardware implementation is achievable.

Finite field inverse over GF(2'’) requires a large amount of hardware area in case
implemented with a lookup table. Our design employed the composite field GF((2°)°) to the
field GF(2'"). This allows us to realize the inverse function with a smaller lookup table over
GF(2) [27]. After being mapped to the composite field, every element of GF 2"%) can be
written as a polynomial of the first degree with coefficients from GF(2’), i.e., bx+c, bc €
GF(2’). Denoting the primitive polynomial as x’+A4x+B, the multiplicative inverse for an

arbitrary polynomial bx + c is given by
(bx+c) '=b(b’B+bcA+c?) 'x+(c+bA)(b*B+beA+c’)

The problem of calculating the inverse in GF(2"") is:now translated to calculating the inverse
in GF(2’) and performing some multiplications;-squaring, and additions in GF(2’). The inverse
in GF(2’) can be stored in a small ‘table..We'use a standard basis for the subfield GF(2’)
computations and the primitive polynomial defining GF(2’) is x’+x’+1. Moreover, we select 4
equal to the unity (denoted 00001) to further simplify the operation. Follow gives a schematic

representation of the required calculations.

— N
—AL/

LS

b

Figure A.5 : Composite field inverter over GF(2'%)
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Finally, in order to transform GF(2'%) into GF((2°)%), the transform matrix and the monic
primitive polynomial have to be determined. There exist effective algorithms for resolving
both problems [27]. In our case, the monic primitive polynomial of GF ((2%)%) is X’ +x+w’ (W’

denoted 01000, where w is the primitive root with respect to GF(2”)).

Implementation Result

After implementing by 0.18um 1P6M standard cell slow library, the RS (528, 518) codec IP
totally requires 2 finite-field multiplier, 1 composite-field inverter and 17(=4t+1) registers,
where t is the number of correctable errors. In contrast with other architectures, at least 42%

circuit complexity can be reduced in our proposal.

Table A.2 compares the implementation for,various key algorithms at 0./8um cell library
process. In combination circuit, ‘therhardware sharing circuit uses 2 finite field multipliers
(FFM), 1 composite filed invertér (CFI) and additional finite state machine control circuit. In
synchronous circuit, the proposed-architecture has only 17 register. Therefore, at least 42%

circuit complexity can be reduced by our proposed hardware sharing architecture.

Table A.2 : The comparison table for (528,518) RS codec with different key-equation block

Process Combinational Synchronous Total
Components
(0.18um) gates count gates count gates count
Original 4 FFM+1 CFI 10.8K
. 6K 4.8K
with BM 33 REGs (1.42)
Original with | 4 FFM+1 CFI 12.8 K
) 7.2K 5.6K
Euclidean 44 REGs (1.68)
2 FFM+1 CFI 7.6K
Our proposal 4.8K 2.8K
17 REGs 1)
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Conclusion

In this chapter, an area-efficient methodology is presented to reduce RS codec area for some
applications. The circuit complexity can be reduced through sharing registers and finite-field
operation units. And the RS encoder can be also combined with the syndrome calculator.
Furthermore, the composite-inverter over GF(2'’) is implemented to replace the original
look-up table. As a result, it can be achieved to reduce at least 42% circuit complex. If the

number of correctable errors is large, the reducing area will raise linearly.
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