
An ALU Cluster Design for 
Media Streaming Processors Architecture 

 



An ALU Cluster Design for 

Media Streaming Processors Architecture 

 

Student Ting-Wei Lin 

Advisor Dr. Herming Chiueh 

A Thesis 
Submitted to Department of Communication Engineering 
College of Electrical Engineering and Computer Science 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of 
Master of Science 

in 
Communication Engineering 

September 2005 
Hsinchu, Taiwan. 



 I 

 

 

                                     

 

 

 

 

 

 



 II

An ALU Cluster Design for 

Media Streaming Processors Architecture 

 

Student: Ting-Wei Lin             Advisor: Dr. Herming Chiueh 

 

Department of Communication Engineering 

National Chiao Tung University 

Hsinchu, Taiwan 

Abstract 
Recent research has proposed using streaming architecture to provide a leap in 

media applications that are poorly matched to conventional processor architecture. 

Besides, low power considerations are becoming an important issue for mobile 

systems, but streaming architecture solutions do not fit in above requirements. 

Therefore, in this research, a combination of media streaming architecture and low 

power circuitry design methodology is proposed. An ALU Cluster design for media 

streaming architecture is presented in this thesis, which is based on Stanford Imagine 

stream architecture with the consideration of implementation feasibility. The back-end 

simulation results decide the final micro-architecture of each component, and utilize 

communication bandwidth hierarchy design to effectively solve the problem of scarce 

memory bandwidth. The experimental results show that the power and energy 

consumption of selected benchmark for multimedia and baseband communication 

systems become scalable by dynamic selecting the number of utilized ALU Clusters. 

Thus, the instant performance and energy consumption of an entire work can be 

optimized for mobile systems. The proposed design has provided a breakthrough for 

similar architectures. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

Media processing applications have possession of three key important 

characteristics: large available parallelism, little data reuse, and a high computation of 

memory access ratio [1]. However, these characteristics are poorly matched to 

conventional general-purpose architectures. In the mean time, there is a 

processor-memory performance gap as well as a memory wall problem arisen that 

goes off-chip from processor to memory incurs severe latency and bandwidth 

penalties, as shown in Figure 1.1 [2]. In recent years, the current research has 

proposed to use the streaming architecture by fitting modern very large scale 

integrated-circuit (VLSI) technology with lots of arithmetic logic units (ALUs) on a 

single chip and the hierarchical communication bandwidth design to provide a leap in 

media processing applications [3][4][5]. Relative topics of recent research are Imagine 

Stream Processor [6][7][8], Smart Memories [9], and Processing-In-Memory [10][11]. 

Nevertheless, in contemporary VLSI circuitry for mobile systems, such as handheld 

audio and video applications, low power considerations are becoming an important 

issue as battery life and geometry of mobile systems are limited [12]. The streaming 

architecture and processor-in-memory solutions do not fit in above requirements since 

it generally occupies a huge die size to trade for the data and processing parallelism. 

Thus, in recent developments, most of these architectures are focused on the super 

computing architectures rather than the media processing applications. 

 

However, the streaming architecture has been suggested as an efficient 

architecture for both media processing applications and baseband architecture by 

using the software defined radio mechanism [13][14]. In order to design the next 

generation portable multimedia and communication systems, the power dissipation of 

such a system is an emergency issue. Therefore, a low-power ALU Cluster for the 

streaming architecture is proposed, which combines the software-defined mechanism 
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and the modern low-power circuitry technique in the streaming architecture to provide 

a breakthrough in the operating time and power dissipation in the limited battery 

power. 
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Figure 1.1: Gap between Processor and Memory 

 

In this thesis, our major motivation is to improve media processing applications 

weakly matched to conventional processor architectures. In other words, we aim at the 

micro-architecture design of the 32-bit ALU Cluster for media streaming processor 

architectures because ALU Cluster is the nexus computation part of the processors 

and one main factor of increasing high kernel performance. However, two primary 

problems have been met are the required high computation throughput and the 

processor-memory performance gap. So our proposed solution methods to solve these 

performance bottlenecks are concurrency and locality, respectively. Concurrency is to 

provide abundant data-level parallelism which means moderate multiple function 

units in one ALU Cluster. Locality is to decrease the use of the global bandwidth to 

access the high latency off-chip memory, which means the temporary high speed 

storage units included inside the ALU Cluster that could form the memory bandwidth 

hierarchy architectures. With these solution methods, the performance of the media 

processing applications can be greatly improved. 
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This thesis focuses on an ALU Cluster architecture design of media streaming 

processors. The remaining of organization of this thesis is as follow. 

 

In Chapter 2, the various design methodology styles, the streaming applications 

processing model, the current relative research topics, and the proposed media 

streaming processor architecture are introduced. 

 

In Chapter 3, the detail micro-architecture of each components of ALU Cluster is 

designed. Instruction set format, and overall system pipeline operation from 

instructions read, data reads, operations execute to outcome writes back are also 

explained. 

 

In Chapter 4, the electronic design automation (EDA) flow of implementing this 

work is presented. The benchmark simulation, performance evaluation, and 

comparison to recent related architecture design reports are discussed. Besides, a low 

power ALU Cluster design under group collaboration is also presented. 

 

In Chapter 5, the conclusion of this proposed design is addressed. 
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CHAPTER 2 

BACKGROUND 
 
 
 

In this chapter, a briefly review of the background of the design methodology 
about three different design implementation styles, and three primary related research 
topics nowadays about the streaming architectures are described. In addition, the 
proposed media streaming processor architecture that bases on improving the 
disadvantages of the current existed streaming architectures is presented. 
 
 

2.1 Design Methodology 
 

Generally speaking, there are many different methods when implementing a 
design. In this section, three distinct design methodology styles which are 
application-specific architecture, platform-based architecture, and reconfigurable 
architecture will be briefly introduced on the basis of time to market demands, 
physical area, utilizing flexibility, etc. Furthermore, the pros and cons of these design 
methodology styles are also discussed. 

 
First, the application-specific architecture design is easier among these 

architectures. Figure 2.1.1 is plotted an example of application-specific integrated 
circuit (ASIC) design. The chip implementation could be finished quickly as long as 
following the given well-defined specification. The physical area, operation frequency, 
and power dissipation could be optimized that depends on demands, too. Nevertheless, 
the application-specific architecture design is not so flexible and reusable, and needs 
to redo the overall design flow while the specific applications or specifications are 
changed. 
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Figure 2.1.1: An Example of ASIC Design 

 
Second, the platform-based architecture design is more flexible than 

application-specific architecture design. An example of platform-based architecture 
design is given in Figure 2.1.2. The general platform-based architectures typically 
include a processor, memory, and communication bus [15]. The intellectual property 
(IP), such as digital signal processing (DSP), fast Fourier transform (FFT), moving 
pictures experts group (MPEG) coder and decoder, and audio/video compression and 
decompression, etc, are all designed with the same protocol of bus and available from 
the IP libraries to the platform by the application demands. For example, the general 
platform-based architecture with DSP and audio/video compression and 
decompression can be used for the video applications, or with DSP and FFT filter can 
be used for baseband communication. In Figure 2.1.2.(a), the reference design is set 
for the original specific applications. However, when the specific applications or the 
required functions are changed, the IP block could be modified, added, and removed 
to reach the derivatives design which is depicted in Figure 2.1.2.(b). Therefore, the 
major characteristic of platform-based architecture design is to reduce the design time, 
since all the devices are based on the same protocol of bus and can be integrated 
quickly. Unlike application-specific architecture design, the platform-based 
architecture design could extend to execute more applications by including the extra 
required IP blocks. In the mean time, the power dissipation will be increased when 
more and more IP blocks included. The idle unused IP blocks will also waste 
unnecessary power dissipation. However, in current VLSI circuitry for mobile 
systems, low power considerations are becoming an important subject since battery 
life and geometry of mobile systems are limited. Besides, the speed performance will 
be depended on the slower function units, or mismatch between IP blocks and 
communication bus. In addition, the scarce memory bandwidth problem between IP 
blocks and communication bus is not solved totally. 
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(a) 

 

(b) 
Figure 2.1.2: An Example of Platform-Based Architecture Design 
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Third, the reconfigurable architecture is similar to the platform-based 
architecture design. Some general-purpose IP blocks, such as DSP, FFT, audio/video 
decoder, and so on, are common blocks for many media processing applications. If a 
platform-based design includes those general IP blocks, the platform-based design can 
be used to implement a reconfigurable architecture design. An example of 
reconfigurable architecture design is depicted in Figure 2.1.3. As shown in Figure 
2.1.3.(a), the platform is executed an application for DSP where a additional FFT 
block is needed to accelerate execution rapidly. If the platform is going to execute 
another application for MPEG decoder where a audio/video coder and decoder is 
required, the users only have to reconfigure the data path of IP blocks by 
implementing the software defined radio mechanism, as shown in Figure 2.1.3.(b). 
One advantage of the reconfigurable architecture is that the used hardware and data 
path are reconfigurable. This advantage provides a great flexibility for wide different 
applications. Nevertheless, on the basis of three chief important media characteristics: 
large available parallelism, little data reuse, and a high computation of memory access 
ratio, the reconfigurable architecture could not fit in above requirements well since the 
bandwidth of communication bus is insufficient and then needs the memory hierarchy 
architecture to solve this bottleneck. Moreover, the inactive unused IP blocks would 
increase to dissipate needless energy consumption. This also limits to design for the 
portable systems at the same time. 

 
In conclusion, one of these design methodology styles can be selected to 

implement that depends on the trade-off of its advantages and disadvantages. As a 
consequence, the reconfigurable is more suitable to be chosen for the streaming 
architecture design, because this architecture could provide a significant flexibility in 
various media processing applications for the software defined radio mechanism. 
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(a) 

 

 
(b) 

Figure 2.1.3: An Example of Reconfigurable Architecture Design 
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2.2 Stream Processing Model 
 

Media processing applications are naturally expressed as a sequence of 
computation kernels that operate on long data streaming [16]. A kernel is a small 
program that is repeated for each successive streaming element in its input streaming 
to produce output streaming that is fed to subsequent kernels. Each data streaming is a 
variable length collection of records, where each record is a logical grouping of media 
data. In order to illustrate the stream processing model, consider a simple media 
processing kernel, the finite impulse response (FIR) filter system [17]. An FIR filter is 
a one dimensional convolution of a small kernel over a long data streaming. Let y[n] 
represent the output data streaming of an FIR filter. Let T represent the sampled 
system unit delay which is also equal to the data-rate clock cycle period. At time 
instant nT the output data sample is given by the following equation describes the 
operation: 

[ ] [ ]�
−

=
−•=

1

0

M

k
k knxbny                    (2.1) 

where M represents the number of taps in the filter, bk represents the nth tap 
coefficient, and x[n] represents the input data sample at time instant nT. The 
direct-form FIR structure of the difference equation of Equation 2.1 could be realized 
as shown in Figure 2.2.1. A more simplified structure to be expressed to understand 
the FIR filter system as well as the stream processing model is also shown in Figure 
2.2.2. In both Figure 2.2.1 and Figure 2.2.2, solid arrows stand for data streaming, and 
ovals stand for computation kernels. Therefore, for example, a record could represent 
an input data streaming in an FIR filter application. A data streaming, then, could be a 
collection of hundreds of these input data streaming. 
 

 
Figure 2.2.1: Direct-Form Realization of an FIR Filter System 
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Figure 2.2.2: A Simplified Structure of an FIR Filter System 

 
Records within a data stream are accessed sequentially and processed identically. 

This greatly simplifies the movement of data through a media processor by allowing 
the instruction overhead to be amortized over the length of these homogeneous data 
streaming. 

 
Kernels naturally expose the coarse-grained control parallelism in media 

processing applications, as they form a pipeline of tasks. Multiple kernels can 
therefore operate in parallel on different sections of the application’s data. The first 
kernel in the pipeline would produce output streaming that would then be passed to 
the next kernel. As the next kernel operates on those streaming, the original kernel 
could operate on the next set of input data. Finally the memory bandwidth demands of 
media processing application can also be met using this streaming model. Since all 
data is organized as streaming, single memory transfer operations initiate long 
transfers with little control overhead that can be optimized for bandwidth. 

 
By organizing media processing applications in this stream processing model, the 

following characteristics that were enumerated in the previous chapter are exposed: 
data parallelism is abundant, very little data is reused, and many operations are 
required per memory reference. Large available parallelism is that operations on one 
streaming element are largely independent of the others, so they can exploit lots of 
parallelism and tolerate lots of latency. Little data reuse is that every streaming 
element is read exactly once from memory and is not revisited, resulting in poor cache 
performance. A high computation to memory access ratio is that large amounts of 
arithmetic operations per memory reference are required for each streaming element 
read from memory. These properties can easily be exploited by a media processor 
designed to operate on data streaming. The abstraction of a data streaming maps 
naturally to the streaming data types found in media processing applications. The 
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inputs to most media processing applications are already data streaming and the 
expected outputs are data streaming as well. Streaming exposes the fine-grained data 
parallelism inherent in media applications as well. Each record of a streaming will be 
processed identically, so multiple records can be processed in parallel using the same 
instructions. 
 

Therefore, any media processing applications could be organized as the stream 
processing model, such as shown in Figure 2.2.2, our proposed architecture with 
reconfigurable characteristic could then utilize the software defined radio mechanism 
to rearrange the architecture system to suit for implementing various media processing 
applications flexibly. 
 
 

2.3 Related Research 
 

On the basis of both the streaming architecture and the processing-in-memory 
have been recommended as an effective architecture for the media processing 
applications, relative topics of recent research about the steaming architecture are 
Imagine Stream Processor, Smart Memories, and Processing-In-Memory. In this 
section, a brief overview of these three architecture solutions will be introduced. 
 

First, Imagine Stream Processor is a programmable single-chip processor that 
supports the stream programming model. The Imagine architecture supports 48 ALUs 
organized as 8 single instruction multiple data (SIMD) clusters. Each cluster contains 
6 ALUs, several local register files, and executes completely static very long 
instruction word (VLIW) instructions. The stream register file is the nexus for data 
transfers on the processor. The memory system, arithmetic clusters, host interface, 
microcontroller, and network interface all interact by transferring streams to and from 
the stream register file. 
 

Imagine Stream Processor is a coprocessor that is programmed at two levels: the 
kernel-level and the stream-level. Kernel functions are coded using KernelC, whose 
syntax is based on the C language. Kernels may access local variables, read input 
streams, and write output streams, but may not make arbitrary memory references. 
Kernels are compiled into microcode programs that sequence the units within the 
arithmetic clusters to carry out the kernel function on successive stream elements. 
Kernel programs are loaded into the microcontroller's control store by loading streams 
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from the stream register file. At the application level, Imagine Stream Processor is 
programmed in StreamC. StreamC provides basic functions for manipulating streams 
and for passing streams between kernel functions. 
 

Second, Smart Memories is a multiprocessor system with coarse grain 
reconfiguration capabilities. Processing units in this system are in form of “Tiles” 
which when put together in groups of four, form “Quads”. Interconnecting these 
elements is done in a hierarchical manner: a set of Inter-Quad connections provide 
communication facilities for Tiles inside a Quad, while a mesh interconnection 
network connects Quads together. Tiles inside a Quad share the network interface to 
connect to outside world. 
 

Each Tile in the Smart Memories system is consisted of four major parts: Two 
processor cores, a set of configurable memory mats, a cross bar interconnect, and 
Load/Store unit. Either or both of the processors inside the Tile can be easily turned 
off allowing a Tile to be just a memory resource, and saving power, in the case that 
excess processing power is not required. 
 

Third, Processing-In-Memory architectures that integrate processor logic into 
memory devices offer a new opportunity for bridging the growing gap between 
processor and memory speeds, especially for applications with high 
memory-bandwidth requirements. The data-intensive architecture system combines 
processing-in-memory memories with one or more external host processors and a 
processing-in-memory-to-processing-in-memory interconnect. Data-intensive 
architecture increases memory bandwidth through two mechanisms. First, performing 
selected computation in memory, reducing the quantity of data transferred across the 
processor-memory interface. Second, providing communication mechanisms called 
parcels for moving both data and computation throughout memory, further bypassing 
the processor-memory bus. Data-intensive architecture uniquely supports acceleration 
of important irregular applications, including sparse-matrix and pointer-based 
computations. 
 

In summary, both the streaming architecture and the processing-in-memory 
solutions commonly occupy an enormous physical area to trade for the data and 
processing parallelism without incorporating the well-designed power management 
equipments. On the other hand, low power considerations have been becoming an 
essential concern in contemporary VLSI design for portable systems. Therefore, a low 
power controlling mechanism for the next generation media streaming processor 



                                                                Chapter 2: Background 

 - 13 - 

architecture will be an emergency issue to investigate to provide an advance in the 
operating time as well as the power dissipation in the future media processing 
applications. 
 
 

2.4 Low Power Considerations 
 

Since the power dissipation has turned out to be a significant design concern in 
modern VLSI design, high power dissipation would incur expensive package and 
significant cool cost. On the other hand, the power-aware devices, such as laptops, 
mobile phones, and handhelds devices, etc, have limited advance in battery 
technology. It is almost a necessity to make the reduction and control of the power 
dissipation in high performance digital product designs. 
 

Techniques for the control and reduction of power dissipation can be divided into 
two main categories: static and dynamic [18]. Static techniques are typically applied 
during the circuit design phase and do not change during the operation of the circuit. 
Dynamic techniques allow the dynamic control of certain functional blocks of the 
design during functional operation. Dynamic techniques are involved setting certain 
functional blocks of the chip into low leakage mode when they are in idle mode. 
Furthermore, if the architecture, such as the platform-based architecture, and the 
reconfigurable architecture, etc, includes the power management unit, system can 
scale the power and performance of this architecture. When the required performance 
is high, more function units on the architecture will be active and consume larger 
power. While the power consumption of the architecture has to be reduced, system 
can reduce the active hardware and turn them off with power management unit. So the 
power and performance of this architecture can be scalable if there is power 
management unit on the architecture. 
 
 

2.5 Media Streaming Processor Architecture 
 

By reason of the streaming architecture with software defined radio mechanism 
has been suggested as an effective architecture for the media processing applications, 
our proposed improved media streaming processor architecture is depicted in Figure 
2.5.1. This architecture primarily includes five components: ALU Cluster, stream 
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register file, distributed memory management unit, power management unit, and 
controller. In the mean time, there is also an architecture simulator that has been built 
a simulation environment for this architecture. 
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Figure 2.5.1: Media Streaming Processor Architecture 

 
In general, the architecture simulator is used to determine the number and the 

size of ALU Cluster, stream register file, and off-chip memory to be used efficiently, 
after simulating a specific media processing application. Therefore, the simulation 
results from the architecture simulator would then be used with the software defined 
radio mechanism to reconfigure the media streaming processor. This step would let 
the system to achieve the best performance that trade between the operating time and 
the power consumption. The ALU Cluster is used to shorten operating time for the 
kernel computation. There are also high speed storage units that are embedded in the 
ALU Cluster to reduce the use of the scarce global communication bandwidth. A 
controller decodes instructions and then controls the overall operation of all ALU 
Clusters. The stream register file is a memory organized to handle streaming and 
could hold any number of streaming of any length. The steam register file supports 
data streaming transfers between the ALU Cluster and off-chip memory, such as 
double data rate (DDR) random access memory (RAM), so the recirculation of 
streaming through the stream register file minimizes the use of scarce off-chip data 
bandwidth in favor of global register bandwidth. Distributed memory management 
unit is to solve rare data bandwidth, reduce memory copy, and provide dynamic 
scheduling. 
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Along with the power dissipation has become an important issue concern in 
modern VLSI circuitry for the mobile systems, a power management unit with low 
power techniques for the control and reduction of power dissipation has been 
integrated in the next generation media streaming processor architecture. Furthermore, 
the power management unit could scale the performance and power by trading for 
turn on or turn off the function blocks that depend on the simulation results from the 
architecture simulator. In addition, the high speed storage units inside the ALU Cluster, 
stream register file, and off-chip memory DDR RAM are formed the memory 
bandwidth hierarchy architecture. This is in contrast to conventional architectures 
which use less efficient global register bandwidth when local bandwidth would suffice, 
in turn forcing the use of more off-chip bandwidth. 
 

These main components on the improved media streaming processor and a 
customized architecture simulator have been under developing at SoC Laboratory by 
students and faculty. In this thesis, I am chiefly responsible for the design of an ALU 
Cluster micro-architecture, because ALU Cluster is the nexus computation part of the 
processors and one key factor of increasing high kernel performance. Besides, the 
major challenges to complete this work are the architecture decision of each 
component in the ALU Cluster, met trade-off between timing constraint and area 
constraint, and complicated to micro-architecture implementation. The detail 
micro-architecture design and the design flow would be described in the following 
chapters. 
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CHAPTER 3 

DESIGN OF ALU CLUSTER 
MICROARCHITECTURE 

 
 
 

In this chapter, the details of an ALU Cluster micro-architecture are discussed 
from the decision of each component in the ALU Cluster to the integration of these 
components in the ALU Cluster. In addition, the dedicated instruction set format for 
the ALU Cluster is also explained. Finally, the pipeline steps and the overall system 
operation with pipeline mechanism on the ALU Cluster are described. 
 
 

3.1 ALU Cluster Block Diagram 
 

In order to improve the conventional processor architecture that poorly handle 
with the media processing applications, two solution methods primarily to solve these 
performance bottlenecks appeared on the conventional processor architecture, such as 
the required high computation throughput and the processor-memory performance gap, 
are concurrency and locality, respectively. Therefore, the proposed 32-bit ALU 
Cluster micro-architecture design is mainly based on the Stanford Imagine Stream 
Processor [19][20] with the consideration of the implementation feasibility. 
Concurrency is to provide abundant data-level parallelism which refers to the 
computation on different data elements occurring in parallel as well as the moderate 
multiple function units in one ALU Cluster. Locality is temporal and refers to reuse of 
coefficients or data during the execution of computation kernels, or is also a form of 
temporal locality that exists between different stages of a computation pipeline or 
kernels. So the temporary high speed storage unit is embedded inside the ALU Cluster 
that could form the memory bandwidth hierarchy architectures to reduce the 



                                        Chapter 3: Design of ALU Cluster Microarchitecture 

 - 17 - 

unnecessary use of global memory bandwidth to access the high latency off-chip 
memory frequently. The block diagram of the ALU Cluster micro-architecture is 
shown in Figure 3.1.1. 
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Figure 3.1.1: ALU Cluster Architecture Block Diagram 
 

From Figure 3.1.1, the ALU Cluster architecture are primarily included several 
arithmetic units, high speed storage units, such as intra-register-file (IRF) and scratch 
pad register file (SPRF), a decoder, and a controller. The arithmetic units are 
contained two ALUs, two multipliers, and one divider, supporting to process the large 
available parallel data simultaneously. Most media processing applications are well 
suitable for this mixture of arithmetic units. In addition, the back-end simulation 
results based on the contemporary process technology and the standard cell library 
could decide the number of parallel arithmetic units. Every arithmetic unit in the ALU 
cluster is embedded a high speed 32-entry IRF unit for each input. These IRF units 
mainly are kept to store the temporal intermediate results of computation during 
executing on streams of data and greatly reduce the usage of the required off-chip 
memory bandwidth. This allows memory bandwidth to be used efficiently in the sense 
that expensive and communication limited global memory bandwidth is not wasted on 
the arithmetic units where inexpensive local memory bandwidth is easy to provide 
and use. The 64-entry SPRF unit is also an extra high speed storage unit to offer the 
spills of recirculation of temporary computing data. A decoder fetches instructions and 
sends the decoded results to the controller. A controller major controls the overall 
operations of the ALU Cluster. The details of the micro-architecture of these 
components in the ALU Cluster architecture would be described in the following 
sections. 
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3.2 Instruction Set Format 
The architecture of instruction set format for the ALU Cluster is similar to a 

VLIW-like instruction format, as shown in Figure 3.2.1. The instruction set format is 
major composed of fields for the total arithmetic units (ALU units, MUL units, and 
DIV unit) used in the ALU Cluster. In addition, each arithmetic unit field is further 
subdivided into sub-field, and each sub-field is contained by the two input sources and 
their read addresses, the one output destination and its write address, and the executed 
operation. 
 

Figure 3.2.1: Instruction Set Format 
 

The input source reads from three: off-chip data memory, self IRF unit, and 
SPRF unit. In the same way, the output destination writes back to three: off-chip data 
memory, one of all IRF units, and SPRF unit. The length of address for input source 
or output destination is determined by the size of maximum storage unit, for example, 
one of the off-chip data memory, IRF unit, or SPRF unit. The total executable 
operation types are depended on different type of arithmetic units, so the length of 
operation code is also depended on the type of arithmetic units. For example, the 
length of operation code for the ALU unit, the MUL unit, and the DIV unit is 4-bit, 
1-bit, and 2-bit, respectively. Details of operation types of this part will be explained 
in the next section. 

 
The whole length of instruction set would be determined by the total numbers of 

different type of arithmetic units. The length of the sub-instruction set of each 
arithmetic unit would be primarily determined by the length of executable operation 
code. Therefore, for example, the length of the ALU unit, the MUL unit, and the DIV 
unit is 30-bit, 27-bit, and 28-bit, respectively, and the whole length of instruction set is 
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142-bit. Details summary of the defined microcode in instruction set for the input 
source, the output destination, and the executable operation of each arithmetic unit are 
summarized in Appendix A. 
 
 

3.3 ALU Cluster Function Units 
 

In this section, the micro-architecture design of each function unit in the ALU 
Cluster would be discussed in the following subsections. A more detailed view of 
function unit, which is contained an arithmetic unit and its associated register files, is 
shown in Figure 3.3.1. Most arithmetic units have two data inputs, and output bus. 
Data in the function unit is temporary stored in the IRF units. These function units are 
developed with a number of design goals in mind, including the trade-off between 
physical area, data throughput, and operation latency. As a consequence, in order to 
reduce the design complexity and enhance the implementation feasibility, Synopsys 
DesignWare [21] with UMC 0.18 um 1P6M CMOS process and Artisan SAGE-X 
standard cell library [22] would be used with the intention of shrinking the time of 
design process. 
 

���	���	����������

���	

�
��	�������	����

	��
���

�
��	�������	����

	��
�

����

���������	���

 
Figure 3.3.1: Function Unit Details 
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3.3.1 ALU Unit 
 

An ALU Cluster contains two ALU units that could execute the operations, such 
as the addition, absolute, logical operation, shift, and comparison instructions, listed 
in Table 3.3.1.1. Many of these operations support for 32-bit signed integer 
instructions. These operations could be implemented by using Synopsys DesignWare 
building block IP, for example, DW01_add, DW01_absval, DW01_ash, and 
DW01_cmp6. The results of synthesis implementation of available IPs are listed in 
Table 3.3.1.2. 
 

Table 3.3.1.1: The Operations Correspond to the ALU Unit 

Operation Description 

ADD Add 

SUB Subtract 

ABS Absolute value 

AND Bitwise AND 

OR Bitwise OR 

XOR Bitwise XOR 

NOT Bitwise invert 

SLL Logical shift left 

SRL Logical shift right 

SRA Arithmetic shift right 

LT Less-than 

GT Greater-than 

EQ Equal 

 
The definition of slack is that the clock period subtracts the library setup time 

and the data arrival time. Thus, the larger slack value means that more timing margin 
to complete the execution within one clock cycle. Additionally, the synthesis 
implementation of available IP only takes the gate delay into consideration without 
the wire delay, which the wire delay has been grown a chief critical timing issue in the 
continued scaling of modern VLSI technique [23]. So the larger slack value is better 
consideration to suitable for the place and route process. The initial clock period is set 
to 8 ns as well as 125MHz. Besides, the definition of gate count is that the synthesis 
area of design is divided by the two-input NAND gate area provided by UMC 0.18 
um CMOS process with Artisan standard cell library. From Table 3.3.1.2, in order to 
meet the best optimization between execution time and physical area, therefore, the 
fast carry-look-ahead architecture is chosen for DW01_add, the carry-look-ahead 
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architecture is chosen for DW01_absval, the 2:1 inverting multiplexers and 2:1 
multiplexers architecture is chosen for DW01_ash, and the carry-look-ahead 
architecture is chosen for DW01_cmp6. Finally, the ALU unit is designed as 2-stage 
pipeline architecture. The first stage is to fetch the data of two inputs from the 
controller and then decide which operation to be executed from operation code. The 
second stage is to complete the assigned execution. 
 

Table 3.3.1.2: Synthesis Results Correspond to Different Architecture 

IP Implementation Slack Gate Count 

rpl1 0.56 244 

cla2 2.47 327 

clf3 5.63 456 

bk4 6.16 459 

csm5 6.09 705 

DW01_add 

rpcs6 2.33 342 

rpl 2.61 229 

cla 3.25 234 DW01_absval 

clf 3.14 232 

mx27 6.30 916 

mx2i8 6.09 739 

mx49 5.95 975 
DW01_ash 

mx810 5.16 747 

rpl 3.36 235 

bk 5.71 224 DW01_cmp6 

cla 6.34 196 

 
 

3.3.2 MUL Unit 
 

An ALU Cluster contains two MUL units that could execute the multiplication 
operation, and the executable operation is listed in Table 3.3.2.1. Like the ALU unit, 
 
                        
1. rpl = ripple-carry 
2. cla = carry-look-ahead 
3. clf = fast carry-look-ahead 
4. bk = Brent-Kung 
5. csm = conditional-sum 
6. rpcs = ripple-carry-select 
7. mx2 = 2:1 multiplexers 
8. mx2i = 2:1 inverting multiplexers and 2:1 multiplexers 
9. mx4 = 4:1 and 2:1 multiplexers 
10. mx8 = 8:1, 4:1, and 2:1 multiplexers 
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the MUL unit also executes operation to support for 32-bit signed integer instructions. 
The operation could be implemented by using Synopsys DesignWare building block 
IP, such as DW02_mult and DW_mult_pipe, too. The results of synthesis 
implementation of available IPs depended on different pipeline stages are listed in 
Table 3.3.2.2. 
 

Table 3.3.2.1: The Operation Corresponds to the MUL Unit 

Operation Description 

MUL Multiply 

 
From Table 3.3.2.2, the more pipeline stages would make the more slack value, 

but the gate count from the part of pipeline registers increases more significantly. 
Therefore, in order to trade between the execution time and the physical area, the 
3-stage pipeline with Booth encoding Wallace tree architecture is chosen for 
DW_mult_pipe contained DW02_mult. Finally, the MUL unit is designed as 4-stage 
pipeline. The first three stages are to fetch the data of two inputs and complete the 
multiplication execution. The forth stage is to truncate the outcome of multiplication 
to maximum or minimum expressible value if overflow or underflow is occurred, 
respectively. 
 

Table 3.3.2.2: Synthesis Results Correspond to Different Pipeline Stages 

IP Pipeline Stage Slack Gate Count 

3 3.95 9873 
DW_mult_pipe 

4 4.54 12084 

 
 

3.3.3 DIV Unit 
 

An ALU Cluster contains one DIV unit that could execute the operations, such as 
the division and square root instructions, and these executable operations are listed in 
Table 3.3.3.1. Like both the ALU unit and the MUL unit, these operations also support 
for 32-bit signed integer instructions. On the other hand, the DIV unit is not the key 
kernel performance concerned, therefore, the DIV unit would be suggested not to be 
pipelined and by increasing the latencies of the execution to trade for shrinking area. 
These operations could be implemented by using DW_div and DW_sqrt of Synopsys 
DesignWare building block IP. The results of synthesis implementation of available 
IPs are listed in Table 3.3.3.2. 
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Table 3.3.3.1: The Operations Correspond to the DIV Unit 

Operation Description 

DIV Quotient 

REM Remainder 

SQR Square root 

 
From Table 3.3.3.2, in order to minimize the physical area of the DIV unit by 

means of increasing execution latencies, therefore, the ripple-carry architecture is 
chosen both for DW_div and DW_sqrt. Finally, the DIV unit is designed as no 
pipeline architecture but with a latency of 16 clock cycles for the execution of each 
time. 
 

Table 3.3.3.2: Synthesis Results Correspond to Different Architecture 

IP Implementation Data Arrival Time Gate Count 

rpl 194.34 6628 
DW_div 

cla 83.63 9127 

rpl 68.23 1585 
DW_sqrt 

cla 44.44 1914 

 
 

3.3.4 IRF Unit 
 

While the ALU unit, the MUL unit, and DIV unit are supported all of the 
arithmetic operations in the ALU Cluster, an important non-arithmetic operation is 
supported by the IRF unit. The IRF unit is a one read port and one write port high 
speed register file, and the flip-flops are used as the basic storage element for the IRF 
units, as shown in Figure 3.3.4.1. The storage capacity of IRF unit is 32 words. The 
multi-level multiplexer trees are taken the place of the single-level multiplexer trees to 
speed up the combinational circuit’s part of multiplexer. The IRF unit could be written 
one data and read another data within the same clock cycle, and the flip-flops before 
the read selects of IRF unit enable the register file holding the input values within the 
IRF units so that data written on one clock cycle could be read correctly by the 
arithmetic unit in the subsequent clock cycle.  

 
The key function of IRF unit is major kept to store the temporal intermediate 

results of calculation during executing on streams of data and significantly decrease 
the usage of the necessary off-chip memory bandwidth. This allows memory 
bandwidth to be used efficiently in the sense that the high-cost and communication 
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limited global memory bandwidth is not wasted on the function units where the 
low-priced local memory bandwidth is simple to utilize and offer. In conclusion, all 
IRF units in the ALU Cluster have a total of 320 words, and provide 8 GB/s of peak 
memory bandwidth for one ALU Cluster. 
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Figure 3.3.4.1: IRF Architecture 
 
 

3.3.5 SPRF Unit 
 

Another non-arithmetic operation is supported by the SPRF unit. The 
architecture of SPRF unit is analogous to the architecture of IRF unit except for the 
size of storage capacity. The SPRF unit is a one read port and one write port high 
speed register file, and the flip-flops are used as the basic storage element for the 
SPRF units. The storage capacity of SPRF unit is 64 words, and the SPRF unit could 
provide 0.8 GB/s of peak memory bandwidth for one ALU Cluster. The SPRF unit 
could be written one data and read another data within the same clock cycle, and the 
data written on one clock cycle could be read correctly by the arithmetic unit in the 
subsequent clock cycle. The primary functions of SPRF unit are to hold some spills 
from IRF units and store common coefficient parameters. 
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3.3.6 Decoder Unit 
 

The decoder unit provides to fetch the VLIW-like 142-bit instructions from the 
off-chip instruction memory, and then decodes these instructions for the controller. 
First, the fetched instruction is divided into several segments depended on the number 
of arithmetic units. Second, none operation instruction segments are discarded and 
then the leftover instruction segments are transformed to the requested binary code 
type for the controller. Finally, the decoded results from the decoder are sequenced to 
the controller. 
 
 

3.3.7 Controller Unit 
 

The controller provides temporary storage to hold the decoded instructions, and 
then sequences and issues these decoded instructions to the function units during 
execution. The controller is divided into two parts: the read control and the write 
control. The part of read control receives the decoded instructions from the decoder, 
and then acknowledges the storage unit, such as off-chip memory, IRF unit, or SPRF 
unit, to read out the desired data to the assigned function unit. On the other hand, the 
part of write control would hold the decoded instructions till the function unit that has 
finished the execution, and then acknowledges the destined storage unit to be written 
back the result of computation. The precise timing mechanism and the exact 
computation data flow are two essentially tasks for the controller to manage the 
overall operation of the ALU Cluster. 
 
 

3.4 System Operation 
 

In order to increase computation throughput and decrease operation period, the 
system operation with pipeline mechanism has been recommended as one of solution 
ways to achieve these goals. Therefore, as is naturally done in most high performance 
processors, the ALU Cluster also operates in a pipelined manner to reach higher 
instruction throughput. The pipeline execution diagram in the ALU Cluster is depicted 
in Figure 3.4.1. The complete process of pipeline operation to execute one instruction 
includes from FETCH, DECOED, READ REGISTER, and EXECUTE 1 ~ N, to 
WRITE BACK. 
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 Figure 3.4.1: Pipeline Execution Diagram Details 
 

During the first pipeline stage in the cycle N (FETCH), the decoder fetches and 
sequences the VLIW-like instructions from the instruction microcode storage. During 
the decoding stage (DECODE), the decoder decodes the incoming instructions and 
then delivers the decoded results to the controller. During the register file read stage 
(READ REGISTER), the controller would manage the data storage unit to be read out 
the desired data. The desired data major comes from one of the off-chip data memory, 
self IRF unit, or SPRF unit, and then sends to the dedicated function unit. During the 
execution stage (EXECUTE), each function unit begins to execute the computing 
operation if it has been assigned. The duration of executing clock cycle is depended 
on the types of function unit, for example, the ALU unit is 2 clock cycles, the MUL 
unit is 4 clock cycles, and the DIV unit is 16 clock cycles. Finally, during the register 
file write stage (WRITE BACK), the computing results from the function unit would 
be written back to the assigned data storage unit managed by the controller. Similarly, 
the assigned data storage unit also mainly comes from the off-chip data memory, one 
of all IRF units, or SPRF unit. 

 
In summary, while there are perfectly no any hazards happened among the 

VLIW-like instructions, the sequence pipeline operation mechanism of ALU Cluster is 
shown in Figure 3.4.2. Although the VLIW-like instructions are scheduled statically 
and sequenced to the ALU Cluster, any hazards during execution could cause the 
succession pipeline operation to stall. Thus, if the hazard is encountered, the 
instructions issued earlier would continue to be executed, but the instructions issued 
later should be stalled and then be re-executed after the stall condition is no longer 
valid. 
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Figure 3.4.2: Sequence Pipeline Operation Diagram 
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CHAPTER 4 

IMPLEMENTATION 
 
 
 

In this chapter, the design of an ALU Cluster micro-architecture, described in 
previous chapter, would be implemented with the cell-based design method. The EDA 
flow for the implementation of this design is introduced, and the circuit 
implementation results are listed. The verification results of this work are discussed 
from the benchmark choice, the chip configuration for simulation, functionality test 
verification, to the performance evaluation. Finally, the performance comparisons to 
current related architecture design, implementation of power saving techniques, and a 
brief summary of this work are also discussed. 
 
 

4.1 Design Flow 
 

In order to accomplish the implementation of proposed ALU Cluster 
micro-architecture, from the defined specifications to the die chip achievement, the 
feasible methods should be provided to complete this work. For most traditional 
digital circuit design, the computer-aided design (CAD) tools could be supported to 
deal with these designs. With the help of CAD tools, the time of circuit design process 
could be shrunk greatly. Besides, the verification and the debug are easily to be 
detected and handled. A complete digital circuit design flow with the provided 
standard cell library, for example, the cell-based design flow, is shown in Figure 4.1.1. 
Three main CAD tools are used to design this work: simulator, synthesizer, and 
automatic placement and route (APR). In addition, the major steps of design flow 
include from the architecture design, register transfer level (RTL), gate-level, 
physical-level, verification, to tape out. The details of these steps are explained in the 
following: 
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1. Architecture design: This is the initial step to design an integrated circuit (IC). The 
detail specifications and components of an ALU Cluster should be determined 
definitely and feasibly. 

 
2. RTL: The determined architecture is stylized by using the hardware description 

language (HDL) code, such as Cadence NC-Verilog [24], to describe the behavior 
function of each module. The verification of this step is used Novas Debussy [25] 
to certify the functionality simulation without taking any timing delays into 
account. Once functionality simulations of RTL do not match to the required 
specification, the HDL codes should be corrected, or the architecture would be 
modified until meeting the demands. 

 
3. Gate-level: After the verification of functionality simulation is met with the 

specification of architecture design, the synthesizable RTL codes are synthesized 
by utilizing the CAD tool, such as Synopsys Design Compiler [21], to the logic 
cells. The targeted technology process and the essential synthesis constraints 
would be selected and set to meet the performance requirements. The functionality 
simulation with considering the gate delays would be performed for the pre-layout 
verification. 

 
4. Physical-level: The synthesizable codes with logic cells would be transformed 

from the gate level model into the transistor level model in this step. The APR, 
such as Synopsys Astro [21], could be completed the physical implementation. 
The basic design flow of APR is included the following sub-steps: the global net 
connection specification, floor planning setup, timing setup, placement and 
optimization, clock tree synthesis, global nets connection, routing and 
optimization, and stream out. The gate delay and wire delay would be taken into 
consideration when performing the post-layout functionality simulation checks. 

 
5. Verification: Another two post-layout verifications are also necessary. One is the 

design rule check (DRC), and the other is the layout versus schematic (LVS). 
DRC checks the data of physical layout against the design rules of fabrication, 
because the design rule document is golden for each design to have to be followed. 
LVS checks the connectivity of physical layout to its relative schematic circuit 
netlist. The Mentor Calibre [26] could be used for these verifications. 

 
6. Tape-out: The ultimate physical layout would be produced after having gone 

through the overall design flow, and then it could be fabricated in the foundry. 
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Figure 4.1.1: Cell-Based Design Flow 
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4.2 Circuit Implementation and Results 
 

The summary of circuit characteristics of this work are listed in Table 4.2.1. 
UMC 0.18 um CMOS process and Artisan design kit are utilized for the 
implementation. The post-layout operation frequency of an ALU Cluster is 100MHz. 
The chip size, core size, gate count, and power dissipation are about 3 mm2, 2.2 mm2, 
411491, and 968 mW, respectively. There are total fifteen memories included in this 
work. The four 32 x 128 single port static RAM (SRAM) and one 14 x 128 single port 
SRAM are the instruction memory, which is stored the instructions for executing 
operation. The ten 32 x 32 single port SRAM are the data memory, which is stored the 
required data for program execution. Without these memories contained in this work, 
the core size, gate count, and power dissipation are near 1.47 mm2, 255669, and 312 
mW, respectively. The physical layout of ALU Cluster is depicted in Figure 4.2.1. The 
core utilization is close to 88.8%. The floorplan and pad assignment are shown in 
Figure 4.2.2. There are total 127 input/output (I/O) pads, where 47 input pads, 32 
output pads, and 48 power pads. The definition of the I/O ports is summarized in 
Table 4.2.2. Besides, the die microphotograph of tape-out chip is shown in Figure 
4.2.3. The selected package for this chip is CQFP128, and photograph of prototype 
with package is shown in Figure 4.2.4. 
 

Table 4.2.1: Circuit Summaries 

Technology UMC 0.18um Mixed Signal (1P6M) CMOS Process 

Library Artisan SAGE-X Standard Cell Library 

Clock Rate 100 MHz 

Chip Size 2.98 x 2.98 mm2 

Core Size 
(without memory) 

2.2 x 2.2 mm2 
(1.8 x 1.2 mm2) 

Gate Count 
(without memory) 

411491 
(255669) 

Power Dissipation 
(without memory) 

968.35 mW 
(312.38 mW) 

On-Chip Memory 
10  32 x 32   single port SRAM 

4  32 x 128  single port SRAM 
1  14 x 128  single port SRAM 

Pad 
Input:  47 pins 

Output:  32 pins 
Power:  48 pins 



                                                             Chapter 4: Implementation 

 - 32 - 

 

 
Figure 4.2.1: Layout of the ALU Cluster 
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Figure 4.2.2: Floorplan and Pad Assignment 
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Table 4.2.2: The Definition of the I/O Ports 

I/O Port Name I/O Signal Description 

clk Input The clock signal provides for this chip. 

reset Input The reset signal provides for this chip. 

sel Input 

This is 4-bit width input. To select one of 
the instruction memories and the data 
memories to be written, or one of the data 
memories to be read. 

mem_d_wr Input 

This input port decides to write or read the 
data memory. “1” means that data is 
written from the off-chip ports to the data 
memory. “0” means that data is read from 
the data memory to the off-chip ports. 

mem_d_ctrl Input 

This input port decides which source 
signal controls the data memory to be 
activated. “1” means that the off-chip port 
controls the enable signal of data memory. 
“0” means that the on-chip signal controls 
the enable signal of data memory. 

a Input 
This is 7-bit width input. User can specify 
the address of instruction memory and data 
memory by this input port. 

d Input 
This is 32-bit width input. User can insert 
instructions to the instruction memory and 
data to the data memory by this input port. 

q Output 
This is 32-bit width output. User can fetch 
execution results from the data memory by 
this output port. 

core_vdd & core_gnd Power 
The power supply provides for the core 
part of chip. There are total 16 pairs of 
power supply. 

io_vdd & io_gnd Power 
The power supply provides for the I/O part 
of chip. There are total 8 pairs of power 
supply. 
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Figure 4.2.3: Die Microphotograph 
 

 

Figure 4.2.4: Photograph of Prototype with Package 
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4.3 Circuit Verification and Performance Evaluation 
 

In this section, a selected benchmark is used to show the functionality 
verification of this work. In order to test with feasibility and ease, three steps of test 
configuration for this chip would be explained. The functionality simulation and the 
verification during each step of chip configuration would be also described. Finally, 
the performance evaluation of this work would be discussed. 
 
 

4.3.1 Test Bench: FIR Filter 
 

Owing to media processing applications are easily expressed as a series of 
computation kernels that operate on large data streaming. As long as any media 
processing application could be organized as the stream processing model that would 
be suitable for the ALU Cluster to execute, for instance, the FIR filter system has been 
introduced in previous chapter and is depicted in Figure 2.2.2. The FIR filter system is 
chosen as the test bench for the ALU Cluster since it is suitable for one dimensional 
architecture, needs repeat and high percentage of addition and multiplication, and 
applies for wide DSP applications, such as matched filtering, pulse shaping, 
equalization, etc. A brief review of FIR filter system is illustrated in the following. 
The input-output relationship of linear time invariant (LTI) FIR filter can be described 
as  

[ ] [ ]�
−

=
−•=

1

0

M

k
k knxbny                      (4.1) 

where M represents the length of FIR filter, bk’s are the filter coefficients, and x[n-k] 
denotes the data sample at time instance [n-k]. 
 

Before executing simulation, the dimension of input and filter coefficients should 
be determined. As shown in Figure 4.3.1.1(a), the filter coefficients are the sixteen-tap 
Kaiser window FIR bandpass filters, and the input is an exponential function with ten 
sampling points. MathWorks Matlab [27] is used to simulate the FIR filter system 
described above in advance, and the results of simulation are shown in Figure 
4.3.1.1(b). This step is in order to make sure the results of FIR filter execution under 
calculating in the ALU Cluster that could be compared to the results of Matlab 
simulation to verify whether the functionality operations of this chip work correctly or 
not. 
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Figure 4.3.1.1: Filter Coefficients, Input Data, and Executed Results of the FIR Filter 
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4.3.2 Functionality Verification 
 

One of design goals for the ALU Cluster is to process the abundant parallel data, 
so the total numbers of input pads and output pads are enormous significantly. 
However, the SRAM, such as the instruction memory and the data memory, is utilized 
to replace and reduce the most of input pads and output pads. Therefore, for the 
testability and feasibility of this chip, the ALU Cluster would be operated in three 
different modes: WRITE Mode, EXECUTION Mode, and READ Mode. When this 
chip is ready to execute programs, it would be operated in the order from WRITE 
Mode, EXECUTION Mode, to READ Mode. The detail actions of three modes would 
be described in the following: 
 
1. WRITE Mode: The first step is to insert the instructions and the required data into 

the instruction memory and the data memory, respectively, from the input port 
“d.” With combination of the other input ports, such as “sel,” “a,” “mem_d_wr,” 
and “mem_d_ctrl,” to be controlled and set, user could determine one of the 
instruction memory or the data memory is the writing target. The value of control 
signals for memory in this mode are: 

mem_d_wr = high & mem_d_ctrl = high 
 
2. EXECUTION Mode: After inserting the instructions and the required data into the 

dedicated memory, the second step is that the ALU Cluster could be begun to 
execution the assigned programs. In this mode, the input ports, such as “sel” and 
“a,” are used to control the instruction memory to issue the instructions, and the 
other input ports, such as “mem_d_wr” and “mem_d_ctrl,” are used to set the data 
memory to be controlled by the on-chip signals. The value of control signals for 
memory in this mode are: 

mem_d_wr = low & mem_d_ctrl = low 
 
3. READ Mode: In the third step, user could read out the data from the data memory 

for testing after the assigned program execution has been finished. With 
combination of the input ports, such as “sel,” “a,” “mem_d_wr,” and 
“mem_d_ctrl,” the computed data could be read out from the data memory to the 
output port “q.” The logic analyzer could be utilized to confirm that whether the 
computed results are accurate or not. The value of control signals for memory in 
this mode are: 

mem_d_wr = low & mem_d_ctrl = high 
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In order to verify functionality of this work, there are three modes to complete a 
program execution has been described in previous paragraph, and the steps of 
functionality verification would also follow in this order to be discussed. All 
functionality verifications are under the environment of post-layout simulation, and 
the maximal operation frequency is 90.9 MHz for executing the FIR filter system. The 
overall operation modes are shown in Figure 4.3.2.1. 

 
Before executing the assigned programs, the WRITE Mode is executed firstly 

while having set the input ports, such as “mem_d_wr” is high and “mem_d_ctrl” is 
high. The ALU Cluster during the WRITE Mode is shown in Figure 4.3.2.2. In this 
mode, not only instructions are inserted into the instruction memory, but also the filter 
coefficients and the input data of the FIR filter are inserted into the data memory. 
Figure 4.3.2.3 and Figure 4.3.2.4 are shown the insertion of filter coefficients and 
input data, respectively. In addition, the assembly code of overall instructions for the 
execution of this test bench is summarized in Appendix B. 

 
After having completed the WRITE Mode, the EXECUTION Mode could be 

started. Figure 4.3.2.5 is shown the ALU Cluster operated in the EXECUTION Mode 
after having set the input ports, such as “mem_d_wr” is low and “mem_d_ctrl” is low. 
The pre-stored instructions are fetched from the instruction memory to the decoder, 
and then the controller governs overall ALU Cluster to execute the programs. In the 
mean time, the required input data is read from the data memory, and only the 
calculated results are also written back to the data memory. 

 
Finally, the last step is to verify the results of program execution. After the 

WRITE Mode has been finished, this chip is entered into the READ Mode with 
setting the input ports, such as “mem_d_wr” is low and “mem_d_ctrl” is high. Figure 
4.3.2.6 is shown the ALU Cluster worked in the READ Mode. To compare the results 
read from Figure 4.3.2.6 and the results shown in Figure 4.3.1.1(b), there is no 
difference between these two results. Therefore, the functionality of ALU Cluster is 
worked correctly. 
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Figure 4.3.2.1: The Overall Operation Flow 

 

 
Figure 4.3.2.2: The Operation of WRITE Mode 
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Figure 4.3.2.3: Insertion of Filter Coefficients 
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Figure 4.3.2.4: Insertion of Input Data 

 

( 1 - 1 ) Page 1

Cursor: 0    Marker:0    Delta:0   x 10ps

G1

reset

clk

sel[3:0]

mem_d__wr

mem_d__ctrl

a[6:0]

d[31:0]

G2

590000 600000 610000 620000 630000

0 200000 400000 600000 800000

* 1010

-35 0 1 2 3 4 5 6 7 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1111

*

0

 
Figure 4.3.2.5: The Operation of EXECUTION Mode 
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Figure 4.3.2.6: The Operation of READ Mode 



                                                             Chapter 4: Implementation 

 - 41 - 

4.3.3 Performance Evaluation Results 
 

After having completed the execution of FIR filter system in the ALU Cluster, 
the results of performance evaluation about the code utilization and the memory 
utilization could be acquired. The detail performance evaluations are discussed in the 
following. 

 
Figure 4.3.3.1 is shown the code utilization of each arithmetic unit. It takes total 

93 instructions for the ALU Cluster to finish the FIR filter simulation. For each 
arithmetic unit, it takes 60, 75, 80, 80, and 0 instructions for the ALU_0 unit, ALU_1 
unit, MUL_0 unit, MUL_1 unit, and DIV_0 unit, respectively, to complete the 
program execution. Additionally, the code utilization of the ALU_0 unit, ALU_1 unit, 
MUL_0 unit, MUL_1 unit, and DIV_0 unit is 64.5%, 80.6%, 86%, 86%, and 0%, 
respectively. Therefore, the code utilization of ALU Cluster is about 63.4%. Besides, 
it takes 99 clock cycles to complete this simulation, so the clock cycles per executed 
result output are 3.96. 

 
Figure 4.3.3.2 is shown the memory utilization about the capacity usage in the 

ALU Cluster. The entry size of IRF unit and SPRF unit is 32 and 64, respectively. It 
needs 10 and 12 reused entries for each IRF unit in the ALU_0 unit and ALU_1 unit, 
respectively, 16 and 10 reused entries for each IRF unit respectively in both the 
MUL_0 unit and MUL_1 unit, 3 reused entries for the SPRF unit, and 0 used entries 
for each IRF unit in the DIV_0 unit during executing the FIR filter simulation. These 
results have revealed that the initial decisions of storage capacity of IRF unit and 
SPRF unit are well sufficient to be provided and used during the execution of FIR 
filter system. 

 
Figure 4.3.3.3 is shown the memory utilization about the data reference times in 

the ALU Cluster. The data reference times mean that the number of times for required 
data is read or written to the storage units, such as the IRF unit, the SPRF unit, and the 
off-cluster memory during the program execution. The total number of times for each 
dedicated off-cluster memory of the ALU_0 unit, ALU_1 unit, MUL_0 unit, MUL_1 
unit, and DIV_0 unit to be read/written during executing the FIR filter simulation are 
0/21, 0/0, 0/2, 0/0, 16/1, 10/0, 16/1, 10/0, 0/0, and 0/0, respectively. In addition, the 
total number of times for the SPRF unit and each dedicated IRF unit of the ALU_0 
unit, ALU_1 unit, MUL_0 unit, MUL_1 unit, and DIV_0 unit to be read/written 
during executing the FIR filter simulation are 7/7, 57/57, 56/56, 75/75, 75/75, 80/16, 
80/10, 80/16, 08/10, 0/0, and 0/0, respectively. 
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From the results of performance evaluation described in the previous paragraph, 
the proportion of data reference rate between the on-cluster memory, such as the IRF 
units and SPRF unit, and off-cluster memory, such as the SRAM, is 912 : 77. 
Furthermore, a proportion is 0 : 885 if there is no the hierarchy memory bandwidth; in 
other words, without containing any IRF units and SPRF unit in the ALU Cluster. The 
more times of data reference to off-chip memory, the more latency and execution time 
to finish the program simulation. Therefore, this has proven that the hierarchy 
memory bandwidth could be used efficiently and effectively in the sense that 
expensive and communication limited global memory bandwidth is not wasted on the 
arithmetic units where inexpensive local memory bandwidth is easy to use and 
provide. 

 
Moreover, for the proposed media streaming processor with three-level hierarchy 

memory bandwidth architecture, the proportion of data reference rate could be 
inferred as 912 : 128 : 51 from the on-chip memory to off-chip memory, for instance, 
from the ALU Cluster, stream register file, to DDR RAM, while executing the FIR 
filter simulation. This could further demonstrate the hierarchy memory bandwidth to 
be utilized well and significantly. 
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Figure 4.3.3.1: The Code Utilization of Each Arithmetic Unit 
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Figure 4.3.3.2: The Memory Utilization for Capacity Usage 
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Figure 4.3.3.3: The Memory Utilization for Data Reference 
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4.4 Performance Comparison 
 

In order to estimate that whether the performance evaluation of this work after 
having executed the simulation of FIR filter own the competitiveness or not, this ALU 
Cluster is compared to recent relative reported works in three different design 
architecture styles: the reconfigurable architecture, the application-specific 
architecture, and the field programmable gate array (FPGA) architecture. This work 
and Schmit [28] are related to the reconfigurable architectures. Stefatos [29], Wang 
[30], and Staszewski [31] are related to the application-specific architectures. Finally, 
Atmel AT6000 [32] is related to the FPGA architecture. The detail comparison results 
of these works are listed in Table 4.4.1. 
 

Table 4.4.1: Comparison Results 

Paper Process Size 
Freq 

(MHz) 

Area 

(mm2) 

Power 

(mW) 
Architecture 

This Work 
(2005) 

UMC 
0.18 um 

32-bit 
(16-tap) 

90.9 1.47 312.38 

Schmit 
(2002) 

ST 
0.18 um 

32-bit 
(16-tap) 

120 55.48 650 

reconfigurable 

Stefatos 
(2005) 

UMC 
0.18 um 

20-bit 
32-tap 

100 1.465 181 

Wang 
(2005) 

0.18 um 
16-bit 
73-tap 

10 0.601 8.839 

Staszewski 
(2000) 

TI 
0.18 um 

6-bit 
8-tap 

550 0.3 36 

application- 
specific 

Atmel 
AT6000 

0.6 um 
20-bit 
16-tap 

76.9 1280 496 FPGA 

 
Figure 4.4.1 is shown a chart that those reported works in Table 4.4.1 is 

normalized to this work. For operation frequency, the upward column means that 
clock rate is faster than this work, and the downward column means that clock rate is 
slower than this work. Similarly, for physical area and power dissipation, the 
downward column means that die size and power consumption are fewer than this 
work correspondingly, and the upward column means that die size and power 
consumption are larger than this work correspondingly. 
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In a word, this work could be performed a quite competitive performance while 
being compared with the application-specific architectures by trading the larger 
physical area and the more power dissipation for the faster operation frequency. 
However, the application range of this work is more widely and flexibly than the 
application-specific architectures to suitable for handling various media processing 
applications. Besides, this work has better performance in the operation frequency, 
physical area, and power dissipation that are compared with the reconfigurable 
architectures and the FPGA architectures, respectively. Hence, this work has provided 
a breakthrough in the operating time, die size, and power saving among these 
general-purpose architectures. 
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Figure 4.4.1: The Normalized Comparison Results 
 
 

4.5 Low Power Techniques Implementation 
 

The design of ALU Cluster combined with power saving techniques has been 
developed and implemented at SoC Laboratory by students and faculty [33]. The 
prototype of low power media processor architecture is shown in Figure 4.5.1. There 
are two low power techniques utilized in this work: power gating [34] and voltage 
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islands [35]. Power gating, or is also called sleep transistor, is commonly used to 
disconnect the power supply of function block when it is in the idle mode. This is 
achieved by connecting a transistor in series with the power supply of function block. 
Sleep transistor technique involves to partition the chip into different blocks depended 
on the functionality that might be selectively powered on or off. When the function 
block is in the sleep state, the sleep transistor is turned off. Thus, the power 
dissipation of this function block could be reduced. In practice, a network of sleep 
transistor might be necessary to efficiently control and decrease the leakage power 
dissipation. Function blocks which might be periodically powered off are isolated 
from the primary power distribution network of chip by placing them into voltage 
islands. 

 
The cell-based design flow is utilized to finish this design, and in the mean time 

the EDA flow and CAD tools are investigated in order to provide the low power 
circuitry controlling techniques embedded. Hence, the layout of four ALU Clusters 
with power saving equipments is shown in Figure 4.5.2. Each ALU Cluster 
surrounded by its own power ring that is governed by the control logic.  

 
Besides, based on the developed architecture simulator, it could determine how 

many ALU Clusters to be executed to reach the best performance that trades between 
the execution time and power dissipation after having simulated an assigned media 
processing application. Here the FFT is executed in the multi-cluster architecture. No 
matter how many numbers of the ALU Cluster are used on the multi-cluster 
architecture to simulate FFT, the power dissipation would almost be the same if there 
is no any low power technique design embedded. However, as shown in Figure 4.5.3, 
by utilizing the low power technique design, the power dissipation is scalable and 
decreases 62% for using one ALU Cluster. In addition, if more ALU Clusters are used 
on the multi-cluster architecture, then running a program execution could be 
completed more rapidly, and the total energy consumption could be also decreased 
since the execution time could be largely reduced. As shown in Figure 4.5.4, the 
energy consumption decreases 33% while using the numbers of four times of ALU 
Cluster. Furthermore, if the system has to lower the power dissipation, then only use a 
portion of ALU Cluster and turn of the idle ALU Cluster. Although this would 
increase more execution time, the power dissipation could be greatly decreased. 
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Figure 4.5.1: Multi-Cluster Architecture with Low Power Techniques 

 

 

Figure 4.5.2: Layout of Multi-Cluster with Low Power Equipments 
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Figure 4.5.3: Power Dissipation on the Multi-Cluster Architecture 
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Figure 4.5.4: Energy Consumption on the Multi-Cluster Architecture 
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To integrate the developed ALU Cluster with power saving techniques, the 
execution time and power dissipation depended on the performance requirement 
would be scalable and well fit for this work. From the above-mentioned results, 
therefore, the combination of streaming architectures and power saving techniques 
would be the main stream for the design of next generation portable multimedia and 
communication systems in the future as depicted in Figure 4.5.5. 

 

 
Figure 4.5.5: Future Mobile Multimedia and Communication System Design Trend 

 
 

4.6 Summary 
 

We have fully implemented the ALU Cluster architecture design by utilizing the 
current developed CAD tools and cell-based design flow. The maximal clock rate, 
physical core size, and power dissipation are 100 MHz, 2.16 mm2, and 312 mW, 
respectively. After having completed the execution of selected benchmark simulation, 
FIR filter system, the code utilization is 63.4%, and the clock cycles per executed 
result output is 3.96. The memory capacity of IRF units and SPRF unit are sufficient 
to provide during the simulation execution, and the ratio of data reference times of 
on-cluster memory and off-cluster memory is 989 : 91. The higher ratio to the 
on-cluster memory means that the limited global memory bandwidth is not wasted on 
the arithmetic units where the ample local memory bandwidth is easy to utilize. 
Compare to current related reported works, this work could perform a quite 
competitive performance while being compared with the application-specific 
architectures. Besides, this work has better performance compared with the 
reconfigurable architectures and the FPGA architectures.  
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Furthermore, the implementation of multiple ALU Clusters design combined 
with power saving techniques has been developed by several members of SoC 
Laboratory, and another developed architecture simulator could depend on the 
required performance to determine the number of ALU Clusters to be executed after 
the application simulation has been finished. Therefore, the performance of execution 
time and power dissipation would be scalable depended on requirement. 
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CHAPTER 5 

CONCLUSION 
 
 
 

An ALU Cluster design for the media streaming processors architecture has been 
designed in this thesis. In the meantime, this work has also demonstrated the 
consideration of implementation feasibility of each component. The back-end 
simulation results based on the process technology and standard cell library have 
decided the optimized number and performance of each component. This streaming 
architecture combined with memory bandwidth hierarchy architecture has efficiently 
dealt with the selected test bench without wasting too much expensive and 
communication limited global memory bandwidth on the function units. Additionally, 
the analysis results of performance evaluation for this work confirm to have the 
competitiveness and advantages compared with recent relative reported works. Finally, 
the prototype of this work has been fabricated in UMC 0.18 um 1P6M standard 
CMOS process technology. 

 
To integrated the developed ALU Cluster with power saving techniques as 

shown in Figure 4.5.1. The results show that the power dissipation and energy 
consumption of selected benchmark for the multimedia applications and baseband 
communication systems could be reduced significantly. Both power dissipation and 
energy consumption become scalable by dynamic selecting the number of utilized 
ALU Clusters. The instant performance and energy consumption of an entire work 
could be optimized for mobile systems. Thus, this design has provided a breakthrough 
in the operating time and power dissipation in limited battery life for similar 
architectures. From the above-mentioned results, therefore, the combination of 
streaming architectures and power saving techniques have been the main stream for 
the design of next generation portable multimedia and communication systems as 
depicted in Figure 4.5.5. 
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APPENDIX A 

SUMMARY OF THE DEFINED MICROCODE 

IN INSTRUCTION SET 
 
 
 

I. The part of “SOURCE” in instruction set format 
 

Source Register Binary Code [1:0] 
None operation 00 b 

Off-chip data memory (DM) 11 b 

SPRF (SP) 10 b 

IRF (RF) 11 b 

 
 
 

II. The part of “DESTINATION” in instruction set format 
 

Destination Register Binary Code [3:0] 
None operation 0000 b 

Off-chip data memory (DM) 0001 b 

SPRF (SP) 0010 b 

Left IRF of ALU_0 (I9) 0011 b 

Right IRF of ALU_0 (I8) 0100 b 

Left IRF of ALU_1 (I7) 0101 b 

Right IRF of ALU_1 (I6) 0110 b 

Left IRF of MUL_0 (I5) 0111 b 

Right IRF of MUL_0 (I4) 1000 b 

Left IRF of MUL_1 (I3) 1001 b 

Right IRF of MUL_1 (I2) 1010 b 

Left IRF of DIV_0 (I1) 1011 b 

Right IRF of DIV_0 (I0) 1100 b 
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III. The part of “OPERATION CODE” in instruction set format 

 

Function Unit Operation OP code 
None 0000 b 

ADD 0001 b 

SUB 0010 b 

ABS 0011 b 

AND 0100 b 

OR 0101 b 

XOR 0110 b 

NOT 0111 b 

SLL 1000 b 

SRL 1001 b 

SRA 1010 b 

LT 1011 b 

GT 1100 b 

ALU 

EQ 1101 b 

None 0 b 
MUL 

MUL 1 b 

None 00 b 

DIV 01 b 

REM 10 b 
DIV 

SQR 11 b 
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APPENDIX B 

ASSEMBLY CODE OF TEST BENCH 
 
 
 

# ALU_0 ALU_1 MUL_0 MUL_1 DIV_0 
1   DM_16_DM_01_DM_20_MUL DM_15_DM_01_I9_00_MUL  

2   DM_16_DM_02_I8_00_MUL DM_14_DM_01_I7_00_MUL  

3   DM_15_DM_02_I6_00_MUL DM_16_DM_03_I9_01_MUL  

4   DM_13_DM_01_I7_01_MUL DM_14_DM_02_I6_01_MUL  

5   DM_15_DM_03_I7_02_MUL DM_16_DM_04_I6_02_MUL  

6   DM_12_DM_01_I7_03_MUL DM_13_DM_02_I6_03_MUL  

7   DM_14_DM_03_I7_04_MUL DM_15_DM_04_I6_04_MUL  

8   DM_16_DM_05_I8_01_MUL DM_11_DM_01_I7_05_MUL  

9 RF_00_RF_00_DM_00_ADD  DM_12_DM_02_I6_05_MUL DM_13_DM_03_I7_06_MUL  

10  RF_00_RF_00_SP_00_ADD DM_14_DM_04_I6_06_MUL DM_15_DM_05_I7_07_MUL  

11  RF_01_RF_01_I9_02_ADD DM_16_DM_06_I6_07_MUL DM_10_DM_01_I7_08_MUL  

12  RF_02_RF_02_I8_02_ADD DM_11_DM_02_I6_08_MUL DM_12_DM_03_I7_09_MUL  

13  RF_03_RF_03_I9_03_ADD DM_13_DM_04_I6_09_MUL DM_14_DM_05_I7_10_MUL  

14  RF_04_RF_04_I8_00_ADD DM_15_DM_06_I6_10_MUL DM_16_DM_07_I9_00_MUL  

15 RF_01_SP_00_DM_01_ADD  DM_09_DM_01_I7_00_MUL DM_10_DM_02_I6_00_MUL  

16  RF_05_RF_05_I8_03_ADD DM_11_DM_03_I7_01_MUL DM_12_DM_04_I6_01_MUL  

17 RF_02_RF_02_DM_02_ADD RF_06_RF_06_I9_04_ADD DM_13_DM_05_I7_02_MUL DM_14_DM_06_I6_02_MUL  

18 RF_03_RF_01_I9_05_ADD RF_07_RF_07_I8_04_ADD DM_15_DM_07_I7_03_MUL DM_16_DM_08_I6_03_MUL  

19  RF_08_RF_08_I8_05_ADD DM_08_DM_01_I7_04_MUL DM_09_DM_02_I6_04_MUL  

20  RF_09_RF_09_I9_01_ADD DM_10_DM_03_I7_11_MUL DM_11_DM_04_I6_11_MUL  

21  RF_10_RF_10_I8_06_ADD DM_12_DM_05_I7_05_MUL DM_13_DM_06_I6_05_MUL  

22 RF_04_RF_03_I9_06_ADD RF_00_RF_00_I8_07_ADD DM_14_DM_07_I7_06_MUL DM_15_DM_08_I6_06_MUL  

23 RF_05_RF_00_DM_03_ADD RF_01_RF_01_I9_02_ADD DM_16_DM_09_I8_01_MUL DM_07_DM_01_I7_07_MUL  

24 RF_00_RF_05_I9_03_ADD RF_02_RF_02_I8_02_ADD DM_08_DM_02_I6_07_MUL DM_09_DM_03_I7_08_MUL  

25  RF_03_RF_03_I9_07_ADD DM_10_DM_04_I6_08_MUL DM_11_DM_05_I7_09_MUL  

26 RF_01_RF_06_I8_08_ADD RF_04_RF_04_I9_08_ADD DM_12_DM_06_I6_09_MUL DM_13_DM_07_I7_10_MUL  

27 RF_06_RF_04_DM_04_ADD RF_11_RF_11_I8_03_ADD DM_14_DM_08_I6_10_MUL DM_15_DM_09_I7_00_MUL  

28 RF_02_RF_07_I8_00_ADD RF_05_RF_05_I9_04_ADD DM_16_DM_10_I6_00_MUL DM_06_DM_01_I7_01_MUL  
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29  RF_06_RF_06_I8_05_ADD DM_07_DM_02_I6_01_MUL DM_08_DM_03_I7_02_MUL  

30 RF_07_RF_02_I9_00_ADD  DM_09_DM_04_I6_02_MUL DM_10_DM_05_I7_03_MUL  

31 RF_08_RF_01_I9_01_ADD RF_07_RF_07_I8_06_ADD DM_11_DM_06_I6_03_MUL DM_12_DM_07_I7_04_MUL  

32 RF_03_RF_08_DM_05_ADD RF_08_RF_08_I9_05_ADD DM_13_DM_08_I6_04_MUL DM_14_DM_09_I7_11_MUL  

33 RF_04_RF_03_I9_02_ADD RF_09_RF_09_I8_04_ADD DM_15_DM_10_I6_11_MUL DM_05_DM_01_I7_05_MUL  

34  RF_10_RF_10_I9_06_ADD DM_06_DM_02_I6_05_MUL DM_07_DM_03_I7_06_MUL  

35 RF_00_RF_00_DM_06_ADD RF_00_RF_00_I8_02_ADD DM_08_DM_04_I6_06_MUL DM_09_DM_05_I7_12_MUL  

36 RF_01_RF_05_I8_01_ADD RF_01_RF_01_I9_07_ADD DM_10_DM_06_I6_12_MUL DM_11_DM_07_I7_07_MUL  

37 RF_05_RF_06_I9_03_ADD RF_02_RF_02_I8_07_ADD DM_12_DM_08_I6_07_MUL DM_13_DM_09_I7_08_MUL  

38  RF_03_RF_03_I9_04_ADD DM_14_DM_10_I6_08_MUL DM_04_DM_01_I7_09_MUL  

39 RF_06_RF_04_I9_08_ADD RF_04_RF_04_I8_03_ADD DM_05_DM_02_I6_09_MUL DM_06_DM_03_I7_10_MUL  

40  RF_11_RF_11_I8_00_ADD DM_07_DM_04_I6_10_MUL DM_08_DM_05_I7_00_MUL  

41 RF_02_RF_01_DM_07_ADD RF_05_RF_05_I9_00_ADD DM_09_DM_06_I6_00_MUL DM_10_DM_07_I7_01_MUL  

42 RF_03_RF_02_SP_00_ADD RF_06_RF_06_I8_05_ADD DM_11_DM_08_I6_01_MUL DM_12_DM_09_I7_02_MUL  

43 RF_07_RF_07_I9_01_ADD RF_12_RF_12_I8_06_ADD DM_13_DM_10_I6_02_MUL DM_03_DM_01_I7_03_MUL  

44 RF_04_RF_03_I8_04_ADD RF_07_RF_07_I9_05_ADD DM_04_DM_02_I6_03_MUL DM_05_DM_03_I7_04_MUL  

45  RF_08_RF_08_I9_06_ADD DM_06_DM_04_I6_04_MUL DM_07_DM_05_I7_11_MUL  

46  RF_09_RF_09_I9_02_ADD DM_08_DM_06_I6_11_MUL DM_09_DM_07_I7_05_MUL  

47 RF_08_SP_00_DM_08_ADD RF_10_RF_10_I8_01_ADD DM_10_DM_08_I6_05_MUL DM_11_DM_09_I7_06_MUL  

48 RF_01_RF_00_I9_03_ADD RF_00_RF_00_I8_02_ADD DM_12_DM_10_I6_06_MUL DM_02_DM_01_I7_12_MUL  

49 RF_00_RF_05_I8_03_ADD RF_01_RF_01_I9_04_ADD DM_03_DM_02_I6_12_MUL DM_04_DM_03_I7_07_MUL  

50 RF_05_RF_06_I8_07_ADD RF_02_RF_02_I9_07_ADD DM_05_DM_04_I6_07_MUL DM_06_DM_05_I7_08_MUL  

51  RF_03_RF_03_I9_09_ADD DM_07_DM_06_I6_08_MUL DM_08_DM_07_I7_09_MUL  

52 RF_02_RF_01_I9_08_ADD RF_04_RF_04_I8_08_ADD DM_09_DM_08_I6_09_MUL DM_10_DM_09_I7_10_MUL  

53 RF_03_RF_04_DM_09_ADD RF_11_RF_11_I9_01_ADD DM_11_DM_10_I6_10_MUL DM_01_DM_01_I7_00_MUL  

54 RF_06_RF_03_I9_00_ADD RF_05_RF_05_I8_00_ADD DM_02_DM_02_I6_00_MUL DM_03_DM_03_I7_01_MUL  

55 RF_04_RF_02_I8_05_ADD RF_06_RF_06_I9_05_ADD DM_04_DM_04_I6_01_MUL DM_05_DM_05_I7_02_MUL  

56  RF_12_RF_12_I8_06_ADD DM_06_DM_06_I6_02_MUL DM_07_DM_07_I7_03_MUL  

57 RF_09_RF_08_I8_01_ADD RF_07_RF_07_I9_02_ADD DM_08_DM_08_I6_03_MUL DM_09_DM_09_I7_04_MUL  

58  RF_08_RF_08_I8_04_ADD DM_10_DM_10_I6_04_MUL DM_01_DM_02_I7_11_MUL  

59 RF_00_RF_07_DM_10_ADD RF_09_RF_09_I9_03_ADD DM_02_DM_03_I6_11_MUL DM_03_DM_04_I7_05_MUL  

60 RF_07_RF_05_I8_02_ADD RF_10_RF_10_I9_04_ADD DM_04_DM_05_I6_05_MUL DM_05_DM_06_I7_06_MUL  

61 RF_01_RF_00_I8_03_ADD RF_00_RF_00_I9_06_ADD DM_06_DM_07_I6_06_MUL DM_07_DM_08_I7_12_MUL  

62 RF_05_RF_01_I9_09_ADD RF_01_RF_01_I8_09_ADD DM_08_DM_09_I6_12_MUL DM_09_DM_10_I8_08_MUL  

63 RF_02_RF_06_I8_10_ADD RF_02_RF_02_I9_10_ADD DM_01_DM_03_I7_07_MUL DM_02_DM_04_I6_07_MUL  

64 RF_03_RF_04_I9_00_ADD RF_03_RF_03_SP_00_ADD DM_03_DM_05_I7_08_MUL DM_04_DM_06_I6_08_MUL  

65 RF_08_RF_02_DM_11_ADD RF_04_RF_04_I9_07_ADD DM_05_DM_07_I7_09_MUL DM_06_DM_08_I6_09_MUL  
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66  RF_11_RF_11_I8_00_ADD DM_01_DM_04_I7_10_MUL DM_02_DM_05_I6_10_MUL  

67 RF_09_RF_03_DM_12_ADD RF_05_RF_05_I9_01_ADD DM_03_DM_06_I7_00_MUL DM_04_DM_07_I6_00_MUL  

68 RF_04_RF_10_I8_01_ADD RF_06_RF_06_I9_02_ADD DM_05_DM_08_I7_01_MUL DM_06_DM_09_I6_01_MUL  

69 RF_06_RF_09_I8_04_ADD RF_12_RF_12_SP_01_ADD DM_07_DM_10_I9_03_MUL DM_01_DM_05_I7_02_MUL  

70 RF_10_SP_00_I9_05_ADD RF_07_RF_07_I8_02_ADD DM_02_DM_06_I6_02_MUL DM_03_DM_07_I7_03_MUL  

71  RF_08_RF_08_SP_02_ADD DM_04_DM_08_I6_03_MUL DM_05_DM_09_I7_04_MUL  

72 RF_01_RF_00_I9_08_ADD RF_09_RF_09_I8_03_ADD DM_06_DM_10_I6_04_MUL DM_01_DM_06_I7_05_MUL  

73 RF_00_RF_01_DM_13_ADD RF_10_RF_10_I8_05_ADD DM_02_DM_07_I6_05_MUL DM_03_DM_08_I7_06_MUL  

74 RF_07_RF_04_I8_07_ADD RF_00_RF_00_I9_04_ADD DM_04_DM_09_I6_06_MUL DM_05_DM_10_I8_06_MUL  

75 RF_02_SP_01_I9_06_ADD RF_01_RF_01_I8_09_ADD DM_01_DM_07_I7_07_MUL DM_02_DM_08_I6_07_MUL  

76 SP_02_RF_02_I9_09_ADD  DM_03_DM_09_I7_08_MUL DM_04_DM_10_I6_08_MUL  

77  RF_02_RF_02_I8_00_ADD DM_01_DM_08_I7_09_MUL DM_02_DM_09_I6_09_MUL  

78 RF_03_RF_05_I8_01_ADD RF_03_RF_03_I9_01_ADD DM_03_DM_10_I6_11_MUL DM_01_DM_09_I7_10_MUL  

79 RF_05_RF_07_DM_14_ADD RF_04_RF_04_I8_04_ADD DM_02_DM_10_I6_10_MUL DM_01_DM_10_DM_20_MUL  

80 RF_08_RF_08_I8_10_ADD RF_05_RF_05_SP_00_ADD DM_07_DM_09_I7_30_MUL DM_08_DM_10_I6_30_MUL  

81 RF_04_RF_09_I9_02_ADD RF_06_RF_06_I8_02_ADD    

82 RF_09_RF_03_SP_63_ADD RF_07_RF_07_I9_07_ADD    

83 RF_01_RF_00_I9_03_ADD RF_08_RF_08_I8_05_ADD    

84  RF_09_RF_09_I7_00_ADD    

85 RF_06_RF_10_DM_15_ADD     

86 SP_00_RF_06_I9_00_ADD     

87  RF_10_RF_10_DM_01_ADD    

88 RF_03_RF_04_DM_18_ADD RF_30_RF_30_I8_31_ADD    

89 RF_07_RF_05_DM_20_ADD RF_00_RF_11_DM_00_ADD    

90 RF_02_RF_01_DM_17_ADD     

91 RF_00_RF_02_DM_19_ADD     

92      

93 SP_63_RF_31_DM_16_ADD     

 


