
Journal of the Operational Research Society (2009) 60, 921 --933 © 2009 Operational Research Society Ltd. All rights reserved. 0160-5682/09

www.palgrave-journals.com/jors/

Fast and effective algorithms for the liquid crystal
display module (LCM) scheduling problemwith
sequence-dependent setup time
SH Chung∗, WL Pearn and YT Tai
National Chiao Tung University, Hsinchu, Taiwan, ROC

The liquid crystal display module scheduling problem (LCMSP) is a variation of the classical parallel machines
scheduling problem, which has many real-world applications, particular, in the thin film transistor liquid
crystal display (TFT-LCD) manufacturing industry. In this paper, we present a case study on the LCMSP,
which is taken from a final liquid crystal display module (LCM) shop floor in a TFT-LCD industry. For the
case we investigated, the jobs are clustered by their product types and the machine setup time is sequentially
dependent on the product types of the jobs processed on the machine. In LCMSP, the objective is to maximize
the total profit subject to fulfilling contracted quantities without violating the due date and machine capacity
restrictions. The LCMSP can be modelled as a multi-level optimization problem. The sub-problem of LCMSP
can be transformed into the vehicle routing problem with time window (VRPTW). One can therefore solve the
LCMSP efficiently using existing VRPTW algorithms. We present two new algorithms based on the savings
algorithms with some modifications to accommodate the LCMSP. Based on the characteristics of the LCM
process, a set of test problems is generated covering most of the real-world applications for test purposes.
Computational results and performance comparisons show that the proposed algorithms solved the LCMSP
efficiently and near-optimally.
Journal of the Operational Research Society (2009) 60, 921–933. doi:10.1057/palgrave.jors.2602604
Published online 4 June 2008

Keywords: parallel machines scheduling; profit; sequence dependence setup time

Introduction

The liquid crystal display module scheduling problem
(LCMSP) is a variation of the classical parallel-machine
scheduling problem considered by So (1990), Shin and Leon
(2004), and Jeong et al (2001), which has many real-world
applications, particularly, in the thin film transistor liquid
crystal displays (TFT-LCD) manufacturing industry. The
major three stages of processes for the TFT-LCD manufac-
turing include TFT array fabrication, LCD assembly, and
liquid crystal display module (LCM). The LCM is the final
stage of the whole process. It assembles customer-specified
components into the cells, which are received from the LCD
assembly stage. In the LCM stage, the varied contracted quan-
tities, due date, product profits, and long setup time of critical
resources (printed circuit board bonding) result in the deter-
mination of jobs and setups sequence becomes more difficult.
Therefore, developing fast and efficient scheduling algorithms
to maximize the profit without violating customer due date and
enhance the utilization of the critical resources is essential.

∗Correspondence: SH Chung, Department of Industrial Engineering and
Management, National Chiao Tung University, Hsinchu, Taiwan, ROC.
E-mail: shchung@mail.nctu.edu.tw

In this paper, we consider a case study on the LCMSP in
the LCM factory with sequence dependence setup time and
multiple profits. The case we investigated is taken from a
module assembly process of a TFT-LCD factory in Hsinchu
science-based industrial park, Taiwan. For the case we inves-
tigated, the jobs are clustered by their product types, which
must be processed on any parallel machines and be completed
before the due date. Setup times between two consecutive
jobs of different product types on the same machine are
sequentially dependent. The job processing time may vary,
depending on the product type of the jobs processed on.
Furthermore, the hybrid market consists of contract and spot
markets in TFT-LCD factories. The contract jobs, associated
with contracted prices and due dates, have been placed. The
remaining capacity is to be sold into the spot market. The
further spot prices are uncertain and high price volatility
due to today’s fierce competitive environment. Since the
LCMSP involved different product profits, with constraints
on sequence dependence setup time, product-type-dependent
processing time, due date and machine capacity, it is more
difficult to solve than the classical parallel machine scheduling
problem.

So (1990) considered a simple version of the LCMSP
with sequence-independent setup time. He presented three



922 Journal of the Operational Research Society Vol. 60, No. 7

COG process

FPC
attachment

TAB process

PCB bonding
Backlight
Assembly Aging test Inspection

Front end Back end

Figure 1 The six steps in the LCM process.

Figure 2 PCB bonding illustration.

heuristics to solve the problem approximately. However, the
setup time in his model was only characterized by two magni-
tudes, minor and major. He only tackled a problem involving
minor setup times between jobs of the same family and major
setup times between jobs of different groups. Further, he did
not consider the due date restriction, which is essential in
practical factories. Tovia et al (2004) considered a simple
version of the LCMSP, which is a parallel machine scheduling
problem with the objective of maximizing throughput. Tovia
et al (2004) also presented a mathematical programming
model and a rule-based heuristic approach. Unfortunately,
their model only includes processing time without consid-
ering setup time and due date restrictions, which may not
reflect the real situations accurately.

Few works have considered the scheduling problem in
TFT-LCD plants. Jeong et al (2001) addressed the LCD
assembly process, presented mathematical models, and
proposed two heuristic algorithms considering mean flow
time and demands fulfillment. Unfortunately, their model
does not consider the due date restriction and setup time that
are essential and critical in real-world situations. Shin and
Leon (2004) discussed an analogous version of the LCMSP,
which considers family setup time and due date. They
proposed two heuristic approaches based on the MULTIFIT
method and tabu search to solve the LCMSP approximately.
We note that Shin and Leon (2004) have simplified the
model by considering family setup time ignoring the fact
that the setup times are sequentially dependent on hundreds
of product types of job processed. However, none of these
investigations considered sequence-dependent setup time and
job profits under contract and spot market simultaneously.

The LCMSP we investigated can be modelled as a multi-
level optimization problem. At the first level, we schedule

the contract jobs to minimize the total setup time without
violating machine capacity and customer due date restric-
tions, which can be solved using algorithms for vehicle
routing problem with time windows (VRPTW) (see Pearn et
al, 2002a,b, 2004a,b). At the second level, we apply a greedy
concept to choose a subset of spot jobs then insert into the
schedules constructed in the first level. In this paper, we use
basic technologies for VRPTW algorithms including parallel,
generalized savings algorithms and provide two modifica-
tions to solve the LCMSP efficiently. To further analyse the
impact of the problem characteristics on the performance of
those savings algorithms, we provide a set of test problems,
considering the workload level of contract jobs, tightness of
due dates, setup time variation, and variation of profit ratio.
Exact solutions are used here as convenient reference points
for evaluating the accuracy and effectiveness of our heuristic
algorithms. The computational experiments and comparisons
demonstrate the performance of the three phases of the modi-
fied parallel savings algorithm (PSA) outperform the other
algorithms.

LCM process and problem description

LCM process

The TFT-LCD applications include monitors, notebook
PCs, mobile phones, portable DVDs, LCD TVs, and many
others. Such applications are hundreds of product types of
job processed with sizes ranging from 1.6 to 46 inches.
The manufacturing process of the LCM assembly gener-
ally consists of front end and back end two main segments.
It contains the following six processes: (1) COG (chip on
glass)/TAB (tape automated bonding) process, (2) flexible
printed circuit board (FPC) attachment, (3) printed circuit



SH Chung et al—Fast and effective algorithms for the LCM scheduling 923

Figure 3 COG structure.

Figure 4 TAB structure.

board (PCB) bonding, (4) back light assembly, (5) aging
test, (6) inspection, as presented in Figure 1. For the case
investigated, the critical resource is PCB bonding, which has
the longest setup time and using anisotropic conductive film
(ACF) to connect the PCB and FPC, as illustrated in Figure 2.

The processes of PCB bonding are determined by the types
of mount technology of LCD drive IC and controller IC,
namely, the COG (chip on glass) and TAB (tape automated
bonding). The COG is a technology that mounts the LCD
driver to the contact edge of the LCD glass, which is depicted
in Figure 3. The TAB is the LCD driver or controller elec-
tronics are encapsulated in a thin film, like package, with
metal leads extension from the IC chips, which is depicted
as Figure 4. The process is also called OLB (Outer Lead
Bonding). In general, large size LCD applications (ranging
from 15 to 46 inches) adopt the TAB structure and small size
LCD applications (ranging from 1.6 to 6 inches) adopt the
COG structure.

Setup time between different technologies in PCB bonding
is complicated and time consuming. The longest setup time
may consume six hours. The setup activities of PCB bonding
include the following: cool down temperature, replacement
of the appropriate mold, and the rising to a suitable temper-
ature and voltage. Furthermore, setup times between two
consecutive jobs of different product types on the same PCB
bonding machine are sequentially dependent. In a similar
product family, the setup activity may adjust the temperature
and voltage. Different LCD panel sizes must replace the mold.

LCMSP

The scheduling problem in this paper can be stated as follows.
Let machine group M = {mk |k = 1, 2, . . . , K }, containing
K machines, and product types R = {Ri |i = 1, 2, . . . , I },
containing I clusters of jobs. Because the hybrid contract and
spot sales environment is considered, one product type could
be divided into two subsets RP

i and Rq
i . The contract job set

can be shown as RP
i = {r Pi j | j = 1, 2, . . . , J contract

i }, and the
spot sales job set can be shown as Rq

i = {rqi j | j = J contract
i + 1,

J contract
i + 2, . . . , Ji }. Term J contract

i and Ji is the number

Table 1 The job information for the seven-job example

Job ID Product Processing Profit Due Contract/
type time date spot

rA1 RA 21 50 80 C*

rA2 RA 21 40 100 S†
rA3 RA 21 40 100 S
rB1 RB 25 60 93 C
rB2 RB 25 50 100 S
rC1 RC 28 63 100 C
rC2 RC 28 63 60 C

∗Term C indicates the contract job.
†Term S indicates the spot job.

Table 2 Setup times required for switching one product type to
another for RA, RB, and RC

To

From U RA RB RC

U – 15 15 15
RA 0 0 10 7
RB 0 8 0 5
RC 0 3 16 0

of contract jobs and total jobs of product type Ri , respec-
tively. Each job in their associated product type is a candi-
date to be processed without preemption on a set of parallel
machines K .

Each job ri j carries with it processing time denoted by pi j ,
and profit denoted by profiti j , where i = {1, 2, . . . , I } and
j = {1, 2, . . . , Ji }. For each job ri j , bi j represent the ready
time of the job to be processed on a machine and ei j represent
the latest starting time to process job ri j , which relates to
the due dates di j and can be computed as ei j = di j − pi j . A
setup time is incurred in the different product types. When
job ri j immediately succeeds job ri ′ j ′ on machine mk , a setup
time sii ′ happens. The setup time is sequentially dependent
on the product types of the jobs processed on the machine.
The objective is to maximize the total profit without violating
contracted due date and machine capacity, W .

An illustrative example

Consider the following example with two machines and
seven jobs clustered into three product types. Table 1 displays
the product type, processing time, job profit, due date, and
contracted status for each job. Furthermore, the setup times
are incurred for switching one product type to another for
the three product types RA, RB, and RC. Table 2 shows
the required setup times and the term U denotes that the
machine is in idle status. The capacity is set to 95 for each
machine in the illustrative example.

The objective in the illustrative example is to find a schedule
for the subset of jobs, which satisfies the due date restrictions
without violating the constraints of machine capacity, while
maximizing the total profits.



924 Journal of the Operational Research Society Vol. 60, No. 7

An integer programming formulation

We formulate the MILP model for the LCMSP. The appli-
cability of the MILP model associated with a sequence-
dependent setup time of parallel machine scheduling has been
demonstrated by Pearn et al (2002b). We modify the objec-
tive and some constraints of MILP model to accommodate
the LCMSP.

Let xi jk be the variable indicating whether job ri j is sched-
uled on machine mk , with xi jk = 1 if job ri j is scheduled
to be processed on machine mk , and xi jk = 0 otherwise. Let
yi ji ′ j ′k be the precedence variable, where yi ji ′ j ′k should be
set to 1 if job ri ′ j ′ is scheduled following job ri j (not neces-
sarily directly), and where yi ji ′ j ′k = 0 otherwise. Let zi ji ′ j ′k
be the direct-precedence variable, with zi ji ′ j ′k = 1 if job ri ′ j ′
is scheduled immediately following job ri j on machine mk ,
and zi ji ′ j ′k =0 otherwise. Further, the starting processing time
ti jk should not be less than the ready time and not be greater
than the latest starting time ei j . The exact formulation for the
LCMSP is as follows.

Maximize Z =
K∑

k=1

I∑
i=1

Ji∑
j=1

xi jk profiti j (1)

subject to

K∑
k=1

xi jk = 1 for i = 1, 2, . . . , I, j = 1, 2, . . . , J contract
i

(2)

K∑
k=1

xi jk �1 for i = 1, 2, . . . , I, j = J contract
i + 1,

J contract
i + 2, . . . , Ji (3)

Capacity constraints:

I∑
i=0

Ji∑
j=1

xi jk pi j +
I∑

i=0

Ji∑
j=1

⎛
⎝ I∑

i ′=0

Ji ′∑
j ′=1

zi ji ′ j ′k sii ′

⎞
⎠ �W

for all k (4)

Due date constraints:

ti jk �bi j xi jk for all i, j, k (5)

ti jk �ei j xi jk for all i, j, k (6)

Precedence constraints:

ti jk + pi j + sii ′ − ti ′ j ′k + Q(yi ji ′ j ′k − 1)�0 for all i, j, k

(7)

ti jk + pi j + sii ′ − ti ′ j ′k + Q(yi ji ′ j ′k + zi ji ′ j ′k − 2)�0

for all i, j, k (8)

(yi ji ′ j ′k + yi ′ j ′i jk) − Q(xi jk + xi ′ j ′k − 2)�1 for all i, j, k

(9)

(yi ji ′ j ′k + yi ′ j ′i jk) + Q(xi jk + xi ′ j ′k − 2)�1 for all i, j, k

(10)

(yi ji ′ j ′k + yi ′ j ′i jk) − Q(xi jk + xi ′ j ′k)�0 for all i, j, k (11)

(yi ji ′ j ′k + yi ′ j ′i jk) − Q(xi ′ j ′k + xi jk + 1)�0 for all i, j, k

(12)

(yi ji ′ j ′k + yi ′ j ′i jk) − Q(xi jk + xi ′ j ′k + 1)�0 for all i, j, k

(13)

yi ji ′ j ′k � zi ji ′ j ′k for all i, j, k (14)

I∑
i=0

Ji∑
j=1

xi jk −
∑

ri j �=ri ′ j ′

zi ji ′ j ′k = 1 for all k (15)

yi ji∗ j∗k + zi ji∗ j∗k − Q(yi ji∗ j∗k + zi ji∗ j∗k − 2) − Q(yi ji ′ j ′k
− zi ji ′ j ′k − 1)�2 for all i, j, k (16)

Binary variables:

xi jk ∈ {0, 1} for all i, j, k (17)

yi ji ′ j ′k ∈ {0, 1} for all i, j, k (18)

zi ji ′ j ′k ∈ {0, 1} for all i, j, k (19)

The objective function (1) states that the total profit is
to be maximized over all machines. Constraint (2) ensures
that each contract job is scheduled on one machine exactly.
Constraint (3) ensures that each spot job is scheduled on at
most one machine. Constraint (4) is the capacity constraint,
which forces the sum of processing time and setup time for
each machine within available capacity. Constraints (5) and
(6) state that the starting time ti jk for each job ri j scheduled on
machinemk should not be less than the earlier starting time bi j
and not be greater than the latest starting time ei j . Constraints
(7) and (8) are the starting time constraints. The time of the
following job starts after the proceeding job and related setup
is complete. As usual, Q is a ‘sufficiently large’ positive
number, so that constraints (9)–(13) are satisfied for yi ji ′ j ′k =
0 or 1. Constraints (9)–(13) are the precedence constraints
and constraints (14)–(16) are the direct constraints. These
constraints state their sequence relation. In constraint (16),
variable zi ji∗ j∗k states that there is a job ri∗ j∗ existing after job
ri j when yi ji ′ j ′k =1 and zi ji ′ j ′k =0. Constraints (17)–(19) indi-
cate that xi jk , yi ji ′ j ′k , and zi ji ′ j ′k are binary integer variables.
The total number of variables is 2N 2

I K , and the total number
of equations is N 3

I K − (5/2)N 2
I K − (3/2)NI K + NI + 2K ,

where NI = ∑I
i=1 Ji .

Algorithms for the LCMSP

In this section, we present two heuristic procedures to solve
the LCMSP efficiently. Some basic technologies have been
used for developing algorithms for machine scheduling. We
modify the conventional savings algorithms to minimize the
total setup time for the contract jobs and apply the greedy



SH Chung et al—Fast and effective algorithms for the LCM scheduling 925

concept for the spot jobs to enhance the total profits. We
first review two savings algorithms, the PSA proposed by
Golden (1977) and the (GSA) provided by Christofides et al
(1979). We then present two modified algorithms, which are
referred to as the three-phase modified parallel savings algo-
rithm (MPSA TP) and the three-phase modified generalized
savings algorithm (MGSA TP).

Parallel savings algorithm

Golden (1977) proposed the PSA to solve the TSP approxi-
mately. The PSA, initially calculates the savings of all pairs
of jobs and sorts those savings in descending order. The PSA
creates the multiple of K machines simultaneously at the
initial stage, where K is the number of machines. Note that
a selected pair of jobs is feasible if it does not violate the
machine capacity constraints. The PSA then searches down-
ward from the savings list, for a job which could be merged
into one of current K schedules (at the first endpoint or last
endpoint) with the most savings. The algorithm terminates
when no more jobs can be inserted. Algorithm details are
presented as follows.

Step 1: (Initialization) Calculate the savings SAii ′ , defined
as the following, for all pairs of two jobs associated
with product type Ri and Ri ′ , where U denotes the
idle status.

SAii ′ = sUi + si ′U − sii ′ (20)

Step 2: Sort the savings list in descending order of
magnitude.

Step 3: (Schedule initial construction) Choose the first K
pairs of jobs on the list satisfying the machine
capacity constraints, to start K new schedules
simultaneously.

Step 4: Starting from the top of the savings list. Find the
first feasible pair on the list to add to one of the
two ends of a currently constructed schedule with
the most savings.

Step 5: The chosen jobs form a feasible machine schedule.
Repeat Step 4 until all schedules are full and cannot
be expanded.

Generalized savings algorithm

In contrast to the PSA, which constructs a multiple of K
machine schedules simultaneously at the initial stage, the GSA
proposed by Christofides et al (1979) creates one schedule at
a time and considers not only the end points but also posi-
tions between two consecutive jobs when inserting a new job
into the current partial schedule. Besides, the insertion costs
are calculated for every unscheduled job at every possible
position. The chosen job, which maximizes savings while
minimizing insertion costs, is used to avoid the algorithm to
create a new schedule on another machine with a high setup
time.

New algorithms

To effectively apply these technologies, we modify them to
develop fast and effective algorithms. The two new algorithms
essentially consist of three phases. Phase I applies network
algorithms to schedule sub-problem of contract jobs with
minimum total setup time. Phase II inserts spot jobs near the
same constructed product type so as no extra setup time is
needed. Phase III sorts the remaining spot jobs with profit ratio
(ie job profit is divided by job processing time) and chooses a
subset of high profit ratio jobs which are then inserted into the
constructed schedules sequentially until all machine capaci-
ties are full. It is noted, however, that the contract jobs in
the current constructed schedule should be pushed backward
when a spot job is inserted into this schedule in Phase II
or Phase III. Thus, the contract jobs, following the inserted
spot job, should be re-checked according to their due dates
to meet customer deadlines. The new solution procedures can
be described as follows.

Three-phase modified parallel savings algorithm (MPSA TP)

The MPSA TP calculates savings by adding two terms, profit
ratio and time window restrictions. The profit ratio term is
added in the savings calculation in order to choose the pairs
of jobs with higher profit ratios as the first job pairs for
higher savings values than the pairs of jobs with lower ones.
By doing this, the jobs with higher profit ratios are forced to
be processed earlier than other jobs with lower ones. Further-
more, the jobs with the same profit ratios are forced to be
processed closer to each other than the other jobs. The other
added term, time window restrictions, takes job ri j whose
latest starting time (ei j ) is earlier than a later job (ei ′ j ′) and
tends to place it before another job (ri ′ j ′). Time window
restrictions have been used by Pearn et al (2004a); however,
they only considered the value 0��1�1 and did not system-
atically examine the parameter with the value �1�1. In this
paper, three parameters, �1, �1, and �1, and the three ranges
0��1�1, 0��1�1, and 0��1�2, are added to the savings
function to weight the ‘savings term’, ‘profit ratio term’, and
‘time window restrictions term’, respectively. Parameter �1
represents weight of savings, which results from the setup
time between two jobs ri j and ri ′ j ′ in a job pair. It can help the
savings term to avoid a long setup time being incurred. Para-
meter �1 is used to weight the summation of the profit ratios
calculated involving two jobs ri j and ri ′ j ′ in a pair in order to
achieve higher profits. Finally, parameter �1 can assist the time
windows restrictions term to prevent the jobs being processed
after their due date in order to enhance customer satisfaction.
Term W represents the machine predetermined capacity.

Phase I (Modified savings algorithm)

Step 1: Calculate the savings, PSAri jri ′ j ′ , for all pair of jobs
ri j and ri ′ j ′ , where U denotes the idle status. sii ′ , is
the required setup time for switching product type
Ri to type Ri ′ . Terms profiti j , pi j , and ei j represent



926 Journal of the Operational Research Society Vol. 60, No. 7

job profit, job processing time, and latest starting time, respec-
tively, to process job ri j .

PSAri j ri ′ j ′ =
⎧⎨
⎩
0

�1(sUi+si ′U−sii ′)+�1

(
profiti j
pi j

+profiti ′ j ′

pi ′ j ′

)

+ 10W

(
�1
ei j

− (2 − �1)
ei ′ j ′

)

if PSAri j ri ′ j ′ < 0 or i = i ′, j = j ′

otherwise

Step 2: Sort the savings and create a list in descending
order of magnitude.

Step 3: Choose the first feasible K pairs of jobs on
the list satisfying the machine capacity and due
date constraints and remove these pairs from the
savings list. Then, start the K new schedules
simultaneously.

Step 4: Starting from the top of the remaining savings
list, find the first feasible pair on the list
and check which job of the pair is able to be added
to one of the two ends of a currently constructed
schedule.

Step 5: The chosen jobs form a feasible machine schedule.
Repeat Step 4 of Phase I until all the contract jobs
are scheduled.

Phase II (spot jobs assigned without extra setup)

Step 1: Calculate the profit ratio for the spot jobs.
Step 2: Sort the profit ratio and create a profit ratio list in

descending order of magnitude.
Step 3: Choose the job with highest profit ratio as the job to

be inserted. Find the machine, which has scheduled
the jobs with the same product type as the job to
be inserted. Whether the job is inserted or not, it
should be removed from the profit ratio list.

Step 4: If the machine for insertion is found, then insert the
chosen job by the side of the job with same product
type without violating the machine capacity and
due date constraints.

Step 5: Repeat Steps 3 and 4 of Phase II until no more jobs
can be found in the profit ratio list.

Table 3 The value of each pair of contract jobs

Pair ID Job pair Values of savings Pair ID Job pair Values of savings

1 (rA1, rB1) 14.75 7 (rC1, rA1) 19.14
2 (rA1, rC1) 18.29 8 (rC1, rB1) 10.89
3 (rA1, rC2) 13.57 9 (rC1, rC2) 16.21
4 (rB1, rA1) 22.76 10 (rC2, rA1) 33.28
5 (rB1, rC1) 24.54 11 (rC2, rB1) 25.02
6 (rB1, rC2) 19.83 12 (rC2, rC1) 35.06

Phase III (Remaining spot jobs assigned with extra setup)

Step 1: Calculate the profit ratio for the remaining spot
jobs.

Step 2: Sort the profit ratio in descending order of magni-
tude.

Step 3: Choose the top job on the list as the job to be
inserted.

Step 4: Schedule the job by applying the cheapest inser-
tion algorithm (Rosenkrantz et al, 1977) sequen-
tially to construct a feasible schedule without
violating machine capacity and due date restric-
tions. Whether the job is inserted or not, it should
be removed from the profit ratio list.

Step 5: The algorithm will terminate with no job in the
profit ratio list. Otherwise, return to Steps 3 and 4
of Phase III.

To illustrate how the MPSA TP algorithm may be applied,
we consider the LCMSP example with two machines and
three product types described in the previous section enti-
tled ‘LCM process and problem description’. In Phase I,
the savings value for each pair between two contract jobs
is calculated by Step 1 and shown in Table 3 while the
values of �1, �1, and �1, are set to 0.5, 0.05, and 1.5, respec-
tively. The savings are sorted in descending order of magni-
tude using Step 2, and the first two feasible pairs (12th pair
and 4th pair) are chosen and scheduled in the two machines
initially in Step 3. After processing using the algorithm and
by repeating Steps 4 and 5 until no more contract jobs can be
found, two schedules are constructed: job rC2 precedes job rC1
directly on Machine 1 and job rB1 precedes job rA1 directly on
Machine 2.

In Phase II, the three spot jobs (rA2, rA3, and rB2) are
inserted into the two constructed schedules without violating
machine capacity and due date constraints. In Step 1 of this
phase, the profit ratios of the three jobs are computed: 1.9,
1.9, and 2 for job rA2, job rA3, and job rB2, respectively. The
profit ratios are sorted using Step 2. It was found that rB2
is the highest ratio and is, therefore, chosen and removed
from the profit ratio list in Step 3. Machine 2 has the same
product type as job rB2; therefore, job rB2 can be inserted into
Machine 2 in Step 4. However, the insertion of job rB2 into
the two possible positions (preceding or following job rB1



SH Chung et al—Fast and effective algorithms for the LCM scheduling 927

0

setup time

process time

15 95

m1

m2 rA1 rA2

rA3

7040

rB1

rC2 rC1

Figure 5 Gantt chart for the example problem.

immediately) will cause the job rA1 to violate its due date.
Hence, job rB2 is not inserted into this machine. Then, Step
3 of the algorithm is repeated and the other spot job rA2 is
considered. In Step 4, Machine 2 is the inserted machine. Job
rA2 is scheduled following job rA1 without any extra setup
time and without violating any restrictions. Furthermore, by
repeating Step 3, the third spot job rA3 is chosen but is not suit-
able for insertion due to its violation of due date and machine
capacity.

Finally, in Phase III, the remaining spot jobs (rB2 and rA3)
are considered and scheduled although extra setup times are
required. The profit ratios of the two spot jobs are computed
and sorted in descending order in Step 1 and Step 2 of Phase
III, respectively. In Step 3, job rB2 is chosen and removed
from the list, but it cannot be inserted into the two machines.
However, after processing is repeated in Step 3, the other job,
rA3, is inserted into Machine 1 using the cheapest insertion
algorithm in Step 4. Owing to the absence of more jobs on
the profit ratio list and fullness of the two machines, the final
solution from the PSA TP algorithm is therefore 316 and is
depicted in Figure 5.

Three-phase modified generalized savings algorithm
(MGSA TP)

The MGSA TP constructs the schedules sequentially in
contrast to the MPSA TP which creates a multiple of K
machine schedules simultaneously. In addition, the differ-
ence in Phase I with MPSA TP is that MPSA TP considers
only two end points when merging a new job into the current
partial schedule, while MGSA TP considers not only the end
points but also the positions between two consecutive jobs
when merging a new job into the current partial schedule.
The savings function is expressed as follows:

GSAri j ri ′ j ′ =

⎧⎪⎨
⎪⎩
0 if GSAri j ri ′ j ′ < 0 or i = i ′, j = j ′

�2(sUi+si ′U = sii ′)+�2

(
profiti j
pi j

+profiti ′ j ′

pi ′ j ′

)

+ 10W

(
�2
ei j

− (2 − �2)
ei ′ j ′

)

otherwise

Based on the new savings function, the initial partial
schedule can be selected from the top of the savings

list. In addition, schedules can be expanded based on
parameters �1, �2, and formulas (21)–(24) (designed by
Christofides et al, 1979). Let PS be the current schedule,
PS= (uU , . . . , ug−1, ug, . . . , uG, uU ′), where uU and uU ′ are
virtual jobs (machine idle status). The insertion costs are
computed using formulas (21)–(22) for every unscheduled
job ri j at every possible position of PS. Let �(ug−1, ri j , ug)

be the additional setup cost when job ri j is inserted between
position (g−1) and g in schedule PS. Let �∗

(ug −1, ri j , ug)

be the minimal insertion cost value.

�(ug−1, ri j , ug) = sug−1i + siug − �1 × sug−1ug , 1���2

(21)

�∗
(ug−1, ri j , ug) = min

g=1,...,G
[�(ug−1, ri j , ug)] (22)

Job ri j is chosen, which maximizes the savings �∗(ug−1,

ri j , ug) while minimizing the insertion cost �∗
(ug−1, ri j , ug),

and which avoids the algorithm to create a new schedule on
another machine with a high setup time �1×sUi . Furthermore,
in addition to taking into account machine capacity, the due
date constraints of all jobs must also be examined for violation
before a job is inserted. The procedure is repeated until all
schedules are full and cannot be expanded. Phase II and Phase
III are same as the corresponding phases of the MPSA TP
algorithm.

�(ug−1, ri j , ug) = �2 × sUi − �∗
(ug−1, ri j , ug), 1��2�2

(23)

�∗(ug−1, ri j , ug) = max[�(ug−1, ri j , ug)] (24)

The same illustrative example described in the previous
section entitled ‘LCM process and problem description’ with
two machines and three product types is also used to illus-
trate Phase I of MGSA TP. First, the savings are computed
when the values of �1, �1, and �1, are set to 0.5, 0.05, and
1.5, respectively. The savings values for MGSA TP are the
same as those obtained by MPSA TP, as shown in Table 3. In
contrast to the MPSA TP algorithm, one job pair (rC2, rC1)
with the largest savings is chosen and scheduled on Machine
1 initially. Second, the other two contract jobs (rA1 and
rB1) should be considered with their insertion and savings
cost using formulas (21)–(24) in order to decide which one
should be inserted into the current partial schedule. For
the insertion costs, there are three possible positions for
each candidate contract job on the current partial schedule,
PS = (uU , rC2, rC1, uU ′). Therefore, six insertion costs are
computed while �1 = 2 and �2 = 1 and are presented in Table
4. In Table 4, minimal insertion costs obtained for rA1 and rB1
are −8 and −10, respectively. The following savings costs
are then obtained, �(ug−1, rA1, ug) = 1 × 15 − (−8) = 23
and �(ug−1, rB1, ug) = 1 × 15 − (−10) = 25 to rA1 and rB1,
respectively. Therefore, �∗(ug−1, ri j , ug)=max[23, 24]= 25,
then the job rB1 is chosen.



928 Journal of the Operational Research Society Vol. 60, No. 7

Table 4 The insertion cost of each job at every possible position

Job ID Possible insertion Insertion cost Values
positions

rA1 �(uU, rA1, rC2) SUA + SAC − 2 × SUC −8
rA1 �(uC2, rA1, rC1) SCA + SAC − 2 × SCC 10
rA1 �(uC1, rA1, rU′) SCA + SAU′ − 2 × SCU′ 3
rB1 �(uU, rB1, rC2) SUB + SBC − 2 × SUC −10
rB1 �(uC2, rB1, rC1) SCB + SBC − 2 × SCC 21
rB1 �(uC1, rB1, rU′) SCB + SBU′ − 2 × SCU′ 16

Third, job rB1 is the candidate job and will be inserted on
Machine 1 preceding rC2. However, this insertion would cause
rC2 and rC1 to be out of their due dates. Therefore, job rB1 is
not inserted in the machine. As in this example there is only
one other possible contract job (rA1), the process needs to be
repeated to determine if it is suitable for insertion. However,
it was found that job rA1 also cannot be inserted in Machine 1
because of due date and machine capacity constraints. There-
fore, the algorithm steps are repeated on Machine 2, jobs rB1
and rA1 are scheduled on Machine 2 as they were found not
to violate any restrictions. Phase I of MGSA TP is terminated
when all contract jobs are scheduled.

Test problems design

For the purpose of testing and comparing the performance of
the proposed two new algorithms on various LCMSP with
different data characteristics, we generate a set of 24 prob-
lems based on a case taken from an LCM factory located
on the science-based industrial park in Taiwan. For the case
investigated, jobs of 26 product types contain contract and
spot jobs. The jobs are scheduled to five identical parallel
machines. The contract jobs must be completed on the parallel
machines before the given due dates. The machine capacity is
set to 4320min, which is set to equal to the planning period
(three days). ‘Minute’ here is used as the time unit for the job
process time, setup time, due date, and machine capacity.

The structure and data of the generated test problems
are generated covering most real-world applications. These
characteristics include: (1) workload level of contract jobs,
(2) tightness of due dates, (3) setup time variation, and (4)
variation of (contract/spot) profit ratio. These problem sizes
range from low workload level of contract jobs, loose due
date tightness, small setup time variation, low variation of
(contract/spot) profit ratio, to high workload level of contract
jobs, tight due date tightness, high setup time variation, and
high variation of (contract/spot) profit ratio.

Workload level of contract jobs

In the real production environment, different workload levels
of contract jobs result from different market demand or sale
seasons, such as hot seasons in electronic industries. There-
fore, we need to evaluate the impact of different workload
levels of contract jobs on the performance of the solution

algorithms. Owing to varied workload levels of contract
jobs, the number of contract jobs is different. Let ES be the
estimated setup time required in the problem. AVGi [Sii ′ ] is
the average setup time from product type Ri to other types.
And finally, AVG[SiU ] is the average setup time to switch
to idle status, AVG[SUi ] be the average setup time from idle
status to process. The estimated setup time can be expressed
as follows.

ES = K (AVG[SUi ] + AVG[SiU ])
+ (I − 1)

I

∑
all i

AVGi [Sii ′ ] (25)

The workload calculation formula in our investigation
can be expressed in Equation (26). In the 24 testing prob-
lems, each problem contains 120 jobs carrying specific
contract jobs and spot jobs. Taking problem 4, 5, and 6 (see
Table 5) for example, when the number of contract jobs is
25, 50, and 75, the workload level of contract jobs will be
42, 64, and 86%, respectively. Problem 6 is used to illus-
trate how the calculation of workload level be applied, a
setup time matrix is presented in Table A1 and detailed
job information is shown in Table A2 (see the Appendix).
The average setup times required for switching from a job
with idle status to process (AVG[SUi ]) is 120min, while the
reverse (AVG[SiU ]) only requires 0min. The average setup
time requires for switching from all contract jobs of product
type Ri to type Ri ′ (AVG[Sii ′ ]) is equal to 3496.9min. There-
fore, the estimated setup time is 3962.4min. Furthermore,
the total processing time of the contract jobs in Problem 6 is
14 451min. The workload level of Problem 6 is then obtained
using Equation (26) when the number of machines (K ) is 5
and each machine capacity (W ) is 4320min.

Workload level = ES + ∑I
i

∑J
j pi j

K × W
× 100%

for i = 1, 2, . . . , I and j = 1, 2, . . . , J contract
i (26)

Tightness of due dates

To analyse the impact of the tightness of due dates on the
performance of scheduling algorithms, we include two levels
of the tightness of due dates. Here, we apply the tightness
index formula proposed by Pearn et al (2004a) and Equation
(25) to estimate the setup time. In the tight situation, the
number of jobs during the due dates of day 1 and day 2 is
greater than day 3. In the loose situation, the number of jobs
during the due date of day 1 would be less than the number
of jobs during the due dates of day 2 and day 3.

Setup time variation

In LCMSP, we reduce setup time by scheduling contract and
spot jobs without violating the contracted due dates. Thus,
the setup time is one of the critical factors for increasing the
impact of results. However, the setup time could be varied
because of different considerations of setup operations. For



SH Chung et al—Fast and effective algorithms for the LCM scheduling 929

Table 5 Summarized information of 24 problems

Problem number Tightness of Workload level Setup time Variation
due date of contract jobs variation (contract/spot)

profit ratio

Parameter Tight Loose Low Middle High Small Large Small Large

1 * * * *
2 * * * * *
3 * *
4 * * *
5 * * *
6 * *
7 * * *
8 * * *
9 * *

10 * * *
11 * * *
12 * *
13 * * * *
14 * * * *
15 * * *
16 * * * *
17 * * * *
18 * * *
19 * * * *
20 * * * *
21 * * *
22 * * * *
23 * * * *
24 * * *

instance, the cool down and the rapid rising of temperature
and voltage are good examples of differing conditions. In
our test, we include two levels of setup time variation. The
high setup time variation is 10519.4 and the low setup time
variation is 3990.3.

Variation of (contract/spot) profit ratio

The contract/spot profit ratio is the division of the contract
job unit profit by the corresponding spot job unit profit for
each of the product types. The variation of the contract/spot
profit ratio is to analyse the variance among different product
types. In the real-world application, the profit ratio among
different product types should be varied owing to the market
competition. The high variation of contract/spot profit ratio is
set to 0.01 and the low variation of contract/spot profit ratio
is set to 0.001.

The problem sets of the four considered factors have 24
different problems. The problem lists with the four different
factors are listed as Table 5. Take problem 6 for example, the
setup time matrix is presented in Table A1 and the detailed
job information is shown in Table A2 (see the Appendix).

Computational results

To solve the LCMSP case, two heuristic algorithms are coded
in Virtual Basic 6.0 programming language, and run on a
Pentium IV 3.2GHz PC. We first experiment with the two

new algorithms on 10 small size of LCMSP, where the optimal
solutions are available. The size of the problems range from
10 to 15 total jobs, 6 to 10 contract jobs, and 950 to 1650min
machine capacity with various workload levels of contract
jobs. For these problems, we write a C + + programming
code to generate the constraints and variables of the models.
In addition, we solve them using the IP software CPLEX
7.5 to obtain optimal solutions. The computational results are
displayed in Table 6.

Table 6 indicates that the heuristic solutions receive
eight optimal solutions (out of 10) in term of total profits.
The average gap between the optimality and two heuristic
algorithms, MGSA TP and MPSA TP, is 1.4 and 0.5%,
respectively. The average run times (in CPU seconds) for the
two heuristic algorithms are indeed significantly faster than
the run time of optimality.

For large size of the LCMSP, solving the optimal solutions
using integer programming model is computationally ineffi-
cient. Therefore, in the following, we test the performance
of the two new algorithms on the 24 problems described
in the previous section entitled ‘Test problems design’. We
obtained 72 computational results, which include 48 results
for MPSA TP with two types of parameter combination
(MPSA TP denotes MPSA TP with �1 = 0.5, �1 = 0.05,
and �1 = 1.5; MPSA TP2 denotes MPSA TP with �1 = 0.5,
�1 = 0, and �1 = 1.5). MPSA TP2 represents that the profit
ratio adding item of the savings calculation is not considered.



930 Journal of the Operational Research Society Vol. 60, No. 7

Table 6 A comparison between the optimal solutions and two heuristic algorithms

Prob. no. J J contract W Optimal value CPU (s) MGSA TP MPSA TP

Profit CPU Profit CPU

1 10 6 1000 444 000 501.64 444 000 0.031 444 000 0.016
2 11 6 950 444 000 405.09 444 000 0.031 444 000 0.016
3 12 5 1100 514 000 451.89 514 000 0.031 514 000 0.016
4 12 8 1075 557 000 129.75 557 000 0.031 557 000 0.016
5 13 6 1000 488 000 574.39 452 000 0.047 471 000 0.031
6 13 6 1100 537 000 224.61 537 000 0.031 537 000 0.016
7 14 8 1300 660 000 5920.83 660 000 0.047 660 000 0.031
8 14 7 1200 597 000 1219.03 555 000 0.047 584 000 0.031
9 15 9 1440 670 000 13430.4 670 000 0.048 670 000 0.032

10 15 10 1650 760 000 61640.1 760 000 0.063 760 000 0.031

Underlines indicate the optimal solutions.

Table 7 Performance comparison in the three algorithms

Profit

Parameter MGSA TP MPSA TP MPSA TP2 Prob. no. MGSA TP MPSA TP2 MPSA TP2
�2 = 0.3 �1 = 0.5 �1 = 0.5 subtracted from subtracted from subtracted from
�2 = 0.2 �1 = 0.05 �1 = 0 MPSA TP MPSA TP MGSA TP
�2 = 0.4 �1 = 1.5 �1 = 1.5

Prob. �1 = 2
no. �2 = 1

1 5 056 000 5 150 500 4 930 500 1 94 500* 220 000* 125 500*
2 5 385 000 5 470 000 5 351 000 2 85 000* 119 000* 34 000*
3 5 796 500 6 009 500 6 038 500 3 213 000* −29 000 −242 000
4 5 776 000 5 910 500 5 614 500 4 134 500* 296 000* 161 500*
5 5 791 000 5 914 000 5 776 000 5 123 000* 138 000* 15 000*
6 5 986 500 6 259 500 6 298 500 6 273 000* −39 000 −312 000
7 5 099 000 5 193 000 5 013 000 7 94 000* 180 000* 86 000*
8 5 440 000 5 584 000 5 527 000 8 144 000* 57 000* −87 000
9 6 020 000 5 997 000 5 743 000 9 −23 000 254 000* 277 000*

10 5 826 000 5 905 000 5 815 000 10 79 000* 90 000* 11 000*
11 5 915 000 6 209 000 5 999 000 11 294 000* 210 000* −84 000
12 6 236 000 6 227 000 5 933 000 12 −9000 294 000* 303 000*
13 5 102 000 5 073 500 4 973 000 13 −28 500 100 500* 129 000*
14 5 499 000 5 563 000 5 428 000 14 64000* 135 000* 71 000*
15 6 037 000 6 028 500 5 927 500 15 −8500 101 000* 109 500*
16 5 786 000 5 855 500 5 717 000 16 69 500* 138 500* 69 000*
17 5 959 000 6 147 000 5 866 000 17 188 000* 281 000* 93 000*
18 6 277 000 6 273 500 6 147 500 18 −3500 126 000* 129 500*
19 5 016 000 5 192 000 5 063 000 19 176 000* 129 000* −47 000
20 5 577 000 5 640 000 5 537 000 20 63 000* 103 000* 40 000*
21 6 006 000 6 027 000 6 013 500 21 21 000* 13 500* −7500
22 5 726 000 5 952 000 5 835 000 22 226 000* 117 000* −109 000
23 6 014 000 6 052 000 5 999 000 23 38 000* 53 000* 15 000*
24 6 224 000 6 267 000 6 253 500 24 43 000* 13 500* −29 500

Result in bold is the best solution among the three algorithms.
Result with * is better than the former.

Table 7 displays the detailed comparison within the two
types of algorithms. It denotes the number of better solutions
comparing to the two proposed heuristic procedures and the
three pairs of subtraction among three different results. Each
cell represents the value by subtracting the former from the
latter and the cell with the symbol * indicates that the former
is better. In comparing the three algorithms, the test results

showed that:

(1) The MPSA TP received 19 better solutions (out
of 24) than the MGSA TP. The average improvement
between the 19 improved problems of MPSA TP
comparing with MGSA TP in terms of profit is
2.2%.



SH Chung et al—Fast and effective algorithms for the LCM scheduling 931

Table 8 Results in means with different problem characteristic groups

Algorithm MGSA TP MPSA TP MPSA TP2

�2 = 0.3,�2 = 0.02, �2 = 0.4 �1 = 0.5,�1 = 0.05, �1 = 0.5,�1 = 0,
Parameter �1 = 2,�2 = 1 �1 = 1.5 �1 = 1.5

n Mean Mean Mean

Total 24 5 731 250 5 829 167* 5 699 958
Tightness DD = Tight 12 5 704 250 5 804 583* 5 672 333
Tightness DD = Loose 12 5 758 250 5 853 750* 5 727 583
Contracted workload = Low 8 5 423 375 5 529 000* 5 370 125
Contracted workload = Middle 8 5 697 500 5 822 375* 5 685 375
Contracted workload = High 8 6 072 875 6 136 125* 6 044 375
Setup timevariation = Small 12 5 768 583 5 839 250* 5 730 000
Setup time variation = Large 12 5 693 917 5 819 083* 5 669 917
Variation of profit ratio = Small 12 5 502 792 5 577 333* 5 462 083
Variation of profit ratio = Large 12 5 959 708 6 081 000* 5 937 833

Result with * is best solution among the three algorithms.

Table 9 Performance comparisons of the three algorithms (24 problems)

MGSA TP MPSA TP MPSA TP2

Average rank among the three algorithms 2.125 1.25 2.625
Number of problems receiving the best solutions 5 17 2
Average run times CPU seconds 5.11 11.9 8.08

(2) In the MPSA TP algorithm group, the MPSA TP
received 22 better solutions (out of 24) than MPSA TP2.
The profit ratio term, in the savings calculation of
MPSA TP, indeed improves the solutions.

By computing the mean of the solutions generated by
each algorithm in total profit for the 24 problems, we could
compare the performances among these algorithms. To further
analyse the performance of those algorithms on problems with
different characteristics, we grouped the results with the four
problem factors and factor levels, which is shown in Table
8. Since the factors such as tightness of due date, setup time
variation, and variation of profit ratio, contain two levels of
values, these groups each include 12 results. Because the
factor of workload level of contract jobs contains three levels
of values, these groups include eight results each.

In Table 8, MPSA TP outperforms MGSA TP and
MPSA TP2 on all nine groups. Therefore, we can say the
performance of the MPSA TP is better than the MGSA TP
and MPSA TP2 stably in varied situations.

Finally, we compared performances generated by the three
algorithms, which is presented in Table 9, with respect to
(1) average rank among the three algorithms, (2) number of
problems receiving the best solutions, and (3) average run
times in CPU seconds on a Pentium IV 3.2GHz PC.

The results, displayed in Table 9, indicate that the run times
of the three algorithms are quite short for solving those prob-
lems containing five machines and 120 jobs with different

problem characteristics. In particular, the MPSA TP signifi-
cantly outperformed the other algorithms.

Conclusions

In this paper, we considered the LCMSP with sequence
dependence setup time and multiple product profits to
sequence jobs on identical parallel machines, which has many
real-world applications, particular, in the TFT-LCD manu-
facturing industry. For the LCMSP case investigated, the
jobs are clustered by 26 product types, which are processed
on five identical parallel machines and must be completed
before the due dates. The LCMSP involves constraints on
multiple product profit, sequence dependence setup times, due
date, product-type-dependent processing time, and machine
capacity, it is more difficult to solve than the classical parallel
machines scheduling problem. In this paper, we investigated
two network algorithms and developed two modifications to
solve the LCMSP efficiently. To test the performances of
those algorithms, a set of test problems was designed. The
design of test problems involves four critical factors including
the workload level of contract jobs, tightness of due date,
setup time variation, and variation of profit ratio. The compu-
tational test results reveal that the MPSA TP perform better
than the MPSA TP2 and MGSA TP stably in varied situa-
tions. All proposed algorithms solve the large-scale LCMSP
effectively.



932 Journal of the Operational Research Society Vol. 60, No. 7

References

Christofides N, Mingozzi A, Toth P and Sandi C (1979).
Combinatorial Optimization. John Wiley & Sons: New York,

Golden B (1977). Evaluate a sequential vehicle routing algorithm.
AIIE Trans 9: 204–208.

Jeong B, Kim SW and Lee YJ (2001). An assembly scheduler for
TFT LCD manufacturing. Comput Ind Eng 41: 37–58.

Pearn WL, Chung SH and Yang MH (2002a). The wafer probing
scheduling problem (WPSP). J Opl Res Soc 53: 864–874.

Pearn WL, Chung SH and Yang MH (2002b). Minimizing the total
machine workload for the wafer probing scheduling problem. IIE
Trans. 34: 211–220.

Pearn WL, Chung SH, Yang MH and Chen YH (2004a). Algorithms
for the wafer probing scheduling problem with sequence-dependent

Appendix

See Tables A1 and A2.

Table A1 Setup times matrix for 26 product types in problem 6 (unit: minutes)

To/
From

U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

U 0 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
1 0 0 15 20 20 360 360 180 30 30 180 360 250 250 180 30 30 150 120 50 50 50 130 20 50 30 20
2 0 15 0 20 20 360 320 180 30 30 180 360 30 30 170 170 250 30 50 50 150 100 100 150 15 250 30
3 0 20 20 0 120 30 30 170 170 250 250 250 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
4 0 280 280 360 0 130 20 50 260 80 80 280 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
5 0 280 280 360 15 0 20 50 260 80 80 280 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
6 0 280 280 360 15 20 0 50 260 80 80 280 15 80 150 150 120 80 250 250 250 100 100 270 30 120 80
7 0 20 20 120 50 15 80 0 150 120 120 30 15 80 150 150 120 100 150 150 150 80 80 30 30 120 100
8 0 20 20 15 320 30 120 120 0 250 250 250 50 150 150 260 80 250 170 170 250 250 250 250 30 80 20
9 0 280 280 200 50 50 150 150 260 0 80 280 250 100 250 150 30 250 50 260 80 80 80 280 30 30 20
10 0 150 150 80 80 250 250 250 270 30 0 20 150 80 280 30 250 15 170 130 250 250 250 250 150 30 50
11 0 270 270 100 100 150 150 280 30 30 100 0 50 180 120 120 250 150 170 130 250 250 250 250 270 50 150
12 0 15 15 30 30 180 180 120 120 50 150 150 0 180 120 120 250 280 250 250 100 30 30 280 250 250 280
13 0 20 20 360 360 260 80 80 280 250 250 100 50 0 120 150 150 15 360 360 320 320 120 15 280 150 15
14 0 280 280 15 15 260 80 80 280 150 150 80 20 15 0 150 208 15 320 320 320 320 120 15 280 30 15
15 0 20 20 50 50 130 250 250 250 150 80 80 150 80 80 0 80 250 50 260 80 80 80 280 30 250 250
16 0 20 20 208 208 280 250 30 30 280 280 280 280 100 30 30 0 130 150 150 120 120 120 30 280 50 150
17 0 280 280 50 50 150 150 80 80 120 250 280 150 80 80 80 80 0 20 20 20 50 50 150 280 250 250
18 0 150 150 80 80 270 270 100 100 50 150 280 270 100 100 100 100 15 0 130 250 50 250 250 150 150 150
19 0 30 50 30 30 15 280 120 120 30 30 15 15 280 280 120 120 30 280 0 250 250 100 30 15 180 180
20 0 80 250 30 280 15 15 120 120 30 30 15 15 360 360 120 120 30 280 280 0 250 100 30 150 30 30
21 0 100 150 30 280 15 50 250 250 80 80 250 250 360 360 120 120 250 250 100 30 0 30 30 30 30 30
22 0 150 150 80 150 50 50 150 150 100 100 150 15 20 20 250 250 250 250 100 30 30 0 250 30 170 250
23 0 270 270 100 150 50 50 50 180 120 120 180 15 20 20 250 250 250 250 100 30 30 30 0 260 260 80
24 0 30 50 30 30 360 280 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 0 180 180
25 0 80 250 30 280 360 360 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 150 0 180
26 0 80 250 30 280 360 360 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 150 0 0

Table A2 The job information of the 120 jobs in LCMSP

Job ID Product Processing Profit Due Contract/ Job ID Product Processing Profit Due Contract/
type time (min) date Spot type time (min) date Spot

1 1 213 50 000 1440 C 61 12 213 75 000 1440 C
2 1 213 50 000 1440 C 62 12 213 75 000 1440 C
3 1 213 50 000 1440 C 63 12 213 65 000 4320 S
4 1 213 40 000 4320 S 64 12 213 65 000 4320 S
5 1 213 40 000 4320 S 65 13 183 72 500 2880 C
6 2 192 60 000 2880 C 66 13 183 72 500 2880 C

set-up time and due date restrictions. J Opl Res Soc 55:
1194–1207.

Pearn WL, Chung SH, Chen AY and Yang MH (2004b). A case study
on the multistage IC final testing scheduling problem with reentry.
Int J Prod Econ 88: 257–267.

Rosenkrantz DJ, Stearns RE and Lewis II PM (1977). An analysis
of several heuristics for the traveling salesman problem. SIAM J
Comput 6: 563–581.

Shin HJ and Leon VJ (2004). Scheduling with product family set-up
times: An application in TFT LCD manufacturing. Int J Prod Res
42: 4235–4248.

So KC (1990). Some heuristics for scheduling jobs on parallel
machines with setups. Mngt Sci 36: 467–475.

Tovia F, Mason SJ and Ramasami B (2004). A scheduling heuristic
for maximizing wirebonder throughput. IEEE T Electron Pack 27:
145–150.



SH Chung et al—Fast and effective algorithms for the LCM scheduling 933

Table A2 (Continued)

Job ID Product Processing Profit Due Contract/ Job ID Product Processing Profit Due Contract/
type time (min) date Spot type time (min) date Spot

7 2 192 60 000 2880 C 67 13 183 72 500 4320 C
8 3 213 63 000 1440 C 68 13 183 62 500 4320 S
9 3 213 63 000 1440 C 69 13 183 62 500 4320 S
10 3 213 63 000 1440 C 70 14 213 65 000 2880 C
11 3 213 53 000 4320 S 71 15 183 60 000 2880 C
12 3 213 53 000 4320 S 72 15 183 60 000 2880 C
13 4 175 50 000 4320 C 73 15 183 60 000 2880 C
14 5 183 59 000 1440 C 74 15 183 60 000 4320 C
15 5 183 59 000 1440 C 75 15 183 50 000 4320 S
16 5 183 59 000 1440 C 76 15 183 50 000 4320 S
17 5 183 49 000 4320 S 77 15 183 50 000 4320 S
18 5 183 49 000 4320 S 78 16 175 78 500 4320 C
19 5 183 49 000 4320 S 79 16 175 78 500 4320 C
20 5 183 49 000 4320 S 80 16 175 78 500 4320 C
21 6 213 76 000 2880 C 81 16 175 78 500 4320 C
22 6 213 76 000 2880 C 82 16 175 68 500 4320 S
23 6 213 76 000 2880 C 83 17 213 60 000 2880 C
24 6 213 76 000 2880 C 84 17 213 60 000 2880 C
25 6 213 76 000 2880 C 85 18 183 54 000 4320 C
26 6 213 66 000 4320 S 86 18 183 54 000 4320 C
27 6 213 66 000 4320 S 87 18 183 44 000 4320 S
28 6 213 66 000 4320 S 88 18 183 44 000 4320 S
29 6 213 66 000 4320 S 89 19 200 70 000 2880 C
30 6 213 66 000 4320 S 90 19 200 70 000 2880 C
31 7 183 70 000 1440 C 91 20 200 60 000 2880 C
32 7 183 70 000 1440 C 92 20 200 60 000 4320 C
33 7 183 70 000 1440 C 93 20 200 60 000 4320 C
34 7 183 60 000 4320 S 94 20 200 60 000 4320 C
35 7 183 60 000 4320 S 95 20 200 50 000 4320 S
36 7 183 60 000 4320 S 96 21 192 50 000 4320 C
37 7 183 60 000 4320 S 97 21 192 50 000 4320 C
38 8 167 66 000 2880 C 98 21 192 50 000 4320 C
39 8 167 66 000 2880 C 99 21 192 50 000 4320 C
40 8 167 66 000 4320 C 100 21 192 50 000 4320 C
41 8 167 66 000 4320 C 101 21 192 50 000 4320 C
42 8 167 66 000 4320 C 102 22 213 62 500 2880 C
43 9 192 75 000 1440 C 103 22 213 62 500 2880 C
44 9 192 75 000 1440 C 104 23 213 58 000 4320 S
45 9 192 75 000 1440 C 105 23 213 58 000 4320 S
46 9 192 65 000 4320 S 106 23 213 58 000 4320 S
47 9 192 65 000 4320 S 107 24 200 71 000 2880 C
48 9 192 65 000 4320 S 108 24 200 71 000 2880 C
49 9 192 65 000 4320 S 109 24 200 71 000 2880 C
50 10 183 60 000 4320 C 110 24 200 71 000 2880 C
51 10 183 60 000 4320 C 111 25 183 61 000 2880 C
52 10 183 50 000 4320 S 112 25 183 61 000 2880 C
53 10 183 50 000 4320 S 113 25 183 61 000 4320 C
54 11 167 50 000 2880 C 114 25 183 61 000 4320 C
55 11 167 50 000 2880 C 115 25 183 51 000 4320 S
56 11 167 40 000 4320 S 116 25 183 51 000 4320 S
57 11 167 40 000 4320 S 117 26 192 65 500 1440 C
58 11 167 40 000 4320 S 118 26 192 55 500 4320 S
59 12 213 75 000 1440 C 119 26 192 55 500 4320 S
60 12 213 75 000 1440 C 120 26 192 55 500 4320 S

Received July 2006;
accepted January 2008 after two revisions


