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Abstract: Studies over the last few years have identified protein methylation on histones and other proteins that are

involved in the regulation of gene transcription. Several works have developed approaches to identify computationally the

potential methylation sites on lysine and arginine. Studies of protein tertiary structure have demonstrated that the sites of

protein methylation are preferentially in regions that are easily accessible. However, previous studies have not taken into

account the solvent-accessible surface area (ASA) that surrounds the methylation sites. This work presents a method

named MASA that combines the support vector machine with the sequence and structural characteristics of proteins to

identify methylation sites on lysine, arginine, glutamate, and asparagine. Since most experimental methylation sites are

not associated with corresponding protein tertiary structures in the Protein Data Bank, the effective solvent-accessible pre-

diction tools have been adopted to determine the potential ASA values of amino acids in proteins. Evaluation of predic-

tive performance by cross-validation indicates that the ASA values around the methylation sites can improve the accuracy

of prediction. Additionally, an independent test reveals that the prediction accuracies for methylated lysine and arginine

are 80.8 and 85.0%, respectively. Finally, the proposed method is implemented as an effective system for identifying pro-

tein methylation sites. The developed web server is freely available at http://MASA.mbc.nctu.edu.tw/.
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Introduction

Background

Protein post-translational modifications (PTMs), which influence

the structural and functional diversity of proteome and determine

cellular plasticity and dynamics, have critical roles in many bio-

logical processes. Protein methylation, which was discovered

nearly 40 years ago,1 is an important and reversible PTM. How-

ever, protein methylation has not been studied as much is known

about the processes and implications of phosphorylation.2 Pro-

tein methylation occur on nitrogen atoms of either the backbone

or side-chain (N-methylation) of lysine, arginine, asparagine,

histidine, alanine, proline, and other residues.3–7 Methylation can

also occur on the oxygen atoms of glutamate and aspartate (O-

methylation)8 and the sulfur atom of cysteine (S-methylation).9

These modifications are carried out by a protein family called

methyltransferases, which use S-adenosylmethionine as a sub-
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strate to transfer a methyl group.10 Most studies of protein meth-

ylation have focused on methylated arginine and lysine residues.

Three forms of methylated arginine—mono-methylarginine,

symmetric di-methylarginine and asymmetric di-methylargi-

nine—have been produced with catalysis by eight protein argi-

nine methyltransferases (PRMTs). Two PRMTs are applied to

form mono-methylarginine. Type I PRMTs (PRMT1, PRMT3,

PRMT4, and PRMT6) produce asymmetric di-methylarginine,

whereas type II PRMTs (PRMT5 and PRMT7) produce symmet-

ric dimethylarginine.11 The methylation of arginines has been

identified in transcriptional regulation, RNA processing, signal

transduction, DNA repair, cell-type differentiation, genome sta-

bility, and cancer.6,12 Lysine methylation was first identified on

histone protein in the 1960s.13 Lysine residues can be mono-,

di-, or tri-methylated by histone lysine methyltransferases

(HKMTs).14 The methylation of lysine has been mostly studied

in H3 and H4 histone proteins, which are critical in various bio-

logical processes, such as heterochromatin compaction, X-chro-

mosome inactivation and transcriptional silencing or activa-

tion.4,6 Additionally, HKMTs modify several nonhistone proteins

with diverse functions.4–6 For example, Set9 methylates a tran-

scription factor TAF10 to increase its interacting affinity with

RNA polymerase II, which is involved in the transcriptional reg-

ulation of TAF10 target genes.15

Structural Characteristics of Methylated Sites

A side-chain of amino acid (AA) that undergoes PTM prefers to

be accessible on the surface of a protein.16 To study the prefer-

ence of the solvent accessible surface area (ASA) that surrounds

methylation sites in protein tertiary structures, the experimen-

tally identified methylation sites should be mapped to the corre-

sponding positions of protein entries in the Protein Data Bank

(PDB).17 The preference of the secondary structure (SS) around

the methylation sites is also considered. DSSP18 is a database of

SS assignments for all protein entries in the PDB. DSSP also

provides a program for calculating the solvent accessibility and

standardizing the SS of PDB entries. Table S1 (see Supporting

Information) presents in detail the mapping hits of methylated

residues between UniProtKB/Swiss-Prot19 and PDB, which com-

prises seven methylarginines and 55 methyllysines. In the case

of arginine, only seven methylated sites were hit, and of the

three sites observed in helical region, two were in the sheet and

the other was in the coil. As shown in Table S2 (see Supporting

Information), the mean percentage of solvent ASA of methylar-

ginine is 25%. For lysine, which consists of 55 sites covered by

the PDB hits, of the 26 sites are observed in coil regions, 19 are

in helical regions, and the others are in sheet regions. The mean

percentage of solvent ASA of methyllysine is 61%, which is

highly exposed to the solvent. Although the number of experi-

mental methylated sites in the protein regions with a tertiary

structure is too few to elucidate the real preferences of solvent

accessibility and SS for protein methylation sites, this observa-

tion demonstrates that the methylated lysine tends to be on the

exposed and coil regions. Even though protein methylated sites

may not always be in solvent-accessible regions, solvent-accessi-

ble AAs are more likely to be modified than buried AAs.

Related Work

Because of the importance of protein methylation in biological

mechanism, more attention is being paid to high-throughput pro-

teomic studies, which have been identified an increasing number

of experimentally verified methylation sites. However, experi-

mental identification of methylation sites is time-consuming and

lab-intensive. Computational prediction can not only identify the

potential methylation sites, but also facilitate downstream func-

tional analysis. Therefore, two works have computationally iden-

tified the potential methylation sites on lysine and arginine.

Daily et al.20 developed a method for identifying methylated

arginine and methylated lysine, using a support vector machine

(SVM) based on the observation that post-translation modifica-

tions (PTMs) preferentially occur in intrinsically disordered

regions. Sequences are encoded by a set of features, including

AA frequencies, aromatic content, a flexibility scalar, net charge,

hydrophobic moment, beta entropy, disorder information as well

as PSI-BLAST profiles. Chen et al.21 constructed an effective

prediction server for indentifying methylation on arginine and

lysine based on SVM with positive sets of data that were experi-

mentally confirmed methylated sites from UniProtKB/Swiss-

Prot19 (version 48) and manually collected from the literature.

Several investigations proposed links between PTMs and

their associated solvent ASA. Pang et al.16 studied the structural

environment of 8378 incidences in 44 PTMs. It has been

observed that protein methylation prefers to occur in regions

that are intrinsically disorder and easily accessible. In previous

study, solvent accessibility was incorporated into a PTM

resource, dbPTM,22 to promote the detection of phosphorylation,

glycosylation, and tyrosine sulfation sites, whose residues, when

solvent accessibility exceeded a threshold, were identified as sur-

face modification sites. Arthur et al.23 employed homology mod-

eling of the protein tertiary structure and calculated the solvent

accessibility of the predicted structure to identify phosphoryla-

tion sites. Therefore, the solvent accessibility around the protein

methylated sites may be adapted to evaluate the classifying per-

formance when differentiates the methylation site from unmethy-

lation sites.

Motivation and Goals

Since protein methylation preferentially occurs in regions that

are easily accessible, a method, named MASA, incorporates an

SVM is proposed herein to identify protein methylation sites

with sequenced and structural characteristics, such as the solvent

ASA and SS around the methylated sites. Most of the experi-

mentally verified methylation sites were collected from Uni-

ProtKB/Swiss-Prot19 release 53. Additionally, various experi-

mental methylation sites were taken from MeMo,21 whose

authors extracted many manually curated data by searching the

PubMed literature database. However, most of the collected

methylation sites do not have the corresponded protein tertiary

structures of PDB. Because of the missing ASA and SS informa-

tion for non-PDB proteins, two effective tools, RVP-Net24,25 and

PSIPRED,26 are employed to determine the ASA value of AAs

and the SSs of AAs in proteins, respectively.
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This work focuses not only on methylated lysine and argi-

nine, but also studies methylated glutamate and asparagine. To

prevent overestimates of predictive performance, the homolo-

gous sequences of the nonredundant positive training set taken

from UniProtKB/Swiss-Prot19 and MeMo21 were further

removed among orthologous proteins using a given window

size. The cross-validation of models trained with various fea-

tures, such as AAs, SSs and solvent ASAs, indicates that the

ASA value of the AAs around the methylation sites can improve

the accuracy of prediction. The accuracies of predicting the

methyllysine, methylarginine, methylglutamate, and methylaspar-

agine are 74.6, 84.9, 100, and 100%, respectively. Additionally,

the independent test set, which is not contained in the training

set, is used to determine whether the constructed model is over

fitting to the training set. The independent test shows that the

proposed method does not over-fit, and the predictive accuracies

of methylated lysine and arginine are 80.8 and 85.0%, respec-

tively. Finally, the window size and training features that pro-

vide the best performance are adopted to implement an effective

web-based methylation prediction system for biologists. Users

can submit their uncharacterized protein sequences and select

the specific residue that is to be predicted. The web server

presents graphically the overall predicted methylation sites and

the solvent ASA. The predicted results in tab-delimited format

can be downloaded for further analysis.

Materials and Methods

Data Preprocessing

As presented in Figure 1, the proposed approach, MASA, com-

prises four main analytical processes—data preprocessing, fea-

ture extraction and coding, model training and evaluation, and

independent testing. The experimentally verified methylation

sites were taken from UniProtKB/Swiss-Prot19 and MeMo,21

which is a web tool for predicting protein methylation modifica-

tions on arginine (R) and lysine (K). The authors of MeMo

extracted many manually curated data by surveying the literature

using the keywords ‘‘methylated lysine’’ and ‘‘methylated argi-

nine’’ for information on lysine and arginine methylation,

respectively. As shown in Table 1, release 53 of UniProtKB/

Swiss-Prot contains 750 experimental methylation sites, which

are not annotated as ‘‘by similarity,’’ ‘‘potential,’’ or ‘‘probable,’’

in 352 proteins that are experimentally confirmed to be methyl-

ated protein. Because of the absence of sufficient experimental

verified data (at least 20 sites) in other residues, the experimen-

tal methylated sites are categorized into four types of AAs,

including 389 methylated lysines (K), 180 methylated arginines

(R), 45 methylated glutamates (E), and 22 methylated aspara-

gines (N). A total of 399 experimental methylation sites are

taken from MeMo, including 264 methylated arginine and 107

Figure 1. Analyzing flowchart of MASA.
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methylated lysine. The data set of UniProtKB/Swiss-Prot and

MeMo are combined and removed the redundant data. The num-

bers of nonredundant methylated lysine, arginine, glutamate, and

asparagine are 460, 303, 45, and 22, respectively.

The combined experimentally verified methylation sites (non-

redundant) are defined as the positive data set. However, lysine,

arginine, glutamate, and asparagine, which are not annotated as

methylated sites in the experimentally validated methylated pro-

teins, are defined as the negative data set. However, the non-

redundant positive data set may contain several homologous

sites in orthologous proteins. To avoid the overestimation of pre-

dictive performance, the nonredundant positive data set were

further removed homologous sequences using a window size of

2n þ 1, where n varies from 4 to 10. With reference to the

homology reduction of training set in MeMo,21 as presented in

Figure S1 (see Supporting Information), two methylated protein

sequences with more than 30% identity were specified to re-

align the fragment sequences with a window length of 2n þ 1

centered on the modified sites using BL2SEQ. For two fragment

sequences with 100% identity, and the methylated sites in the

two proteins have the same positions, only one site was kept

and the other was discarded. The process for reducing homology

was applied to the negative data set.

After the homology had been reduced, nine tenths of the non-

homologous positive datasets, chosen at random, was defined as

the positive training set. To prevent skewing the classification of

the positive or negative set, the balanced negative training set

was extracted from the nonhomologous negative datasets. How-

ever, the negative training set, if randomly selected at once, may

be not be sufficiently randomly sampled. Therefore, 30 negative

training sets are obtained by randomly extracting them from the

nonhomologous negative datasets. The average predictive per-

formance obtained using the 30 sets of training data is calculated

following cross-validation. A randomly selected tenth of the

nonhomologous positive datasets is defined as the positive inde-

pendent test set. The negative independent test set is also ran-

domly sampled from the nonhomologous negative datasets,

which is balanced with the positive independent test set. Some-

times, the trained model can classify the training data effec-

tively, but cannot classify the independent test set effectively,

possibly indicating that the trained model is over-fitting to the

training data. Therefore, the constructed independent test set not

only can be used to evaluate the predictive performance of the

trained model, but also can be used to determine whether the

trained model is over fitting to the training data. To prevent

skewing the sampling of the independent test set, the independ-

ent test is performed in 10 times.

Feature Extraction and Coding

This work not only takes the flanking AAs as the training fea-

ture, but also takes the solvent ASA and SS that surround the

methylated sites into account. The fragment of AAs are

extracted from positive and negative training sets using a win-

dow of length 2n þ 1 centered on a methylated site. An ortho-

gonal binary coding scheme is adopted to transform AAs into

numeric vectors, in the so-called 20-dimensional vector coding.

For example, glycine is encoded as ‘‘10000000000000000000;’’

alanine is encoded as ‘‘01000000000000000000,’’ and so on.

The number of feature vectors that represent the flanking AAs

that surround the methylated site is (2n þ 1) 3 20. Different

values of n from 4 to 10 are used to determine the optimized

window length. The positional weighted matrix (PWM) of AAs

around the methylated sites is determined for four methylated

residues using nonhomologous training data. The PWM specifies

the relative frequency of AAs in the methylated sites, and is

used to encode the fragment sequences.

Since most of the experimental methylated proteins do not

have corresponding protein tertiary structures in PDB, an effec-

tive tool, RVP-Net,24,25 was used to compute the ASA value

based on protein sequence. The computed ASA value is the per-

centage of the solvent-accessible area of each AA on the protein

sequence. RVP-net applied a neural network to predict real

value of ASAs of residues based on neighborhood information,

with a mean absolute error of 18.0–19.5%, defined as the abso-

lute difference between the predicted and experimental values of

relative ASA per residue.25 The full-length protein sequences

with experimental methylated sites are inputted to RVP-Net to

Table 1. Data Statistics of Methylation Sites Obtained from UniProtKB/Swiss-Prot and MeMo.

Data sources

Number of

methylated

proteins

Number of methylated sites

Lysine

(K)

Arginine

(R)

Glutamate

(E)

Asparagine

(N)

Other

residues Total

UniProtKB/Swiss-Prot (Release 53)a 352 389 180 45 22 114 750

MeMob 144 107 264 – – 28 399

Combined experimental data (nonredundant) 446 460 303 45 22 136 966

Negative data 446 6,237 1,216 885 375 – 91,182

aThe entries which are not annotated as ‘‘by similarity,’’ ‘‘potential,’’ or ‘‘probable’’ in the ‘‘MOD_RES’’ fields of

UniProtKB/Swiss-Prot are the experimentally verified methylation sites.
bThe manually curated data which is extracted by the authors of MeMo searching the PubMed literature database

with the keywords of ‘‘methylation lysine’’ and ‘‘methylation arginine’’ for information on lysine and arginine meth-

ylation, respectively.
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compute the ASA value for all residues. The ASA values of

AAs that surround the methylated site were extracted and scaled

to zero to one.

In the investigation of SS surrounding the methylated sites,

PSIPRED26 was employed to compute the SS from the protein

sequence. PSIPRED is a simple and reliable method for predict-

ing SS, which incorporates two feed-forward neural networks to

analyze the output obtained from PSI-BLAST (Position Specific

Iterated-BLAST).27 PSIPRED 2.0 achieved a mean Q3 score of

80.6% across all 40 submitted target domains without obvious

sequence similarity to structures that are present in PDB; accord-

ingly, PSIPRED has been ranked top out of 20 evaluated meth-

ods.28 The output of PSIPRED is given in terms of ‘‘H,’’ ‘‘E,’’

and ‘‘C’’ which stand for helix, sheet and coil, respectively. The

full-length protein sequences with methylated sites are inputted

to PSIPRED to determine the SS of all residues, respectively.

The orthogonal binary coding scheme is used to transform the

three terms that specify the SS into numeric vectors. For

instance, helix is encoded as ‘‘100,’’ sheet is encoded as ‘‘010,’’

and coil is encoded as ‘‘001.’’

Model Training and Evaluation

Three main features, AA, SS and ASA, are used to discriminate

between methylated and nonmethylated sites. The SVM is

adopted to generate computational models that incorporate the

encoded AAs and structural features, SS and ASA. Based on the

binary classification, the concept of SVM is to map the input

samples into a higher dimensional space using a kernel function,

and then to find a hyper-plane that discriminates between the

two classes with maximal margin and minimal error. A public

SVM library, LibSVM,29 is employed to train the predictive

model with positive and negative training sets which are

encoded according to different training features. The radial basis

function KðSi; SjÞ ¼ expð�c
�
�Si � Sj

�
�2Þ is adopted as the kernel

function of SVM.

KinasePhos30 incorporates profile-hidden Markov models

(HMMs) to identify kinase-specific phosphorylation sites. It indi-

cates that the HMM can accurately predict phosphorylation sites.

Accordingly, HMMER31 is applied to train the HMMs from the

fragments of AAs that surround the methylated sites. An HMM

describes a probability distribution over a potentially infinite

number of sequences, which can be used to detect distant rela-

tionships between AA sequences. The emission and transition

probabilities of HMM are generated from the positive training

set to capture the characteristics of the methylated sites.

Cross-validation examination is important for practicing the

application of the predictor.32 To evaluate the predictive per-

formance of the trained models, k-fold cross-validation is per-

formed on methylated lysine and arginine. The dataset were di-

vided into k groups by splitting each of their subsets into k

approximately equal-sized subgroup. In previous study, Jack-

knife is the most objective validation method.32,33 Therefore,

Jackknife cross-validation is adapted to methylated glutamate

and asparagine for which fewer than 30 data are available. Dur-

ing the jackknife process, both training and testing dataset were

actually open, and a protein will in turn move from one dataset

to the other.33 The following measures of predictive performance

of the trained models are defined. Precision (Prec) ¼ TP/

(TPþFP), Sensitivity (Sn) ¼ TP/(TPþFN), Specificity (Sp) ¼
TN/(TNþFP), Accuracy (Acc) ¼ (TP þ TN)/

(TPþFPþTNþFN), and Matthews Correlation Coefficient

(MCC) ¼ ðTP3TNÞ�ðFN3FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ3ðTNþFPÞ3ðTPþFPÞ3ðTNþFNÞ

p , where TP, TN, FP,

and FN represent true positive, true negative, false positive, and

false negative, respectively. Since 30 negative training sets are

used, the average precision, sensitivity, specificity, accuracy, and

MCC are computed for each model that is trained with a partic-

ular window length and features. Additionally, the parameters of

the predictive models, window length, cost and gamma value of

the SVM models, as well as the bit score of the HMM models,

are optimized to maximize predictive accuracy. Finally, the win-

dow size and features that yield the highest accuracy are utilized

to construct prediction models for independent test evaluation.

Evaluating Predictive Models using Independent Test Sets

The prediction performance of the trained models may be over-

estimated because of the over-fitting of a training set. To esti-

mate the real prediction performance, about one-tenth of the

nonhomologous data set are randomly selected as the independ-

ent test set, which is used to evaluate the predictive performance

of the trained models with the best accuracy, based on the cross-

validation. Since the number of training sets in methylated gluta-

mate and asparagine is not sufficient, the independent test set is

constructed only for lysine and arginine, which are 25 and 30

sites, respectively. However, the performance of the independent

test may be favorable just by chance. To avoid the skew sam-

pling of the independent test set, the independent test is exe-

cuted in 10 times. Therefore, the construction of positive and

negative training sets, feature extraction, model training and

evaluation and the independent test are performed over 10

rounds. The mean performance of the independent test is com-

puted. The independent test sets of lysine and arginine are

employed not only to test the proposed method but also to test

other previously proposed protein methylation prediction tools.

Results and Discussion

Sequenced and Structural Features

This work is limited to the analysis of methylated lysine, argi-

nine, glutamate, and asparagine, because of the absence of suffi-

cient experimental verified data for other residues. As shown in

Table 2, the flanking AAs of the nonredundant combined meth-

ylation sites that are categorized with reference to the modified

residues are graphically displayed as a sequence logo, facilitat-

ing an investigation of the conservation of AAs around the

methylated sites. WebLogo34,35 is used to create the graphical

sequence logo for the relative frequency of the corresponding

AA at each position around the methylated sites, using a win-

dow 26 to þ6 (where position 0 is the methylated site). The

sequence logos of the experimental methylated sites which are

removed form the homologous sites are also created. In the

sequence logo representation, there are no significantly con-

served AAs that surround the modified sites are identified. In the

1536 Shien et al. • Vol. 30, No. 9 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



T
a
b
le

2
.
T
h
e
S
eq
u
en
ce

L
o
g
o
o
f
A
m
in
o
A
ci
d
s,
A
v
er
ag
e
A
cc
es
si
b
le

S
u
rf
ac
e
A
re
a,

an
d
S
eq
u
en
ce

L
o
g
o
o
f
S
ec
o
n
d
ar
y
S
tr
u
ct
u
re

S
u
rr
o
u
n
d
in
g
th
e
E
x
p
er
im

en
ta
l

M
et
h
y
la
ti
o
n
S
it
es

[C
o
lo
r
fi
g
u
re

ca
n
b
e
v
ie
w
ed

in
th
e
o
n
li
n
e
is
su
e,

w
h
ic
h
is
av
ai
la
b
le

at
w
w
w
.i
n
te
rs
ci
en
ce
.w
il
ey
.c
o
m
.]

M
et
h
y
la
te
d
re
si
d
u
e

L
y
si
n
e
(K

)
A
rg
in
in
e
(R
)

G
lu
ta
m
at
e
(E
)

A
sp
ar
ag
in
e
(N

)

N
u
m
b
er

o
f
ex
p
er
im

en
ta
l
si
te
s

4
6
0

3
0
3

4
5

2
2

S
eq
u
en
ce

lo
g
o
o
f
n
o
n
re
d
u
n
d
an
t

co
m
b
in
ed

ex
p
er
im

en
ta
l

si
te
s
(2

6
to

þ6
)

N
u
m
b
er

o
f
n
o
n
h
o
m
o
lo
g
o
u
s

ex
p
er
im

en
ta
l
si
te
s
(2

6
to

þ6
)

2
0
6

2
7
6

2
7

1
4

S
eq
u
en
ce

lo
g
o
o
f
n
o
n
h
o
m
o
lo
g
o
u
s

ex
p
er
im

en
ta
l
si
te
s

A
v
er
ag
e
ac
ce
ss
ib
le

su
rf
ac
e
ar
ea

S
eq
u
en
ce

lo
g
o
o
f
se
co
n
d
ar
y

st
ru
ct
u
re

In
se
co
n
d
ar
y
st
ru
ct
u
re
,
‘‘
H
,’’

‘‘
E
,’’

an
d
‘‘
C
’’
st
an
d
fo
r
h
el
ix
,
sh
ee
t,
an
d
co
il
,
re
sp
ec
ti
v
el
y
.



case of methylated arginine, glycine is enriched around the

modified sites, especially at positions þ1 and þ2. In other cases,

AAs that surround the methylated glutamate and asparagine are

obviously conserved. However, the conservation of AAs in

flanking regions may be temporary because of the low abun-

dance of experimentally verified methylglutamate and methylas-

paragine. Table 2 presents the sequence logo of the SS and the

average percentage of ASA in the 13-mer window (26 to þ6).

Since the number of experimental methylated sites in the PDB17

proteins is not enough for training, RVP-Net24,25 and

PSIPRED26 are adopted to compute the ASA value and SS from

the protein sequence, respectively. Observations of SS around

the methylated sites show that the methylated lysine, arginine,

and asparagine are probably present on the coil (loop), but the

methylated glutamate prefers the helix structure. In the study of

solvent accessibility, most of the methylated sites are located in

the highly ASA except for the sites of methylated asparagines.

The average solvent ASA that surrounds the methylated lysine is

very similar to those observed in the protein tertiary structure.

Predictive Performance

To study what window lengths and features can be adopted to

construct the model that offers the best predictive performance

in methylated lysine, arginine, glutamate, and asparagine, mod-

els trained with various window lengths and various features are

evaluated using cross-validation. Three features—AA, ASA, and

SS—are considered. The feature of AAs around the methylated

sites is encoded using a 20-dimensional vector and a PWM,

named ‘‘AA(20D)’’ and ‘‘AA(PWM),’’ respectively. The features

of ASA and SS are encoded using the ASA values and three-

dimensional vector, respectively. Figure 2 presents the predictive

accuracy of the models that have been using various training

features, based on various window sizes 2n þ 1, where n varies

from 4 to 10. In particular, the feature of AAs around the meth-

ylated sites is also trained by a profile-HMM. Of the models

trained with individual features, that trained with ASA values

slightly outperforms that trained with AA or SS in methyllysine,

whose AAs around the methylated site are not conserved. In

methylarginine, the model trained with AA performs much bet-

ter than the model trained with ASA, and the model trained with

SS performs least well. In methylglutamate and methylaspara-

gine, the model trained with AA outperforms the model trained

with ASA or SS, because their flanking AAs are conserved. As

can be clearly seen, the model trained with SS typically per-

forms worst. For methyllysine, the predictive accuracy increases

with window size from 4 to 10. In methylarginine, the model

Figure 2. The predictive accuracies of the models trained with different training features based on

various window sizes. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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trained with a window size of six or seven performs best accura-

cies. The best performances for methylglutamate and methylas-

paragine are obtained when models trained with a window size

of six.

The predictive performance of the model trained with the

combination of AA, ASA and SS features is also evaluated. As

described previously, the feature of ASA yields an accuracy of

over 70% for methylated lysine, arginine, glutamate and aspara-

gine. Therefore, the models trained with a combination of AA

and ASA outperform the model trained with AA or ASA alone.

However, the predictive accuracy of the model trained with the

combination of AA(20D) and ASA is not better than that trained

with ASA alone. Since the number of dimensions in AA(20D)

encoding method has 20 times than in ASA, the weight of the

AA feature exceeds that of ASA features in predicting methyla-

tion. Therefore, predictive performance is dominated by the AA

feature. The average cross-validation performance of the models

that are trained using various window sizes and features that

yield the highest accuracy is presented in detail (Table S3 in

Supporting Information). The training features that provide the

highest accuracy are the combination of AA(PWM) and ASA.

In considering the overall performance of the models trained

with various window sizes, 26 to þ6 are adopted as the feasible

window size for the four methylated residues. Table 3 gives the

average precision, sensitivity, specificity, accuracy and Matthews

Correlation Coefficient of the models trained using the selected

features and window sizes. The best predictive accuracies for

methyllysine, methylarginine, methylglutamate, and methylaspar-

agine are 74.6, 84.8, 100, and 100%, respectively.

Predictive Performance of Independent Test

Following evaluation by cross-validation, the independent test

sets of methyllysine and methylarginine are used to evaluate the

selected models with the highest predictive accuracy. To prevent

skewed sampling of the independent test set, the independent

test is performed in 10 times. Each time of the independent test

involves balanced positive and negative sets, which comprise 25

methylated lysines and 30 methylated arginines, with a window

length of 27 to þ7. The mean predictive accuracies of the pro-

posed method are 80.8 and 85.0% for lysine and arginine,

respectively. The mean performance of the independent test is

slightly better than that of cross-validation. If the performance

of the independent test is much worse than that of cross-valida-

tion, then the trained model may be over-fitting for the training

data. This independent test demonstrates that the trained model

may not over-fit for methylarginine and methyllysine. The

independent test sets are also applied to test other methylation

predictors.

Table 4 compares the proposed method (MASA) with that of

Daily et al.20 and MeMo.21 It presents the methods, materials,

training features, selected window lengths, cross-validation per-

formance and functions of the web server. The proposed predic-

tive specificities of Daily’s predictor and MeMo exceed their

sensitivities, whereas the specificity and sensitivity are close in

MASA. In predicting methylated lysine, the proposed method

slightly outperforms that of Daily et al. and MeMo. Since the

training data are not identical among the methods, comparison

of cross-validation performance may be unreasonable. However,

the predictive performance for methylated lysine is improved

using the ASA information in the proposed method, in which

users can choose different thresholds for methylation prediction

based on predictive sensitivity. The predicted results in tab-

delimited format can be downloaded. As given in Table 5, the

independent test sets are also used to test other methylation pre-

dictors. Since the web site developed by Daily et al.20 is

unavailable, the independent test sets are applied only in MeMo.

The independent test demonstrates that MeMo has high predic-

tive specificity in identifying methylated lysine. However, the

trained models of MeMo are not sufficiently sensitive to the pos-

itive datasets used in independent test sets, especially for lysine.

Evaluation of Methylated Sites with Available 3D Structure

To confirm the quality of the predicted ASA data is accessible

for training model. The system is trained only on predicted data

and tested on methylated proteins with available 3D structure.

Because only four methylated arginines have enough window

length of surrounding ASA and SS, this test focuses on methyl-

ated lysine (the detailed information is shown in Table S4 of

Supporting Information). Forty-one methylated lysines with

available 3D structure are used as the independent test set, and

the remainder with predicted ASA and SS is adapted to train the

SVM model. As shown in Table S5 (see Supporting Informa-

tion), the balanced positive and negative training sets are applied

to construct the SVM model, and 41 positive test data with ex-

Table 3. The Average Cross-Validation Performance of the Models Trained with Selected Features and

Window Sizes which Achieve the Highest Accuracy.

Methylated

Residue

Number of

positive

training set

Number of

negative

training set

Training

features

Window

size Pr Sn Sp Acc MCC

Lysine (K) 181 181 AA(PWM) þ ASA 26 to þ6 74.1 75.1 74.0 74.6 0.561

Arginine (R) 246 246 AA(PWM) þ ASA 26 to þ6 86.6 82.1 87.4 84.8 0.796

Glutamate (E) 27 27 AA(PWM) þ ASA 26 to þ6 100.0 100.0 100.0 100.0 1.000

Asparagine (N) 14 14 AA(PWM) þ ASA 26 to þ6 100.0 100.0 100.0 100.0 1.000

AA, amino acid; ASA, accessible surface area; PWM, positional weighted matrix; Pr, precision; Sn, sensitivity; Sp,

specificity; Acc, accuracy; MCC, Matthews Correlation Coefficient.
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perimental ASA value and SS are used to evaluate the predictive

performance of the constructed model, according to the various

training features. This independent test shows that the SVM

model trained with AA sequence and predicted ASA can cor-

rectly identify 33 positive test data (80.5% sensitivity), which is

slightly better than the performance of cross-validation. This test

shows that the SVM model trained with predicted ASA or SS

could perform effective prediction.

Unbalanced Positive Training Set and

Negative Training Set

In this work, positive and negative training sets are balanced

during cross-validation. Since the negative dataset is much larger

than the positive data, the sampling of negative set may not

always be sufficiently random. Accordingly, 30 sets of negative

training data are randomly extracted and used to evaluate the

prediction performance. In the prediction of protein methylation,

the profile-HMM can be constructed using only the positive set,

but the SVM model must be constructed from the positive and

negative sets, based on binary classification.29 Based on the con-

struction of the binary SVM classifier with balanced positive

and negative sets, the extraction of the negative set may be

skewed when the original negative data set is much larger than

the extracted negative set. Extracting 30 negative sets to con-

struct 30 predictive models is impossible when the web server is

implemented. To prevent the skew sampling of a negative set, a

larger negative set should be constructed. Unfortunately, a larger

negative set will cause the trained model preferentially to clas-

sify negative data correctly, driven by the requirement to maxi-

mize accuracy. As displayed in Figure 3, the predictive specific-

ity of the methyllysine model, which is trained using different

ratios of positive and negative sets, increases with the relative

size of the negative set. When both the sensitivity and the size

of the negative set are taken into account, the optimal ratio of

the data sizes of positive to negative sets is 1:5 (the detailed

information is shown in Table S6 of Supporting Information).

Consequently, this suitable ratio of positive to negative sets is

used to construct the prediction model used in the protein

methylation web server.

Alternative Methylated and Acetylated Lysine

Histone acetylation and methylation are the two major modifi-

cations that regulate specific transcription in response to various

cellular signals. Their combinatorial effects in transcriptional

control are particularly important.36 Although the mechanism of

action of these modifications in transcription is not well under-

stood, recent discoveries of histone acetyltransferase and meth-

yltransferase activity in transcriptional regulators have impor-

tant implications for histone modification as key to the precise

regulation of transcription processes.36 However, specific lysine

residues in H3 histone protein tails appear to be targeted for ei-

ther methylation or acetylation.37 As shown in Table S7 (see

Table 4. Comparison of Our Method with Previous Works.

Tools Methylation Predictor20 MeMo21 MASA

Material UniProtKB/Swiss-Prot version 45 UniProtKB/Swiss-Prot version

48 þ PubMed literatures

UniProtKB/Swiss-Prot version 53 þ
MeMo (PubMed literatures)

Method SVM SVM SVM

Training features Amino acid þ intrinsic disorder Amino acid Amino acid þ accessible

surface area

Selected window length (2n þ 1) Not specific 15 13

Methylated LYSINE (K) Sn ¼ 65.9%, Sp ¼ 60.4% Sn ¼ 69.2%, Sp ¼ 66.7% Sn ¼ 75.1%, Sp ¼ 74.0%

Methylated arginine (R) Sn ¼ 73.6%, Sp ¼ 82.2% Sn ¼ 69.6%, Sp ¼ 89.2% Sn ¼ 82.1%, Sp ¼ 87.4%

Methylated glutamate (E) – – Sn ¼ 100%, Sp ¼ 100%

Methylated asparagine (N) – – Sn ¼ 100%, Sp ¼ 100%

Web server Yes (not available) Yes Yes

Various prediction threshold – – Selecting different threshold based

on predictive sensitivity

SVM, support vector machine; Sn, sensitivity; Sp, specificity.

Table 5. The Average Performances of Our Method and MeMo Evaluated by Independent Test.

Tools

Methylated

residue

Number of

positive test set

Number of

negative test set Pr Sn Sp Acc

MASA Lysine (K) 25 25 82.7 78.8 82.8 80.8

Arginine (R) 30 30 86.5 82.9 87.2 85.0

MeMo21 Lysine (K) 25 25 93.0 74.2 94.2 84.2

Arginine (R) 30 30 78.8 77.6 79.1 78.3

Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
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Supporting Information), 92 lysine residues, which are alterna-

tive methylation and acetylation sites, were extracted from Uni-

ProtKB/Swiss-Prot release 53. For example, Lys5, Lys10,

Lys19, Lys24, Lys28, Lys37, Lys57, and Lys80 of human H3

histone protein (UniProtKB/Swiss-Prot ID: H31_HUMAN) are

alternative methylated or acetylated sites. Hence, the classifying

ability of the trained methyllysine model in distinguishing

methyllysine from acetyllysine was tested. The homologous

sites are removed, based on a window size of 26 to þ6, from

a total of 792 experimentally verified acetylated lysines,

extracted from UniProtKB/Swiss-Prot release 53. The 459 non-

homologous acetylated sites are inputted to the methyllysine

model that was trained with AA and ASA, and 143 acetylated

sites (�31%) were predicted as methylation sites. This result

indicates that the constructed methyllysine model cannot effec-

tively differentiate acetyllysine from methyllysine, probably

because of the alternative methylated and acetylated sites. To

test the distinguishing between methylated and acetylated

lysines, the experimental methylated lysine and acetylated ly-

sine are defined as positive and negative sets, respectively, and

are adopted to train a SVM model with AA and ASA features

based on a binary classifier. According to evaluation using five-

fold cross-validation, the corrected classification between meth-

yllysine and acetyllysine is 78.2% accuracy, revealing that the

methylated and acetylated lysines could be distinguished by the

model trained with AA and ASA features. The incorrect classi-

fications were mostly made by the alternative methylated and

acetylated lysines.

Figure 4. Web interface of MASA.

Figure 3. The cross-validation sensitivity, specificity, and accuracy

of the methyllysine model trained with different ratio of positive

and negative sets.
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Web Interface

With the time-consuming and lab-intensive experimental identifi-

cation of protein methylation sites, a biologist may understand

only that a protein can be methylated: the precise identification

of the methylated sites on the substrate remains unknown.

Therefore, an effective prediction server can help to focus effi-

ciently on potential sites. After evaluation by cross-validation

and the independent test, the combination of ASA, AA and win-

dow size 26 to þ6 is employed to construct the models for pre-

dicting methylated lysine, arginine, glutamate, and asparagine.

Based on a binary SVM classifier with balanced positive and

negative sets, the negative set may be skew-sampled when the

original negative data set is much larger than the extracted nega-

tive set. To avoid the skew sampling of the negative set, a nega-

tive set whose size is five times that of the positive set is ran-

domly selected as a target to implement the methylation predic-

tion sever based on AA and ASA. As displayed in Figure 4,

users can submit their uncharacterized protein sequences and

select the specific residue whose characteristics are to be pre-

dicted. The system efficiently returns the predictions, including

methylated position, flanking AAs, and ASA values, which are

predicted by RVP-Net. Additionally, users can choose various

thresholds for predicting methylation based on predictive sensi-

tivity. The overall identified methylation sites and ASAs of AAs

can be graphically presented. Users can download the predicted

results in tab-delimited format for further analysis, and the inde-

pendent test sets can also be downloaded from the proposed web

site.

Conclusions

This work presents a method that combines the SVM with AAs

and solvent ASA to identify protein methylation sites. To pre-

vent any overestimation of predictive performance, the homolo-

gous sequences were removed using a given window size from

the collected data sets. Although the ASA value is predicted

using RVP-Net,24,25 the cross-validation results demonstrated

that the integration of the ASA value around the methylation

sites can improve the prediction performance of protein methyla-

tion sites, especially for lysine. The independent test also shows

that the proposed method performs very well in differentiating

methylated sites from unmethylated sites. In this effective pre-

diction system, the selected window size 26 to þ6 provides the

best overall accuracy, and is used to implement the methylation

prediction server based on AA and solvent accessibility.

Although the training data for methylglutamate and methylaspar-

agine are very few, the trained models may help biologists effi-

ciently to discover the novel methylation sites. The overall pre-

dicted methylation sites and ASA values can be graphically pre-

sented. Furthermore, users can download the predicted results

with tab-delimited format for further analysis.

Although the proposed method can perform accurately and

robustly according to independent tests, some issues should still

be addressed in future work. First, the structural preferences of

methylated sites should be investigated in greater detail—espe-

cially in methylated lysine whose flanking residues are not con-

served. In addition to the solvent ASA and SS, the B-factor,

intrinsic disordered region, protein linker region, and other fac-

tors should be examined at experimental methylation sites which

are located in the protein regions with PDB entries. With refer-

ence to another study of phosphorylation,38 the local 3D struc-

ture of methylated sites may be extracted for further analysis.

Second, the independent test sets proposed herein are really

blind to the trained model during cross-validation, but may be

not to other previously proposed predictors. Hence, a benchmark

for constructing test sets that are really independent of each pre-

dictor is important. Finally, the trained methyllysine model, in

this work, cannot distinguish the methylation site from the acet-

ylation site effectively, because the methyllysine and acetylly-

sine alternate in several locations of protein. Methyllysine and

acetyllysine should be investigated in detail—not only with ref-

erence to AAs and ASA.

Availability

The web server of MASA will be continuously maintained and

updated. The web server is now freely available at http://

MASA.mbc.nctu.edu.tw/.
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