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An Effective Scheduling Approach for Maximizing
Polyimide Printing Weighted Throughput

in Cell Assembly Factories
S. H. Chung, Y. T. Tai, and W. L. Pearn

Abstract—Polyimide printing (PI) is an important process op-
eration but also often the cause of bottlenecks in capital-intensive
cell assembly factories. Therefore, the development of an effective
scheduling method to maximize throughput in this PI process
is essential and difficult. In the polyimide printing scheduling
problem (PISP), jobs are given weights and clustered by their
product types, which must be processed on identical parallel PI
machines. The setup times for two consecutive jobs between dif-
ferent product types in the PI machines are sequence-dependent.
In this paper, the PISP is formulated as a mixed integer linear
programming model. The PISP is also transformed into a multiple
tour maximum collection problem (MTMCP), a well-known
network problem which has been investigated extensively. Based
on this transformation, one can therefore solve the PISP near-op-
timally using the efficient algorithm.

Index Terms—cell assembly, multiple tour maximum collection
problem, scheduling, sequence-dependent setup time.

I. INTRODUCTION

I N recent years, applications of thin-film transistor liquid
crystal display (TFT-LCD) products have been increasing

rapidly, for example, cellular phones, computer monitors,
and LCD TVs. Not surprisingly, TFT-LCD manufacturing
has attracted much attention. The TFT-LCD companies are
being forced to increase their revenue and profits in order to
maintain the necessary billion-dollar factories. Therefore, the
development of an efficient and effective scheduling method
to maximize the weighted throughput and to enhance the
utilization of critical resources is essential and important.

The four major stages of TFT-LCD manufacture include the
TFT array process, the color filter (CF) process, the cell as-
sembly, and the module assembly, as depicted as Fig. 1. The
TFT array and color filter processes are usually referred to as the
“front-end,” while the two assembly processes are referred to as
the “back-end” of production. In the back-end operations, the
cell assembly process prints polyimide films onto the cleaned
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Fig. 1. TFT LCD process flow.

Fig. 2. Cell assembly process flow.

TFT array and CF substrates using the Asahi–Kasei Photosen-
sitive Resin (APR) plate. Then the surfaces are rubbed to orient
the polyimide films in one direction. Next, spacers are sprayed
onto the TFT substrate and sealants are dispensed onto the CF
substrate to maintain a fixed distance between the TFT and CF
substrates. Following this, the TFT substrate and the CF sub-
strate are positioned and assembled with an extremely high level
of accuracy, and the spaces between them are filled with liquid
crystal. Finally, the assembled substrates are sealed and attached
to polarizers. Fig. 2 shows the cell assembly process flow.

Polyimide (PI) printing usually causes a bottleneck in pro-
duction because it involves the most expensive equipment (over
three million U.S. dollars each) in cell assembly factories. PI
machines print the polyimide films onto TFT/CF substrates uni-
formly using the APR plate, as depicted in Fig. 3. The polyimide
films can help to position the direction of the liquid crystal. For
the polyimide printing scheduling problem (PISP) being inves-
tigated in this paper, the jobs are stacked on the TFT/CF sub-
strates in cassettes comprising 20 pieces each, which are clus-
tered according to their product types and processed on identical
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Fig. 3. Side view of the APR plate in a PI machine.

parallel PI machines. Furthermore, the job processing time may
vary depending on product type as different product types usu-
ally are printed using a specific type of APR plate. Setup times
for two consecutive jobs of different product types on the same
machine are sequence dependent.

The two major performance criteria for PI printing are the
number of moves and the achievement of daily production tar-
gets for each product type. A move is defined as the comple-
tion of one substrate plate processing on a PI machine. To pre-
vent shop floor operators from simplifying the production line,
which results in the production of only one product type, a shop
floor scheduler sets daily production target volumes to ensure an
efficient production flow for downstream equipment and to pro-
duce the required monthly product mix. Initially, a job is given
a weight which is determined by the factors such as job’s profit,
customer importance, and market liquidity. However, the ini-
tial weighting can be adjusted in order to meet daily production
targets and to reflect the target-related moves by being given a
higher weight. In general, jobs clustered in the same product
type are given the same weights initially. When jobs are associ-
ated with daily production target volumes, they are given higher
weights than the other jobs of the same product type in order
to schedule them appropriately. In this paper, it is assumed that
the weight of each job is usually determined by experts and this
process is beyond the scope of this paper.

Since the polyimide printing scheduling problem (PISP) in-
volves constraints on job-dependent processing time, weight,
daily production target, machine capacity, and sequentially de-
pendent setup time, it is more difficult to solve than the classical
parallel machine scheduling problems considered by So [1] and
Tovia et al. [2]. In this paper, the criterion of maximum weighted
throughput has been used to determine the appropriate subset of
jobs for the PISP. Using the three-field notation of Graham et
al. [3], this scheduling problem is described as

, where is the weight of job with product type
and is a 0–1 variable indicating whether the job with

product type is completed or not in the schedule. In the third
field of this notation, minimizing the weighted number of tardy
jobs can be viewed as maximizing weighted throughput. In this
paper, the PISP is first formulated as a mixed integer linear pro-
gramming (MILP) model. This model considers different job
weights, sequence dependent setup times, and finite machine
capacities. Also, it should be noted that the multiple knapsack
problem is the special case of PISP mainly because the former
unlike the latter, does not consider sequence dependent setup
times; that is, PISP is NP-hard in the strong sense. To overcome
the limitation of the MILP model; specifically, its inability to
solve large-scale problems within a reasonable computational
time, an efficient transformation which theoretically converts

the PISP into the multiple tour maximum collection problem
(MTMCP) is presented here. That is, MTMCP, also referred to
as the team orienteering problem (TOP), is a well-known net-
work problem which has been investigated extensively [4]–[8].
The transformation allows the use of the existing algorithm to
solve the PISP efficiently.

This paper is organized as follows. Section II presents a brief
review of the related literatures. Section III provides the math-
ematical formulation for the scheduling problem. Section IV
shows the network transformation, and Section V gives an illus-
trative example to demonstrate the transformation. This paper
also presents a heuristic algorithm to solve this example and
to develop a procedure to identify an upper bound. In addition,
real-world applications have been provided in Section VI. Exact
solutions and upper bounds are used here as convenient refer-
ence points for evaluating the accuracy and effectiveness of the
heuristic algorithm. Finally, Section VII provides the conclu-
sion.

II. LITERATURE REVIEW

During the last decade, there have been many researchers
who have investigated the identical parallel machine scheduling
problem which is dependent on the completion time of all jobs.
The objectives usually involve (see Cheng and Sin [9] for a
comprehensive survey) completion time-based [10], due-date
based [11], [12], and flow-time based [13], [14] performance
measures, etc. However, So [1] points out that determining
the best schedule to process all the jobs currently on hand
is not practical. Instead, he suggests choosing one subset of
jobs for which to construct daily work schedules according
to the existing capacity and demand. However, the PISP we
investigated in this paper selects the appropriate job set to
maximize weighted throughput by considering setup times and
job weights.

There are relatively few papers, as can be seen in Table I,
which addressed the scheduling problem with a throughput
objective. Hwang and Chang [15] and Tovia et al. [2] have
focused on the semiconductor manufacturing process and
assumed that setup times are negligible. Hwang and Chang
[15] have designed a Lagrangian relaxation-based hierarchical
production scheduling engines to maximize total number of
weighted moves in semiconductor manufacturing. Tovia et
al. [2] have presented a mathematical programming model
and a rule-based heuristic approach to solve a throughput
maximization problem in a semiconductor packaging factory.
Furthermore, Baptiste et al. [16] and Fung et al. [17] have con-
sidered the preemptive scheduling problem with equal length
processing and negligible setup time. However, setup times and
nonpreemptive scheduling characteristics of the polyimide (PI)
printing process are essential and significant in cell assembly
factories.

Allahverdi et al. [20] conducted an extensively survey for the
scheduling problems which involve setup times. They pointed
out that So [1] is the only one who has considered a total re-
ward objective for parallel machine scheduling problems prior
to 1999. So [1] considered an analogous version of the PISP and
presented three heuristics to solve the problem approximately.
He tackled a problem that existed in a minor setup time between
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TABLE I
LITERATURE RELATED TO WITH A THROUGHPUT MAXIMIZATION CRITERION

jobs of the same family and a major setup time between jobs
from different groups. According to the classification presented
by Allahverdi et al. [20], what So [1] considered classified to
the sequence independent batch setup times, which is the spe-
cial case of sequence dependent setup time. Since 1999, with
respect to the total weight of completed jobs, Hiraishi et al. [18]
and Rojanasoonthon et al. [19] have maximized the weighted
number of just-in-time jobs and the weighted number of sched-
uled jobs, respectively, as solutions to the scheduling problems
they investigated. However, Hiraishi et al. [18] in their consid-
eration of JIT job and Rojanasoonthon et al. [19] in their ex-
amination of strict order of priority in job completion schedule,
both limit and reduce the throughput of parallel machines.

The amount of available literature which investigates
TFT-LCD factories is limited. Jeong et al. [21] presented
mathematical models and proposed two heuristic algorithms
to minimize flow time and to maximize the fulfillment of
production demands in cell assembly processes. Shin and
Leon [22] discussed the liquid crystal display module stage
scheduling problem. They provided two heuristics based on
the MULTI-FIT method and tabu search to minimize total
tardiness and number of family setups. This paper investigates
the weighted throughput criterion of a TFT-LCD which, till
now, has been ignored.

III. INTEGER PROGRAMMING FORMULATION

We formulate the MILP model for PISP and define a product
types set , containing product
types. Each contains a subset ,
representing the job set, which could be processed on the ma-
chine set containing identical

machines. Term is the total job numbers of product type . We
denote that contains jobs and denotes the idle status
of the parallel machines. Associated with each piece of one
job in product type is a unit processing time denoted by . Let

be the job size for each job. Thus, the job processing time can
be represented as . Associated with each job is a non-
negative weight denoted by . Let Cap be the limited machine
capacity for each machine. The “minute” is used as the unit for
machine capacity. Moreover, a setup time is incurred with dif-
ferent product types. When job immediately succeeds job

on machine , a setup time happens. The setup time
is a sequence-dependent setup times. Before the mathematical
model is presented, the notations of decision variables used in
the formulation are listed in the equation at the bottom of the
page.

Decision Variables: The definition of
is the set of jobs sched-

uled to be processed on machine . The mathematical formu-
lation of the PISP is shown as follows:

Maximize (1)

subject to

for all (2)

for all (3)

Capacity Constraints:

���, for all (4)

Precedence Constraints:

for all (5)

for all (6)

for all (7)

for all (8)

if job is scheduled to be processed on machine
otherwise.

if job is scheduled following job on machine
otherwise.

if job is scheduled immediately following job on machine
otherwise.
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for all (9)

for all (10)

for all (11)

for all

(12)

for all (13)

for all (14)

Binary Variables:

for all (15)

for all (16)

for all (17)

The objective function (1) states that the total weighted
throughput is to be maximized over all the machines. Con-
straint (2) ensures that each job is scheduled on at most one
machine. Constraint (3) guarantees that only one pseudo-job

is scheduled on a machine. For instance, the idle status of
machine is assigned pseudo-job ; thus, . The
advantage of the pseudo-jobs is that they represent the setup
times from the idle status to the processing status of first job
in order to assist the functioning of the precedence variables.
Constraint (4) is the capacity constraint, which forces the
summation of the processing times and setup times incurred by
the scheduled jobs (involving the pseudo-job) for each machine
within the available capacity. In cell assembly factories, jobs
are stacked on the TFT/CF substrates in cassettes of 20 pieces.
Therefore, the is set to 20 throughout this paper. Due to the
manufacturing process being nonpreemptive, the production
quantity of job is , and is dependent on whether
the job is scheduled on the machine or not

. Thus, the total production quantity of PISP for
each machine is equal to . Further, the
summation of the job processing times on each machine can
be represented as . Constraints (5)–(14)
are the precedence constraints; however, constraints (11)–(14)
are the directly related ones. Constraints (5) and (6) guarantee
that one job should precede another
when job and job are scheduled on the same machine
( and ). Term represents a sufficiently
large constant, so that constraints (5) and (6) are satisfied for

. Pearn et al. [23] suggested that the
can be chosen as . More-
over, constraint (7) ensures that the precedence variables

should be equal to 0, when any
two jobs and are not scheduled on machine

. Constraint (8) indicates the situation
that one job is scheduled on machine and job is
scheduled on another machine ( and ), then

the precedence variables ( and ) should be set to
zero. Constraint (9) guarantees the situation that the precedence
variables ( and ) should be equal to 0 when one
job is scheduled on machine and job is scheduled
on another machine ( and ). Constraint (10)
ensures that job precedes job when
job precedes job and job precedes job

.
Constraint (11) is a contingent constraint. That is, if the job

could precede job directly , then the job
should precede job . Constraint (12) indi-

cates that there should exist direct-precedence variables,
which are set to one, on the schedule with jobs. Constraint
(13) ensures that at most one job can be scheduled behind
job directly for all the jobs, which are scheduled on the same
machine . Similarly, constraint (14) ensures that at most one
job can be preceded job directly for all the jobs, which
are scheduled on the same machine . Constraints (15)–(17)
indicate that and are binary integer vari-
ables. The total number of variables is , and
the total number of constraints is

where .

IV. NETWORK TRANSFORMATION

In this section, we consider a transformation, which converts
the PISP into the multiple tour maximum collection problem
(MTMCP), which has been investigated extensively [4]–[8].
The first published reference to the MTMCP is in a paper which
is concerned with the recruitment of high school athletes for a
university football team [4]. From prior experience, the coach
involved finds it is impossible to visit all of the surrounding
high schools. Therefore, in order to maximize the recruiting
results within limited time, the coach decides to visit a best
subset of these high schools which represents those that have
achieved high potential based on past performance. As a result
of this approach, the following options are possible for each
tour taken by the coach: 1) no school is visited; 2) one athlete is
visited at one school; 3) multiple athletes are visited at the same
school; 4) multiple athletes are visited at multiple schools. The
transformation steps, which convert the PISP into the MTMCP,
are presented as follows.
Step 1) (Network construction) Construct a network

with representing the set of nodes and
representing the set of edges. In the network

, each edge in is associated with dis-
tance . The node set consists of
the following subsets: and . The subset

is the set of depot
nodes representing the machines. Here, con-
sists of subsets, , which are
the demand nodes representing the product types.

Step 2) (Network expansion) Copy each node in as its
dummy node in . The subset

is the set of dummy depot nodes du-
plicated from . Also, add a subset
which contains a super depot node .

Step 3) (Node collection time assignment) For the super
depot node in , the depot nodes in , and the
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Fig. 4. Transformed network for the PISP with six subsets, �’s, of the edge
set �.

dummy depot nodes in , the node collection
time is set to 0. For the nodes in subset , the
node collection time is set to , which is equal
to the processing time of job in the PISP.

Step 4) (Node reward assignment) For the super depot node
in , the depot nodes in , and the dummy depot
nodes in , the node reward is set to 0. For the
nodes in subset , the node reward is set to ,
which equals to the job weight of job in the PISP.

Step 5) (Edge distance assignment) Edge set can be ex-
pressed as and depicted as Fig. 4. The
definitions of each subset of edge set are described
in detail later in this section. It should be noted here
that the value of the edge distance is the setup time
incurred with different product types in the PISP.

Edge set can be expressed as follows, where
represents a set of di-

rected edges from the super depot node to the depot
nodes , and a set of directed edges from the dummy
depot nodes to the super depot node . Each edge

in represents distance . The edges in
ensure that exactly tours (the total number of machines)
will be obtained in any feasible solution. A tour selecting
an edge in indicates that the tour is initiated or termi-
nated.

represents a set of directed edges from
the depot nodes to the corresponding dummy depot
nodes . Each edge in represents distance

. The edges in will be routed to form a tour
(machine schedule), if no demand nodes are serviced by
that tour (the machine will be idle in this case).

represents a set of directed edges from
the depot nodes to the demand nodes . Each edge

in represents the distance equal to the setup time
. A tour selecting an edge in shows that a

demand node in is to be serviced. That is, a job of
product type is scheduled on a machine as the first job to
be processed.

represents a set of directed edges from
the same node of demand nodes in the same product

type . Each edge in represents distance
. A tour selecting an edge in indicates that the tour

services a demand node associated with product type in
immediately after completing the service of a demand

node in the same product type in .

represents a set of directed edges in the
demand nodes . Each edge in represents the
distance equal to the setup time . A tour selecting
an edge in indicates that the tour services a demand
node in immediately after completing the service of a
demand node in .

represents a set of directed edges
from the dummy demand nodes to the dummy depot
nodes . Each edge in represents the distance
equal to the setup time . A tour selecting an edge
in indicates that the tour completes the service of its last
dummy demand node in and returns to the depot. That
is, a job in is scheduled as the last job on the machine.

Thus, the transformation converts a PISP with machines
and product types of jobs containing jobs into
the MTMCP. The network that transformed from the PISP to
the MTMCP contains nodes and

edges.
In the transformed network, we know MTMCP feasible tours

are the following four situations: 1) - - ; 2) - -
- ; 3) - - - - ; 4) - - - - - . In the first
situation, it represents that the tour services no demand node. It
states the recruiter dose not visit any member in surrounding
high school football team. In the second situation, it represents
that the tour services a demand node from one single cluster. It
states that the recruiter only meets with one high school student
in just one school. If the recruiter meets with two students in one
school, then the edge sequence would be - - - - in
the third situation. In the fourth situation, it represents that the
tour services two demand nodes from different clusters (with
changing the processing of job clusters only once). It states the
recruiter visit two high schools in his limited class time. If three
demand nodes with changing the processing of job cluster twice,
then the traveling time (including initial setup time (loading
time), process time, setup time for two consecutive jobs of dif-
ferent product types on the same machine, and unloading time)
would be the same as the total time required for the recruiter
(machine) leave his college to meet (process) with football team
members (jobs) in different high schools (job clusters). The total
scores associated with each high school visited are the same as
the weighted throughput of the serviced jobs. Consequently, any
feasible MTMCP tour can be converted into a PISP schedule
with equal solution value.

On the other hand, any feasible PISP schedule on a machine
can be converted into a MTCMP on the transformed network.
The job schedules in any PISP solution must also contain the fol-
lowing cases: 1) no jobs are scheduled on the machine; 2) only
one job scheduled on a machine; 3) multiple jobs of the same
product type are scheduled on the machine; 4) multiple jobs of
different product types are scheduled on one machine. If no jobs
are scheduled on a machine, then it represents that the machine
is in idle status. The tour corresponding to the schedule must be
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the situation - - , with traveling time and total score are
both 0. If only one job scheduled on a machine, then the tour cor-
responding to the schedule must be the situation - - - .
If multiple jobs of the same product type are scheduled on the
machine, then the setup time for two consecutive jobs of dif-
ferent product types on the same machine does not occur at that
machine. The tour corresponding to the schedule must be the
situation - - - - . Clearly, no edges in will be in-
cluded in the tour. Finally, if multiple jobs of different product
types are scheduled on one machine, then the tour corresponding
to the schedule must be the situation - - - - - for
three jobs changing the processing of product type once, and

- - - - - - for four jobs changing the processing
of product type twice. The total required for the machines to
process those jobs would be the same as the traveling time for
the recruiter to visit those high school football team members.
The total weighted throughputs of the scheduled jobs are the
same as the total scores associated with each high school vis-
ited. Consequently, any feasible PISP schedule can be converted
into a MTMCP tour with equal solution value.

V. SOLUTIONS OF PISP

In this section, we present a heuristic procedures proposed
by Butt and Cavalier [4] on the transformed network to solve
the PISP efficiently. We then present an algorithm to identify
an upper bound in order to enable accessing the quality of the
solution determined by the heuristic algorithm applied in the
PISP. Finally, an illustrative example is provided.

A. Heuristic Algorithm

The maximizing importance of the MTMCP procedure,
named MAXIMP (MAXimize IMPortance), developed by
Butt and Cavalier [4] on the transformed network is presented.
There are two main stages in the MAXIMP algorithm. The
first stage constructs the joined weight table (JWGT) list and
the reward (RWD) list. The RWD is a list of the job indices in
descending order of their corresponding weights. The joined
weight table (JWGT) is also a list of the job pairs in descending
order of their corresponding joined weights. The joined weight
is used to calculate the total weight of a job pair in the time
unit. The equations used for this calculation are defined as
follows: for all pairs of jobs and , where
and do not hold simultaneously, is equal to

, and the term denotes an
idle machine status and Cap is the capacity of one machine:

��� (18)

��� (19)

The weight for each job pair is defined as

(20)

The two weight types, and , apply dif-
ferent approach to define the best two-job combinations [4].

is used to find those job pairs associated with greater

weights for the total time needed to setup and process. Thus, the
job pairs associated with great weights and setup times would
be favored using this weighted type. On the contrary,
generates the great values when is small. Job pairs have
small setup times would be favored. Therefore, Butt and Cava-
lier [4] created the joined weight, which calculated using (20), to
obtain the alternative solutions to MTMCP by varying the value
of . After the JWGT list is constructed, some job pairs should
be removed from the JWGT list when ��� because
the summation of setup times and processing times exceeds the
machine capacity.

In the second stage of the MAXIMP procedure, each route
on the parallel PI machines is constructed using the same pro-
cedure. First of all, the top job pair in JWGT list is chosen and
assigned to one machine . Second, a candidate job is deter-
mined by moving down the JWGT list from the current posi-
tion until a job pair is found, which contains one job assigned
to machine and one job that is unassigned. The selected job
is then inserted using a TSP calculation. At the same time, the
total traveling time must not violate the capacity limitation.

Finally, it needs to perform the final tour check to see whether
the weight associated with the job at the top of RWD list is
greater than the summation of the weight collected from the
jobs assigned to machine . When the occurrence happens,
the jobs currently assigned to machine should be removed
and assign only the top of job in RWD list to machine . The
tour construction and insertion procedures are repeated until all
machines are arranged.

B. Upper Bound

An upper bound is also proposed to be used as a convenient
reference point for accessing the accuracy of the efficient
algorithm applied in the PISP. The PISP tackles the problem
characterized by sequence-dependent setup times, for which
the setup matrix is an asymmetric matrix. We modify the
concept of Yalaoui and Chu [24] to obtain the upper bound. For
the estimated setup time, the summation of all minimal setup
times among different product types are considered as being
the proportional to the load ratio, which is the result of the
division of total machine capacity by the total processing time
of all jobs. The procedure used to calculate the upper bound is
as follows.
Step 1) Calculate the estimated setup capacity which is

proportional to the load ratio:

���

where .
Step 2) Calculate the remaining capacity .

���

Step 3) Define an index called weight ratio respecting the di-
vision of weight by corresponding processing time.
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TABLE II
SETUP TIMES REQUIRED FOR SWITCHING ONE PRODUCT TYPE TO

ANOTHER FOR � �� , AND � . (UNIT: MINUTES)

Sort the weight ratios in descending order of mag-
nitude. Choose the jobs from the top of the list until
the remaining capacity is fully utilized.

Step 4) Calculate the upper bound of total weighted
throughput from the selected jobs.

C. Illustrative Example

The PISP example contains a set job of three independent
product types: , and . Job cluster 1 (product type
A) contains four jobs, , and . Job cluster 2
(product type B) contains four jobs, , and .
Job cluster 3 (product type C) contains three jobs, , and

. One job is stacked in a cassette containing 20 pieces of a
particular product; thus, for , and

. These jobs are nonpreemptive and can be processed
on either one of the two identical PI machines ( and ). The
unit processing time of each job is unaffected by the machine
processing it.

The limited capacity of each machine is 1440 min. The in-
dividual plate processing time of the three product types, A,
B, and C is 12, 15, and 9 min, respectively; thus, the job pro-
cessing time of the three product types is 240, 300, and 180
min, respectively. It is assumed that the unit profits for product
types A, B, and C equal 95, 110, and 60 dollars, respectively.
It is also assumed that the job profits are the initial weights
of jobs in the example and the enhanced weight value of the
target is 1.2 for all product types. While the target produc-
tion volume of product type A is 40 pieces and each job size is
20 pieces, two jobs ( and ) should be weighted by the
value of . Consequently, the weight of (as for ) is set
at 2280 weighted dollars (wd), ( : unit
profit job size , respectively), which is higher than for
and ( wd each). Their higher weights
ensure that and can easily be assigned to a schedule.
The target production volumes of product types B and C are 40
and 20 pieces, respectively. Therefore, the weights of ,
and are 2640, 2640, and 1440 wd, respectively. The weights
of , and are 2200, 2200, 1200, and 1200 wd,
respectively.

The setup time required for switching one product type to
another type is shown in Table II (the term denotes an idle
machine status).

In the illustrative example where the PISP is transformed into
the MTMCP network formation, the five steps are described as
follows.
Step 1) (Network construction) Construct a network with 13

nodes (comprising two depot nodes and 11 demand
nodes for the 11 jobs to be scheduled on the two

Fig. 5. Routes of the two machines on the transformed network for the PISP.

TABLE III
NODE REWARDS AND TIMES OF COLLECTION ON THE TRANSFORMED

NETWORK FOR THE PISP EXAMPLE

machines) and 134 directed edges (including two
edges in , 22 edges in , 30 edges in , and
80 edges in ) initially.

Step 2) (Network expansion) Copy each node in depot nodes
as dummy depot nodes (including and

). Also, add a super depot node .
Step 3) (Node collection time assignment) For the super

depot node , the depot nodes ( and ),
and the dummy depot nodes ( and ), the
node collection time is set to 0. For the 11 demand
nodes, the node collection times are equivalent to
their processing times in the PISP and as shown in
Table III.

Step 4) (Node reward assignment) For the super depot node
, the depot nodes ( and ), and the dummy

depot nodes ( and ), the node reward is set to
0. For the 11 demand nodes, the node rewards are
equal to the job weight of job in the PISP and
are also presented in Table III.

Step 5) (Edge distance assignment) After the constructed
network is expanded in Step 2, the transformed
network shown in Fig. 5 contains 16 nodes (com-
prising one super depot node, two depot nodes, two
dummy depot nodes, and 11 demand nodes) and
160 directed edges (including four edges in , two
edges in , 22 edges in , 30 edges in , and 80
edges in , and 22 edges in ). The values of the
edge distances between every two nodes correspond
to the setup times incurred between the two jobs in
the PISP example and are presented in Table IV.
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TABLE IV
EDGE DISTANCE MATRIX OF THE TRANSFORMED NETWORK FOR THE PISP EXAMPLE

Fig. 6. Heuristic solution for the PISP.

It is noted that each tour made by the coach which is to be
constructed on the transformed network must begin with the
super depot node , pass through the depot node , and
pass through the dummy depot node before ending at the
super depot node . Therefore, an initially constructed route
appears to be in the form . After the
first node pair is selected and inserted in the con-
ducted route using the MAXIMP algorithm, the route can be
expressed as . By pro-
cessing the MTMCP algorithm, some unselected nodes can be
found and inserted into the current route without violating the
available time constraint of each recruiting visit.

In the illustrative example, the
subset of the selected nodes involves

which have a collective reward score of 19480 using
the MAXIMP algorithm. The two visiting routes are

, and
. Thus, they can be

viewed as the production sequences - - - -
and - - - on Machine 1 and Machine 2,
respectively. The combined weighted throughputs of the
two machines are 19480 wd. The Gantt chart for the
illustrative example is presented in Fig. 6 and another

TABLE V
COMPARISON BETWEEN THE OPTIMAL SOLUTIONS

AND THE HEURISTIC ALGORITHM

TABLE VI
PROBLEM CHARACTERISTICS

equivalent representation of the transformation network is
depicted in Fig. 5.

The optimal solution in terms of weighted throughput for the
PISP example used in this paper is achieved by using the MILP
model formulated in Section III is 19680 wd. Simultaneously,
this example also has an upper bound of 20680 wd when the
first ten jobs are selected. There is no guarantee that the selected
ten jobs can form a complete scheduling sequence with limited
machine capacity, but the solution generated certainly provides
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TABLE VII
COMPUTATIONAL COMPARISONS INVOLVING DIFFERENT � VALUES

an upper bound. In the later section, computational evidence
shows that this bound is indeed strong.

VI. REAL-WORLD APPLICATIONS

In this section, ten small-size problem instances and 144
large-scale PISP problem instances are considered. These
problem instances are solved using the MAXIMP (for MAXi-
mize IMPortance), proposed by Butt and Cavalier [4] and the
upper bound provided by Yalaoui and Chu [24], and described
in Section V.

For the purpose of comparing the exact solutions solved by
the MILP model formulated in Section III and the MAXIMP
algorithm, ten small-size problem instances which are an exten-
sion of the example stated in Section V are first experimented.

They are generated by randomly linking number of machines
and number of product types with various numbers of jobs. For
these problem instances, a C++ programming code has been
written to generate the constraints and variables of the MILP
model. In addition, to obtain optimal solutions, the IP software
CPLEX 7.5 on Pentium IV 3.2 GHz PC is used. The results are
presented in Table V.

Table V indicates that the solutions solved by MAXIMP reach
the optimality in seven problem instances (out of ten) in terms of
weighted throughput. Each gap between the optimality and the
MAXIMP algorithm is less than 1.1%. The average run times
(in CPU seconds) for the MAXIMP algorithm is indeed sig-
nificantly faster than that of the MILP model. As Table V also
shows, the upper bound values are greater then the optimality
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TABLE VIII
RESULTS IN MEANS WITH DIFFERENT PROBLEM CHARACTERISTIC GROUPS

in four problem instances (out of ten) in terms of weighted
throughput. The largest gap between the upper bound and opti-
mality is 7.56%, which makes it a tight upper bound.

For the large-scale problem instances, they are randomly gen-
erated which cover most of the processing characteristics of the
cell assembly process of a TFT-LCD factory in Hsinchu Sci-
ence-Based Industrial Park, Taiwan. The processing character-
istics of these PISP problem instances include 1) variation of the
job processing time, 2) variation of the setup times for switch
product types, 3) number of jobs, 4) number of machines, 5)
number of product types, and 6) enhanced weight value of the
target , as displayed in Table VI. The job processing times
for each product type were generated using uniform [46, 70]
for large variation of job processing times and uniform [54,
62] for small variation of job processing times. Furthermore,
setup time is one of the essential factors for increasing the im-
pact of results. In the data set investigated, two levels of setup
time variations are included. For instance, the large variation of
setup times is 9209.7 and the small variation is 2436.3 in the
problem instances which included 24 product types. Taking a
problem instance which has the characteristics of 100 jobs with

, a large variation of job processing times, and a large
variation of setup times as an example, the related jobs, product
types, processing time, weight, and daily target production jobs
are shown in Table A1. The weight settings for the problem in-
stances are determined by the profit of each job which is a good
indicator in TFT-LCD factories. The machine capacity is set to
1440 min (one day). The “minute” is used as the unit for the
processing time, setup time, and machine capacity. The setup
times required for switching one product type to another for the
24 product types are presented in Table A2.

Solving the large-scale PISP problem instances on the trans-
formation network using the MAXIMP algorithm (the program
code is written in Visual Basic 6.0), the set of tours on the trans-
formation network is generated. Initially, we experiment with
the algorithm on 36 problem instances which have the charac-
teristics of large variations of job processing times and setup
times. The parameters are set to 0, 0.5, and 1 in the MAXIMP

which represent the minimum, midpoint and maximum, respec-
tively, of the range used by Butt and Cavalier [4], the originators
of this algorithm. The computational results based on different

and values are shown in Table VII, where the solution ra-
tios are computed as the division of the heuristic solutions by
the value of upper bound.

These results indicate that the best solutions to these problem
instances can be achieved when and . Therefore,
we limit the choice of values for this algorithm to
and 0.5 and then we choose the best solution (with the maximal
weighted throughput) of each problem instance between the two
values as the final MAXIMP value. In Table VII, it also shows
that the heuristic algorithm can solve the PISP efficiently.

To evaluate the accuracy and effectiveness of the
heuristic algorithm, the upper bound is used here as a
convenient reference point. The percentage gap is de-
fined as the percentage of deviation of the best weighted
throughput solution from the upper bound (where

the average value of upper bound the average value of the
heuristic solutions the average value of upper bound ).
As Table VIII shows, the average percentage gap in the upper
bound is 3.76%. These gaps are partially due to the fact that
the upper bounds are obtained from the strictly small setup
time choices. The jobs, selected by the upper bound procedure,
may not form a complete scheduling sequence, but the total
weighted throughput generated certainly provides an upper
bound for the solution. Therefore, the MAXIMP algorithm
solves the PISP on a transformed network and can obtain a
near-optimal solution within a few CPU seconds.

VII. CONCLUSION

This paper considers the PISP involving constraints based
on sequence dependent setup time, job-cluster processing time,
machine capacity, and daily production target volume, which is
difficult to solve and is a great challenge to those involved in
the industrial production. In this investigation, the PISP is for-
mulated as a mixed integer linear programming problem model
in order to maximize weighted throughput. The transformation
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which converts the PISP into a multiple tour maximum collec-
tion problem (MTMCP), a well-known network problem which
has been investigated extensively [4]–[8], has also been pre-
sented. An example has been provided to illustrate how we may
apply the proposed transformation to convert the PISP into the
MTMCP. To demonstrate the applicability of the network trans-
formation, an efficient MTMCP algorithm is applied to solve

the real-world PISP in a cell assembly factory. The computa-
tional results indicate that the algorithm can provide excellent
solutions for real-world PISP within a few CPU seconds. The
effective algorithm investigated in this paper may assist those
involved in cell assembly factories to make judicious scheduling
decisions.

APPENDIX

TABLE A1
JOB INFORMATION OF THE 100 JOBS IN PISP
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TABLE A2
SETUP TIMES REQUIRED FOR SWITCHING ONE PRODUCT TYPE TO ANOTHER FOR 24 PRODUCT TYPES (UNIT: MINUTES)
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