
Pattern Recognition 42 (2009) 1604 -- 1611

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Data hiding in grayscale images by dynamic programming based on a human visual
model�

I-Shi Leea,1, Wen-Hsiang Tsaia,b,∗
aDepartment of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
bDepartment of Information Communication, Asia University, Taichung 41354, Taiwan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 7 September 2006
Received in revised form 22 June 2008
Accepted 11 January 2009

Keywords:
Data hiding
Grayscale image
Human visual system
Block pattern encoding
Dynamic programming

A new method for data hiding in grayscale images based on a human vision model with distortion-
minimizing capabilities is proposed. Each of the eight bit planes of an input grayscale image is viewed
as a binary image, into which message data are embedded horizontally. Two optimization techniques,
namely, block pattern coding and dynamic programming, are proposed for image distortion minimization.
Experimental results show good performs of the proposed method.
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1. Introduction

Data hiding in images is a useful technique for secret commu-
nication. Many data hiding techniques have been proposed recently
[1–3]. A common approach is least-significant-bit (LSB) replacement,
which embeds message data in the LSB planes of an image. The im-
age into which a message is hidden is called a cover image, and the
result a stego-image. Wang et al. [4] embedded a binary image in
the fifth LSB plane of a cover image using a genetic algorithm and a
local pixel adjustment method to lower the distortion in the stego-
image. Chang et al. [5] used dynamic programming to obtain an
optimal solution for the LSB substitution method. Chan and Cheng
[6,7] presented an optimal pixel adjustment process to improve the
quality of the stego-image acquired by Wang's schemes. Thien and
Lin [8] embedded data in images digit by digit using a modulus
function, which improves LSB substitution not only in eliminating
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false contours but also in reducing image distortion. Lee and Chen
[9] applied variable-sized LSB insertion to estimate the maximum
embedding capacity by a human visual system (HVS) property, and
to maintain image fidelity by removing false contours in smooth
image regions. Liu et al. [10] presented a novel bit plane-wise
data hiding scheme using variable-depth LSB substitution and
employed post-processing to eliminate the resulting noticeable
artifacts.

Most of the above methods lack consideration of using precise
human visual models in improving the data hiding effect. Instead,
Wu and Tsai [11] presented amethod based on the HVS bymodifying
quantization scales according to variation insensitivity from smooth
to contrastive to improve stego-image quality. And Lie and Chang
[12] presented an adjusted LSB technique with the number of LSBs
adapting to the pixels of different grayscales.

On the other hand, some steganalysis techniques were devel-
oped to detect secret messages among stego-images. Lyu and Farid
[13] developed a universal blind detection scheme to detect hidden
messages in stego-images, which uses wavelet-like decomposi-
tion to build higher-order statistical models of natural images and
adopts the support vector machine as an optimal classifier to sep-
arate stego-images from cover images. The method demonstrates
good performance on JPEG images and the selected statistics is rich
enough to detect hidden data in the results yielded by a very wide
range of steganographic methods. In addition, to detect data hid-
den in LSBs in the spatial domain, it is observed that the basic LSB
substitution method changes pixel values only between 2i and 2i+1
in the i-th bit plane of the pixel value. This leads to an effective
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steganalytic technique, the RS method proposed by Fridrich et al.
[14], which not only can expose the presence of secret data but also
can estimate the length of the embedded data.

In this study we propose a method to embed data into a grayscale
image, based on the use of a new HVS model to estimate the number
of usable bits of each pixel in the cover image. Furthermore, a block
pattern encoding method is proposed to embed up to three data
bits in a 2×2 block of the bit planes without yielding visible image
quality degrading. This is achieved by using two optimization tech-
niques. The first technique utilizes multiple block pattern encoding
tables, from which an optimal one is chosen for each input image;
and the second technique uses dynamic programming to divide the
message data stream into appropriate bit segments for optimal data
bit embedding in the image blocks to minimize a cost function. The
proposed method can extract embedded data without referencing
the original image.

In the remainder of this paper, we introduce the idea behind the
proposed method in Section 2. In Section 3, we describe the adopted
HVS model and the corresponding cost function. In Section 4, the
proposed data hiding method is described. The corresponding data
recovery process is proposed in Section 5. Some experimental results
are given in Section 6, followed by discussions and conclusions in
Section 7.

2. Embedding data in bit planes of grayscale images

Eight bits represent a pixel's intensity in a grayscale image. The
bit plane formed by the same bit of each pixel in the grayscale im-
age is a binary image. Fig. 1 shows the eight bit planes of each of
three 128×128 grayscale images. The LSB plane bp0 is almost fully
randomized. If a message is embedded in bp0, the result will appear
almost unaltered. On the contrary, random noise is less in a more-
significant-bit plane. The most-significant-bit plane bp7 contains al-
most no noise, and data cannot be embedded easily in it without
causing significant visual changes. Embedding data into bit planes
in the order of bp0, bp1, . . . ,bp7 is called horizontal data hiding, con-
trastive with traditional vertical data hiding which embeds data into
the bits b7, b6, . . . ,b0 of each pixel in the order of b0 through b7, where
b0 is the LSB of the pixel. Comparatively, horizontal data hiding can
reduce more distortion in the stego-image, as revealed in the results
of this study.

On the other hand, embedding data directly in bit planes will
cause visible damages to the edges in the bit planes. To overcome
this difficulty, in this study we design a new cost function which
considers certain perception characteristics of the HVS, and adopt
a method proposed in Lee and Tsai [15] for data embedding. Each
bit plane is regarded to have a different weight in its capability for
data hiding, and the new cost function is designed accordingly to
measure the degree of distortion resulting from pixel value changes,
as described next.

Fig. 1. Three grayscale images and their 8 corresponding bit planes (from left to right, original images, bp0, bp1, bp2, . . . , and bp7, respectively).

3. Cost function for distortion measurement

Two HVS characteristics may be exploited for reducing image
distortion in stego-images. First, human perception is more sensi-
tive to grayscale changes in smooth areas than in texture areas in
a grayscale image. Second, human perception is sensitive to relative
luminance rather than absolute one. Designing the cost function for
distortion measurement for data embedding must take these two
characteristics into consideration.

For the first consideration, assume that a pixel P with grayscale
value g is to be used to embed message data. Let MAX de-
note the maximum grayscale value, and MIN the minimum, in a
3×3 block with P as the center, which we call the neighborhood
of P. Then, the maximum between-pixel grayscale range in this
block is � = MAX−MIN. To avoid a significant change of smooth-
ness with respect to the neighborhood of P, the new grayscale
value g′ resulting from data embedding should be restricted
in a certain range, which is taken to be g ± �/2 in this study.
Then, we define a maximum number D of data-embeddable bits at
P as

D = �log2(�/2)� = �(log2�) − 1� = �log2(MAX − MIN) − 1�. (1)

For the second consideration, let f denote the luminance of a pixel
P with grayscale value g where 1 � f � 100. According to the Fech-
ner law [16], the relative luminance property perceived by the HVS
may be expressed as a contrast value c computed by c = 50×log10 f
where 0 � c � 100. Moreover, according to the Weber law [16], the
maximum allowable change �c of the contrast value c, according to
the principle of “just noticeable difference (JND)” about the pixel's
luminance change, is about 2. That is, if the luminance of a pixel is
changed too much so that �c is larger than 2, the change will be no-
ticeable to the HVS. Accordingly, we can compute in another way a
maximum number of data-embeddable bits in the 8 bits of a pixel's
grayscale value, as described next.

First, we compute the maximum luminance change (�f)max in ac-
cordance with the maximum allowable contrast change (�c)max = 2.
With c being the contrast of pixel P, let cmax denote the maximum
possible contrast value. Then, we have

2 = (�c)max = cmax − c = 50 × log10 fmax − 50 × log10 f

= 50 × log10
fmax

f
,

which can be reduced to be

fmax

f
= 10(2/50) = 100.04.

So, the maximum allowable luminance change can be expressed as

(�f )max = fmax − f =
(
fmax

f
− 1

)
f = (100.04 − 1) × f ≈ 0.0965 × f .
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And so we may impose the following constraint to the value of f:

(�f )max/f �0.0965. (2)

On the other hand, in a monochrome image the luminance f
in the range of [1 100] is represented by the grayscale value g
in the range [0 255], such that g may be computed by the lin-
ear mapping g = (f−1)×(255/99) ≈ 2.576(f−1), or equivalently, the
mapping f ≈ 0.3882g+1. Hence, from Constraint (2), we can, after
some derivations, get the following new constraint for grayscale
changes:

0.0965� (�f )max/f = (�g)max/(g + 2.576), (3)

where (�g)max, corresponding to (�f)max, denotes the maximum
grayscale change in the pixel's neighborhood. That is, if Constraint
(3) is set for data embedding, the changes of grayscales in the
stego-image will not be detectable by human eyes.

Now, we discuss how many bits can be utilized for data embed-
ding for each possible grayscale value g. If five bits of the pixel's
grayscale are used for embedding message data, the maximum
grayscale change at the pixel will be (�g)max = 25−1 = 31. And ac-
cording to Constraint (3), gmust be larger than 319, which, however,
is out of the grayscale range [0, 255]. This means that embedding
five or more message bits into a pixel is impractical according to
the principle of JND. As a result, bp4, bp5, bp6, and bp7 are not used
for data embedding in this study. If four LSBs of g are changed, then
(�g)max = 24−1 = 15, and by Constraint (3) we get g > 153. That is,
when the constraint g > 153 is satisfied, we can embed data into
the four LSBs of g without causing a noticeable luminance change
according to the principle of JND.

However, the binary value of 153 is 100110012. After the four
LSBs of g are changed, the new value of g might become a value in
the range of 100100002 through 100110002, which is smaller than
153, causing a violation of Constraint (3). Therefore, we must change
the above constraint g > 153 to be g � 160 where 160 = 101000002
such that after any 4-bit data are embedded into the four LSBs of g,
the resulting value g′ of g will always be larger than 160, thus sat-
isfying Constraint (3). In other words, to meet Constraint (3), only
when a given pixel's grayscale g satisfies g � 160 can the four LSBs
of g be replaced by 4-bit message data. Similarly, if three bits are
changed, then (�g)max = 23−1 = 7, and by Constraint (3) as well as
a similar reasoning process, the constraint g � 72 should be satis-
fied, where 72 = 010010002. If two bits are changed, the constraint
g � 32 is required, where 32 = 001000002. Finally, if one bit is
changed, g � 10 is necessary, where 10 = 000010102. In summary,
we embed an appropriate number B of message bits in a pixel's
grayscale g according to the following rule to satisfy the principle
of JND:

if g�160, then B = 4;

if g�72, then B = 3;

if g�32, then B = 2;

if g�10, then B = 1;

otherwise, B = 0. (4)

To combine the results of the above two considerations, it is not
difficult to figure out that themaximum number of data-embeddable
bits at a pixel should be taken to be E = min(D, B) where D and B are
as specified in (1) and (4), respectively.

Let the grayscale value g of a pixel P in binary form be denoted
as g = (g7 g6 g5 g4 g3 g2 g1 g0)2, and the replacement cost of gi in
the i-th bit plane be denoted as Ci where 0 � i � 3. According to

the previous discussions, Ci is defined in this study as:

if i� (E − 1), then Ci = 8/2(E−1)−i; otherwise, Ci = ∞.

The above definition of cost function gives more penalties to replace-
ments of more-significant-bits. In more detail, we have the following
results:

if E = 4, then C0 = 1, C1 = 2, C2 = 4, C3 = 8, and C4 through C7 = ∞;

if E = 3, then C0 = 2, C1 = 4, C2 = 8, and C3 through C7 = ∞;

if E = 2, then C0 = 4, C1 = 8, and C2 through C7 = ∞;

if E = 1, then C0 = 8, and C1 through C7 = ∞;

if E = 0, then C0 through C7 = ∞.

4. Proposed horizontal data hiding method

The proposed method embeds two types of data into a cover
image: control data and message data. The control data include the
necessary information for use in the data recovery process. All data
are embedded in bit planes bp0 through bp3 sequentially by the block
pattern encoding method described next.

4.1. Block pattern encoding for data embedding

Every 2×2 block in a cover image is regarded as a pattern with
a 4-bit binary value in which each bit of 0 corresponds to a black
pixel and each 1 a white one. A block pattern encoding table is con-
structed, which maps each block pattern into a certain code with
each code being one, two, or three bits of the message data to be
hidden. Data embedding is accomplished by changing the block bit
values so that the corresponding code of the resulting block pat-
tern becomes just some bits of the input message data to be em-
bedded. A possible block pattern encoding table is shown in Table
1. Such a table is just one of the many possible ones which may
be used for data hiding, and the proposed data embedding process
chooses from them an optimal one for each specific input binary
image.

Suppose that we want to embed one bit in a 2×2 block. The
number of possible patterns in a 2×2 block are 16. This number
is much larger than the required number of two to represent the
two different message bits `0' and `1' in a block, so we may use
more than one block pattern to represent a single message bit
(0 or 1), allowing the possibility of choosing among the block
patterns an optimal one to replace the original block in the data em-
bedding process and thus reducing more distortion in the resulting
block. On the other hand, we wish to embed more data in a block,
not just a bit as just mentioned; and for this we use a block pattern
to represent more than one bit. In short, we achieve both minimum-
cost bit replacement and maximum-volume data embedding in the
proposed method.

As an illustration, we may use either the block pattern t1 = 10112
or the pattern t2 = 01112 to represent the two-bit message value
s = 012. When we want to embed the message s = 012 into a block
B with value v = 10102, we have two alternative block patterns
t1 = 10112 and t2 = 01112 to choose to replace v = 10102, instead
of the conventional case of just one. And if we choose t1 = 10112 to
replace v = 10102, then less distortion of just a 1-bit error (occur-
ring at the LSB position) will result. Contrastively, if only one block
pattern, say, t2 = 01112 is available, then an error of three bits will
result, causing more distortion in the resulting block. It is such an
allowance of multiple choices for block pattern replacement that
achieves more distortion reduction. By the way, the bit error is used
here just for convenience of illustration; they in fact should be the
replacement costs defined previously.
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Table 1
A block pattern encoding table proposed in this study.

Type Block pattern Corresponding binary value Encoded message data

0 1111 1

2 1110 00

4 1101 00

6 1011 01

8 0111 01

10 0011 011

12 0101 011

14 1010 010

1 0000 0

3 0001 11

5 0010 11

7 0100 10

9 1000 10

11 0110 100

13 1001 101

15 1100 010

4.2. Data embedding in binary images

The proposed data embedding process in binary bit-plane images
consists of four major steps with two folds of distortion minimiza-
tion, as described in the following:

1. Computing bit costs for data embedding: We calculate the replace-
ment cost value for each bit in the image according to the cost
function defined in Section 3.

2. Dividing the input image into blocks: We first divide each bit plane
bpi, i = 0, 1, 2, 3, into non-overlap 2×2 blocks with every two
neighboring blocks separated by a 1-pixel-wide line of pixels
in between, as shown in Fig. 2. And next, we select the first n
“embeddable” blocks and concatenate them sequentially, where
n is the length of the message data string to be embedded. A block
is said to be embeddable if the replacement cost of any bit of the
block is not infinite.

3. Using multiple block pattern encoding tables to achieve the first-fold
distortion reduction: We generate all possible block pattern en-
coding tables and select an optimal one for use in the data em-
bedding process, in the sense of introducing the least distortion.

Fig. 2. Division of input image into 2×2 blocks with separating lines (grids with
bold boundaries are 2×2 blocks for data embedding).

The reason is that a single block pattern encoding table will not
be suitable for every input binary image; if an image is destroyed
seriously after data embedding using a specific table like Table 1,
it will be appropriate to use another table with other combina-
tions of block patterns to encode the message data. Specifically,
we exchange the encoded message data of certain types in Table 1
with those of the other types in the following way:

exchange message data “0” with message data “1”;
exchange message data “00” with message data “01”;
exchange message data “10” with message data “11”;
exchange message data “010” with message data “011”;
exchange message data “100” with message data “101”;
exchange message data “00” and “01” with message data
“10” and “11”, respectively;
exchange message data “010” and “011” with message data
“100” and “101”, respectively.

By enumerating all possible cases in the above way, we can get
128 distinct tables (numbered from 0 to 127) for selection to
minimize the distortion.

4. Applying search techniques to achieve the second-fold distortion re-
duction: Finally, we apply the dynamic programming technique
to segment the input message data stream optimally into a se-
ries of codes and embed them in the input image, according to
the cost function proposed previously. This reduces the resulting
distortion further in a global sense.

4.3. Search for optimal solutions

The search cost proposed for use in the search technique is the
total replacement cost, computed as the summation of the replace-
ment costs of all the bit changes in the replaced blocks. In Table 1,
block patterns can be used to encode one, two, or three message
bits. Accordingly, when we embed a binary message value v, we
may choose to embed one, two, or three initial bits of v into a block.
We can then calculate the cost for each case, and replace the se-
lected block with the block pattern corresponding to the minimum
cost. This process, quick for embedding message data sequentially
and deterministically, is, however, just a greedy search algorithm and
in general does not yield an optimal solution. An optimal algorithm
based on dynamic programming is proposed next.

4.4. Dynamic programming for data embedding

In the proposed dynamic programming algorithm (abbreviated
as DPA hereafter), edit distances are defined for search cost mini-
mization. Assume that the input message data to be embedded are
in the form of an n-bit string S1 with S1[i] denoting its i-th bit. Also,
let n 2×2 embeddable blocks be selected as a list in advance for data
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embedding and expressed as another string S2 with S2[i] denoting its
i-th block. For convenience, let Sk[i∼j] denote a substring of Sk with
bits or blocks Sk[i] through Sk[j], where k = 1, 2 and i, j = 1, 2, . . . ,n.

Only one type of edit operation, namely, replacement, is used in
the proposed DPA to specify the image block replacement operations
involving S1 and S2 in the proposed data embedding process. The
edit distance between S1 and S2 is defined, according to the previous
discussions, as the minimum total replacement cost to transform S2
into S1 by editing operations according to a certain block pattern
encoding table. Let C be an n×n cost matrix with its element C[j, i] de-
noting the minimum total replacement cost to transform a substring
S2[j∼m] of S2 into a substring S1[i∼n] of S1, wherem � n. Then C[1,1]
is the minimum total replacement cost to transform S2[1∼m] into
S1[1∼n] (i.e., to transform the substring of S2 into the entire string
of S1), where 1 � m � n. Also, let RC be a cost function with each
of its element RC(j, i, �) denoting the minimum replacement cost for
replacing the j-th block S2[j] of S2 with the block pattern which en-
codes the initial � bits of the substring S1[i∼n] of S1 with � = 1, 2, or
3. We define RC(j, i, �) = ∞ if i+� > n+1.

By the above definitions, the value C[j, i] is recursively just the
minimum of all the possible values of RC(j, i, �)+C[j+1, i+�], where
� = 1, 2 or 3. Also, we define C[j, i] = 0 if i > n or j > n. Then, accord-
ing to dynamic programming, the minimum search cost and its cor-
responding solution may be computed by the following algorithm.

Algorithm 1. Computing minimum search cost for minimizing dis-
tortion by the DPA.

Input: (1) an n-bit message data string S1; (2) a string S2 of n selected
blocks; (3) a block pattern encoding table T; (4) an n×n cost
matrix C[j, i], for i, j = 1, 2, . . . ,n; (5) an n×n type matrix I with its
element I[j, i] used for recording the block pattern in T used for
replacing S2[j] in calculating C[j, i]; and (6) an n×n segmentation
matrix Nwith its element N[j, i] used for recording the number
of initial bits of S1[i∼n] used in calculating C[j, i].

Output:C[j, i], I[j, i], and N[j, i] for all i, j = 1, 2, . . . ,n.
Steps:

1 Set all C[j, i] initially to be ∞ for all i, j = 1, 2, . . . ,n.
2 Starting from i = n and j = n, for each pair of (j, i) with i, j = 1,

2, . . . ,n, perform the following steps.
2.1 If C[j, i] is equal to ∞ , continue the next step (Step 2.2); else

increment i and j to calculate the next C[j, i].
3.1 Take C[j, i] to be the minimum of the three replacement costs,

RC(j, i, 1)+C[j+1, i+1], RC(j, i, 2)+C[j+1, i+2], and RC(j, i, 3)+C[j+1,
i+3]; and record the corresponding number of the processed
initial bits (1, 2, or 3) of S1[i∼n] inN[j, i], and the corresponding
type of the used block pattern of T in I[j, i].

In the above algorithm, the number of initial bits of S1[i∼n] and
the used block pattern type in each recursive step are recorded in
matrices N and I, respectively, which are used in the data embedding
process, as described in the next algorithm.

Algorithm 2. Data embedding using block pattern encoding tables
and the DPA.

Input: (1) a grayscale image G; (2) a secret message data string
S1 with n bits; (3) a control message data string Sc with m bits,
including a table number Topt (specifying the block pattern encod-
ing table used) with seven bits, followed by a value Lopt (specify-
ing the number of selected blocks used) with m – 7 bits; and (4)
128 block pattern encoding tables.
Output: a stego-image G′.
Steps:
1. Compute the cost of each bit of G as mentioned previously.

2. Get a list Bm of m 2×2 embeddable blocks sequentially from
the bit planes bp0 through bp3 of G in order for embedding the
m bits of Sc. Following Bm, get also a list Bn of n 2×2 embeddable
blocks sequentially for the n bits of S1. Let Bm and Bn also include
the position information of each selected block.
3. For each block pattern encoding table T among the input 128
ones, with S1, Bn, and T as input, apply Algorithm 1 to calculate
the cost matrix C[j, i], the type matrix I[j, i], and the segmentation
matrix N[j, i] for all i, j = 1, 2, . . . ,n.
4. Find the minimum Cmin of the 128 values of C[1,1], and set
Topt to be the table number of the corresponding block pattern
encoding table used in computing Cmin.
5. Use the block pattern encoding table Topt, the type matrix Imin,
and the segmentation matrix Nmin corresponding to Cmin, and the
position information of each block in Bn, to embed the string S1
into bp0 through bp3 of G to get an initial stego-image Gi.
6. Set the value Lopt to be the number of the blocks used for
embedding S1 in the last step.
7. Using Sc (including Topt and Lopt), Bm, and T = 1 as input, apply
Algorithm 1 to calculate the cost matrix C[j, i], the type matrix
I[j, i], and the segmentation matrix N[j, i] for all i, j = 1, 2, . . . ,m.
8. Use the block pattern encoding table, Table 1, the type matrix
I and the segmentation matrix N in the last step, and the position
information of each block in Bm , to embed the substring Sc into
bp0 through bp3 of Gi to get the final stego-image G′.

5. Proposed data recovery process

The goal of data recovery is to extract the embedded message
data from a stego-image, as described in the following algorithm.

Algorithm 3. Message data recovery.

Input: a stego-image G′ including a message bit stream S.
Output: the message bit stream S.
Steps:
1. Calculate the cost of every bit of G′ as mentioned previously.
2. Get m 2×2 embeddable blocks sequentially from bp0 through
bp3 of G′ as a list Lm.
3. For each 2×2 block P of Lm, compute the binary value v cor-
responding to the block pattern, and decode v by looking v up
in the block pattern encoding table 1 to get the corresponding
encoded message data bits as the data recovery result of P.
4. Concatenate the initial m data bits extracted in the last step
into a sequence as a desired control message data Sc.
5. Get the initial 7 data bits of Sc as Topt, and the remaining m − 7
data bits of Sc as Lopt, which specify, respectively: (1) the optimal
block pattern encoding table Topt used in data embedding; and
(2) the number of 2×2 blocks of G′ used in embedding Sc in the
bp0 through bp3 of G′.
6. Also, get Lopt 2×2 selected blocks sequentially from bp0 through
bp3 of G′ as a list L.
7. For each 2×2 block P of L, compute the binary value v corre-
sponding to the block pattern, and decode v by looking v up in
the block pattern encoding table Topt to get the corresponding
encoded message data bits as the data recovery result of P.
8. Concatenate all the data bits extracted in the last step into a
sequence as the desired message bit stream S and exit.

For security consideration, we encrypt further the control mes-
sage by a secret key before the data embedding process, and em-
bed the result into bp0 through bp3 at bit positions randomly gener-
ated with a distinct secret key as well as a random number genera-
tor. The reverse process can be easily performed to get the original
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control message. The same method is also applied to the message
data to get a higher degree of data protection.

6. Experimental results

Figs. 3 and 4 illustrate some experimental results of applying
the proposed method with randomly generated bit streams as the
message data. The stego-image “House” of size 256×256 with a high
PSNR value of 52.89dB obtained by embedding 16440 bits (about
2kB) message data using the DPA and the optimal block pattern
encoding table among the 128 ones is shown at the right side of

Fig. 3. A cover image “House” with the size of 256×256 and its stego-image with
16440-bit message data embedded. (a) The cover image. (b) The stego-image.

Fig. 4. Experimental results of three images. (a) The original images and their corresponding bit planes (repeated from Fig. 1). (b) The resulting three stego-images and their

corresponding bit planes (from left to right, bp0, bp1, bp2, . . . ,and bp7, respectively).

Table 2
Statistics of stego-images yielded by DPA using optimal encoding table.

Stego-image Message data length (bytes) PSNR (dB) Table number No. of used blocks Cost value Embedded bit number per block

Lena (128×128) 100 55.48 4 428 1023 1.869
200 55.27 8 779 1774 2.054
400 55.38 57 1636 3243 1.956
600 51.91 57 2297 5680 2.09
800 49.28 57 3101 8355 2.064

1000 45.65 8 3826 11699 2.091
1200 43.06 57 4295 16248 2.235

Fig. 3 The cover image is shown in the left side of Fig. 3 for compar-
ison. The result shows that the proposed method can be applied to
embed message data in a grayscale image and obtain a good-quality
stego-image without noticeable artifacts in smooth regions.

Fig. 4(b) illustrates three stego-images “House”, “Lena” and “Jet,”
and their 8 corresponding bit planes. For comparison, the cover im-
ages in Fig. 1 are repeated in Fig. 4(a) here. These 128×128 stego-
images were obtained by embedding 1000 bytes of message data.
The PSNR values are 42.31, 45.65 and 44.88dB, respectively. Com-
pared with the cover images in Fig. 1 and their 8 corresponding bit
planes, it can be seen that the stego-images retain most significant
textures.

Table 2 summarizes the statistical data of the stego-image “Lena”
using the DPA and the optimal encoding table with the message bit
stream generated randomly.When the amount of the embedded data
is smaller than 600B, the PSNR values in Table 2 are all larger than
50dB. And the differences in the stego-images cannot be noticed by
human eyes.

The proposed DPA method takes long computation time to obtain
the optimal solution when the volume of the message data is large.
If time is a major concern, then the greedy search method men-
tioned previously may be used. As a comparison, we list in Table 3
the run times spent by the proposed methods (DPA and greedy
search) and two others on a PC with a 3.4G Pentium 4 CPU for some
grayscale images with two typical image sizes and three input mes-
sage lengths. One of the two other methods is the simplest “1-LSB”
which embeds message data in the LSB of each pixel. The other
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is “Hide4PGP” whose program was downloaded from the website
http://www.heinz-repp.onlinehome.de/Hide4PGP.htm. As can been
see from the table, the DPA takes about a minute to embed amessage
of 200 bytes and more than 15minutes to embed 1200-byte data,
while all the other three methods takes little times to accomplish the
works. Therefore, the DPA currently can only be used for non-real-
time applications with the need of distortion reduction, though the
greedy search method may be used as a suboptimal substitute of it.

We also conduct an additional comparison of image distortion
caused by the above-mentioned four methods for the same set of
images of Table 3. The result is shown in Table 4 from which we see
clearly that the proposed DPA method yields the largest PSNR values
for all the tested images, indicating its effectiveness for reducing
image distortion.

Finally, we applied steganalysis to the four the methods using
a software tool available at http://diit.sourceforge.net, which is an
open-source implementation of RS analysis developed by Fridrich
et al. [14]. We made a comparison of the analysis results shown in
Table 5. Because the tool was designed for 24-bit color images with
three color channels, we apply the proposed DPA and the greedy
search method by embedding the message data evenly into image
blocks of the three channels of R, G, and B. The third column in
Table 5 specifies the detectedmessage length of the cover image. This
length value may be regarded as a “bias” of the RS detector, which
supposedly should be zero because nomessage is hidden in the cover
image. The last four columns specify the detected message lengths
of the four methods, from whose contents we see that the DPA
method is more robust against steganalysis than the greedy search
method, and is not obviously so when compared with the other two
methods.

Table 3
Comparison of run times for four methods for grayscale images (in unit of s).

Size Stego-image DPA Greedy search 1-LSB Hide4PGP

256×256 Lena256+200B 60 0.079 0.00016 0.0068
Lena256+1200B 2112 0.437 0.00097 0.0072
House256+200B 60 0.079 0.00016 0.0068
House256+1000B 1473 0.366 0.00081 0.0071
Jet256+200B 59 0.079 0.00016 0.0068
Jet256+1200B 1082 0.439 0.00097 0.0072

Table 4
Comparison of PSNR values of the four methods for grayscale images (in unit of dB).

Size Stego- image DPA Greedy search 1-LSB Hide4PGP

256×256 Lena256+200B 55.40 54.59 51.11 51.15
Lena256+1200B 55.19 54.59 51.14 51.12
House256+200B 55.58 54.72 50.95 51.16
House256+1000B 55.41 54.66 51.08 51.08
Jet256+200B 54.86 54.55 51.03 51.03
Jet256+1200B 55.28 54.60 51.10 51.24

Table 5
Comparison of RS analysis results of the four methods for color images.

Size Cover image C Detected message
length of C

Stego-image S Detected message
length of S yielded
by DPA

Detected message
length of S yielded
by greedy search

Detected message
length of S yielded
by 1-LSB

Detected message
length of S yielded
by Hide4PGP

256×256 Lena256 379.58B Lena256+200B 458.42B 497.65B 529.13B 510.38B
Lena256 379.58B Lena256+1200B 1174.06B 1378.88B 1737.28B 999.68B
House256 508.05B House256+200B 596.93B 626.86B 561.83B 552.40B
House256 508.05B House256+1000B 1330.27B 1646.94B 1607.94B 1310.35B
Jet256 731.17B Jet256+200B 751.60B 839.44B 819.19B 772.44B
Jet256 731.17B Jet256+1200B 1341.43B 1403.21B 1244.48B 1406.40B

7. Discussions and conclusions

A data hiding method for hiding messages into grayscale im-
ages with distortion reduction effects have been proposed. Two
novel techniques for reducing distortions in stego-images have been
adopted, one being an optimal dynamic programming algorithm, and
the other the use of multiple block pattern encoding tables. First, a
cost function has been proposed to estimate the weight of each bit
in each pixel to be replaced according to an HVS model. Next, a hor-
izontal data hiding scheme in which message data are embedded in
a sequence of bit planes has also been proposed to decrease possible
distortions in stego-images. Also, an optimal block pattern encoding
table is chosen from 128 alternative ones for use in data embedding
to minimize image distortion. The encoding tables are designed in
such a way that up to three bits in a 2×2 image block can be embed-
ded. Finally, the proposed method minimizes further the distortion
using dynamic programming based on the proposed cost function.

The proposed dynamic programming algorithm has quadratic
space and time complexities, and so takes long time to embed a long
secret message. For applications with concerns of distortion reduc-
tion, the proposed method is good to use. If computation speedup
is desired, the proposed greedy search algorithm may be applied. If
high-speed processing is necessary, our method can be adapted to
run on a parallel computer with each of the 128 block pattern en-
coding tables processed separately, and the dynamic programming
steps parallelized.

At least two approaches may be adopted to make the proposed
method more robust. First, multiple copies of a secret message may
be embedded in the input image randomly with control by a key, so
that an attack will not entirely destroy the secret information. And
after the data are extracted by the proposed method, we may apply
a voting scheme to recover the secret. The second approach is to try
to place secret data in the more-significant-bits of the cover image,
for example, in bp2 and bp3 in the proposed method, assuming that
most attacks to BMP images are conducted to the LSBs. Because
the information encoded in these bit-planes cannot be removed in
most applications (otherwise, the image will be seriously distorted
or destructed), hopefully this method will work in real applications.

Future works may be directed to extending the proposed method
to process blocks larger than 2×2, resulting possibly in greater re-
duction of image distortion. It is also possible to embed multiple
message data in a grayscale image for protecting the intellectual
property right and authenticating multimedia data, to define more
general cost functions for other HVS models, and to design better
encoding tables to reduce image distortion further.
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