
An ALU Cluster Design for
Media Streaming Processors Architecture

An ALU Cluster Design for

Media Streaming Processors Architecture

Student Ting-Wei Lin

Advisor Dr. Herming Chiueh

A Thesis
Submitted to Department of Communication Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Communication Engineering

September 2005
Hsinchu, Taiwan.

 I

 II

An ALU Cluster Design for

Media Streaming Processors Architecture

Student: Ting-Wei Lin Advisor: Dr. Herming Chiueh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract
Recent research has proposed using streaming architecture to provide a leap in

media applications that are poorly matched to conventional processor architecture.

Besides, low power considerations are becoming an important issue for mobile

systems, but streaming architecture solutions do not fit in above requirements.

Therefore, in this research, a combination of media streaming architecture and low

power circuitry design methodology is proposed. An ALU Cluster design for media

streaming architecture is presented in this thesis, which is based on Stanford Imagine

stream architecture with the consideration of implementation feasibility. The back-end

simulation results decide the final micro-architecture of each component, and utilize

communication bandwidth hierarchy design to effectively solve the problem of scarce

memory bandwidth. The experimental results show that the power and energy

consumption of selected benchmark for multimedia and baseband communication

systems become scalable by dynamic selecting the number of utilized ALU Clusters.

Thus, the instant performance and energy consumption of an entire work can be

optimized for mobile systems. The proposed design has provided a breakthrough for

similar architectures.

 III

ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many
exceptional people. First and foremost, thanks go to my research advisor, Professor
Herming Chiueh. He has always been an inspiration to me and everyone else on this
project through his vision and leadership. He also provided irreplaceable guidance for
me when I needed for a fascinating problem, good advice, constructive criticism,
support, and flexibility.

I would also like to thank all team members of the SoC LAB group, especially

my classmates over the years: Elliott Lee, Gary Chan, Maggie Lin, and Uan Cheng.
They not only put up with me all of those years, but also made my days as an
enjoyable graduate student.

Finally, I can not say enough about the support provided by my family. My

parents have been my biggest supporters and for that I am forever grateful. My sister
and girlfriend have always providing timely encouragement and advice. To all of my
friends and family members who have helped me in one way or another over the years,
I would like to say thanks.

IV

CONTENTS

..I

Abstract..II

Acknowledgments..III

Chapter 1 Introduction..1

Chapter 2 Background...4
 2.1 Design Methodology..4
 2.2 Stream Processing Model...9
 2.3 Related Research..11
 2.4 Low Power Considerations..13
 2.5 Media Streaming Processor Architecture...13

Chapter 3 Design of ALU Cluster Microarchitecture...16
 3.1 ALU Cluster Block Diagram..16
 3.2 Instruction Set Format..18
 3.3 ALU Cluster Function Units...19
 3.3.1 ALU Unit...20
 3.3.2 MUL Unit..21
 3.3.3 DIV Unit..22
 3.3.4 IRF Unit...23
 3.3.5 SPRF Unit..24
 3.3.6 Decoder Unit...25

 3.3.7 Controller Unit..25
3.4 System Operation...25

Chapter 4 Implementation...28
 4.1 Design Flow..28
 4.2 Circuit Implementation and Results...31

4.3 Circuit Verification and Performance Evaluation….......................................35

 Contents

 V

 4.3.1 Test Bench: FIR Filter...35
 4.3.2 Functionality Verification..37
 4.3.3 Performance Evaluation Results...41
 4.4 Performance Comparison...44
 4.5 Low Power Techniques Implementation..45
 4.6 Summary...49

Chapter 5 Conclusion...51

Bibliography..52

Appendix A: Summary of the Defined Microcode in Instruction Set....................55

Appendix B: Assembly Code of Test Bench...57

 VI

LIST OF TABLES

Table 3.3.1.1 The Operations Correspond to the ALU Unit...20
Table 3.3.1.2 Synthesis Results Correspond to Different Architecture........................21
Table 3.3.2.1 The Operation Corresponds to the MUL Unit..22
Table 3.3.2.2 Synthesis Results Correspond to Different Pipeline Stages...................22
Table 3.3.3.1 The Operations Correspond to the DIV Unit..23
Table 3.3.3.2 Synthesis Results Correspond to Different Architecture........................23

Table 4.2.1 Circuit Summaries..31
Table 4.2.2 The Definition of the I/O Ports...33
Table 4.4.1 Comparison Results..44

VII

LIST OF FIGURES

Figure 1.1 Gap between Processor and Memory...2

Figure 2.1.1 An Example of ASIC Design..5
Figure 2.1.2 An Example of Platform-Based Architecture Design.............................6
Figure 2.1.3 An Example of Reconfigurable Architecture Design.............................8
Figure 2.2.1 Direct-Form Realization of an FIR Filter System...................................9
Figure 2.2.2 A Simplified Structure of an FIR Filter System....................................10
Figure 2.5.1 Media Streaming Processor Architecture..14

Figure 3.1.1 ALU Cluster Architecture Block Diagram...17
Figure 3.2.1 Instruction Set Format..18
Figure 3.3.1 Function Unit Details..19
Figure 3.3.4.1 IRF Architecture...24
Figure 3.4.1 Pipeline Execution Diagram Details...26
Figure 3.4.2 Sequence Pipeline Operation Diagram...27

Figure 4.1.1 Cell-Based Design Flow...30
Figure 4.2.1 Layout of the ALU Cluster...32
Figure 4.2.2 Floorplan and Pad Assignment...32
Figure 4.2.3 Die Microphotograph..34
Figure 4.2.4 Photograph of Prototype with Package...34
Figure 4.3.1.1 Filter Coefficients, Input Data, and Executed Results of the FIR

Filter..36
Figure 4.3.2.1 The Overall Operation Flow...39
Figure 4.3.2.2 The Operation of WRITE Mode...39
Figure 4.3.2.3 Insertion of Filter Coefficients..39
Figure 4.3.2.4 Insertion of Input Data..40
Figure 4.3.2.5 The Operation of EXECUTION Mode...40
Figure 4.3.2.6 The Operation of READ Mode...40
Figure 4.3.3.1 The Code Utilization of Each Arithmetic Unit.....................................42
Figure 4.3.3.2 The Memory Utilization for Capacity Usage..43
Figure 4.3.3.3 The Memory Utilization for Data Reference..43

 List of Figures

 VIII

Figure 4.4.1 The Normalized Comparison Results...45
Figure 4.5.1 Multi-Cluster Architecture with Low Power Techniques.....................47
Figure 4.5.2 Layout of Multi-Cluster with Low Power Equipments........................47
Figure 4.5.3 Power Dissipation on the Multi-Cluster Architecture...........................48
Figure 4.5.4 Energy Consumption on the Multi-Cluster Architecture......................48
Figure 4.5.5 Future Mobile Multimedia and Communication System Design
 Trend...49

- 1 -

CHAPTER 1

INTRODUCTION

Media processing applications have possession of three key important

characteristics: large available parallelism, little data reuse, and a high computation of

memory access ratio [1]. However, these characteristics are poorly matched to

conventional general-purpose architectures. In the mean time, there is a

processor-memory performance gap as well as a memory wall problem arisen that

goes off-chip from processor to memory incurs severe latency and bandwidth

penalties, as shown in Figure 1.1 [2]. In recent years, the current research has

proposed to use the streaming architecture by fitting modern very large scale

integrated-circuit (VLSI) technology with lots of arithmetic logic units (ALUs) on a

single chip and the hierarchical communication bandwidth design to provide a leap in

media processing applications [3][4][5]. Relative topics of recent research are Imagine

Stream Processor [6][7][8], Smart Memories [9], and Processing-In-Memory [10][11].

Nevertheless, in contemporary VLSI circuitry for mobile systems, such as handheld

audio and video applications, low power considerations are becoming an important

issue as battery life and geometry of mobile systems are limited [12]. The streaming

architecture and processor-in-memory solutions do not fit in above requirements since

it generally occupies a huge die size to trade for the data and processing parallelism.

Thus, in recent developments, most of these architectures are focused on the super

computing architectures rather than the media processing applications.

However, the streaming architecture has been suggested as an efficient

architecture for both media processing applications and baseband architecture by

using the software defined radio mechanism [13][14]. In order to design the next

generation portable multimedia and communication systems, the power dissipation of

such a system is an emergency issue. Therefore, a low-power ALU Cluster for the

streaming architecture is proposed, which combines the software-defined mechanism

 Chapter 1: Introduction

 - 2 -

and the modern low-power circuitry technique in the streaming architecture to provide

a breakthrough in the operating time and power dissipation in the limited battery

power.

����

���

����

������

�����

Figure 1.1: Gap between Processor and Memory

In this thesis, our major motivation is to improve media processing applications

weakly matched to conventional processor architectures. In other words, we aim at the

micro-architecture design of the 32-bit ALU Cluster for media streaming processor

architectures because ALU Cluster is the nexus computation part of the processors

and one main factor of increasing high kernel performance. However, two primary

problems have been met are the required high computation throughput and the

processor-memory performance gap. So our proposed solution methods to solve these

performance bottlenecks are concurrency and locality, respectively. Concurrency is to

provide abundant data-level parallelism which means moderate multiple function

units in one ALU Cluster. Locality is to decrease the use of the global bandwidth to

access the high latency off-chip memory, which means the temporary high speed

storage units included inside the ALU Cluster that could form the memory bandwidth

hierarchy architectures. With these solution methods, the performance of the media

processing applications can be greatly improved.

 Chapter 1: Introduction

 - 3 -

This thesis focuses on an ALU Cluster architecture design of media streaming

processors. The remaining of organization of this thesis is as follow.

In Chapter 2, the various design methodology styles, the streaming applications

processing model, the current relative research topics, and the proposed media

streaming processor architecture are introduced.

In Chapter 3, the detail micro-architecture of each components of ALU Cluster is

designed. Instruction set format, and overall system pipeline operation from

instructions read, data reads, operations execute to outcome writes back are also

explained.

In Chapter 4, the electronic design automation (EDA) flow of implementing this

work is presented. The benchmark simulation, performance evaluation, and

comparison to recent related architecture design reports are discussed. Besides, a low

power ALU Cluster design under group collaboration is also presented.

In Chapter 5, the conclusion of this proposed design is addressed.

- 4 -

CHAPTER 2

BACKGROUND

In this chapter, a briefly review of the background of the design methodology
about three different design implementation styles, and three primary related research
topics nowadays about the streaming architectures are described. In addition, the
proposed media streaming processor architecture that bases on improving the
disadvantages of the current existed streaming architectures is presented.

2.1 Design Methodology

Generally speaking, there are many different methods when implementing a
design. In this section, three distinct design methodology styles which are
application-specific architecture, platform-based architecture, and reconfigurable
architecture will be briefly introduced on the basis of time to market demands,
physical area, utilizing flexibility, etc. Furthermore, the pros and cons of these design
methodology styles are also discussed.

First, the application-specific architecture design is easier among these

architectures. Figure 2.1.1 is plotted an example of application-specific integrated
circuit (ASIC) design. The chip implementation could be finished quickly as long as
following the given well-defined specification. The physical area, operation frequency,
and power dissipation could be optimized that depends on demands, too. Nevertheless,
the application-specific architecture design is not so flexible and reusable, and needs
to redo the overall design flow while the specific applications or specifications are
changed.

 Chapter 2: Background

 - 5 -

Figure 2.1.1: An Example of ASIC Design

Second, the platform-based architecture design is more flexible than

application-specific architecture design. An example of platform-based architecture
design is given in Figure 2.1.2. The general platform-based architectures typically
include a processor, memory, and communication bus [15]. The intellectual property
(IP), such as digital signal processing (DSP), fast Fourier transform (FFT), moving
pictures experts group (MPEG) coder and decoder, and audio/video compression and
decompression, etc, are all designed with the same protocol of bus and available from
the IP libraries to the platform by the application demands. For example, the general
platform-based architecture with DSP and audio/video compression and
decompression can be used for the video applications, or with DSP and FFT filter can
be used for baseband communication. In Figure 2.1.2.(a), the reference design is set
for the original specific applications. However, when the specific applications or the
required functions are changed, the IP block could be modified, added, and removed
to reach the derivatives design which is depicted in Figure 2.1.2.(b). Therefore, the
major characteristic of platform-based architecture design is to reduce the design time,
since all the devices are based on the same protocol of bus and can be integrated
quickly. Unlike application-specific architecture design, the platform-based
architecture design could extend to execute more applications by including the extra
required IP blocks. In the mean time, the power dissipation will be increased when
more and more IP blocks included. The idle unused IP blocks will also waste
unnecessary power dissipation. However, in current VLSI circuitry for mobile
systems, low power considerations are becoming an important subject since battery
life and geometry of mobile systems are limited. Besides, the speed performance will
be depended on the slower function units, or mismatch between IP blocks and
communication bus. In addition, the scarce memory bandwidth problem between IP
blocks and communication bus is not solved totally.

 Chapter 2: Background

 - 6 -

���������

�����	

�� ��

������

�����

������

�����

���

������������	
��

(a)

(b)
Figure 2.1.2: An Example of Platform-Based Architecture Design

 Chapter 2: Background

 - 7 -

Third, the reconfigurable architecture is similar to the platform-based
architecture design. Some general-purpose IP blocks, such as DSP, FFT, audio/video
decoder, and so on, are common blocks for many media processing applications. If a
platform-based design includes those general IP blocks, the platform-based design can
be used to implement a reconfigurable architecture design. An example of
reconfigurable architecture design is depicted in Figure 2.1.3. As shown in Figure
2.1.3.(a), the platform is executed an application for DSP where a additional FFT
block is needed to accelerate execution rapidly. If the platform is going to execute
another application for MPEG decoder where a audio/video coder and decoder is
required, the users only have to reconfigure the data path of IP blocks by
implementing the software defined radio mechanism, as shown in Figure 2.1.3.(b).
One advantage of the reconfigurable architecture is that the used hardware and data
path are reconfigurable. This advantage provides a great flexibility for wide different
applications. Nevertheless, on the basis of three chief important media characteristics:
large available parallelism, little data reuse, and a high computation of memory access
ratio, the reconfigurable architecture could not fit in above requirements well since the
bandwidth of communication bus is insufficient and then needs the memory hierarchy
architecture to solve this bottleneck. Moreover, the inactive unused IP blocks would
increase to dissipate needless energy consumption. This also limits to design for the
portable systems at the same time.

In conclusion, one of these design methodology styles can be selected to

implement that depends on the trade-off of its advantages and disadvantages. As a
consequence, the reconfigurable is more suitable to be chosen for the streaming
architecture design, because this architecture could provide a significant flexibility in
various media processing applications for the software defined radio mechanism.

 Chapter 2: Background

 - 8 -

(a)

(b)

Figure 2.1.3: An Example of Reconfigurable Architecture Design

 Chapter 2: Background

 - 9 -

2.2 Stream Processing Model

Media processing applications are naturally expressed as a sequence of
computation kernels that operate on long data streaming [16]. A kernel is a small
program that is repeated for each successive streaming element in its input streaming
to produce output streaming that is fed to subsequent kernels. Each data streaming is a
variable length collection of records, where each record is a logical grouping of media
data. In order to illustrate the stream processing model, consider a simple media
processing kernel, the finite impulse response (FIR) filter system [17]. An FIR filter is
a one dimensional convolution of a small kernel over a long data streaming. Let y[n]
represent the output data streaming of an FIR filter. Let T represent the sampled
system unit delay which is also equal to the data-rate clock cycle period. At time
instant nT the output data sample is given by the following equation describes the
operation:

[] []�
−

=
−•=

1

0

M

k
k knxbny (2.1)

where M represents the number of taps in the filter, bk represents the nth tap
coefficient, and x[n] represents the input data sample at time instant nT. The
direct-form FIR structure of the difference equation of Equation 2.1 could be realized
as shown in Figure 2.2.1. A more simplified structure to be expressed to understand
the FIR filter system as well as the stream processing model is also shown in Figure
2.2.2. In both Figure 2.2.1 and Figure 2.2.2, solid arrows stand for data streaming, and
ovals stand for computation kernels. Therefore, for example, a record could represent
an input data streaming in an FIR filter application. A data streaming, then, could be a
collection of hundreds of these input data streaming.

Figure 2.2.1: Direct-Form Realization of an FIR Filter System

 Chapter 2: Background

 - 10 -

Figure 2.2.2: A Simplified Structure of an FIR Filter System

Records within a data stream are accessed sequentially and processed identically.

This greatly simplifies the movement of data through a media processor by allowing
the instruction overhead to be amortized over the length of these homogeneous data
streaming.

Kernels naturally expose the coarse-grained control parallelism in media

processing applications, as they form a pipeline of tasks. Multiple kernels can
therefore operate in parallel on different sections of the application’s data. The first
kernel in the pipeline would produce output streaming that would then be passed to
the next kernel. As the next kernel operates on those streaming, the original kernel
could operate on the next set of input data. Finally the memory bandwidth demands of
media processing application can also be met using this streaming model. Since all
data is organized as streaming, single memory transfer operations initiate long
transfers with little control overhead that can be optimized for bandwidth.

By organizing media processing applications in this stream processing model, the

following characteristics that were enumerated in the previous chapter are exposed:
data parallelism is abundant, very little data is reused, and many operations are
required per memory reference. Large available parallelism is that operations on one
streaming element are largely independent of the others, so they can exploit lots of
parallelism and tolerate lots of latency. Little data reuse is that every streaming
element is read exactly once from memory and is not revisited, resulting in poor cache
performance. A high computation to memory access ratio is that large amounts of
arithmetic operations per memory reference are required for each streaming element
read from memory. These properties can easily be exploited by a media processor
designed to operate on data streaming. The abstraction of a data streaming maps
naturally to the streaming data types found in media processing applications. The

 Chapter 2: Background

 - 11 -

inputs to most media processing applications are already data streaming and the
expected outputs are data streaming as well. Streaming exposes the fine-grained data
parallelism inherent in media applications as well. Each record of a streaming will be
processed identically, so multiple records can be processed in parallel using the same
instructions.

Therefore, any media processing applications could be organized as the stream
processing model, such as shown in Figure 2.2.2, our proposed architecture with
reconfigurable characteristic could then utilize the software defined radio mechanism
to rearrange the architecture system to suit for implementing various media processing
applications flexibly.

2.3 Related Research

On the basis of both the streaming architecture and the processing-in-memory
have been recommended as an effective architecture for the media processing
applications, relative topics of recent research about the steaming architecture are
Imagine Stream Processor, Smart Memories, and Processing-In-Memory. In this
section, a brief overview of these three architecture solutions will be introduced.

First, Imagine Stream Processor is a programmable single-chip processor that
supports the stream programming model. The Imagine architecture supports 48 ALUs
organized as 8 single instruction multiple data (SIMD) clusters. Each cluster contains
6 ALUs, several local register files, and executes completely static very long
instruction word (VLIW) instructions. The stream register file is the nexus for data
transfers on the processor. The memory system, arithmetic clusters, host interface,
microcontroller, and network interface all interact by transferring streams to and from
the stream register file.

Imagine Stream Processor is a coprocessor that is programmed at two levels: the
kernel-level and the stream-level. Kernel functions are coded using KernelC, whose
syntax is based on the C language. Kernels may access local variables, read input
streams, and write output streams, but may not make arbitrary memory references.
Kernels are compiled into microcode programs that sequence the units within the
arithmetic clusters to carry out the kernel function on successive stream elements.
Kernel programs are loaded into the microcontroller's control store by loading streams

 Chapter 2: Background

 - 12 -

from the stream register file. At the application level, Imagine Stream Processor is
programmed in StreamC. StreamC provides basic functions for manipulating streams
and for passing streams between kernel functions.

Second, Smart Memories is a multiprocessor system with coarse grain
reconfiguration capabilities. Processing units in this system are in form of “Tiles”
which when put together in groups of four, form “Quads”. Interconnecting these
elements is done in a hierarchical manner: a set of Inter-Quad connections provide
communication facilities for Tiles inside a Quad, while a mesh interconnection
network connects Quads together. Tiles inside a Quad share the network interface to
connect to outside world.

Each Tile in the Smart Memories system is consisted of four major parts: Two
processor cores, a set of configurable memory mats, a cross bar interconnect, and
Load/Store unit. Either or both of the processors inside the Tile can be easily turned
off allowing a Tile to be just a memory resource, and saving power, in the case that
excess processing power is not required.

Third, Processing-In-Memory architectures that integrate processor logic into
memory devices offer a new opportunity for bridging the growing gap between
processor and memory speeds, especially for applications with high
memory-bandwidth requirements. The data-intensive architecture system combines
processing-in-memory memories with one or more external host processors and a
processing-in-memory-to-processing-in-memory interconnect. Data-intensive
architecture increases memory bandwidth through two mechanisms. First, performing
selected computation in memory, reducing the quantity of data transferred across the
processor-memory interface. Second, providing communication mechanisms called
parcels for moving both data and computation throughout memory, further bypassing
the processor-memory bus. Data-intensive architecture uniquely supports acceleration
of important irregular applications, including sparse-matrix and pointer-based
computations.

In summary, both the streaming architecture and the processing-in-memory
solutions commonly occupy an enormous physical area to trade for the data and
processing parallelism without incorporating the well-designed power management
equipments. On the other hand, low power considerations have been becoming an
essential concern in contemporary VLSI design for portable systems. Therefore, a low
power controlling mechanism for the next generation media streaming processor

 Chapter 2: Background

 - 13 -

architecture will be an emergency issue to investigate to provide an advance in the
operating time as well as the power dissipation in the future media processing
applications.

2.4 Low Power Considerations

Since the power dissipation has turned out to be a significant design concern in
modern VLSI design, high power dissipation would incur expensive package and
significant cool cost. On the other hand, the power-aware devices, such as laptops,
mobile phones, and handhelds devices, etc, have limited advance in battery
technology. It is almost a necessity to make the reduction and control of the power
dissipation in high performance digital product designs.

Techniques for the control and reduction of power dissipation can be divided into
two main categories: static and dynamic [18]. Static techniques are typically applied
during the circuit design phase and do not change during the operation of the circuit.
Dynamic techniques allow the dynamic control of certain functional blocks of the
design during functional operation. Dynamic techniques are involved setting certain
functional blocks of the chip into low leakage mode when they are in idle mode.
Furthermore, if the architecture, such as the platform-based architecture, and the
reconfigurable architecture, etc, includes the power management unit, system can
scale the power and performance of this architecture. When the required performance
is high, more function units on the architecture will be active and consume larger
power. While the power consumption of the architecture has to be reduced, system
can reduce the active hardware and turn them off with power management unit. So the
power and performance of this architecture can be scalable if there is power
management unit on the architecture.

2.5 Media Streaming Processor Architecture

By reason of the streaming architecture with software defined radio mechanism
has been suggested as an effective architecture for the media processing applications,
our proposed improved media streaming processor architecture is depicted in Figure
2.5.1. This architecture primarily includes five components: ALU Cluster, stream

 Chapter 2: Background

 - 14 -

register file, distributed memory management unit, power management unit, and
controller. In the mean time, there is also an architecture simulator that has been built
a simulation environment for this architecture.

���������� �	
����
����� �	
����
����� �	
����
�����

�����������
��������

�������

��������	��
����
	������	

��
���������������������������
���

����������������

������� �������

Figure 2.5.1: Media Streaming Processor Architecture

In general, the architecture simulator is used to determine the number and the

size of ALU Cluster, stream register file, and off-chip memory to be used efficiently,
after simulating a specific media processing application. Therefore, the simulation
results from the architecture simulator would then be used with the software defined
radio mechanism to reconfigure the media streaming processor. This step would let
the system to achieve the best performance that trade between the operating time and
the power consumption. The ALU Cluster is used to shorten operating time for the
kernel computation. There are also high speed storage units that are embedded in the
ALU Cluster to reduce the use of the scarce global communication bandwidth. A
controller decodes instructions and then controls the overall operation of all ALU
Clusters. The stream register file is a memory organized to handle streaming and
could hold any number of streaming of any length. The steam register file supports
data streaming transfers between the ALU Cluster and off-chip memory, such as
double data rate (DDR) random access memory (RAM), so the recirculation of
streaming through the stream register file minimizes the use of scarce off-chip data
bandwidth in favor of global register bandwidth. Distributed memory management
unit is to solve rare data bandwidth, reduce memory copy, and provide dynamic
scheduling.

 Chapter 2: Background

 - 15 -

Along with the power dissipation has become an important issue concern in
modern VLSI circuitry for the mobile systems, a power management unit with low
power techniques for the control and reduction of power dissipation has been
integrated in the next generation media streaming processor architecture. Furthermore,
the power management unit could scale the performance and power by trading for
turn on or turn off the function blocks that depend on the simulation results from the
architecture simulator. In addition, the high speed storage units inside the ALU Cluster,
stream register file, and off-chip memory DDR RAM are formed the memory
bandwidth hierarchy architecture. This is in contrast to conventional architectures
which use less efficient global register bandwidth when local bandwidth would suffice,
in turn forcing the use of more off-chip bandwidth.

These main components on the improved media streaming processor and a
customized architecture simulator have been under developing at SoC Laboratory by
students and faculty. In this thesis, I am chiefly responsible for the design of an ALU
Cluster micro-architecture, because ALU Cluster is the nexus computation part of the
processors and one key factor of increasing high kernel performance. Besides, the
major challenges to complete this work are the architecture decision of each
component in the ALU Cluster, met trade-off between timing constraint and area
constraint, and complicated to micro-architecture implementation. The detail
micro-architecture design and the design flow would be described in the following
chapters.

- 16 -

CHAPTER 3

DESIGN OF ALU CLUSTER
MICROARCHITECTURE

In this chapter, the details of an ALU Cluster micro-architecture are discussed
from the decision of each component in the ALU Cluster to the integration of these
components in the ALU Cluster. In addition, the dedicated instruction set format for
the ALU Cluster is also explained. Finally, the pipeline steps and the overall system
operation with pipeline mechanism on the ALU Cluster are described.

3.1 ALU Cluster Block Diagram

In order to improve the conventional processor architecture that poorly handle
with the media processing applications, two solution methods primarily to solve these
performance bottlenecks appeared on the conventional processor architecture, such as
the required high computation throughput and the processor-memory performance gap,
are concurrency and locality, respectively. Therefore, the proposed 32-bit ALU
Cluster micro-architecture design is mainly based on the Stanford Imagine Stream
Processor [19][20] with the consideration of the implementation feasibility.
Concurrency is to provide abundant data-level parallelism which refers to the
computation on different data elements occurring in parallel as well as the moderate
multiple function units in one ALU Cluster. Locality is temporal and refers to reuse of
coefficients or data during the execution of computation kernels, or is also a form of
temporal locality that exists between different stages of a computation pipeline or
kernels. So the temporary high speed storage unit is embedded inside the ALU Cluster
that could form the memory bandwidth hierarchy architectures to reduce the

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 17 -

unnecessary use of global memory bandwidth to access the high latency off-chip
memory frequently. The block diagram of the ALU Cluster micro-architecture is
shown in Figure 3.1.1.

������� ���	��

��

���	�
�	���

���

��� ���

���

��� ���

���

��� ���

���

��� ���

���

��� ���

����

��	�

��������	
�

Figure 3.1.1: ALU Cluster Architecture Block Diagram

From Figure 3.1.1, the ALU Cluster architecture are primarily included several
arithmetic units, high speed storage units, such as intra-register-file (IRF) and scratch
pad register file (SPRF), a decoder, and a controller. The arithmetic units are
contained two ALUs, two multipliers, and one divider, supporting to process the large
available parallel data simultaneously. Most media processing applications are well
suitable for this mixture of arithmetic units. In addition, the back-end simulation
results based on the contemporary process technology and the standard cell library
could decide the number of parallel arithmetic units. Every arithmetic unit in the ALU
cluster is embedded a high speed 32-entry IRF unit for each input. These IRF units
mainly are kept to store the temporal intermediate results of computation during
executing on streams of data and greatly reduce the usage of the required off-chip
memory bandwidth. This allows memory bandwidth to be used efficiently in the sense
that expensive and communication limited global memory bandwidth is not wasted on
the arithmetic units where inexpensive local memory bandwidth is easy to provide
and use. The 64-entry SPRF unit is also an extra high speed storage unit to offer the
spills of recirculation of temporary computing data. A decoder fetches instructions and
sends the decoded results to the controller. A controller major controls the overall
operations of the ALU Cluster. The details of the micro-architecture of these
components in the ALU Cluster architecture would be described in the following
sections.

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 18 -

3.2 Instruction Set Format
The architecture of instruction set format for the ALU Cluster is similar to a

VLIW-like instruction format, as shown in Figure 3.2.1. The instruction set format is
major composed of fields for the total arithmetic units (ALU units, MUL units, and
DIV unit) used in the ALU Cluster. In addition, each arithmetic unit field is further
subdivided into sub-field, and each sub-field is contained by the two input sources and
their read addresses, the one output destination and its write address, and the executed
operation.

Figure 3.2.1: Instruction Set Format

The input source reads from three: off-chip data memory, self IRF unit, and
SPRF unit. In the same way, the output destination writes back to three: off-chip data
memory, one of all IRF units, and SPRF unit. The length of address for input source
or output destination is determined by the size of maximum storage unit, for example,
one of the off-chip data memory, IRF unit, or SPRF unit. The total executable
operation types are depended on different type of arithmetic units, so the length of
operation code is also depended on the type of arithmetic units. For example, the
length of operation code for the ALU unit, the MUL unit, and the DIV unit is 4-bit,
1-bit, and 2-bit, respectively. Details of operation types of this part will be explained
in the next section.

The whole length of instruction set would be determined by the total numbers of

different type of arithmetic units. The length of the sub-instruction set of each
arithmetic unit would be primarily determined by the length of executable operation
code. Therefore, for example, the length of the ALU unit, the MUL unit, and the DIV
unit is 30-bit, 27-bit, and 28-bit, respectively, and the whole length of instruction set is

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 19 -

142-bit. Details summary of the defined microcode in instruction set for the input
source, the output destination, and the executable operation of each arithmetic unit are
summarized in Appendix A.

3.3 ALU Cluster Function Units

In this section, the micro-architecture design of each function unit in the ALU
Cluster would be discussed in the following subsections. A more detailed view of
function unit, which is contained an arithmetic unit and its associated register files, is
shown in Figure 3.3.1. Most arithmetic units have two data inputs, and output bus.
Data in the function unit is temporary stored in the IRF units. These function units are
developed with a number of design goals in mind, including the trade-off between
physical area, data throughput, and operation latency. As a consequence, in order to
reduce the design complexity and enhance the implementation feasibility, Synopsys
DesignWare [21] with UMC 0.18 um 1P6M CMOS process and Artisan SAGE-X
standard cell library [22] would be used with the intention of shrinking the time of
design process.

���	���	����������

���	

�
��	�������	����

	��
���

�
��	�������	����

	��
�

����

���������	���

Figure 3.3.1: Function Unit Details

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 20 -

3.3.1 ALU Unit

An ALU Cluster contains two ALU units that could execute the operations, such
as the addition, absolute, logical operation, shift, and comparison instructions, listed
in Table 3.3.1.1. Many of these operations support for 32-bit signed integer
instructions. These operations could be implemented by using Synopsys DesignWare
building block IP, for example, DW01_add, DW01_absval, DW01_ash, and
DW01_cmp6. The results of synthesis implementation of available IPs are listed in
Table 3.3.1.2.

Table 3.3.1.1: The Operations Correspond to the ALU Unit

Operation Description

ADD Add

SUB Subtract

ABS Absolute value

AND Bitwise AND

OR Bitwise OR

XOR Bitwise XOR

NOT Bitwise invert

SLL Logical shift left

SRL Logical shift right

SRA Arithmetic shift right

LT Less-than

GT Greater-than

EQ Equal

The definition of slack is that the clock period subtracts the library setup time

and the data arrival time. Thus, the larger slack value means that more timing margin
to complete the execution within one clock cycle. Additionally, the synthesis
implementation of available IP only takes the gate delay into consideration without
the wire delay, which the wire delay has been grown a chief critical timing issue in the
continued scaling of modern VLSI technique [23]. So the larger slack value is better
consideration to suitable for the place and route process. The initial clock period is set
to 8 ns as well as 125MHz. Besides, the definition of gate count is that the synthesis
area of design is divided by the two-input NAND gate area provided by UMC 0.18
um CMOS process with Artisan standard cell library. From Table 3.3.1.2, in order to
meet the best optimization between execution time and physical area, therefore, the
fast carry-look-ahead architecture is chosen for DW01_add, the carry-look-ahead

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 21 -

architecture is chosen for DW01_absval, the 2:1 inverting multiplexers and 2:1
multiplexers architecture is chosen for DW01_ash, and the carry-look-ahead
architecture is chosen for DW01_cmp6. Finally, the ALU unit is designed as 2-stage
pipeline architecture. The first stage is to fetch the data of two inputs from the
controller and then decide which operation to be executed from operation code. The
second stage is to complete the assigned execution.

Table 3.3.1.2: Synthesis Results Correspond to Different Architecture

IP Implementation Slack Gate Count

rpl1 0.56 244

cla2 2.47 327

clf3 5.63 456

bk4 6.16 459

csm5 6.09 705

DW01_add

rpcs6 2.33 342

rpl 2.61 229

cla 3.25 234 DW01_absval

clf 3.14 232

mx27 6.30 916

mx2i8 6.09 739

mx49 5.95 975
DW01_ash

mx810 5.16 747

rpl 3.36 235

bk 5.71 224 DW01_cmp6

cla 6.34 196

3.3.2 MUL Unit

An ALU Cluster contains two MUL units that could execute the multiplication
operation, and the executable operation is listed in Table 3.3.2.1. Like the ALU unit,

1. rpl = ripple-carry
2. cla = carry-look-ahead
3. clf = fast carry-look-ahead
4. bk = Brent-Kung
5. csm = conditional-sum
6. rpcs = ripple-carry-select
7. mx2 = 2:1 multiplexers
8. mx2i = 2:1 inverting multiplexers and 2:1 multiplexers
9. mx4 = 4:1 and 2:1 multiplexers
10. mx8 = 8:1, 4:1, and 2:1 multiplexers

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 22 -

the MUL unit also executes operation to support for 32-bit signed integer instructions.
The operation could be implemented by using Synopsys DesignWare building block
IP, such as DW02_mult and DW_mult_pipe, too. The results of synthesis
implementation of available IPs depended on different pipeline stages are listed in
Table 3.3.2.2.

Table 3.3.2.1: The Operation Corresponds to the MUL Unit

Operation Description

MUL Multiply

From Table 3.3.2.2, the more pipeline stages would make the more slack value,

but the gate count from the part of pipeline registers increases more significantly.
Therefore, in order to trade between the execution time and the physical area, the
3-stage pipeline with Booth encoding Wallace tree architecture is chosen for
DW_mult_pipe contained DW02_mult. Finally, the MUL unit is designed as 4-stage
pipeline. The first three stages are to fetch the data of two inputs and complete the
multiplication execution. The forth stage is to truncate the outcome of multiplication
to maximum or minimum expressible value if overflow or underflow is occurred,
respectively.

Table 3.3.2.2: Synthesis Results Correspond to Different Pipeline Stages

IP Pipeline Stage Slack Gate Count

3 3.95 9873
DW_mult_pipe

4 4.54 12084

3.3.3 DIV Unit

An ALU Cluster contains one DIV unit that could execute the operations, such as
the division and square root instructions, and these executable operations are listed in
Table 3.3.3.1. Like both the ALU unit and the MUL unit, these operations also support
for 32-bit signed integer instructions. On the other hand, the DIV unit is not the key
kernel performance concerned, therefore, the DIV unit would be suggested not to be
pipelined and by increasing the latencies of the execution to trade for shrinking area.
These operations could be implemented by using DW_div and DW_sqrt of Synopsys
DesignWare building block IP. The results of synthesis implementation of available
IPs are listed in Table 3.3.3.2.

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 23 -

Table 3.3.3.1: The Operations Correspond to the DIV Unit

Operation Description

DIV Quotient

REM Remainder

SQR Square root

From Table 3.3.3.2, in order to minimize the physical area of the DIV unit by

means of increasing execution latencies, therefore, the ripple-carry architecture is
chosen both for DW_div and DW_sqrt. Finally, the DIV unit is designed as no
pipeline architecture but with a latency of 16 clock cycles for the execution of each
time.

Table 3.3.3.2: Synthesis Results Correspond to Different Architecture

IP Implementation Data Arrival Time Gate Count

rpl 194.34 6628
DW_div

cla 83.63 9127

rpl 68.23 1585
DW_sqrt

cla 44.44 1914

3.3.4 IRF Unit

While the ALU unit, the MUL unit, and DIV unit are supported all of the
arithmetic operations in the ALU Cluster, an important non-arithmetic operation is
supported by the IRF unit. The IRF unit is a one read port and one write port high
speed register file, and the flip-flops are used as the basic storage element for the IRF
units, as shown in Figure 3.3.4.1. The storage capacity of IRF unit is 32 words. The
multi-level multiplexer trees are taken the place of the single-level multiplexer trees to
speed up the combinational circuit’s part of multiplexer. The IRF unit could be written
one data and read another data within the same clock cycle, and the flip-flops before
the read selects of IRF unit enable the register file holding the input values within the
IRF units so that data written on one clock cycle could be read correctly by the
arithmetic unit in the subsequent clock cycle.

The key function of IRF unit is major kept to store the temporal intermediate

results of calculation during executing on streams of data and significantly decrease
the usage of the necessary off-chip memory bandwidth. This allows memory
bandwidth to be used efficiently in the sense that the high-cost and communication

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 24 -

limited global memory bandwidth is not wasted on the function units where the
low-priced local memory bandwidth is simple to utilize and offer. In conclusion, all
IRF units in the ALU Cluster have a total of 320 words, and provide 8 GB/s of peak
memory bandwidth for one ALU Cluster.

�
��
��
��
!
�
"
�

���

#
��
��

$
�%��

�

Figure 3.3.4.1: IRF Architecture

3.3.5 SPRF Unit

Another non-arithmetic operation is supported by the SPRF unit. The
architecture of SPRF unit is analogous to the architecture of IRF unit except for the
size of storage capacity. The SPRF unit is a one read port and one write port high
speed register file, and the flip-flops are used as the basic storage element for the
SPRF units. The storage capacity of SPRF unit is 64 words, and the SPRF unit could
provide 0.8 GB/s of peak memory bandwidth for one ALU Cluster. The SPRF unit
could be written one data and read another data within the same clock cycle, and the
data written on one clock cycle could be read correctly by the arithmetic unit in the
subsequent clock cycle. The primary functions of SPRF unit are to hold some spills
from IRF units and store common coefficient parameters.

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 25 -

3.3.6 Decoder Unit

The decoder unit provides to fetch the VLIW-like 142-bit instructions from the
off-chip instruction memory, and then decodes these instructions for the controller.
First, the fetched instruction is divided into several segments depended on the number
of arithmetic units. Second, none operation instruction segments are discarded and
then the leftover instruction segments are transformed to the requested binary code
type for the controller. Finally, the decoded results from the decoder are sequenced to
the controller.

3.3.7 Controller Unit

The controller provides temporary storage to hold the decoded instructions, and
then sequences and issues these decoded instructions to the function units during
execution. The controller is divided into two parts: the read control and the write
control. The part of read control receives the decoded instructions from the decoder,
and then acknowledges the storage unit, such as off-chip memory, IRF unit, or SPRF
unit, to read out the desired data to the assigned function unit. On the other hand, the
part of write control would hold the decoded instructions till the function unit that has
finished the execution, and then acknowledges the destined storage unit to be written
back the result of computation. The precise timing mechanism and the exact
computation data flow are two essentially tasks for the controller to manage the
overall operation of the ALU Cluster.

3.4 System Operation

In order to increase computation throughput and decrease operation period, the
system operation with pipeline mechanism has been recommended as one of solution
ways to achieve these goals. Therefore, as is naturally done in most high performance
processors, the ALU Cluster also operates in a pipelined manner to reach higher
instruction throughput. The pipeline execution diagram in the ALU Cluster is depicted
in Figure 3.4.1. The complete process of pipeline operation to execute one instruction
includes from FETCH, DECOED, READ REGISTER, and EXECUTE 1 ~ N, to
WRITE BACK.

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 26 -

 Figure 3.4.1: Pipeline Execution Diagram Details

During the first pipeline stage in the cycle N (FETCH), the decoder fetches and
sequences the VLIW-like instructions from the instruction microcode storage. During
the decoding stage (DECODE), the decoder decodes the incoming instructions and
then delivers the decoded results to the controller. During the register file read stage
(READ REGISTER), the controller would manage the data storage unit to be read out
the desired data. The desired data major comes from one of the off-chip data memory,
self IRF unit, or SPRF unit, and then sends to the dedicated function unit. During the
execution stage (EXECUTE), each function unit begins to execute the computing
operation if it has been assigned. The duration of executing clock cycle is depended
on the types of function unit, for example, the ALU unit is 2 clock cycles, the MUL
unit is 4 clock cycles, and the DIV unit is 16 clock cycles. Finally, during the register
file write stage (WRITE BACK), the computing results from the function unit would
be written back to the assigned data storage unit managed by the controller. Similarly,
the assigned data storage unit also mainly comes from the off-chip data memory, one
of all IRF units, or SPRF unit.

In summary, while there are perfectly no any hazards happened among the

VLIW-like instructions, the sequence pipeline operation mechanism of ALU Cluster is
shown in Figure 3.4.2. Although the VLIW-like instructions are scheduled statically
and sequenced to the ALU Cluster, any hazards during execution could cause the
succession pipeline operation to stall. Thus, if the hazard is encountered, the
instructions issued earlier would continue to be executed, but the instructions issued
later should be stalled and then be re-executed after the stall condition is no longer
valid.

 Chapter 3: Design of ALU Cluster Microarchitecture

 - 27 -

��	�� ������
�����

��&��	��
'$��
	��� '$��
	��() ��	�����*

�
��
����������������

�

�
��
�����������

�

�
��
����������

�

�
��
���������

�

��	�� ������
�����

��&��	��
'$��
	��� '$��
	��() ��	�����*

��	�� ������
�����

��&��	��
'$��
	��� '$��
	��() ��	�����*

Figure 3.4.2: Sequence Pipeline Operation Diagram

- 28 -

CHAPTER 4

IMPLEMENTATION

In this chapter, the design of an ALU Cluster micro-architecture, described in
previous chapter, would be implemented with the cell-based design method. The EDA
flow for the implementation of this design is introduced, and the circuit
implementation results are listed. The verification results of this work are discussed
from the benchmark choice, the chip configuration for simulation, functionality test
verification, to the performance evaluation. Finally, the performance comparisons to
current related architecture design, implementation of power saving techniques, and a
brief summary of this work are also discussed.

4.1 Design Flow

In order to accomplish the implementation of proposed ALU Cluster
micro-architecture, from the defined specifications to the die chip achievement, the
feasible methods should be provided to complete this work. For most traditional
digital circuit design, the computer-aided design (CAD) tools could be supported to
deal with these designs. With the help of CAD tools, the time of circuit design process
could be shrunk greatly. Besides, the verification and the debug are easily to be
detected and handled. A complete digital circuit design flow with the provided
standard cell library, for example, the cell-based design flow, is shown in Figure 4.1.1.
Three main CAD tools are used to design this work: simulator, synthesizer, and
automatic placement and route (APR). In addition, the major steps of design flow
include from the architecture design, register transfer level (RTL), gate-level,
physical-level, verification, to tape out. The details of these steps are explained in the
following:

 Chapter 4: Implementation

 - 29 -

1. Architecture design: This is the initial step to design an integrated circuit (IC). The
detail specifications and components of an ALU Cluster should be determined
definitely and feasibly.

2. RTL: The determined architecture is stylized by using the hardware description

language (HDL) code, such as Cadence NC-Verilog [24], to describe the behavior
function of each module. The verification of this step is used Novas Debussy [25]
to certify the functionality simulation without taking any timing delays into
account. Once functionality simulations of RTL do not match to the required
specification, the HDL codes should be corrected, or the architecture would be
modified until meeting the demands.

3. Gate-level: After the verification of functionality simulation is met with the

specification of architecture design, the synthesizable RTL codes are synthesized
by utilizing the CAD tool, such as Synopsys Design Compiler [21], to the logic
cells. The targeted technology process and the essential synthesis constraints
would be selected and set to meet the performance requirements. The functionality
simulation with considering the gate delays would be performed for the pre-layout
verification.

4. Physical-level: The synthesizable codes with logic cells would be transformed

from the gate level model into the transistor level model in this step. The APR,
such as Synopsys Astro [21], could be completed the physical implementation.
The basic design flow of APR is included the following sub-steps: the global net
connection specification, floor planning setup, timing setup, placement and
optimization, clock tree synthesis, global nets connection, routing and
optimization, and stream out. The gate delay and wire delay would be taken into
consideration when performing the post-layout functionality simulation checks.

5. Verification: Another two post-layout verifications are also necessary. One is the

design rule check (DRC), and the other is the layout versus schematic (LVS).
DRC checks the data of physical layout against the design rules of fabrication,
because the design rule document is golden for each design to have to be followed.
LVS checks the connectivity of physical layout to its relative schematic circuit
netlist. The Mentor Calibre [26] could be used for these verifications.

6. Tape-out: The ultimate physical layout would be produced after having gone

through the overall design flow, and then it could be fabricated in the foundry.

 Chapter 4: Implementation

 - 30 -

Figure 4.1.1: Cell-Based Design Flow

 Chapter 4: Implementation

 - 31 -

4.2 Circuit Implementation and Results

The summary of circuit characteristics of this work are listed in Table 4.2.1.
UMC 0.18 um CMOS process and Artisan design kit are utilized for the
implementation. The post-layout operation frequency of an ALU Cluster is 100MHz.
The chip size, core size, gate count, and power dissipation are about 3 mm2, 2.2 mm2,
411491, and 968 mW, respectively. There are total fifteen memories included in this
work. The four 32 x 128 single port static RAM (SRAM) and one 14 x 128 single port
SRAM are the instruction memory, which is stored the instructions for executing
operation. The ten 32 x 32 single port SRAM are the data memory, which is stored the
required data for program execution. Without these memories contained in this work,
the core size, gate count, and power dissipation are near 1.47 mm2, 255669, and 312
mW, respectively. The physical layout of ALU Cluster is depicted in Figure 4.2.1. The
core utilization is close to 88.8%. The floorplan and pad assignment are shown in
Figure 4.2.2. There are total 127 input/output (I/O) pads, where 47 input pads, 32
output pads, and 48 power pads. The definition of the I/O ports is summarized in
Table 4.2.2. Besides, the die microphotograph of tape-out chip is shown in Figure
4.2.3. The selected package for this chip is CQFP128, and photograph of prototype
with package is shown in Figure 4.2.4.

Table 4.2.1: Circuit Summaries

Technology UMC 0.18um Mixed Signal (1P6M) CMOS Process

Library Artisan SAGE-X Standard Cell Library

Clock Rate 100 MHz

Chip Size 2.98 x 2.98 mm2

Core Size
(without memory)

2.2 x 2.2 mm2
(1.8 x 1.2 mm2)

Gate Count
(without memory)

411491
(255669)

Power Dissipation
(without memory)

968.35 mW
(312.38 mW)

On-Chip Memory
10 32 x 32 single port SRAM

4 32 x 128 single port SRAM
1 14 x 128 single port SRAM

Pad
Input: 47 pins

Output: 32 pins
Power: 48 pins

 Chapter 4: Implementation

 - 32 -

Figure 4.2.1: Layout of the ALU Cluster

���

���

���

���

��	

��

���

��

���

��	

���

���

��

�������

�������

���������

���������

����������

��������

�����

�����

����	

����

�����

��	�

���

����

����

����

����

���

���	

��

���

���

��	

���

��

���

���

���

���

��	

��		

�
�
	
�

�
�
�
	

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�
�
�

�
�
	
�

�
�
	
�

�
�
	
�

�
�
	
�

�
�
	

�
�
	
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
	

�
�
	
	

�
�
��
�
�
�
�
�

�

�
�
��
�
�
�
�
�

�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
	
�

�
�
	
�

�
�
	
�

�
�
	

�
�
	
�

�
�
	
�

�
�
	
�

�������� �������

������� ��������

���������
	

���������
	

���������
�

���������
�

�������	

�������	

���������
�

���������
�

�
�
��
�
�
�
�
�

�
�
��
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
��
�
�
�
�
�

�

�
�
��
�
�
�
�
�

�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
��
�
�
�
�
�

�

�
�
��
�
�
�
�
�

�

�
�
	
�

�
�
�

�
�
�
	

�
�
�
�

���������		

���������		

�������

�������

���������	

���������	

���������
�

���������
�

��������

��������

���������
�

���������
�

�
�
��
�
�
�
�
�
	

�
�
��
�
�
�
�
�
	

��
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
��
�
�
�
�
�
	
�

�
�
��
�
�
�
�
�
	
�

�
�
��
�
�
�
�
�
	
�

�
�
��
�
�
�
�
�
	
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
��
�
�
�
�
�
	
�

�
�
��
�
�
�
�
�
	
�

!�
��
�"
�
��
�
�
#$
�
�
�
�%

&���#$����%

'��#��"����

Figure 4.2.2: Floorplan and Pad Assignment

 Chapter 4: Implementation

 - 33 -

Table 4.2.2: The Definition of the I/O Ports

I/O Port Name I/O Signal Description

clk Input The clock signal provides for this chip.

reset Input The reset signal provides for this chip.

sel Input

This is 4-bit width input. To select one of
the instruction memories and the data
memories to be written, or one of the data
memories to be read.

mem_d_wr Input

This input port decides to write or read the
data memory. “1” means that data is
written from the off-chip ports to the data
memory. “0” means that data is read from
the data memory to the off-chip ports.

mem_d_ctrl Input

This input port decides which source
signal controls the data memory to be
activated. “1” means that the off-chip port
controls the enable signal of data memory.
“0” means that the on-chip signal controls
the enable signal of data memory.

a Input
This is 7-bit width input. User can specify
the address of instruction memory and data
memory by this input port.

d Input
This is 32-bit width input. User can insert
instructions to the instruction memory and
data to the data memory by this input port.

q Output
This is 32-bit width output. User can fetch
execution results from the data memory by
this output port.

core_vdd & core_gnd Power
The power supply provides for the core
part of chip. There are total 16 pairs of
power supply.

io_vdd & io_gnd Power
The power supply provides for the I/O part
of chip. There are total 8 pairs of power
supply.

 Chapter 4: Implementation

 - 34 -

Figure 4.2.3: Die Microphotograph

Figure 4.2.4: Photograph of Prototype with Package

 Chapter 4: Implementation

 - 35 -

4.3 Circuit Verification and Performance Evaluation

In this section, a selected benchmark is used to show the functionality
verification of this work. In order to test with feasibility and ease, three steps of test
configuration for this chip would be explained. The functionality simulation and the
verification during each step of chip configuration would be also described. Finally,
the performance evaluation of this work would be discussed.

4.3.1 Test Bench: FIR Filter

Owing to media processing applications are easily expressed as a series of
computation kernels that operate on large data streaming. As long as any media
processing application could be organized as the stream processing model that would
be suitable for the ALU Cluster to execute, for instance, the FIR filter system has been
introduced in previous chapter and is depicted in Figure 2.2.2. The FIR filter system is
chosen as the test bench for the ALU Cluster since it is suitable for one dimensional
architecture, needs repeat and high percentage of addition and multiplication, and
applies for wide DSP applications, such as matched filtering, pulse shaping,
equalization, etc. A brief review of FIR filter system is illustrated in the following.
The input-output relationship of linear time invariant (LTI) FIR filter can be described
as

[] []�
−

=
−•=

1

0

M

k
k knxbny (4.1)

where M represents the length of FIR filter, bk’s are the filter coefficients, and x[n-k]
denotes the data sample at time instance [n-k].

Before executing simulation, the dimension of input and filter coefficients should
be determined. As shown in Figure 4.3.1.1(a), the filter coefficients are the sixteen-tap
Kaiser window FIR bandpass filters, and the input is an exponential function with ten
sampling points. MathWorks Matlab [27] is used to simulate the FIR filter system
described above in advance, and the results of simulation are shown in Figure
4.3.1.1(b). This step is in order to make sure the results of FIR filter execution under
calculating in the ALU Cluster that could be compared to the results of Matlab
simulation to verify whether the functionality operations of this chip work correctly or
not.

 Chapter 4: Implementation

 - 36 -

0 5 10 15

−20

−10

0

10

20

30

40

50

60

70

80

90
16−th order Kaiser window FIR filter

0 5 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10−point input function

(a)

0 5 10 15 20 25
−2

0

2

4

6

8

10

12
x 105 FIR output results

(b)

Figure 4.3.1.1: Filter Coefficients, Input Data, and Executed Results of the FIR Filter

 Chapter 4: Implementation

 - 37 -

4.3.2 Functionality Verification

One of design goals for the ALU Cluster is to process the abundant parallel data,
so the total numbers of input pads and output pads are enormous significantly.
However, the SRAM, such as the instruction memory and the data memory, is utilized
to replace and reduce the most of input pads and output pads. Therefore, for the
testability and feasibility of this chip, the ALU Cluster would be operated in three
different modes: WRITE Mode, EXECUTION Mode, and READ Mode. When this
chip is ready to execute programs, it would be operated in the order from WRITE
Mode, EXECUTION Mode, to READ Mode. The detail actions of three modes would
be described in the following:

1. WRITE Mode: The first step is to insert the instructions and the required data into

the instruction memory and the data memory, respectively, from the input port
“d.” With combination of the other input ports, such as “sel,” “a,” “mem_d_wr,”
and “mem_d_ctrl,” to be controlled and set, user could determine one of the
instruction memory or the data memory is the writing target. The value of control
signals for memory in this mode are:

mem_d_wr = high & mem_d_ctrl = high

2. EXECUTION Mode: After inserting the instructions and the required data into the

dedicated memory, the second step is that the ALU Cluster could be begun to
execution the assigned programs. In this mode, the input ports, such as “sel” and
“a,” are used to control the instruction memory to issue the instructions, and the
other input ports, such as “mem_d_wr” and “mem_d_ctrl,” are used to set the data
memory to be controlled by the on-chip signals. The value of control signals for
memory in this mode are:

mem_d_wr = low & mem_d_ctrl = low

3. READ Mode: In the third step, user could read out the data from the data memory

for testing after the assigned program execution has been finished. With
combination of the input ports, such as “sel,” “a,” “mem_d_wr,” and
“mem_d_ctrl,” the computed data could be read out from the data memory to the
output port “q.” The logic analyzer could be utilized to confirm that whether the
computed results are accurate or not. The value of control signals for memory in
this mode are:

mem_d_wr = low & mem_d_ctrl = high

 Chapter 4: Implementation

 - 38 -

In order to verify functionality of this work, there are three modes to complete a
program execution has been described in previous paragraph, and the steps of
functionality verification would also follow in this order to be discussed. All
functionality verifications are under the environment of post-layout simulation, and
the maximal operation frequency is 90.9 MHz for executing the FIR filter system. The
overall operation modes are shown in Figure 4.3.2.1.

Before executing the assigned programs, the WRITE Mode is executed firstly

while having set the input ports, such as “mem_d_wr” is high and “mem_d_ctrl” is
high. The ALU Cluster during the WRITE Mode is shown in Figure 4.3.2.2. In this
mode, not only instructions are inserted into the instruction memory, but also the filter
coefficients and the input data of the FIR filter are inserted into the data memory.
Figure 4.3.2.3 and Figure 4.3.2.4 are shown the insertion of filter coefficients and
input data, respectively. In addition, the assembly code of overall instructions for the
execution of this test bench is summarized in Appendix B.

After having completed the WRITE Mode, the EXECUTION Mode could be

started. Figure 4.3.2.5 is shown the ALU Cluster operated in the EXECUTION Mode
after having set the input ports, such as “mem_d_wr” is low and “mem_d_ctrl” is low.
The pre-stored instructions are fetched from the instruction memory to the decoder,
and then the controller governs overall ALU Cluster to execute the programs. In the
mean time, the required input data is read from the data memory, and only the
calculated results are also written back to the data memory.

Finally, the last step is to verify the results of program execution. After the

WRITE Mode has been finished, this chip is entered into the READ Mode with
setting the input ports, such as “mem_d_wr” is low and “mem_d_ctrl” is high. Figure
4.3.2.6 is shown the ALU Cluster worked in the READ Mode. To compare the results
read from Figure 4.3.2.6 and the results shown in Figure 4.3.1.1(b), there is no
difference between these two results. Therefore, the functionality of ALU Cluster is
worked correctly.

 Chapter 4: Implementation

 - 39 -

Figure 4.3.2.1: The Overall Operation Flow

Figure 4.3.2.2: The Operation of WRITE Mode

(1 - 1) Page 1

Cursor: 0 Marker:0 Delta:0 x 10ps

G1

reset

clk

sel[3:0]

mem_d__wr

mem_d__ctrl

a[6:0]

d[31:0]

G2

80000 90000 100000 110000 120000

0 200000 400000 600000 800000

101 -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1* -10 -11 -1* -1* -1*

16 1 2 3 4 5 6 7 8 9

11 0 1_* 10* 1_* 0 1_* 10* 1_* 0 1_* -1* 11* 0 1_* 10* 11* 0 1_* 10* 10* 0 1_* 10* 11* 0 1_* 10* -1* 0 1_* 1_* -1* 11* 10* 1_* -1* -1*

-*

10

0

Figure 4.3.2.3: Insertion of Filter Coefficients

 Chapter 4: Implementation

 - 40 -

(1 - 1) Page 1

Cursor: 0 Marker:0 Delta:0 x 10ps

G1

reset

clk

sel[3:0]

mem_d__wr

mem_d__ctrl

a[6:0]

d[31:0]

G2

20000 30000 40000 50000 60000 700

0 200000 400000 600000 800000

-* 10 11 100

0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0 10* 11* 10* 1_* 10* 10* 1_* 10* 11 1 11 -1* 11 0 -1* 10* -1* 101_01* -1* 10* -1* 0 11 -1* 11 10* 11* 10* 1_* 10* 10* 1_* 10* 11 1 11 -1* 11 0 -1* 10* -1* 101_0* -1*

101

Figure 4.3.2.4: Insertion of Input Data

(1 - 1) Page 1

Cursor: 0 Marker:0 Delta:0 x 10ps

G1

reset

clk

sel[3:0]

mem_d__wr

mem_d__ctrl

a[6:0]

d[31:0]

G2

590000 600000 610000 620000 630000

0 200000 400000 600000 800000

* 1010

-35 0 1 2 3 4 5 6 7 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1111

*

0

Figure 4.3.2.5: The Operation of EXECUTION Mode

(1 - 1) Page 1

Cursor: 0 Marker:0 Delta:0 x 10ps

G1

reset

clk

sel[3:0]

mem_d__wr

mem_d__ctrl

a[6:0]

d[31:0]

q[31:0]

G2

710000 720000 730000 740000 750000

0 200000 400000 600000 800000

1111 101

0 20 0 1 2 3 4 5 6 7 8 9

0 30000 X -28966 19347 7113 -37380 86248 -158279 781792 1127528 224741

1001

10

0

182620

Figure 4.3.2.6: The Operation of READ Mode

 Chapter 4: Implementation

 - 41 -

4.3.3 Performance Evaluation Results

After having completed the execution of FIR filter system in the ALU Cluster,
the results of performance evaluation about the code utilization and the memory
utilization could be acquired. The detail performance evaluations are discussed in the
following.

Figure 4.3.3.1 is shown the code utilization of each arithmetic unit. It takes total

93 instructions for the ALU Cluster to finish the FIR filter simulation. For each
arithmetic unit, it takes 60, 75, 80, 80, and 0 instructions for the ALU_0 unit, ALU_1
unit, MUL_0 unit, MUL_1 unit, and DIV_0 unit, respectively, to complete the
program execution. Additionally, the code utilization of the ALU_0 unit, ALU_1 unit,
MUL_0 unit, MUL_1 unit, and DIV_0 unit is 64.5%, 80.6%, 86%, 86%, and 0%,
respectively. Therefore, the code utilization of ALU Cluster is about 63.4%. Besides,
it takes 99 clock cycles to complete this simulation, so the clock cycles per executed
result output are 3.96.

Figure 4.3.3.2 is shown the memory utilization about the capacity usage in the

ALU Cluster. The entry size of IRF unit and SPRF unit is 32 and 64, respectively. It
needs 10 and 12 reused entries for each IRF unit in the ALU_0 unit and ALU_1 unit,
respectively, 16 and 10 reused entries for each IRF unit respectively in both the
MUL_0 unit and MUL_1 unit, 3 reused entries for the SPRF unit, and 0 used entries
for each IRF unit in the DIV_0 unit during executing the FIR filter simulation. These
results have revealed that the initial decisions of storage capacity of IRF unit and
SPRF unit are well sufficient to be provided and used during the execution of FIR
filter system.

Figure 4.3.3.3 is shown the memory utilization about the data reference times in

the ALU Cluster. The data reference times mean that the number of times for required
data is read or written to the storage units, such as the IRF unit, the SPRF unit, and the
off-cluster memory during the program execution. The total number of times for each
dedicated off-cluster memory of the ALU_0 unit, ALU_1 unit, MUL_0 unit, MUL_1
unit, and DIV_0 unit to be read/written during executing the FIR filter simulation are
0/21, 0/0, 0/2, 0/0, 16/1, 10/0, 16/1, 10/0, 0/0, and 0/0, respectively. In addition, the
total number of times for the SPRF unit and each dedicated IRF unit of the ALU_0
unit, ALU_1 unit, MUL_0 unit, MUL_1 unit, and DIV_0 unit to be read/written
during executing the FIR filter simulation are 7/7, 57/57, 56/56, 75/75, 75/75, 80/16,
80/10, 80/16, 08/10, 0/0, and 0/0, respectively.

 Chapter 4: Implementation

 - 42 -

From the results of performance evaluation described in the previous paragraph,
the proportion of data reference rate between the on-cluster memory, such as the IRF
units and SPRF unit, and off-cluster memory, such as the SRAM, is 912 : 77.
Furthermore, a proportion is 0 : 885 if there is no the hierarchy memory bandwidth; in
other words, without containing any IRF units and SPRF unit in the ALU Cluster. The
more times of data reference to off-chip memory, the more latency and execution time
to finish the program simulation. Therefore, this has proven that the hierarchy
memory bandwidth could be used efficiently and effectively in the sense that
expensive and communication limited global memory bandwidth is not wasted on the
arithmetic units where inexpensive local memory bandwidth is easy to use and
provide.

Moreover, for the proposed media streaming processor with three-level hierarchy

memory bandwidth architecture, the proportion of data reference rate could be
inferred as 912 : 128 : 51 from the on-chip memory to off-chip memory, for instance,
from the ALU Cluster, stream register file, to DDR RAM, while executing the FIR
filter simulation. This could further demonstrate the hierarchy memory bandwidth to
be utilized well and significantly.

64.5

80.6
86 86

0

63.4

0

20

40

60

80

100

ALU_0 ALU_1 MUL_0 MUL_1 DIV_0 Total

Pe
rc

en
ta

ge

Figure 4.3.3.1: The Code Utilization of Each Arithmetic Unit

 Chapter 4: Implementation

 - 43 -

10 10
12 12

16

10

16

10

0 0
3

0

10

20

30

ALU_0

ALU_1

M
UL_0

M
UL_1

DIV_0

SPRF

Figure 4.3.3.2: The Memory Utilization for Capacity Usage

0

40

80

120

160

ALU_0 IRF

ALU_1 IRF

M
UL_0 IRF

M
UL_1 IRF

DIV_0 IRF

SPRF
M

EM
ORY

T
im

es

READ WRITE

���

�������	
�

���

�

�����	
�

Figure 4.3.3.3: The Memory Utilization for Data Reference

 Chapter 4: Implementation

 - 44 -

4.4 Performance Comparison

In order to estimate that whether the performance evaluation of this work after
having executed the simulation of FIR filter own the competitiveness or not, this ALU
Cluster is compared to recent relative reported works in three different design
architecture styles: the reconfigurable architecture, the application-specific
architecture, and the field programmable gate array (FPGA) architecture. This work
and Schmit [28] are related to the reconfigurable architectures. Stefatos [29], Wang
[30], and Staszewski [31] are related to the application-specific architectures. Finally,
Atmel AT6000 [32] is related to the FPGA architecture. The detail comparison results
of these works are listed in Table 4.4.1.

Table 4.4.1: Comparison Results

Paper Process Size
Freq

(MHz)

Area

(mm2)

Power

(mW)
Architecture

This Work
(2005)

UMC
0.18 um

32-bit
(16-tap)

90.9 1.47 312.38

Schmit
(2002)

ST
0.18 um

32-bit
(16-tap)

120 55.48 650

reconfigurable

Stefatos
(2005)

UMC
0.18 um

20-bit
32-tap

100 1.465 181

Wang
(2005)

0.18 um
16-bit
73-tap

10 0.601 8.839

Staszewski
(2000)

TI
0.18 um

6-bit
8-tap

550 0.3 36

application-
specific

Atmel
AT6000

0.6 um
20-bit
16-tap

76.9 1280 496 FPGA

Figure 4.4.1 is shown a chart that those reported works in Table 4.4.1 is

normalized to this work. For operation frequency, the upward column means that
clock rate is faster than this work, and the downward column means that clock rate is
slower than this work. Similarly, for physical area and power dissipation, the
downward column means that die size and power consumption are fewer than this
work correspondingly, and the upward column means that die size and power
consumption are larger than this work correspondingly.

 Chapter 4: Implementation

 - 45 -

In a word, this work could be performed a quite competitive performance while
being compared with the application-specific architectures by trading the larger
physical area and the more power dissipation for the faster operation frequency.
However, the application range of this work is more widely and flexibly than the
application-specific architectures to suitable for handling various media processing
applications. Besides, this work has better performance in the operation frequency,
physical area, and power dissipation that are compared with the reconfigurable
architectures and the FPGA architectures, respectively. Hence, this work has provided
a breakthrough in the operating time, die size, and power saving among these
general-purpose architectures.

0.01

0.1

1

10

100

1000

Schmit (2002) Stefatos (2005) Wang (2005) Staszewski (2000) Atmel At6000

Frequency (MHz) Area (mm2) Power (mW)

Figure 4.4.1: The Normalized Comparison Results

4.5 Low Power Techniques Implementation

The design of ALU Cluster combined with power saving techniques has been
developed and implemented at SoC Laboratory by students and faculty [33]. The
prototype of low power media processor architecture is shown in Figure 4.5.1. There
are two low power techniques utilized in this work: power gating [34] and voltage

 Chapter 4: Implementation

 - 46 -

islands [35]. Power gating, or is also called sleep transistor, is commonly used to
disconnect the power supply of function block when it is in the idle mode. This is
achieved by connecting a transistor in series with the power supply of function block.
Sleep transistor technique involves to partition the chip into different blocks depended
on the functionality that might be selectively powered on or off. When the function
block is in the sleep state, the sleep transistor is turned off. Thus, the power
dissipation of this function block could be reduced. In practice, a network of sleep
transistor might be necessary to efficiently control and decrease the leakage power
dissipation. Function blocks which might be periodically powered off are isolated
from the primary power distribution network of chip by placing them into voltage
islands.

The cell-based design flow is utilized to finish this design, and in the mean time

the EDA flow and CAD tools are investigated in order to provide the low power
circuitry controlling techniques embedded. Hence, the layout of four ALU Clusters
with power saving equipments is shown in Figure 4.5.2. Each ALU Cluster
surrounded by its own power ring that is governed by the control logic.

Besides, based on the developed architecture simulator, it could determine how

many ALU Clusters to be executed to reach the best performance that trades between
the execution time and power dissipation after having simulated an assigned media
processing application. Here the FFT is executed in the multi-cluster architecture. No
matter how many numbers of the ALU Cluster are used on the multi-cluster
architecture to simulate FFT, the power dissipation would almost be the same if there
is no any low power technique design embedded. However, as shown in Figure 4.5.3,
by utilizing the low power technique design, the power dissipation is scalable and
decreases 62% for using one ALU Cluster. In addition, if more ALU Clusters are used
on the multi-cluster architecture, then running a program execution could be
completed more rapidly, and the total energy consumption could be also decreased
since the execution time could be largely reduced. As shown in Figure 4.5.4, the
energy consumption decreases 33% while using the numbers of four times of ALU
Cluster. Furthermore, if the system has to lower the power dissipation, then only use a
portion of ALU Cluster and turn of the idle ALU Cluster. Although this would
increase more execution time, the power dissipation could be greatly decreased.

 Chapter 4: Implementation

 - 47 -

���
����	���

�����

����	�
�

���
�

�����
����	��

�����

�����
����	��

�����

�����
����	��

�����

�����
����	��

����	�

Figure 4.5.1: Multi-Cluster Architecture with Low Power Techniques

Figure 4.5.2: Layout of Multi-Cluster with Low Power Equipments

'��# # # # #

���()* # # # # # # # # #

	#

'��# # # # #

���()* # # # # # # # # #

�#

'��# # # # #

���()* # # # # # # # #

�#

'��# # # # #

���()* # # # # # # # # #

�#

$����%#

+����# ����#

+����# ����#

 Chapter 4: Implementation

 - 48 -

0

100

200

300

400

4-Cluster 2-Cluster with Voltage
Islands

1-Cluster with Voltage
Islands

m
W

41.65%

35.69%

62.47%

Figure 4.5.3: Power Dissipation on the Multi-Cluster Architecture

0

0.1

0.2

0.3

0.4

0.5

4-Cluster 2-Cluster with Voltage
Islands

1-Cluster with Voltage
Islands

uJ

13.54%

22.43%

32.93%

Figure 4.5.4: Energy Consumption on the Multi-Cluster Architecture

 Chapter 4: Implementation

 - 49 -

To integrate the developed ALU Cluster with power saving techniques, the
execution time and power dissipation depended on the performance requirement
would be scalable and well fit for this work. From the above-mentioned results,
therefore, the combination of streaming architectures and power saving techniques
would be the main stream for the design of next generation portable multimedia and
communication systems in the future as depicted in Figure 4.5.5.

Figure 4.5.5: Future Mobile Multimedia and Communication System Design Trend

4.6 Summary

We have fully implemented the ALU Cluster architecture design by utilizing the
current developed CAD tools and cell-based design flow. The maximal clock rate,
physical core size, and power dissipation are 100 MHz, 2.16 mm2, and 312 mW,
respectively. After having completed the execution of selected benchmark simulation,
FIR filter system, the code utilization is 63.4%, and the clock cycles per executed
result output is 3.96. The memory capacity of IRF units and SPRF unit are sufficient
to provide during the simulation execution, and the ratio of data reference times of
on-cluster memory and off-cluster memory is 989 : 91. The higher ratio to the
on-cluster memory means that the limited global memory bandwidth is not wasted on
the arithmetic units where the ample local memory bandwidth is easy to utilize.
Compare to current related reported works, this work could perform a quite
competitive performance while being compared with the application-specific
architectures. Besides, this work has better performance compared with the
reconfigurable architectures and the FPGA architectures.

 Chapter 4: Implementation

 - 50 -

Furthermore, the implementation of multiple ALU Clusters design combined
with power saving techniques has been developed by several members of SoC
Laboratory, and another developed architecture simulator could depend on the
required performance to determine the number of ALU Clusters to be executed after
the application simulation has been finished. Therefore, the performance of execution
time and power dissipation would be scalable depended on requirement.

 - 51 -

CHAPTER 5

CONCLUSION

An ALU Cluster design for the media streaming processors architecture has been
designed in this thesis. In the meantime, this work has also demonstrated the
consideration of implementation feasibility of each component. The back-end
simulation results based on the process technology and standard cell library have
decided the optimized number and performance of each component. This streaming
architecture combined with memory bandwidth hierarchy architecture has efficiently
dealt with the selected test bench without wasting too much expensive and
communication limited global memory bandwidth on the function units. Additionally,
the analysis results of performance evaluation for this work confirm to have the
competitiveness and advantages compared with recent relative reported works. Finally,
the prototype of this work has been fabricated in UMC 0.18 um 1P6M standard
CMOS process technology.

To integrated the developed ALU Cluster with power saving techniques as

shown in Figure 4.5.1. The results show that the power dissipation and energy
consumption of selected benchmark for the multimedia applications and baseband
communication systems could be reduced significantly. Both power dissipation and
energy consumption become scalable by dynamic selecting the number of utilized
ALU Clusters. The instant performance and energy consumption of an entire work
could be optimized for mobile systems. Thus, this design has provided a breakthrough
in the operating time and power dissipation in limited battery life for similar
architectures. From the above-mentioned results, therefore, the combination of
streaming architectures and power saving techniques have been the main stream for
the design of next generation portable multimedia and communication systems as
depicted in Figure 4.5.5.

- 52 -

BIBLIOGRAPHY

[1] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R.

Mattson, J. D. Owens, “A Bandwidth-Efficient Architecture for Media
Processing,” Proceedings of 31st Annual ACM/IEEE International Symposium

on Microarchitecture, pages 3-13, November 1998.
[2] L. Hennessy, A. Patterson, Computer Architecture: A Quantitative Approach,

Third Edition, Morgan Kaufmann Publishers, 2003.
[3] W. Wolf, Modern VLSI Design: System-on-Chip Design, Third Edition, Prentice

Hall Modern Semiconductor Design Series, 2002.
[4] J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design

Perspective, Second Edition, Prentice Hall Electronics and VLSI Series, 2003.
[5] N. H. E. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A Systems

Perspective, Second Edition, Addison-Wesley VLSI Systems Series, 1993.
[6] B. Khailany, J. W. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens, B.

Towles, A. Chang, S. Rixner, “Imagine: Media Processing with Streams,” IEEE

Micro, pages 35-46, March-April 2001.
[7] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Matttson, J. D.

Owens, “Programmable Stream Processors,” IEEE Computer, pages 54-62,
August 2003.

[8] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, A. Das, “Stream Processors:
Programmability with Efficiency,” ACM Queue, pages 52-62, March 2004.

[9] K. Mai, T. Paaske, N. Jayasena, R. Ho, J. W. Dally, M. Horowitz, “Smart
Memories: A Modular Reconfigurable Architecture,” Proceedings of the 27th

International Symposium on Computer Architecture, pages 161-171, June 2000.
[10] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,

C. Chen, C. W. Kang, I. Kim, G. Daglikoca, “The Architecture of the DIVA
Processing-In-Memory Chip,” Proceedings of the International Conference on

Supercomputing, pages 14-25, June 2002.
[11] J. Draper, J. Sondeen, S. Mediratta, I. Kim, “Implementation of a 32-bit RISC

Processor for the Data-Intensive Architecture Processing-In-Memory Chip,”
Proceedings of the IEEE International Conference on Application-Specific

Systems, Architectures, and Processors, pages 163-172, July 2002.

 Bibliography

 - 53 -

[12] T. Sakurai, “Perspectives on Power-Aware Electronics,” IEEE International

Solid-State Circuits Conference, pages 26-29, February 2003.
[13] J. Mitola, “The Software Radio Architecture,” IEEE Communications Magazine,

pages 26-38, May 1995.
[14] E. Buracchini, “The Software Radio Concept,” IEEE Communications Magazine,

pages 138-143, September 2000.
[15] M. Keating, P. Bricaud, Reuse Methodology Manual for System-on-Chip Designs,

Third Edition, Kluwer Academic Publishers, 2002.
[16] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson, B. Towles, B. Serebrin, W. J.

Dally, “Media Processing Applications on the Imagine Stream Processor,”
Proceedings of the IEEE International Conference on Computer Design, pages
295-302, September 2002.

[17] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing,
Second Edition, Prentice Hall Signal Processing Series, 1999.

[18] A. P. Chandrakasan, S. Sheng, R. W. Brodersen, “Low-Power CMOS Digital
Design,” IEEE Journal of Solid-State Circuits, pages 473-484, April 1992.

[19] S. Rixner, Stream Processor Architecture, Kluwer Academic Publishers, 2002.
[20] B. khailany, The VLSI Implementation and Evaluation of Area- and

Energy-Efficient Streaming Media Processors, Ph.D Dissertation, Stanford
University, 2003.

[21] http://www.synopsys.com/
[22] http://www.umc.com/english/process/d.asp

http://www.umc.com/english/design/b_3.asp#Artisan
[23] R. Ho, K. Mai, M. Horowitz, “The Future of Wires,” Proceedings of the IEEE,

pages 490-504, April 2001.
[24] http://www.cadence.com/
[25] http://www.novas.com/
[26] http://www.mentor.com/
[27] http://www.mathworks.com/
[28] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R. R. Taylor, “PipeRench:

A Virtualized Programmable Datapath in 0.18 Micron Technology,” Proceedings

of the IEEE Custom Integrated Circuits Conference, pages 63-66, May 2002.
[29] E. F. Stefatos, H. Wei, T. Arslan, R. Thomson, “Low-Power Reconfigurable

VLSI Architecture for the Implementation of FIR Filters,” Proceedings of the

19th IEEE International Parallel and Distributed Processing Symposium, pages
168b-168b, April 2005.

 Bibliography

 - 54 -

[30] C. H. Wang, A. T. Erdogan, T. Arslan, “Algorithmic Implementation of
Low-Power High Performance FIR Filtering IP Cores,” Proceedings of the 18th

IEEE International Conference on VLSI Design, pages 659-662, January 2005.
[31] R. B. Staszewski, K. Muhammad, P. Balsara, “A 550-MSample/s 8-Tap FIR

Digital Filter for Magnetic Recording Read Channels,” IEEE Journal of

Solid-State Circuits, pages 1205-1210, August 2000.
[32] http://www.atmel.com/dyn/resources/prod_documents/DOC0833.PDF
[33] T. W. Lin, M. C. Lee, F. J. Lin, H. Chiueh, “A Low Power ALU Cluster Design

for Media Streaming Architecture,” to appear: IEEE 48th International Midwest

Symposium on Circuits and Systems, August 2005.
[34] J. W. Tschanz, S. g. Narendra, Y. Ye, B. A. Bloechel, s. Borkar, V. De, “Dynamic

Sleep Transistor and Body Bias for Active Leakage Power Control of
Microprocessors,” IEEE Journal of Solid-State Circuits, pages 1838-1845,
November 2003.

[35] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, J. M.
Cohn, “Managing Power and Performance for System-on-Chip Design Using
Voltage Islands,” IEEE/ACM International Conference on Computer Aided

Design, pages 195-202, November 2002.

- 55 -

APPENDIX A

SUMMARY OF THE DEFINED MICROCODE

IN INSTRUCTION SET

I. The part of “SOURCE” in instruction set format

Source Register Binary Code [1:0]
None operation 00 b

Off-chip data memory (DM) 11 b

SPRF (SP) 10 b

IRF (RF) 11 b

II. The part of “DESTINATION” in instruction set format

Destination Register Binary Code [3:0]
None operation 0000 b

Off-chip data memory (DM) 0001 b

SPRF (SP) 0010 b

Left IRF of ALU_0 (I9) 0011 b

Right IRF of ALU_0 (I8) 0100 b

Left IRF of ALU_1 (I7) 0101 b

Right IRF of ALU_1 (I6) 0110 b

Left IRF of MUL_0 (I5) 0111 b

Right IRF of MUL_0 (I4) 1000 b

Left IRF of MUL_1 (I3) 1001 b

Right IRF of MUL_1 (I2) 1010 b

Left IRF of DIV_0 (I1) 1011 b

Right IRF of DIV_0 (I0) 1100 b

 Appendix A: Summary of the Defined Microcode in Instruction Set

 - 56 -

III. The part of “OPERATION CODE” in instruction set format

Function Unit Operation OP code
None 0000 b

ADD 0001 b

SUB 0010 b

ABS 0011 b

AND 0100 b

OR 0101 b

XOR 0110 b

NOT 0111 b

SLL 1000 b

SRL 1001 b

SRA 1010 b

LT 1011 b

GT 1100 b

ALU

EQ 1101 b

None 0 b
MUL

MUL 1 b

None 00 b

DIV 01 b

REM 10 b
DIV

SQR 11 b

- 57 -

APPENDIX B

ASSEMBLY CODE OF TEST BENCH

ALU_0 ALU_1 MUL_0 MUL_1 DIV_0
1 DM_16_DM_01_DM_20_MUL DM_15_DM_01_I9_00_MUL

2 DM_16_DM_02_I8_00_MUL DM_14_DM_01_I7_00_MUL

3 DM_15_DM_02_I6_00_MUL DM_16_DM_03_I9_01_MUL

4 DM_13_DM_01_I7_01_MUL DM_14_DM_02_I6_01_MUL

5 DM_15_DM_03_I7_02_MUL DM_16_DM_04_I6_02_MUL

6 DM_12_DM_01_I7_03_MUL DM_13_DM_02_I6_03_MUL

7 DM_14_DM_03_I7_04_MUL DM_15_DM_04_I6_04_MUL

8 DM_16_DM_05_I8_01_MUL DM_11_DM_01_I7_05_MUL

9 RF_00_RF_00_DM_00_ADD DM_12_DM_02_I6_05_MUL DM_13_DM_03_I7_06_MUL

10 RF_00_RF_00_SP_00_ADD DM_14_DM_04_I6_06_MUL DM_15_DM_05_I7_07_MUL

11 RF_01_RF_01_I9_02_ADD DM_16_DM_06_I6_07_MUL DM_10_DM_01_I7_08_MUL

12 RF_02_RF_02_I8_02_ADD DM_11_DM_02_I6_08_MUL DM_12_DM_03_I7_09_MUL

13 RF_03_RF_03_I9_03_ADD DM_13_DM_04_I6_09_MUL DM_14_DM_05_I7_10_MUL

14 RF_04_RF_04_I8_00_ADD DM_15_DM_06_I6_10_MUL DM_16_DM_07_I9_00_MUL

15 RF_01_SP_00_DM_01_ADD DM_09_DM_01_I7_00_MUL DM_10_DM_02_I6_00_MUL

16 RF_05_RF_05_I8_03_ADD DM_11_DM_03_I7_01_MUL DM_12_DM_04_I6_01_MUL

17 RF_02_RF_02_DM_02_ADD RF_06_RF_06_I9_04_ADD DM_13_DM_05_I7_02_MUL DM_14_DM_06_I6_02_MUL

18 RF_03_RF_01_I9_05_ADD RF_07_RF_07_I8_04_ADD DM_15_DM_07_I7_03_MUL DM_16_DM_08_I6_03_MUL

19 RF_08_RF_08_I8_05_ADD DM_08_DM_01_I7_04_MUL DM_09_DM_02_I6_04_MUL

20 RF_09_RF_09_I9_01_ADD DM_10_DM_03_I7_11_MUL DM_11_DM_04_I6_11_MUL

21 RF_10_RF_10_I8_06_ADD DM_12_DM_05_I7_05_MUL DM_13_DM_06_I6_05_MUL

22 RF_04_RF_03_I9_06_ADD RF_00_RF_00_I8_07_ADD DM_14_DM_07_I7_06_MUL DM_15_DM_08_I6_06_MUL

23 RF_05_RF_00_DM_03_ADD RF_01_RF_01_I9_02_ADD DM_16_DM_09_I8_01_MUL DM_07_DM_01_I7_07_MUL

24 RF_00_RF_05_I9_03_ADD RF_02_RF_02_I8_02_ADD DM_08_DM_02_I6_07_MUL DM_09_DM_03_I7_08_MUL

25 RF_03_RF_03_I9_07_ADD DM_10_DM_04_I6_08_MUL DM_11_DM_05_I7_09_MUL

26 RF_01_RF_06_I8_08_ADD RF_04_RF_04_I9_08_ADD DM_12_DM_06_I6_09_MUL DM_13_DM_07_I7_10_MUL

27 RF_06_RF_04_DM_04_ADD RF_11_RF_11_I8_03_ADD DM_14_DM_08_I6_10_MUL DM_15_DM_09_I7_00_MUL

28 RF_02_RF_07_I8_00_ADD RF_05_RF_05_I9_04_ADD DM_16_DM_10_I6_00_MUL DM_06_DM_01_I7_01_MUL

 Appendix B: Assembly Code of Test Bench

 - 58 -

29 RF_06_RF_06_I8_05_ADD DM_07_DM_02_I6_01_MUL DM_08_DM_03_I7_02_MUL

30 RF_07_RF_02_I9_00_ADD DM_09_DM_04_I6_02_MUL DM_10_DM_05_I7_03_MUL

31 RF_08_RF_01_I9_01_ADD RF_07_RF_07_I8_06_ADD DM_11_DM_06_I6_03_MUL DM_12_DM_07_I7_04_MUL

32 RF_03_RF_08_DM_05_ADD RF_08_RF_08_I9_05_ADD DM_13_DM_08_I6_04_MUL DM_14_DM_09_I7_11_MUL

33 RF_04_RF_03_I9_02_ADD RF_09_RF_09_I8_04_ADD DM_15_DM_10_I6_11_MUL DM_05_DM_01_I7_05_MUL

34 RF_10_RF_10_I9_06_ADD DM_06_DM_02_I6_05_MUL DM_07_DM_03_I7_06_MUL

35 RF_00_RF_00_DM_06_ADD RF_00_RF_00_I8_02_ADD DM_08_DM_04_I6_06_MUL DM_09_DM_05_I7_12_MUL

36 RF_01_RF_05_I8_01_ADD RF_01_RF_01_I9_07_ADD DM_10_DM_06_I6_12_MUL DM_11_DM_07_I7_07_MUL

37 RF_05_RF_06_I9_03_ADD RF_02_RF_02_I8_07_ADD DM_12_DM_08_I6_07_MUL DM_13_DM_09_I7_08_MUL

38 RF_03_RF_03_I9_04_ADD DM_14_DM_10_I6_08_MUL DM_04_DM_01_I7_09_MUL

39 RF_06_RF_04_I9_08_ADD RF_04_RF_04_I8_03_ADD DM_05_DM_02_I6_09_MUL DM_06_DM_03_I7_10_MUL

40 RF_11_RF_11_I8_00_ADD DM_07_DM_04_I6_10_MUL DM_08_DM_05_I7_00_MUL

41 RF_02_RF_01_DM_07_ADD RF_05_RF_05_I9_00_ADD DM_09_DM_06_I6_00_MUL DM_10_DM_07_I7_01_MUL

42 RF_03_RF_02_SP_00_ADD RF_06_RF_06_I8_05_ADD DM_11_DM_08_I6_01_MUL DM_12_DM_09_I7_02_MUL

43 RF_07_RF_07_I9_01_ADD RF_12_RF_12_I8_06_ADD DM_13_DM_10_I6_02_MUL DM_03_DM_01_I7_03_MUL

44 RF_04_RF_03_I8_04_ADD RF_07_RF_07_I9_05_ADD DM_04_DM_02_I6_03_MUL DM_05_DM_03_I7_04_MUL

45 RF_08_RF_08_I9_06_ADD DM_06_DM_04_I6_04_MUL DM_07_DM_05_I7_11_MUL

46 RF_09_RF_09_I9_02_ADD DM_08_DM_06_I6_11_MUL DM_09_DM_07_I7_05_MUL

47 RF_08_SP_00_DM_08_ADD RF_10_RF_10_I8_01_ADD DM_10_DM_08_I6_05_MUL DM_11_DM_09_I7_06_MUL

48 RF_01_RF_00_I9_03_ADD RF_00_RF_00_I8_02_ADD DM_12_DM_10_I6_06_MUL DM_02_DM_01_I7_12_MUL

49 RF_00_RF_05_I8_03_ADD RF_01_RF_01_I9_04_ADD DM_03_DM_02_I6_12_MUL DM_04_DM_03_I7_07_MUL

50 RF_05_RF_06_I8_07_ADD RF_02_RF_02_I9_07_ADD DM_05_DM_04_I6_07_MUL DM_06_DM_05_I7_08_MUL

51 RF_03_RF_03_I9_09_ADD DM_07_DM_06_I6_08_MUL DM_08_DM_07_I7_09_MUL

52 RF_02_RF_01_I9_08_ADD RF_04_RF_04_I8_08_ADD DM_09_DM_08_I6_09_MUL DM_10_DM_09_I7_10_MUL

53 RF_03_RF_04_DM_09_ADD RF_11_RF_11_I9_01_ADD DM_11_DM_10_I6_10_MUL DM_01_DM_01_I7_00_MUL

54 RF_06_RF_03_I9_00_ADD RF_05_RF_05_I8_00_ADD DM_02_DM_02_I6_00_MUL DM_03_DM_03_I7_01_MUL

55 RF_04_RF_02_I8_05_ADD RF_06_RF_06_I9_05_ADD DM_04_DM_04_I6_01_MUL DM_05_DM_05_I7_02_MUL

56 RF_12_RF_12_I8_06_ADD DM_06_DM_06_I6_02_MUL DM_07_DM_07_I7_03_MUL

57 RF_09_RF_08_I8_01_ADD RF_07_RF_07_I9_02_ADD DM_08_DM_08_I6_03_MUL DM_09_DM_09_I7_04_MUL

58 RF_08_RF_08_I8_04_ADD DM_10_DM_10_I6_04_MUL DM_01_DM_02_I7_11_MUL

59 RF_00_RF_07_DM_10_ADD RF_09_RF_09_I9_03_ADD DM_02_DM_03_I6_11_MUL DM_03_DM_04_I7_05_MUL

60 RF_07_RF_05_I8_02_ADD RF_10_RF_10_I9_04_ADD DM_04_DM_05_I6_05_MUL DM_05_DM_06_I7_06_MUL

61 RF_01_RF_00_I8_03_ADD RF_00_RF_00_I9_06_ADD DM_06_DM_07_I6_06_MUL DM_07_DM_08_I7_12_MUL

62 RF_05_RF_01_I9_09_ADD RF_01_RF_01_I8_09_ADD DM_08_DM_09_I6_12_MUL DM_09_DM_10_I8_08_MUL

63 RF_02_RF_06_I8_10_ADD RF_02_RF_02_I9_10_ADD DM_01_DM_03_I7_07_MUL DM_02_DM_04_I6_07_MUL

64 RF_03_RF_04_I9_00_ADD RF_03_RF_03_SP_00_ADD DM_03_DM_05_I7_08_MUL DM_04_DM_06_I6_08_MUL

65 RF_08_RF_02_DM_11_ADD RF_04_RF_04_I9_07_ADD DM_05_DM_07_I7_09_MUL DM_06_DM_08_I6_09_MUL

 Appendix B: Assembly Code of Test Bench

 - 59 -

66 RF_11_RF_11_I8_00_ADD DM_01_DM_04_I7_10_MUL DM_02_DM_05_I6_10_MUL

67 RF_09_RF_03_DM_12_ADD RF_05_RF_05_I9_01_ADD DM_03_DM_06_I7_00_MUL DM_04_DM_07_I6_00_MUL

68 RF_04_RF_10_I8_01_ADD RF_06_RF_06_I9_02_ADD DM_05_DM_08_I7_01_MUL DM_06_DM_09_I6_01_MUL

69 RF_06_RF_09_I8_04_ADD RF_12_RF_12_SP_01_ADD DM_07_DM_10_I9_03_MUL DM_01_DM_05_I7_02_MUL

70 RF_10_SP_00_I9_05_ADD RF_07_RF_07_I8_02_ADD DM_02_DM_06_I6_02_MUL DM_03_DM_07_I7_03_MUL

71 RF_08_RF_08_SP_02_ADD DM_04_DM_08_I6_03_MUL DM_05_DM_09_I7_04_MUL

72 RF_01_RF_00_I9_08_ADD RF_09_RF_09_I8_03_ADD DM_06_DM_10_I6_04_MUL DM_01_DM_06_I7_05_MUL

73 RF_00_RF_01_DM_13_ADD RF_10_RF_10_I8_05_ADD DM_02_DM_07_I6_05_MUL DM_03_DM_08_I7_06_MUL

74 RF_07_RF_04_I8_07_ADD RF_00_RF_00_I9_04_ADD DM_04_DM_09_I6_06_MUL DM_05_DM_10_I8_06_MUL

75 RF_02_SP_01_I9_06_ADD RF_01_RF_01_I8_09_ADD DM_01_DM_07_I7_07_MUL DM_02_DM_08_I6_07_MUL

76 SP_02_RF_02_I9_09_ADD DM_03_DM_09_I7_08_MUL DM_04_DM_10_I6_08_MUL

77 RF_02_RF_02_I8_00_ADD DM_01_DM_08_I7_09_MUL DM_02_DM_09_I6_09_MUL

78 RF_03_RF_05_I8_01_ADD RF_03_RF_03_I9_01_ADD DM_03_DM_10_I6_11_MUL DM_01_DM_09_I7_10_MUL

79 RF_05_RF_07_DM_14_ADD RF_04_RF_04_I8_04_ADD DM_02_DM_10_I6_10_MUL DM_01_DM_10_DM_20_MUL

80 RF_08_RF_08_I8_10_ADD RF_05_RF_05_SP_00_ADD DM_07_DM_09_I7_30_MUL DM_08_DM_10_I6_30_MUL

81 RF_04_RF_09_I9_02_ADD RF_06_RF_06_I8_02_ADD

82 RF_09_RF_03_SP_63_ADD RF_07_RF_07_I9_07_ADD

83 RF_01_RF_00_I9_03_ADD RF_08_RF_08_I8_05_ADD

84 RF_09_RF_09_I7_00_ADD

85 RF_06_RF_10_DM_15_ADD

86 SP_00_RF_06_I9_00_ADD

87 RF_10_RF_10_DM_01_ADD

88 RF_03_RF_04_DM_18_ADD RF_30_RF_30_I8_31_ADD

89 RF_07_RF_05_DM_20_ADD RF_00_RF_11_DM_00_ADD

90 RF_02_RF_01_DM_17_ADD

91 RF_00_RF_02_DM_19_ADD

92

93 SP_63_RF_31_DM_16_ADD

