L1 TIFALH
FROL #wm =
(L a!F“] e Jgt‘r 7 7}#—‘)1 21

Low-Power Instruction Cache
Architecture-Design

Moro2 LA

TES SRR

o gy £ BB R L R

Low-Power Instruction Cache Architecture Design

LI T R Student: Shi-You Cheng
¥ x & 2 # <4 Advisor: Dr. Juinn-Dar Huang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering

July 2006

Hsinchu, Taiwan, Republic of China

\‘_‘::.
=

-y

Pl R F B & #L
R i < B
REAARE T

i§ % BEF VLS flAenie H © 57

“(3

R oo pREd 2 AT B e R

B o GAJZE S P LY B el T A A sl o A
LpEfde- BR300 L€ S R B > B E LA

*’uﬁﬁﬁ%%a
PP R T B KL o
TITRE R A2 -
LieBHm AL AR - B S R T
¢ ERMAUH Y AR
Fs M T8 4 chPE RS 7 seq

Hp £ %4
lab TR R RARE L
o ARY PR PIT AP
B iR f s A 2 TR e A ety Bl]S H) R D R o
T AR - B s

¥ 1l ,}é‘ P

B 5
~ X)54% 7 B /ﬁ*; .

»é——l
,ll‘f,._\v-'

i Eﬁ]‘z‘;\: ‘}LB";&:I%&%& s 2\ fpe :}% ih E’ha}%] 2

Y73 4% 2 AR B g B 2 & DRAMEE £ o
A

40 - ppECr %%?i‘aﬁ:m ST AL £

B AT

7o JE)}iIﬁ ’

v 1 % B I
TR
XN

BB e R A

Low-Power Instruction Cache Architecture Design

Student: Shi-You Cheng Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Recent remarkable advances of VLSI technology have been increasing processor
speed and DRAM capacity. However, the advances also have introduced a large, growing
performance gap between processor.and main memory. Cache memories have long been
employed on processor chips in orderto bridge the processor-memory performance gap.
In order to improve the performance of the -memory system further, the most
straightforward approach is to increase thercache size, and then increase the cache-hit
rates. However, this approach also'.increases the ‘power dissipated in cache accesses
significantly. Therefore, the low-power cache architectures have become one of the most
important issues.

In this thesis, we propose a low-power instruction cache architecture by utilizing the
four techniques, including memory sub-banking, two-phased cache, pre-tag checking,
and signal “seq” for tag-memory access skipping. By these techniques, we can eliminate
as many unnecessary tag-memory and data-memory accesses as possible to achieve the
goal of low power consumption. Experimental results show that the proposed instruction
cache can reduce about 54% power consumption compared to the conventional two-way

set associative cache.

#
pPANERSA i — R REE L @ S RS FEEE
FALFLT P pd F FFRGDALE R FELE > KL R

o A A alp 2 dp o B o
£ | i 524

ERR: P 2

plze /L-'ﬁ?gfp% FlinPaF R L LBy L - Ao
R
nipES s

ARG —ERRERE B
1 =
S E S LI A S R L BT R T)
Yeug i b AR H o ApR AL R - 3 k) & o
Bis AR HAN A o d RN E PR 0 E
TR iEE R AR B0 FAER

E e s A AT

Contents

2 B R e [
T2 A B e ii
. TSSO iii
(000] 11 1=] 1 S TSSOSO 0\
LISES OF TADIES ...ttt sa et eneas Vi
[T o) B T U] £ USRS vii
Chapter 1 INtrOQUCTION.cuiiieiieic ettt s nee s 1
1.1 MOTIVALION ..ottt bbbt 1
1.2 Previous works for low-power ConSUMPLION.............ccovrveieierenienieseseeeeeens 2
1.3 Overview of the proposed low=pOWer I-cachecccccoevviieiveieciernennn, 3
1.4 ThesSiS OrganiZatioN. .. e lueeeeaeesuasaadsateaneas e ehineeeeseeeseesseeseeeeesseesseessessessseessesseeses 3
Chapter 2 How A Conventional Cache VWoOrKS s ... ivrveeveereiieieeieiieseeseseeseesiesaeseeas 5
2.1 BIOCK plaCcemeNnt..... ..o ittt 5
2.2 BIlOCK IdentifiCatioNcooiiiriee s 7
2.3 BIOCK replaCement...........cooiiiiiie i 9
P TV g1 (o - L=T |V 10
2.5 An example of the cache architeCtureccceveiiriinii e 12
2.6 Power consumption of the cache..........ccccceveiieiiiiicie e 14
Chapter 3 Way-Predicting Set Associative Cachecccoccevveiiiiiiiiienee e 15
3.1 CONCEPT ..ttt 15
3.2 WaAY PrediClIONeeiiiiiisieeie et 17
TR B @ (o1 a1 72 11 o] o S 18
34 CONCIUSIONS ...ttt ettt st 20
Chapter 4 History-Based Tag-Comparison Instruction Cache...........c.cccceevvevviiveinennnnn, 21
O R O 0] o (01T o | AU T TP OUUURTOPRTRTPP 21
A O (0 1g U1 o] o OSSP 22

I O o 1= - £ o] o RSP PS 24
A4 CONCIUSIONS ...ttt sr et e 26
Chapter 5 Proposed Low-Power Instruction Cacheccccccevveiviiesiiese e 27
5.1 Memory sub-banking ... 27
5.2 TWO-Phased CACNE..........cceii it 30
5.3 Pre-tag CheCKINGooiiiiiiee s 33
5.4 Signal “seq” for tag-memory access SKIPPINGccvevvererieeriveresieseesnereenens 38
Chapter 6 Experimental RESUIESc.coviiiiiiii e 41
6.1 EXPEriMENT SEIUD...c.viivieiieeieiiesie et see e e et sie et teete e sre e sneeeeeneenes 41
6.2 EDA ENVIFONMENToiviiiiiiiiiie ettt es 42
6.3 EXperimental reSUILSccuvieeiiee e 43
Chapter 7 CONCIUSIONS........oiuiiiiiie ettt sbe et 45
=] 10] [0 o =0 SRS R-1

List

Table 2.1:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:

of Tables

Miss rates comparison for three replacement strategiescccocevvervenenne. 10
Power consumption of the memory sub-bank in an 8KB cache 30
Power consumption of the memory sub-bank in a 32KB cache..................... 30
The ratio of WC 1 and WC 1 (Partl)ccccceeveiieiieiecieseese e 38
The ratio of WC 1 and WC 1 (Part2)ccceeveiieiieie e eee e eie e 38
The cache types in the eXperiment ... 42
The technology and the EDA T00ISccooeiiiiiieeceee e 43
EXPerimental reSUIL | oot i areeseeeeeseese e e et sre et 43
Experimental result T1.. 5 i i e 44
Experimental result T i o e 44

Vi

List of Figures

Figure 2.1: This example cache has eight block frames and memory has 32 blocks........ 7

Figure 2.2: BIOCK 1deNtITICALION. ..o 8
Figure 2.3: Block identification of the example cache...........cccoovviiieiiiiiii 13
Figure 2.4: The organization of the conventional cacheccccooceiveiiviicicce e, 13
Figure 3.1: Phased set assoCiatiVe CaChecccevveieiieiicc e 16
Figure 3.2: Way-predicting set associative Cache ..., 17
Figure 3.3: Organization of way-predicting four-way set associative cache................... 19
Figure 4.1: Block diagram of a 4-way SAHBTC cache........cccccevveviiieiieciciee e 23
Figure 4.2: Operation-mode transition of HBTC-:CaCheccccovvvvveviveicciesiee e 25
Figure 5.1: The concept of memorysub-banking ...«...c......cooovviiiiiie, 28
Figure 5.2: The address space partition forthe-memory sub-bankingc.ccccvevnee. 29
Figure 5.3: Example of memory sub-panking....cici. oo 29
Figure 5.4: The cache hit in the two-phased two-way set associative cache 32
Figure 5.5: The cache miss in the two-phased two-way set associative cache 32
Figure 5.6: The address space partition for the pre-tag checkingcccccoovevvnivnnnne. 33
Figure 5.7: The architecture of a two-phased cache with pre-tag checking.................... 34
Figure 5.8: Better case | of the two-phased case with pre-tag checking...........ccccocue..... 36
Figure 5.9: Better case Il of the two-phased case with pre-tag checking............c........ 36
Figure 5.10: Worse case | of the two-phased case with pre-tag checking 37
Figure 5.11: Worse case Il of the two-phased case with pre-tag checking..................... 37
Figure 5.12: Sequential access graph and eXample............cccovveveeieiiieninece e 40
Figure 5.13: Hardware implementation of the block boundary detector......................... 40
Figure 6.1: The eXPeriment SELUPcoeiueiieieiie et 42

vii

Chapter 1

Introduction

1.1 Motivation

VLSI technologies have been inereasing: processor speed and DRAM capacity
dramatically. However, they also have-introduced a large, growing performance gap
between processors and main memory (DRAM). By improving not only the clock speed
but also instruction level parallelism (ILR);"the’ processor performance has been
improving at a rate of 60% per year: On the-other hand, the access time to DRAM has
been improving at a rate of less than 10% per year [1]. Moreover, current memory
systems suffer from a lack of memory bandwidth caused by 1/O pin bottleneck. This
problem is known as “Memory Wall” [2], [3]. The inability of memory systems causes
poor overall system performance in spite of higher processor performance.

Cache memory has been playing an important role in bridging the performance gap
between high-speed processor and low-speed off-chip main memory because confining
memory accesses on-chip reduces memory access latency. In order to improve the
performance of the memory system further, the most straightforward approach is to
increase the cache size. Increasing the cache capacity reduces the frequency of off-chip
accesses due to the improvement of cache-hit rates. However, this approach also
increases the power consumption dissipated in cache accesses. When we focus on power

1

of caches, several studies are reported. The power consumption of on-chip caches for
StrongARM SA110 occupies 43% of the total chip power [4]. In the 300 MHz bipolar
CPU reported by Jouppi et al [5], 50% of power is dissipated by caches. Recent growing
mobile-market strongly requires not only high performance but also low-power
dissipation. One of uncompromising requirements of portable computing is power
efficiency because that directly affects the battery life. Therefore, from these studies, we
believe that considering low-power cache architectures is a worthwhile work for the

future processor systems.

1.2 Previous works for low-power consumption

In conventional set associative:cachespall:ways are searched in parallel because the
cache access time is critical. In fact;on a cache hit, only one way has the data desired by
the processor. Therefore, the access tosthe-remaining ways is unnecessary. The previous
works as follows attempt to avoid the unnecessary way activation, or the unnecessary tag
look-ups to reduce the power consumption:
® Way-predicting cache [6]: The way-predicting set associative cache predicts
which way has the data desired by the processor before starting the cache access.
The way prediction is performed based on memory-access history recorded by
the way-prediction table. If prediction is correct, cache consumes power for only
one activated way. Otherwise, the cache searches all of the ways and consumes
power for all of them. In addition to this power consumption, miss prediction
also causes additional cycles which make performance degrade. (We will
introduce the detail of the way-predicting cache in Chapter 3.)

® History-based tag-comparison cache [7] [8]: The history-based tag-comparison

cache predicts whether the instructions to be fetched currently resident in the

2

1.3

cache and attempts to eliminate unnecessary tag comparison. In conventional
caches, tag comparison has to be performed on every cache access in order to
test whether the memory reference hits the cache. Execution footprints recorded
in a BTB (branch target buffer) is used for the prediction. However, not all the
processors use the BTB technique. It has a limitation on hardware
implementation. (We will introduce the detail of the history-based

tag-comparison cache in Chapter 4.)

Overview of the proposed low-power I-cache

We propose a new low-power instruction.cache architecture which has the advantage

of simple hardware implementation by usingsthe.four techniques as follows:

Memory sub-banking
Two-phased cache
Pre-tag checking

Signal “seq” for tag-memaory access skipping

By these techniques, we can eliminate as many unnecessary tag-memory and

data-memory accesses as possible to achieve the goal of low power consumption.

The experimental results show that the proposed 8KB instruction cache in 16-byte

blocks with two-way set associative placement reduces about 54% power consumption

compared to a conventional one.

1.4 Thesis organization

This thesis introduces the low-power instruction cache architecture design, and is
organized as follows. Chapter 2 explains how a conventional cache works. Chapter 3
introduces the details of the way-predicting set associative cache, and Chapter 4
introduces the detail of the history-based tag-comparison cache. In Chapter 5, we present
our own low-power instruction cache architecture. Chapter 6 shows the experimental

results. Finally, Chapter 7 concludes this thesis.

Chapter 2
How A Conventional Cache Works

In this chapter, we will describe how a conventional cache [9] works by answering the
four common questions about the cache:
Q1: Where can a block be placed in the.cache?-(block placement)
Q2: How is a block foundif it is.in-the cache? (block identification)
Q3: Which block should beteplaced on amiss? (block replacement)
Q4: What happens on a write? (write strategy)
Besides, we will take an example of the cache architecture and discuss the power

consumption of the cache we care about most.

2.1 Block placement

Figure 2.1 shows that the restrictions on where a block is placed create three
categories of cache organization:
® If each block has only one place it can appear in the cache, the cache is said to be
direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

® If a block can be placed anywhere in the cache, the cache is said to be fully
associative.
® |f ablock can be placed in a restricted set of places in the cache, the cache is set
associative. A set is a group of blocks in the cache. A block is first mapped onto a
set, and then the block can be placed anywhere within that set. The set is usually
chosen by bit selection; that is,
(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.

Take Figure 2.1 for example. The three options for caches are shown left to right. In
fully associative, block 12 from the lower'level:can go into any of the eight block frames
of the cache. With direct mapped; block:12 can-only be placed into block frame 4 (12
modulo 8). Set associative, which has some of both features, allows the block to be placed
anywhere in set 0 (12 modulo 4). With two blocks per set, this means block 12 can be
placed either in block 0 or in block 1 of the.eache. Real caches contain thousands of block
frames and real memories contain millions of blocks. The set-associative organization
has four sets with two blocks per set, called two-way set associative. Assume that there is
nothing in the cache and that the block address in question identifies lower-level block
12.

The range of caches from direct mapped to fully associative is really a continuum of
levels of set associativity. Direct mapped is simply one-way set associative, and a fully
associative cache with m blocks could be called “m-way set associative.” Equivalently,
direct mapped can be thought of as having m sets, and fully associative as having one set.

The vast majority of processor caches today are direct mapped, two-way set

associative, or four-way set associative.

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)
Block 0 1 234 567 Block 0 1 234 5 67 Block 0 1 234 567
no. no. no.

Cache

Set Set Set Set
0 1 2 3

Block frame address

1
Block 0 1 234567890
no.

Memory

Figure 2.1: This example cache has eight block frames and memory has 32 blocks

2.2 Block identification

Caches have an address tag on each block frame that gives the block address. The tag
of every cache block that might contain the desired information is checked to see if it
matches the block address from the CPU. As a result, all possible tags are searched in
parallel because speed is critical.

There must be a way to know that a cache block does not have valid information. The
most common procedure is to add a valid bit to the tag to say whether this entry contains

a valid address or not. If the bit is not set, there cannot be a match on this address.

Block address Block
TAG | INDEX OFFSET

Figure 2.2: Block identification

Before proceeding to the next question, let’s explore the relationship of a CPU
address to the cache. Figure 2.2 shows how an address is divided. The first division is
between the block address and the block offset. The block frame address can be further
divided into the tag field and the index field. The block offset field selects the desired data
from the block, the index field selects the set, and the tag field is compared against PC for
a hit. Although the comparison could be made on more bits of the address than the tag bits,
there is no need because:

® The offset should not be used in the comparison, since the entire block is present

or not, and hence all block offsets result in.a match by definition.

® Checking the index is redundant;since it was used to select the set to be checked.

An address stored in set 0, for example,"must have 0 in the index field or it
couldn’t be stored in set O; set 1 must have an index value of 1; and so on. This
optimization saves hardware and power by reducing the width of memory size

for the cache tag.

If the total cache size is kept the same, increasing associativity increases the number
of blocks per set, thereby decreasing the size of the index and increasing the size of the
tag. That is, the tag-index boundary in Figure 2.2 moves to the right with increasing

associativity, with the end point of fully associative caches having no index field.

2.3 Block replacement

When a miss occurs, the cache controller must select a block to be replaced with the
desired data. A benefit of direct-mapped placement is that hardware decisions are
simplified — in fact, so simple that there is no choice: Only one block frame is checked
for a hit, and only that block can be replaced. With fully associative or set-associative
placement, there are many blocks to choose from on a miss. There are three primary
strategies employed for selecting which block to be replaced:
® Random — To spread allocation uniformly, candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get
reproducible behavior, which is particularly useful when debugging hardware.

® | east-recently used (LRU)—TForeduce the chance of throwing out information
that will be needed soon, accesses.to.blocks are recorded. Relying on the past to
predict the future, the block replaced Is the one that has been unused for the
longest time. LRU relies.on a corollary of locality: If recently used blocks are
likely to be used again, then a good-candidate for disposal is the least-recently
used block.

® First in, first out (FIFO)—Because LRU can be complicated to calculate, this

approximates LRU by determining the oldest block rater than the LRU.

A virtue of random replacement is that it is simple to build in hardware. As the
number of blocks to keep track of increase, LRU becomes increasingly expensive and is
frequently only approximated. Table 2.1 shows the difference in miss rates between LRU,

random, and FIFO replacement [9].

Table 2.1: Miss rates comparison for three replacement strategies

Assoc. Two-way

Four-way

Eight-wa

Size LRU | Rand.

FIFO

LRU

Rand.

FIFO

LRU

Rand.

FIFO

16KB| 114.1] 117.3

115.5

111.7

115.1

113.3

109.0

111.8

110.4

64KB| 103.4] 104.3

103.9

102.4

102.3

103.1

99.7

100.5

100.3

256KB| 92.2 92.1

92.5

92.5

92.1

92.5

92.1

92.1

92.5

Data cache miss per 1000 instructions by 10 SPEC2000 and 5 SPECfp2000 benchmarks

2.4 \Write strategy

Modifying a block cannot begin until the tag is checked to see if the address is a hit.
Because tag checking cannot occur in parallel, writes normally take longer than reads.
The write policies often distinguish cache designs. There are two basic options when
writing to the cache:
® Write through— The information iS'written to-both the block in the cache and to
the block in the lower-level memory.
® Write back— The information”is written only to the block in the cache. The

modified cache block is written to main memory only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a feature called the
dirty bit is commonly used. This status bit indicates whether the block is dirty (modified
while in the cache) or clean (not modified). If it is clean, the block is not written back on
a miss, since identical information to the cache is found in lower levels.

Both write back and write through have their advantages. With write back, writes
occur at the speed of the cache memory, and multiple writes within a block require only
one write to the lower-level memory. Since some writes don’t go to memory, write back
used less memory bandwidth, making write back attractive in multiprocessors that are

common in servers. Since write back uses the rest of the memory hierarchy and memory
10

buses less than write through, it also saves power, making it attractive for embedded
applications.

Write through is easier to implement than write back. The cache is always clean, so
unlike write back read miss never result in writes to the lower level. Write through also
has the advantage that the next lower level has the most current copy of the data, which
simplifies data coherency. Data coherency is important for multiprocessors and for 1/0.

As we see, 1/0 and multiprocessors are fickle: They want write back for processor
caches to reduce the memory traffic and write through to keep the cache consistent with
lower levels of the memory hierarchy.

When the CPU must wait for writes to complete during write through, the CPU is said
to have a write stall. A common optimization to reduce write stalls is a write buffer,
which allows the processor to continue;as soon. as the data are written to the buffer,
thereby overlapping processor execution with-memory:updating. As we will see shortly,
write stalls can occur even with write buffer:

Since the data is not needed on a write; there are two options on a write miss:

® \Write allocate — The block is allocated on a write miss, followed by the write hit

actions above. In this natural option, write miss acts like read miss.

® No-write allocate— This apparently unusual alternative is write misses do not

affect the cache. Instead, the block is modified only in the lower-level memory.

Thus, blocks stay out of the cache in no-write allocate until the program tries to read
the blocks, but even blocks that are only written will still be in the cache with write
allocate. Normally, write-back caches use write allocate, hoping that subsequent writes to
that block will be captured by the cache. Write-through caches often use no-write allocate.
The reasoning is that even if there are subsequent writes to that block, the writes must still
go to the lower-level memory.

11

2.5 Anexample of the cache architecture

Take an 8KB cache in 16-byte blocks with two-way set associative placement for
example. Figure 2.3 shows the block identification of the example cache. The physical
address coming into the cache is divided into tow fields: the 28-bit block address and the
4-bit block offset (16 = 2* and 28 + 4 = 32). The block address is further divided into an
address tag and cache index. Step 1 shows this division.

The cache index selects the tag to be tested to see if the desired block is in the cache.
The size of the index depends on cache size, block size, and set associativity. For our

example, the set associativity is set to two,and.we calculate the index as follows:

o Cachesize 2%

=] = =2 (2.1)
Block size x Setassociativity 2 x 2

Hence, the index is 8 bits wide, and the tag 1s 28 —8 = 20 bits wide. Although that is the
index needed to select the proper block, 16 bytes is much more than the CPU wants to
consume at once. Hence, it makes more sense to organize the data portion of the cache
memory 4 bytes wide, which is the natural data word of the processor. Thus, in addition to
8 bits to index the proper cache block, 2 more bits from the block offset are used to index

the proper 4 bytes.

12

4K space (each-way)
<

16-byte block

Block address Block
A TAG <20> | INDEX <8> OFFSET <4>
31 / T20T / 23 / 0
Comparison for a hit Select the set Select the data
from the block

Figure 2.3: Block identification of the example cache

Index selection is step 2 in Figure 2.4. The two tags and the two data are read from the
cache. After reading two tags from the cache, they are compared to the tag portion of the
block address from the CPU. This comparison is step 3 in the Figure 2.4 (To be sure the
valid bit must be set or else the results of .the,comparison are ignored). The final step is to

use the comparison result to select'the proper data from the data cache memory.

<« 32-bit address from CPU >
TAG <20> INDEX <8> OFFSET <4>
31 1211 43 0
INDEX {INDEX,OFFSET[3:2]} @
R N 10

.C:)» 256x20
>Tag0

6» 1024x32

> Data0 ”

@’ 256x20
>Tag1

TAG

S ® T
1024x32 32

32

> Datal

Figure 2.4: The organization of the conventional cache
13

2.6 Power consumption of the cache

The cache-access power depends on the power dissipated for the SRAM access [6]

[10]. We simplify the cache-access power as follows:

PCache ~ PSRAM (2'2)
= NTag X F)Tag + NData X F)Data (23)

® Nrag, Npaw: The average number of tag-memory and data-memory to be
activated for a cache access.
® Pty Ppaw: Power dissipated for a tag-memory access and that for a
data-memory access, respectively.
In conventional set-associative caches, all the ways are activated regardless of hits or
misses, and the cache access can bescompleted in one cycle. Accordingly, average
cache-access power (Pcache) and time (Taache) OF @ cOnventional two-way set associative

(2SACache) can be expressed by-the following equations:

PZSACache - 2 PTag + 2 I:)Data (24)
T, .co=1Cycle (2.5)

It needs two tag-memory and two data-memory accesses during each cache access, so the
(NTag, Npata) = (2, 2).

However, In fact, on a cache hit, only one way has the data desired by the processor.
In other words, accesses of the other way are unnecessary. In order to reduce the power
consumption of the cache, we must try to reduce Ntag & Npata as possible during each
cache access.

Besides, we find that the entire memory block is enabled just in order to access one
word (one tag for comparison or one data). We can partition a large memory block into
several small blocks. During each memory access, we just enable one of these small

blocks where the critical word is at and just consume the power of the small block.

14

Chapter 3
Way-Predicting Set Associative Cache

In this chapter, we introduce a low power cache architecture using the way prediction,
called way-predicting set-associative cache [6]. Theway-predicting set-associative cache
speculatively selects one way, which.is likely to-contain the data desired by the processor,
from the set designated by the memory'address, before it starts the normal cache access.
The correct way-prediction makes it pessible to eliminate the unnecessary way activation,
so that the energy can be saved. However, the miss prediction makes the cache searches
all of the ways and consumes power all of them. Besides, it also causes additional cycles

which make performance degradation.

3.1 Concept

The way-prediction set associative cache speculatively chooses one way before
starting the normal cache-access process. Then the cache divides the cache-access
process into two phases, like the phased set associative cache [11] as shown in Figure 3.1,

but not the same, as follows:

15

Tag-Array Data-Array
N X

nux-drive

r

Accessed Subarray

nux-drive

(a) Conventional 4-way set-associative cache (b) Phased 4-way set-associative cache

Figure 3.1:.Phased set assgciative cache

® Cycle 1: Both of a tag and a block frame from only the predicted-way are read
out, and then the tag comparison is performed. If the tag-comparison result is a
match, the data desired by the processor is provided from the block frame read
out, and the cache access is completed successfully. In this case, the
way-predicting set-associative cache behaves as a direct-mapped cache, as
shown in Figure 3.2(a). If the tag-comparison result is not a match, then the
second phase is performed.

® Cycle 2: The cache searches the other remaining ways in parallel, as shown in
Figure 3.2(b). If one of the tag-comparison results is a match, the data from the
hit way is provided to the processor. Otherwise, a cache replacement takes place.
Namely, the way-predicting set associative cache behaves as a “three-way” set

associative cache in this phase.

16

Tag /Data Predicted Way

[[R
Way0| |Way1 :|Way2|: Way3
Cyclel Cyclel
| L nux-drive |
| Accessed Subarray Cycle2
(a) Prediction-Hit (b) Prediction-Miss

Figure 3.2: Way-predicting set-associative cache

On a prediction-hit, the way=predicting Set associdtive cache consumes power only
for the activating the predicted way:. In addition, the'cache access can be completed in one
cycle. On prediction-miss (or cache miss), however, the cache-access time increases due
to the successive process of two phases as shown in Figure 3.2(b). Since all the remaining
ways are activated in the same manner as conventional set associative caches, the
way-predicting set associative cache cannot reduce power consumption in this scenario.

The performance / power efficiency of the way-predicting set associative cache

largely depends on the accuracy of the way prediction.

3.2 Way prediction

Many application programs have higher locality of memory references. This means
that a block frame referenced by the processor will be referenced to again in the near

future.
17

Here, it is assumed that a set; is accessed by a processor for cache look-up, and a wayj
(0 = j = AS — 1, where AS is cache associativity) causes a cache hit. In this case, the
data required by the processor will reside in the way; on a near future access to the set; if
program have higher locality of memory references. Accordingly, the way-predicting set
associative cache employs a way-prediction policy based on MRU (Most Recently Used)
algorithm. The way predictor determines a predicted way for the set which has being
accessed by the process as follows:
® On prediction-hits, the way predictor does nothing because the current
way-prediction is correct.
® On prediction-misses (but cache hit), the way predictor regards the way having
the data desired by the processoras thie predicted way. The predicted way can be
determined by tag comparison results.
® On cache-misses, the way: predictor regards the way to be filled on cache
replacement as the predicted way. The predicted way can be determined by the
results of tag comparisons (hit:or-miss) and status flags indicating which way to

be replaced.

3.3 Organization

Figure 3.3 gives an organization of the way-predicting four-way set associative cache.
Compared to the conventional four-way set associative, it needs the following additional
components:

® Way-prediction table, which contains a two-bit flag (way-prediction flag) for

each set. The two-bit flag is used to speculatively choose one way from the

corresponding set.

18

Reference-Address
| Tag | index | |

Way-Prediction
Y & Table

Access Controler

27bits

Way-Prediction | Status
Flag

II Il Il f
Tag”—Data— — Tag"—Data— Tag”—Data— Tag”—Data—

Way0_] CWayl—] OCWay2—] -Way3_—_]
L Il Il

L T— T

gp! gp! — Tag» Tag TagA

1sed on Cache-misses{

Way-Predictor

used on Predic‘rion-misses{

y— used on
Prediction-hits

| Mux Drive |

Reference-Line

Figure 3.3: Organization of way-predicting four-way set associative cache

® Way predictor, which determines the value of each way-prediction flag

according to the MRU algorithm explained in Section 3.2.

The way-predicting four-way set associative cache works as follows:

1. The way-prediction flag associated with a given set is accessed, and is read from the
way-prediction table immediately after an effective memory address is generated.
The predicted way is determined by the way-prediction flag read out.

2. Only the predicted way is activated, and the tag and the block frame associated with
the predicted way are read simultaneously. The tag is then compared with the
tag-portion of the memory address. If the tag-comparison result is a match (prediction
hit), the cache access completes successfully. Otherwise (prediction miss), Steps 3

and 4 are performed.

19

3. The remaining three ways are activated, and all the tags and the block frames are read
out in parallel. Then, the three tags are compared with the tag-portion of the memory
address. If at most on tag matches, the way-predicting set associative cache provides
the referenced data to the processor. Otherwise (cache miss), a cache replacement
takes place.

4. The way predictor modifies the way-prediction flag based on the result of
replacement strategies. The modified way-prediction flag is written back to the

way-prediction table.

3.4 Conclusions

The performance / power efficiencysofsthe way-predicting set associative cache
largely depends on the accuracy-of the way prediction. The miss prediction makes the
cache search all of the ways and. consume-atl, power of them. In other words, the
way-predicting set associative cache.cannot reduce power consumption in this scenario.
The miss prediction also causes additional cycles which cause performance degradation.
Besides, the way-prediction table is also a significant area overhead compared to the

conventional set associative cache.

20

Chapter 4

History-Based Tag-Comparison Instruction
Cache

In this chapter, we introduce_«a low-power. instruction cache architecture, called
history-based tag-comparison (HBT.C) cache [7] [8]. The HBTC cache attempts to reuse
tag-comparison results to eliminate the power-consumption of tag comparison, including
the tag-memory accesses further.“The cache.records tag-comparison results in an
extended branch target buffer (BTB), and reuses them for directly selecting only the
hit-way which includes the target instruction. In this scenario, the (Ntag, Npata) IS equal to
(0, 1) in Equation (2.3). However, not all the processors employ BTB technique.
Naturally, the HBTC cache has a limitation in the hardware. In other words, the HBTC

cache can be only used in processors which have employed the BTB technique.

4.1 Concept

The content of cache memory is updated when cache misses take place. Instruction
caches can achieve much higher cache hit rates due to rich locality of memory references.

This means that the content of instruction caches is rarely updated.

21

There are many loops in programs, so that some instruction blocks will be executed in
many times. We call a run-time instruction block “a dynamic basic-block”. The dynamic
basic-block consists of one or more successive basic blocks. The top of the dynamic
basic-block is addressed by a branch-target address, and the end of it is addressed by a
taken-branch or jump address. Therefore, not-taken conditional branches might be
included in the dynamic basic-block.

The dynamic basic-block is executed many times during program execution. On the
first time of the dynamic basic-block execution, the tag comparison for all instructions
has to be performed. However, on the second execution, if no cache miss has occurred
since the first execution, it is guaranteed that the dynamic basic-block resides in the cache.
Hence, we can determine that the indexed'cache entry corresponds to the requested
address without performing the tag comparison.

When a dynamic basic-block is executed, the history-based tag-comparison cache
attempts to avoid unnecessary tag comparisens by detecting the following conditions:

1. The dynamic basic-block has‘been.executed, and

2. No cache miss has occurred since the previous execution of the dynamic

basic-block.
The history-based tag-comparison cache omits the tag comparison when the above

conditions are satisfied regardless of the intra-line and inter-line flows.

4.2 Organization

As shown in Figure 4.1, the HBTC cache requires six additional components:
Way-Pointer table (WP table), Way-Pointer Register (WPreg), Way-Pointer Record
Register (WPRreg), a mode controller, Previous Branch-Address Register (PBAreg), and

Cache-Line Boundary Detector.

22

pragram cods
-

Previcus-Branch Hﬁiﬂlfm T , 'ﬁ?ﬁﬁ"ﬁﬁpﬂﬁ:‘:‘“ Torgets
Address Register mstructions A

(PBAr=qg l from | J_m:rur-:l_-:ms 1{

from —s = . nstructions
| | | boundary detectof 111 H:;g—:‘g:;gm instrugtions I
L - {(WPRrag) -
A WF write address |
from PC WP Table 4-way Set-Asscciative Cacha
P
el 1] oy
Way-Pointer | Targer = e
o ¢ (WP} | dot S _,bﬁ;g‘v'
Ind Sev— \H':Tx
. rd Ser —+] [
valid-flag
' - dth Set — g s
(Branch Target Buffer) Taken| Not-Taken ’ RS
Granch inst. Addr. Targef Adr. [+ . -
Way-Pointer way | mede | 4ddress
Register gelect foontrol
obe P [(wPreg) from PE
Pregicti Y 011103
Resif + |
Ml
Controler
cache-line boundary
Jrom PE detector

Figure 4.1: Block diagram of.a 4-way-SA HBTC cache

A conventional BTB is extended by adding the WP table. Each entry of the table
corresponds to that of the BTB, and consists of two of M way-pointers. A tag-comparison
result (i.e., hit-way number) is stored in the extended BTB as a way pointer (WP).
Therefore, the WP can be implemented as a log n-bit flag where n is the cache
associativity, and specifies the hit-way of the corresponding instructions. The 1-bit valid
flag is used for determining whether the M of WPs are valid or not. The taken WPs are
used for the target instructions, and the not-taken WPs are used for the fall-through
instructions of the corresponding branch in the BTB. In Figure 4.1, for example, cache
line A, B, C, and D are referenced sequentially after a taken branch is executed. In this
case, the tag-comparison results (or the hit-way numbers) for their references are 0, 1, 0,
and 3. This information is stored in the WP table, and is reused when the target

instructions are referenced in the future.

23

At the first reference of instruction of instructions, we have to perform tag checks. In
order to record the generated tag-comparison results in the WP table, the WPRreg is used
as a temporal register. The PBAreg stores the previous-branch-instruction address and
the result of branch prediction (taken or not-taken), and is used as an address register to
store the value of WPRreg to the WP table. At every BTB hit, the WPs read from the BTB
is stored in the WPreg, and are provided to the I-cache for tag-comparison re-use. The
mode controller manages the HBTC behavior. The details of the HBTC operation are
explained in Section 4.3.

In order to reuse the tag-comparison results at cache-line granularity, we need to
detect cache-line boundary for instruction references. This can be done by monitoring a
few bits of the PC [12]. (It uses BTBhit'to-hint that the successive instructions are

sequential flow.)

4.3 Operation

The HBTC cache has the following three operation modes, one of which is activated
by the mode controller:

® Normal mode (Nmode): The cache behaves as a conventional I-cache, so that the
tag check is performed at every cache access (the (Ntag, Npata) is equal to (n, n) in
Equation (2.3)).

® Omitting mode (Omode): The cache reuses tag comparison results, so that only
the hit way is activated with performing tag checks (the (Ntag, Npata) IS equal to
(0, 1) in Equation (2.3)).

® Tracing mode (Tmode): The cache works as the same as the Nmode the (Nrag,

Npata) is equal to (n, n) in Equation (2.3)), and also attempts to record the

24

| WF invalidation is perfermead enly when Selected

a cache miss or a BTE replalcemant ceours. — = .
P - B Valid-Flag is 1"

/’Gmnde /r

BTE Hit

I-Cache miss or

BTE replacement or ge..,
RASaccessor o
Branch mizprediction or Ty
Way-pointer access overflow

Selected
ay Valid-Flag is "0

——

WP-table entry addressed by the PBAreg

Figure 4.2: Operation-mode transition of HBTC cache

tag-comparison results generated by the I-cache (this operation is not performed

in the Nmode).

Figure 4.2 shows the operatign transitions: On every BTB hit, the HBTC cache reads
in parallel both the taken and not-taken-\WWPs associdted with the BTB-hit entry, and
selects one of them based on the branchprediction result. If the selected valid flag is “1°,
the operation enters the Omode and the selected WPs are stored to the WPreg. Otherwise
the Tmode is activated, and both the branch instruction address (PC) and the branch
prediction result (taken or not-taken) are stored to the PBAreg.

In the Omode, whenever a cache-line boundary is detected, the next WP in the WPreg
is selected. On the other hand, in the Tmode, the tag-comparison results generated by the
I-cache are stored to the WPRreg at cache-line granularity. When the next BTB hit occurs
in the Tmode, the value of the WPRreg is written into the WP-table entry pointed by the
PBAreg and the corresponding valid-flag is set to “1°.

The WPreg and the WPRreg can hold WPs up to M, where M is the total number of

WPs implemented in a WP-table taken (or not-taken) entry. In the Omode or the Tmode,

25

if the cache attempts to access the M + 1-th WP in the WPreg or WPRreg, WP-access
overflow occurs and the operation switches to the Nmode.

Whenever a cache miss takes place, all WPs recorded in the WP table are invalided by
resetting all the valid-flags to ‘0" and operation transits to the Nmode. This is because
instructions corresponding to valid WPs may be evicted from the cache.

In the Tmode, when a BTB hit occurs just after L (L < M) of tag-comparison results
are written in the WPRreg. Some of invalid WPs are stored to the WP table. We assume
that no BTB replacement has occurred since the previous Tmode. Under this assumption,
it is guaranteed that the BTB-entry makes the next BTB hit just after L of valid WPs are
accessed. Since the WPreg is overwritten by the next BTB hit , there is no chance to be
used for the M — L of invalid WPs._Insorder: to guarantee this assumption, the cache
performs WP invalidation and changes the operation:mode to the Nmode whenever not
only a cache moss takes place but also a BTB replacemient occurs.

The cache operates in the Nmode whenever-a branch-target address is provided by a
return address stack (RAS), or a branch mis-prediction is detected (WP invalidation is not

performed).

4.4 Conclusions

The cache records tag-comparison results in an extended branch target buffer (BTB).
However, not all the processors employ BTB technique. Naturally, the HBTC cache has a
limitation on the hardware implementation. In other words, the HBTC cache can be only
used in processors which have employed the BTB technique.

Size of the WP table in proportion to the number M of WPs is a significant area
overhead compared to the conventional SA cache, and it also causes some power

overhead and affects the power efficiency.

26

Chapter 5
Proposed Low-Power Instruction Cache

In this chapter, we propose our low-power instruction cache architecture with four
techniques as follows to reduce the power consumption of cache memory.

1. Memory sub-banking [13].
Two-phase cache.

Pre-tag checking.

> won

Signal “seq” for tag-memory ‘access skipping.

5.1 Memory sub-banking

In conventional SA caches, we find that the entire memory block is enabled just in
order to access one word (one data or one tag for comparison). We can partition a large
memory block into several small blocks. During each memory access, we just enable one
of these small blocks where the critical word is at and just consume the power of the small
block.

Figure 5.1 shows the concept of memory sub-banking. We partition a 16KB memory

bank into four 4KB memory sub-banks. A sub-bank address decoder is needed to enable

27

4KB ™

4KB
16KB :> S
4KB Size | Area (um?2)| Power (mW)
16KB 989604 57.6
4KB 347748 47.4
4KB |~ @ Artisan UMC 0.18um memory compiler

Figure 5.1: The concept of memory sub-banking

only the desired sub-bank. The 4-to-1 multiplexer is also needed to choose the correct
output data. In the example, we can reduce about (57.6—47.4) / 57.6 = 17.7% power
consumption of a 16KB memory bank:However,we also have a (347748 x 4—989604) /
989604 = 40.5% area overhead of a :16KB: memory bank. Therefore, memory
sub-banking is a trade-off between power and area.

Figure 5.2 shows the address space partition-for the memory sub-banking in a cache.
The sum of the SUB field width and Sub-Index field width is equal to the original INDEX
field width. The SUB field width depends on the number of memory sub-banks. For
example, we decide to partition the tag-memory into four sub-banks and the data-memory
into eight sub-banks. The SUB field width is 2-bit and 3-bit individually. The Sub-Index
field is the set selection of the sub-bank.

Figure 5.3 (a) shows a 2-bit sub-bank address decoder is needed to generate control
signals for the four tag-memory sub-banks. A 3-bit sub-bank address decoder is needed to
generate control signals for the eight data-memory sub-banks.

Figure 5.3 (b) shows the memory partition of each way in a cache. Only 1/4

tag-memory and 1/8 data-memory are activated each way during the cache access.

28

4——INDEX————p

TAG SUB Sub-Index OFFSET
37 ' 0

Figure 5.2: The address space partition for the memory sub-banking

Tag0 Data(
»
= T00 D000 D001
INDEX[MSB:MSB-1]—| 2 Tag sub-bank
S enable
Gl D
T01 - D010 DO11
o -
= T10 s D100 D101
INDEX[MSB:MSB-2]—{ & [Data sub-bank -
S = enable
% -
Til D110 DI11
(a) Sub-bank enable signals (b) memory partition of each way

Figure 5.3: Example of memory sub-banking

In order to discuss the power efficiency further due to the memory sub-banking
technique, we use Artisan UMC 0.18um memory compiler to do the power analysis for
the memory sub-bank. Table 5.1 shows the power consumption of the memory sub-bank
in an 8KB cache. “No sub” means that the memory is not partitioned. “SubN” means that
the memory is partitioned into N sub-banks. We can see that the power consumption of
the tag-memory is almost not improved whether we perform memory sub-banking or not.
The power consumption of the data-memory is just reduced by 2.5 mW (47.4—44.9 = 2.5)
about 5% improvement. Table 5.2 shows the power consumption of the memory
sub-bank in a 32KB cache. The power consumption of the data-memory is reduced by

11.6 mW (57.6—46.0 = 11.6) about 20% improvement.

29

Table 5.1: Power consumition of the memori sub-bank in an 8KB cache

Tag Memory Data Memory
Type Size | Power (mW) | Type Size Power (mW)
No sub |256x20 28.5 No sub |1024x32 47.4
Sub2 |128x20 28.2 Sub2 |512x32 46.0
Sub4 64x20 28.0 Sub4 |256x32 45.3
Sub8 |128x32 44.9

Table 5.2: Power consumption of the memory sub-bank in a 32KB cache

Based on these experimental results, we find that the memory sub-banking technique

should be used for a larger cache size, say, more than 32KB.

5.2 Two-phased cache

Tag Memory Data Memory
Type Size Power(mW) | Type Size Power (mW)
No sub [1024x18 278 _[No sub |4096x32 57.6
Sub2 |512x18 ‘-2‘_6.4 I {Sub2 |2048x32 50.2
Sub4 |256x18 =L Sub4 |1024x32 47.4
- . “|subg8 [512x32 46.0

Although at most only one way has the data desired by the processor, all the ways are
accessed in parallel in conventional set associative caches. Thus, a lot of power is wasted.
To solve this issue, Hasegawa et al proposed a low-power set associative cache
architecture [11] called phased set associative cache. The phased set associative cache is
prior to look up tag-memory in all the ways and sequentially accesses the data-memory in

the matching way. Therefore, the phased two-way set associative cache makes the 1 Ppaia

30

and 2 Ppata, power reduction from the conventional two-way set associative cache on
cache hits, and cache misses, respectively. The average power consumption in a phased
two-way set associative cache (Ppasacache) fOr a cache access can be expressed as follows:

P, sncae = 2P, TCHRXP_ (5.1)
Here, CHR is the cache hit rate. However, all the cache accesses are delayed one cycle.
This latency significantly slows down the overall performance.

In order to solve the latency, we propose a new architecture which is similar to phased
set associative cache called two-phased set associative cache. We use posedge-trigger
tag-memory and negedge-trigger data-memory to make one-cycle cache accesses
possible.

Figure 5.4 shows the cache hit in the two-phased two-way set associative cache (8KB
cache size, 16-byte block). The cache accesses the tag-memory and do tag comparison in
all the ways during the high half-cycle and sequentially:accesses the data-memory for the
desired data in the matching way-during the low half-cycle.

Figure 5.5 shows the cache miss in the-two-phased two-way set associative cache
(8KB cache size, 16-byte block). Due to no matching way during the high half-cycle, no
data-memory will be activated in the low half-cycle. The average power consumption in a
two-phased two-way set associative cache (P2pasacache) fOr a cache access is the same
with the Equation (5.1).

However, the timing of the two-phased cache becomes more critical than the phased
cache. Because the tag-memory access and the tag comparison must be done within

half-cycle.

31

Tag comparison Data access

INDEX {INDEX,OFFSET[3:2]}
8%\ 1o\ ! :
> G
256x20 : 1024x32
20
ag(\ Data0
TAG 2=) ; cenoi
20 :
—» —> 3 data
256x20 : 1024x32
20
Tagl Datal
TAG cenlI

Figure 5.4: The cache hit in the two=phased two-way set associative cache

Tag comparison Data access

INDEX {INDEX,OFFSET[3:2]}
1 1oy i
256x20 1024x32 :
20 :
ag0 3 Data0 :
TAG cenot Z

—> —> 3 data

256x20 : 1024x32 '
20
Tagl Datal
TAG cen II—Z

Figure 5.5: The cache miss in the two-phased two-way set associative cache

32

5.3 Pre-tag checking

Due to the locality principle of program, the addresses of instructions loaded to the
cache are not far away between each other. This means that the least significant bits of the
tag field are usually different, but the most significant bits of the tag field are usually the
same. In other words, the tag comparison with the few least significant bits can almost
decide if the cache hits or not. In order to reduce the power consumption of the
tag-memory further, we propose a technique called pre-tag checking used with the
two-phased set associative cache. We take 3 least significant bits (TAG[LSB+2: LSB]) to
do pre-tag checking for way selection.

Figure 5.6 shows the address space partition.in a 2-way set associative cache (8KB,

16-byte block) for the pre-tag checking.

2<Way, 8KB cache ,16-byte block

Al OTAG <17> [PTAG <3>| INDEX <8> [OFFSET <4>
31 1514 1211 43 0

Figure 5.6: The address space partition for the pre-tag checking

Figure 5.7 shows the architecture of the two-phased cache with pre-tag checking.
During the high half-cycle, the cache accesses the ptag-memory and does pre-tag
comparison with the 3-bit PTAG field in the address for the way selection. During the low
half-cycle, the cache accesses the otag-memory and data-memory in parallel in the
matching way selected by the PTAG comparison result. The OTAG comparison result is

to ensure if the cache actually hits or not.

33

Pre-tag check <Other-tag check and Data access

INDEX {INDEX,OFFSET[3:2]}
8y ! 10}
o> o>
: 256x17 1024x32
: 17
g >OTagO Data0
tcenO A
{OTA 2=
N Gﬁ"é
P> > > data
256x17 1024x32
17

OTagl Datal

:‘""""'i';'e'};'i """"""""""" L

OTAG 2=
PTAG 17

Figure 5.7: The architecture of a two-phased cache with pre-tag checking

The cache-access power can be.expressed as fallows:

P.. =N, xP ®NjxP,_+N

Cache PTag

x P, (5.2)

OTag Data ta

There are four cases for the power consumption in the two-phased two-way set

associative cache with pre-tag checking. Among them, there are two better cases and two

worse cases for the power consumption compared to the two-phased two-way set
associative cache without pre-tag checking.

® BCI: Figure 5.8 shows the better case | for the power consumption. The PTAG

comparison result indicates that there is one way matching. The otag-memory

and data-memory in the matching way are activated, and the OTAG comparison

result indicates that the cache actually hits. In this case, the (Nprag, Notag, Npata)

is equal to (2, 1, 1).

34

BC II: Figure 5.9 shows the better case Il for the power consumption. The
PTAG comparison result indicates that there is no way matching (cache miss).
Therefore, no otag-memory and data-memory will be activated. In this case, the
(NpTag, Notag, Npata) is equal to (2, 0, 0).

WC I: Figure 5.10 shows the worse case | for the power consumption. The
PTAG comparison result indicates that there are two ways matching. The
otag-memory and data-memory in the matching ways are activated, and the
OTAG comparison result indicates that the cache actually hits or misses. In this
case, the (Nprag, NoTag, Npata) 1S equal to (2, 2, 2).

WC II: Figure 5.11 shows the worse case Il for the power consumption. The
PTAG comparison result indicates'that there is one way matching. The
otag-memory and data-memory: in the. matching way are activated, but the
OTAG comparison result indicates that the cache actually misses. In this case,

the (Nptag, Notag, Npata) IS €quatto(2,1;1).

On the basis of our previous discussion, according to the locality principle of program,

the ratio of the WC | and WC Il is much smaller than the ratio of the BC | and BC II. In

order to prove this point, we run some benchmarks, including JPEG encoder

(jpeg2000_enc), Dhrystone (dhry), fast Fourier transform (fft), discrete cosine transform

(dct), math operation (math), and dual-tone multi-frequency algorithm (dtmf) to measure

the ratio of WC | and WC I1. According to the results of Table 5.3 and Table 5.4, the total

average ratio of WC I and WC 11 is about 1~2%. That is much smaller than the ratio of the

BC | and BC Il. Therefore, we can say the (Nprag, Notag, Npata) Of the two-phased

two-way set associative cache with pre-tag checking is roughly equal to (2, 1, 1) on cache

hits and (2, 0, 0) on cache misses.

35

INDEX {INDEX,OFFSET[3:2]}

256x17 1024x32
17

>OTagO
tceno

Data0

A

1024x32

Datal

OTAG

D data
2

Figure 5.8: Better case I-of.the two-phased case with pre-tag checking

INDEX

{INDEX,OFFSET 3:2]}

256x17

>0Tag0
tcenO

1024x32

Data0

A

—> —
Pl 256x17 1024x32
17
OTagl Datal
tcenl *
OTAG

D data
32

Figure 5.9: Better case Il of the two-phased case with pre-tag checking

36

INDEX {INDEX,OFFSET[3:2]}

256x17

>OTagO
tceno

17

1024x32

Data0

A

1024x32

Datal

OTAG

D data
2

Figure 5.10: Worse case*l of.the two-phased case with pre-tag checking

INDEX

{INDEX,OFFSET 3:2]}

256x17

>0Tag0
tcenO

1024x32

Data0

A

256x17

OTagl

tcenl

1024x32

Datal

OTAG

D data
32

Figure 5.11: Worse case Il of the two-phased case with pre-tag checking

37

Table 5.3: The ratio of WC | and WC Il (partl
Type WCI WCII WCI WCII WCI WCII
pre-tag 3-bit 0.00% 0.00% 1.05% 0.01% 0.12% 0.01%
Table 5.4: The ratio of WC | and WC 11 (part2

Type WCI WCII WCI WCII WCI WCII
pre-tag 3-bit 0.73% 0.01% 1.45% 0.07% 2.71% 0.04%

Let’s make a conclusion. For a conventional 2-way set associative cache, the (Nprag,
Nortag, Npata) IS roughly equal to (2, 2 2) regardless of hits or misses. The two-phased
two-way set associative cache Wlthout pre-tag checklng can reduce the power
consumption by making (Nprag, NOTag, NDIatla)mbeh(Z 2,.1) on cache hits and (2, 2, 0) on
cache misses. The two-phased two Way se:t.assacratlvé cache with pre-tag checking can
reduce the power consumption further by maklng (NPTag, Notag, Npata) be (2, 1, 1) on

o E

cache hits and (2, 0, 0) on cache misses

5.4 Signal “seq” for tag-memory access skipping

In order to reduce the power consumption of tag-memory further, we propose a new
tag operation technique called tag-memory access skipping that reduces the number of
unnecessary tag look-ups. In this chapter, we explain what is the unnecessary tag look-up,
and how to eliminate it.

Let us assume that the fist access results in a cache hit and the corresponding
instruction (data) is read from the cache. For the second read access, tag is looked up

again, and if it is a hit, the corresponding instruction (data) is read form the data-memory

38

of the cache. This is the normal operation of the cache and continuously repeated for all

the memory accesses. However, let us assume that the block frame corresponding to the

second address is equal to that of the first one. (Generally, the size of a block frame is four

or eight words. Therefore, there are four or eight instructions in a block frame.) Since the

tag entry for the same block frame is the same, the second access also results in a cache hit

if the first one does. So we can see that for such a case we do not need to look up the tag.

Instead, we just resend the hit information to the controller that is generated and used in

the first access. This reduces the power consumption of tag-memory. Take a two-phased

two-way set associative cache with pre-tag checking for example. The (Nptag, NoTag, Npata)
is equal to (0, 0, 1) in such a case.

Comparing the current address with:the previous one before the tag look up to see
whether they are in the same block frame Is not an-easy task in timing point of view.
Therefore, we use a different approach. We are focusing on these sequential accesses in
the cache operation, and eliminate the unnecessary tag look-ups in those sequential
accesses. To see whether the accesses are-sequential or not, we exploit one bit “seq”
signal from the processor (this can be easily obtained from the program counter) that
becomes high when the current address is a sequential one to the previous address. In
addition, to check whether the current sequential address is in the same block frame with
the previous one or not, we examine one bit of the address, A[4]. (Here we assume that
each block frame is composed of four words and A[3:2] are used to indicate the specific
word in the block frame as shown in Figure 5.12.) If A[4] of the current sequential access
is equal to that of the previous one, they are in the same block frame. If it is not the case,
they are in the different block frame. As an example, we show the SEQ access graph in
Figure 5.12 showing the possible changes of A[3:2] (in each node) and A[4] in the

sequential accesses.

39

A[4] A[3:2]

. K
A[4] changes X0:00XX
U@ its value X0 01XX in the same
X0 10XX block frame

X0:11XX

X1/00XX

X1 01XX in the same
X1 10XX block frame
X1 11XX

SEQ access graph SEQ access example

Figure 5.12: Sequential access graph and example

pcl4] pc_r[4]

D
seq

Figure 5.13: Hardware implementation of the block boundary detector

Figure 5.13 shows the hardware implementation of the block boundary detector. It is

a very simple hardware implementation. It just uses an XOR gate, an AND gate, and a

flip-flop.

If the current sequential access is in the same block frame as the previous one, we just

resend the hit information to the controller and skip the tag look-up. In this way, we can

eliminate the unnecessary tag look-ups in the sequential accesses by examining only the

two bits of signals, including seq and A[4] signals.

40

Chapter 6
Experimental Results

In this chapter, we will describe how we setup the experiment. The experimental
results also show that the proposed'cache architecture reduces about 54% power

consumption compared with a conventional two-way set associative cache.

6.1 Experiment setup

Figure 6.1 shows the experiment setup. When cache miss happens, the AHB master
uses the AMBA to access the main memory. The main memory is a behavior model. The
critical word (first data) will be ready after ten cycles when the AHB master accesses the
main memory. The cache controller includes the control unit and the AHB master. The
power measurement includes the cache controller and the cache memory.

Table 6.1 shows the cache types in the experiment. Take care about the sub-banking
technique. We partition the tag-memory into four sub-banks and the data-memory into
eight sub-banks for each way. The goal is to reduce the power consumption of the cache

memory as possible as we can.

41

T Cache controller?
o| i
9 . :’ I$ control | > =z
S [—— unit | > =)
& o = =
= R . 5 E
— '] @

a e £

Power measurement
Figure 6.1: The-experiment setup
Table 6.1: The cache-types-in the experiment
Type Low power skill type
CIC Conventional instruction cache (no power minimization skill used)

LPIC 1 |two-phase

LPIC 2 [two-phase + pre-tag

LPIC 3 [|two-phase + pre-tag + "seq" for tag skipping

LPIC 4 |two-phase + pre-tag + "seq" for tag skipping + sub-banking

we run some benchmarks, including JPEG encoder (jpeg2000_enc), Dhrystone (dhry),
fast Fourier transform (fft), discrete cosine transform (dct), math operation (math), and

dual-tone multi-frequency algorithm (dtmf) to measure the power consumption of caches.

6.2 EDA environment

Table 6.2 shows the technology and the EDA tools we use.
42

Table 6.2: The technology and the EDA tools

Frequency 100 MHz (worst case)

Technology UMC 0.18um process

Simulator Verilog XL

Synthesis Design compiler

Power analysis Power compiler

Memory block Artisan UMC 0.18um memory compiler

6.3 Experimental results

Table 6.3 shows the power consumption of an 8KB cache (16-byte block, 2-way set
associative). The LPIC_3 reduces about 54% power consumption compared to the CIC.
The area overhead of the controller sincreases just 2.7%. On the basis of our previous
discussion, the LPIC_4 with the sub-banking:skill. does not work better than the LPIC_3
on power consumption. This is because the power consumption caused by the address
decoders and multiplexers is larger than the-power consumption saved by using the
sub-banking technique. Besides, the memory area of the LPIC_4 increases about 265% in

comparison with the memory area of the CIC.

Table 6.3: Experimental result |

8KB cache (16-byte block, 2-way set-associative)

T Area (um? Pave (mW) Reduce (%)
Ctr Mem |jpeg_enc |dhry | fft dct |math| dtmf |Pave Rave
CIC 149382 941040 137.6/137.1] 135.5/135.3|112.2| 133.9/131.9 0
LPIC 1 | 152517| 941040 98.4| 98.2] 97.1 97.0 81.2] 95.9] 94.6 28
LPIC 2 | 152728| 972456 86.9] 87.3] 85.7] 86.0] 72.2| 86.3] 84.1 36
LPIC_3 | 153453 972456 61.7) 63.0f 60.3] 61.7] 53.0/ 62.0] 60.3 54
LPIC_4 | 197080]3430872 63.4) 64.7] 61.8] 63.1] 54.5| 63.6] 61.8 53

Area_Ctr : include Control unit, Valid-bit table, LRU-bit table and other logic. (synthesis)

Area_Mem: include Tag-memory and Data-memory. (memory compiler)

43

Table 6.4: Experimental result 11

32KB cache (16-byte block, 2-way set-associative)

Type Area (um?) Pave (mW) Reduce (%)
Ctr Mem |jpeg enc| dhry | fft | dct [math| dtmf | Pave Rave
CIC 525854|2399020 174.4| 175.0{173.4{173.2]/168.6] 172.9/172.9 0
LPIC 1 | 5269892399020 129.1| 130.0{128.5[128.4|125.2| 128.2|128.2 26
LPIC 2 | 535264|2464376 119.7| 120.8/119.4/119.0/116.3] 118.9/119.0 31
LPIC 3 | 536133]2464376 94.3] 96.2] 93.4| 94.4| 92.2] 94.1| 94.1 45
LPIC 4 | 604491|4865456 90.6) 91.9] 89.1] 89.9] 88.3] 90.2| 90.0 48
Area_Ctr : include Control unit, Valid-bit table, LRU-bit table and other logic. (synthesis)

Area_Mem: include Tag-memory and Data-memory. (memory compiler)

Table 6.4 shows the power consumption of a 32KB cache (16-byte block, 2-way

set-associative). The LPIC_4 works:the best on‘power consumption and reduces about

48% power consumption compared to the CIC. Therefore, the sub-banking technique

should be used in larger cache Size. However, the memory area of LPIC_4 increases

about 103% in comparison with the memory area of.the CIC.

Table 6.5 shows the power consumption of an 8KB cache (2-way set associative) in

16-byte blocks and in 32-byte blocks. We can see that the technique - “seq” for tag

skipping works better by using 32-byte block than 16-byte block.

Table 6.5: Experimental result 111

8KB cache (2-way set-associative)
T Area (um?) Pave (mW)
ype .
Ctr | Mem jpeg enc |dhry| fft ‘ dct ‘math| dtmf | Pave
16-byte block
LPIC 3 | 153453 972456 61.7] 63.0 60.3] 61.7] 530/ 620 603
32-byte block
LPIC 3 88635| 931354 54.2| b55.1| 52.2| 53.5| 47.2 54.1] 52.7
Area_Ctr : include Control unit, Valid-bit table, LRU-bit table and other logic. (synthesis)
Area_Mem: include Tag-memory and Data-memory. (memory compiler)

44

Chapter 7
Conclusions

In this thesis, we propose a low-power instruction cache architecture. Our
experimental results show that the proposed low-power instruction cache can reduce
about 54% power consumption ecompared-to- the.conventional two-way set associative
cache. Besides, we have five conclusions as-follows:

® The memory sub-banking technique“should-be used for larger cache size than

32KB. (Depend on your memory madel.)

® The techniques, including two-phased cache and signal “seq” for tag skipping

can eliminate the unnecessary tag- and data-memory accesses effectively.

® The pre-tag checking technique can reduce the power consumption of the

tag-memory further.

® Signal “seq” for tag skipping technique works better by using 32-byte block than

16-byte block.

® The proposed cache architecture has the advantage of simple hardware

implementation.

45

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick, “A case for intelligent ram,” In IEEE Micro, volume 17, pp. 34-44, Mar./Apr.
1997.

D. Burger, J. R. Goodman, and A. Kagi, “Memory bandwidth limitations of future
microprocessors,” In Proc. of the 23" Annual International Symposium on Computer
Architecture, pp. 78-89, May 1996.

W. A. Wulf, and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” In
ACM Computer Architecture News} volume 23, Mar. 1995.

S. Santhanam, “Strongarm sal110 —a 160mhz 32b.0.5w cmos arm processor-,” In Hot Chips
8: A Symposium on High-Performance Chips, Aug. 1996.

N. P. Jouppi, P. Boyle, J. Dian, M.:J.-Doherty; A/ Eustace, R. W. Haddad, R. Mayo, S.
Menon, L. M. Monier, D. Stark, S, Turrini, J. L..Yang, W. R. Hamburgen, J. S. Fitch, and R.
Kao, “A 300-mhz 115-w 32-b bipolar ecl 'microprocessor,” In IEEE Journal of Solid-State
Circuits, volume 28, pp. 1152-1166, Nov. 1993.

K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for high
performance and low energy consumption,” In Proc. of the 1999 International Symposium
on Low Power Design, pp. 273-275, Aug. 1999.

K. Inoue, V. G. Moshnyaga, and K. Murakami, “A low energy set-associative I-cache with
extended BTB,” In Proc. of the Int. Conf. on Computer Design, pp.187-192, Sep. 2002.

K. Inoue, H. Tanaka, V. G. Moshnyaga, and K. Murakami, “A low-power I-cache design
with tag-comparison reuse,” In Proc. of the 2004 International Symposium on
System-on-Chip, pp. 61-67, Nov. 2004.

J. L. Hennessy, and D. A. Patterson, “Computer architecture: a quantitative approach,”

Morgan Kaufmann Pub. Inc, San Francisco, CA, 1996.

R-1

[10] C. L. Su, and A. M. Despain, “Cache design trade-offs for power and performance
optimization: a case study,” In Proc. of the 1995 International Symposium on Low Power
Design, pp. 69-74, Apr. 1995.

[11] A. Hasegawa, |. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki, and P. Biswas, “Sha3:
High code density, low power,” In IEEE Micro, pp. 11-19, Dec. 1995.

[12] R.Panwar, and D. Rennels, “Reducing the frequency of tag compares for low power I-cache
design,” In Proc. of the 1995 International Symposium on Low Power Electronics and
Design, Aug. 1995.

[13] M. B. Kamble, and K. Ghose, “Analytical energy dissipation models for low power caches,”
In Proc. of the International Symposium on Low Power Electronics and Design, pp.
143-148, Aug. 1997.

R-2

	Introduction
	1.1 Motivation
	1.2 Previous works for low-power consumption
	1.3 Overview of the proposed low-power I-cache
	1.4 Thesis organization

	How A Conventional Cache Works
	2.1 Block placement
	2.2 Block identification
	2.3 Block replacement
	2.4 Write strategy
	2.5 An example of the cache architecture
	2.6 Power consumption of the cache

	Way-Predicting Set Associative Cache
	3.1 Concept
	3.2 Way prediction
	3.3 Organization
	3.4 Conclusions

	History-Based Tag-Comparison Instruction Cache
	4.1 Concept
	4.2 Organization
	4.3 Operation
	4.4 Conclusions

	Proposed Low-Power Instruction Cache
	5.1 Memory sub-banking
	5.2 Two-phased cache
	5.3 Pre-tag checking
	5.4 Signal “seq” for tag-memory access skipping

	Experimental Results
	6.1 Experiment setup
	6.2 EDA environment
	6.3 Experimental results

	Conclusions

