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Abstract. Thien and Lin �Comput. and Graphics 26�5�, 765–770 �2002��
proposed a threshold scheme to share a secret image among n shad-
ows: any t of the n shadows can recover the secret, whereas t−1 or
fewer shadows cannot. However, in real life, certain managers probably
play key roles to run a company and thus need special authority to re-
cover the secret in managers’ meeting. �Each manager’s shadow should
be more powerful than an ordinary employee’s shadow.� In Thien and
Lin’s scheme, if a company has less than t managers, then manager’s
meeting cannot recover the secret, unless some managers were given
multiple shadows in advance. But this compromise causes managers
inconvenience because too many shadows were to be kept daily and
carried to the meeting. To solve this dilemma, a weighted sharing
method is proposed: each of the shadows has a weight. The secret is
recovered if and only if the total weights �rather than the number� of
received shadows is at least t. The properties of GF�2r� are utilized to
accelerate sharing speed. Besides, the method is also a more general
approach to polynomial-based sharing. Moreover, for convenience, each
person keeps only one shadow and only one shadow index. © 2009 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3168644�

Subject terms: secret image sharing; Galois field; Lagrange polynomial; Chinese
remainder theorem.
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Introduction

lakley1 and Shamir2 first proposed the secret sharing
cheme in 1979, independently. In their �t ,n� threshold
cheme, a dealer distributed a secret number into n shad-
ws and each of n participants held one shadow. The secret
umber could be reconstructed if at least t of the n shadows
ere received. On the other hand, the secret number could
ot be revealed if any of t−1 or less of the n shadows were
eceived. Later, Shamir2 introduced the concept of
eighted secret sharing in his seminal work. In Shamir’s
eighted secret sharing with the �t ,n� threshold scheme,

ach of the n participants is assigned with a positive integer
eight wi, where i=1,2 , . . . ,n and 1�wi� t−1. Then, the
ealer distributed a secret number into �i=1

n wi shadows, and
he number of shadows that each participant held was equal
o their corresponding weight value. The secret could be
econstructed if the sum of the weights of the received par-
icipants is no less than the threshold t.

When the secret data are a secret image rather than a
ecret number, using Blakley’s or Shamir’s �t ,n� threshold
cheme to share the secret image will waste much memory
pace because the size of the secret image is usually very
arge. To reduce the memory space, Thien and Lin3 pro-
osed the secret image–sharing method derived from
hamir’s scheme;2 Tso4 proposed the secret image–sharing
ethod based on Blakley’s scheme.1 In Ref. 3 and 4, the

ize of each shadow is smaller than that of the secret image.
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In addition, based on Thien and Lin’s secret image–sharing
method, the progressive secret image-sharing schemes5–7

were proposed in succession.
When it comes to the issue of secret image sharing

among the weighted participants, based on the concept of
Shamir’s seminal work,2 Thien and Lin’s method3 can be
simply applied to solve this problem. However, to further
improve the execution time in the weighted secret image–
sharing phase, a fast–weighted secret image–sharing
method is proposed in this paper.

The rest of the paper is organized as follows. Section 2
reviews the related works. Section 3 describes the details of
the proposed fast-weighted secret image–sharing scheme.
Section 4 shows the experimental results, comparisons, and
security analysis. Finally, Sec. 5 draws the conclusions.

2 Related Works
Section 2.1 introduces Thien and Lin’s sharing method,3

and Sec. 2.2 introduces Galois field, which will be utilized
in this paper.

2.1 Thien and Lin’s Secret Image–Sharing Method3

In the sharing phase of Thien and Lin’s �t ,n� threshold
method, for each nonoverlapping t pixels of the secret im-
age, the corresponding polynomial is defined as

f�x� = a0 + a1x + ¯ + at−1xt−1�mod p� , �1�

where a0, a1 , . . . ,at−1 are the gray values of each t pixels,
and p is a prime number. Then,
July 2009/Vol. 48�7�1
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f�1�, f�2�, . . . , f�n� �2�

re evaluated and assigned to the n shadows sequentially.
fter processing all pixels in the secret image, the n shad-
ws are thus generated. Because each t pixels in secret
mage only contributes one pixel to each generated shadow,
he size of which is 1 / t of the secret image.

As for the revealing phase, when any t of the n shadows
re received, the first not-yet-used pixel from each of the t
hadows is taken, and these t pixels can be used to solve the
oefficients a0, a1 , . . . ,at−1 in Eq. �1� by using Lagrange’s
olynomial. After sequentially processing all pixels of the t
hadows, the secret image can be obtained.

.2 Galois Field
alois field is a finite field that contains �r elements, where
is a prime number, and r is a positive integer. �Thien and

in3 used �=251 and r=1, but we use �=2 and r=8 in our
ethod.� A finite field also equips with two operators: ad-

ition ��� and multiplication �·�. Both operators must sat-
sfy the commutative, associative, and distributive laws.
he manipulation of addition and multiplication over
F�2r� are introduced below. Before doing GF�2r� arith-
etic, an r-degree binary-coefficient polynomial m�X�,

alled primitive polynomial, has to be defined first. Primi-
ive means that m�X� has a root �, and �0, 1, �,

2 , . . . ,�2r−2� are all elements in GF�2r�. �The polynomial
�X� must satisfy certain requirements specified in Galois
eld GF�2r�, see Lin and Costello,8 for details. Here, we
ill use r=8 and m�X�=1+X2+X3+X4+X8 in our experi-
ents.�
Let A and B be any two elements in GF�2r�. Then define

he addition operator as

+ B = A � B ,

here � is the exclusive-X-OR �XOR� operator. The mul-
iplication operator is somewhat more complicated. Before
oing multiplication, convert the two elements A and B to
wo binary polynomials

= �ar−1 . . . a2a1a0�2 → a0 + a1X + a2X2 + ¯ + ar−1Xr−1

= �br−1 . . . b2b1b0�2 → b0 + b1X + b2X2 + ¯ + br−1Xr−1.

Then do the following polynomial multiplication and
odulus operations:

�a0 + a1X + a2X2 + ¯ + ar−1Xr−1��b0 + b1X + b2X2 + ¯

+ br−1Xr−1��mod m�X�

= ��a0
ˆb0� + �a0

ˆb1 � a1
ˆb0�X + �a0

ˆb2 � a1
ˆb1

� a2
ˆb0�X2 + ¯ + �ar−1

ˆbr−1�X2r−2�mod m�X�

= c0 + c1X + c2X2 + ¯ + cr−1Xr−1,

here ˆ is the AND operator. Finally, the result for A ·B can
e obtained by

· B = C = �c . . . c c c � .
r−1 2 1 0 2

ptical Engineering 077008-
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Remark: In general, there exist other definitions for ad-
dition and multiplication operators. �The details about
GF�2r� can see be found in Ref. 8.� But we will use the
above definition for addition and multiplication throughout
the paper.

3 Proposed Fast-Weighted Secret Image–sharing
Method

This section has three subsections: Section 3.1 is for
weighted secret image sharing; Sec. 3.2 is for weighted
secret image revealing; and Sec. 3.3 shows the improved
weighted secret image–sharing algorithm based on GF�2r�.

3.1 Weighted Secret Image–Sharing Phase
According to the Chinese remainder theorem for polynomi-
als, when we divide

h�x� = a0 + a1x + ¯ + at−1xt−1

by a factor �x− i�, the remainder is h�i�. In symbols,

h�i� = h�x�mod�x − i� .

Now, when we apply mod p on both sides, we have

f�i� = h�i�mod p = �h�x�mod�x − i��mod p ,

where f�i�=h�i�mod p is due to the equation f�x�= �a0

+a1x+ ¯+at−1xt−1� mod p=h�x� mod p defined in Eq. �2�.
Therefore, in Galois field GF�p�, i.e., in the field of mod p,
we may say that f�i� and �h�x�mod�x− i�� are equal. In sym-
bols,

f�i� = h�x�mod�x − i�

= �a0 + a1x + ¯ + at−1xt−1�mod�x − i� �3�

in Galois field GF�p�. That is to say, if we divide that poly-
nomial a0+a1x+ ¯+at−1xt−1 by �x− i�, then the remainder
is a number. If we divide this number by p further, then we
obtain f�i�. In this paper, to define our own formula of the
weighted secret image sharing with the �t ,n� threshold
scheme, we extend Eq. �2� as

gi
wi�x� = �a0 + a1x + ¯ + at−1xt−1�mod�x − i�wi, �4�

where wi is the shadow weight and i=1,2 , . . . ,n. Also,
rather than explaining Eq. �4� over GF�251� that Thien and
Lin3 used, we explain Eq. �4� over Galois field GF�2r�. As
stated in Sec. 2.2, r is a positive integer and we will use
GF�28� in our experiments.

Before sharing each nonoverlapping t pixels of the se-
cret image using weighted secret image sharing with �t ,n�
threshold scheme, the secret image is encrypted first. Next,

g1
w1�x�,g2

w2�x�, . . . ,gn
wn�x� �5�

are computed using Eq. �4�. Then, the wi coefficients of the
polynomial gi

wi�x� in order of decreasing power of x are
sequentially assigned to the corresponding shadow hi. After
processing all pixels in the secret image, the n shadows
��h1 ,w1� , �h2 ,w2� , . . . , �hn ,wn�� are generated. Because t
pixels in secret image contribute w pixels to the generated
i
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hadow hi, the size of which is wi / t of the secret image.
In the proposed �t ,n� threshold weighted secret image–

haring scheme, the two values index i and weight wi of the
enerated shadow hi are needed for revealing the secret
mage where 1� i�n. Like Thien and Lin’s method,3 the
alue i can be attached to the head of the shadow hi. As for
he value wi, it can be either simply attached to the head of
he shadow hi or calculated by the size of the shadow. Let
he size of the secret image be �S� and the size of shadow be
hi�. Then, the weight wi can be calculated by the formula

i =
�hi�

��S�/t� . �6�

.2 Weighted Secret Image-Revealing Phase

f someone gets any m of the n shadows and the sum of the
eights of the m shadows is greater than or equal to the

hreshold t, then the secret image can be recovered. Without
oss of generality, let these m shadows be

�h̃k1
,wk1

� , �h̃k2
,wk2�

� , ¯ , �h̃km
,wkm

��, and � j=1
m wkj

� t. Then

or each shadow h̃kj
, the first wkj

not-yet-used pixels are
equentially taken and then assigned to the coefficients of
olynomial g̃kj

wkj�x� in order of decreasing power of x. After

btaining g̃kj

wkj�x�, we have

kj

wkj�x� = f̃�x�mod�x − kj�wkj, �7�

here j=1,2 , . . . ,m. Because the m divisors �x−k1�wk1, �x
k2�wk2 , . . . , �x−km�wkm in Eq. �7� are pairwise relatively

rime, as stated in Ref. 9, f̃�x� can be solved using ex-
ended Lagrange interpolation as

f�x� = �
j=1

m

	g̃kj

wkj�x�uj�x�mod�x − kj�wkj

l=1

l�j

m

�x − kl�wkl� , �8�

here

j�x� = 	

l=1

l�j

m

�x − kl�wkl�
−1

mod�x − kj�wkj.

In addition, according to the Chinese remainder theorem

or polynomials, f̃�x� is a unique polynomial with degree

ess than � j=1
m wkj

. Because � j=1
m wkj

� t, the polynomial f̃�x�
s identical to the original polynomial f�x�, where the de-
ree of f�x� is less than t. In other words, the t coefficients

0, a1 , . . . ,at−1 in Eq. �4� can be obtained.
After sequentially processing all pixels of the m shad-

ws, the encrypted secret image can be reconstructed. The
ncrypted secret image is then decrypted to obtain the se-
ret image.
ptical Engineering 077008-
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3.3 Fast-Weighted Secret Image–Sharing Algorithm

The computing time of Eq. �5� is improved by using the
properties of GF�2r�. The utilized property is that the addi-
tive inverse of an element over GF�2r� is the element itself.
In other words,

x = − x . �9�

By Eq. �9�, the following equation is derived:

�x − u�2 = �x + u�2 = x2 + xu + xu + u2

= x2 + xu − xu + u2 = x2 + u2. �10�

Then, Eq. �10� can be extended as

�x − u�2q
= �x + u�2q

= �x2 + u2�2q−1
= �x4 + u4�2q−2

= ¯ = x2q
+ u2q

, �11�

where q is a positive integer and u is an element in GF�2r�.
Let � j=0

2q−1ajx
j and �x2q−1

+u2q−1
� be two polynomials. Then

� j=0
2q−1ajx

j is divided by �x2q−1
+u2q−1

� over GF�2r� to

get the quotient a2q−1x2q−1−1+a2q−2x2q−1−2+ ¯+a2q−1

and the remainder �a2q−1−1+a2q−1u2q−1
�x2q−1−1+ �a2q−1−2

+a2q−2u2q−1
�x2q−1−2+ ¯+�a0+a2q−1u2q−1

�. By Eq. �11�, we

have x2q−1
+u2q−1

= �x+u�2q−1
. Therefore, � j=0

2q−1ajx
j can be

expressed as

�
j=0

2q−1

ajx
j = �a2q−1x2q−1−1 + a2q−2x2q−1−2 + ¯ + a2q−1��x

+ u�2q−1
+ �a2q−1−1 + a2q−1u2q−1

�x2q−1−1 + �a2q−1−2

+ a2q−2u2q−1
�x2q−1−2 + ¯ + �a0 + a2q−1u2q−1

� . �12�

However, if one uses Eq. �12� for sharing directly, the
weight wi is restricted as a power of two �2q−1�. In order to
achieve a generalized version, a recursive algorithm is pro-

posed below. Let î← i, ŵi←wi, t̂←2�log2 t�, and f̂�x�← f�x�.
Now, f̂�x�mod�x+ î�ŵi is solved using the following recur-

sive algorithm A� f̂�x� , î , ŵi , t̂�.
Algorithm 1 (Fast–weighted secret image–sharing al-

gorithm A� f̂�x� , î , ŵi , t̂��:
Input: A polynomial f̂�x�, three positive integers î �in-

dex�, ŵi �weight�, and t̂ �a value in �1, 2, 22, 23 , . . .�, and t̂ is

the number of polynomial coefficients for f̂�x��.
Output: The shadow values with index î and weight ŵi

�the coefficients of f̂�x�mod�x+ î�ŵi�.
Step 1. According to Eq. �12�, rewrite f̂�x� as f̂�x�

= Q̂�x��x+ î�t̂/2+ R̂�x�, where Q̂�x� and R̂�x� are, respectively,

the quotient and the remainder on dividing f̂�x� by

�x+ î�t̂/2=xt̂/2+ ît̂/2 over GF�2r�.
Step 2. Compare ŵ with t̂ /2.
i
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Case 1. If ŵi= t̂ /2, then f̂�x�mod�x+ î�ŵi = �Q̂�x��x+ î�t̂/2

R̂�x��mod�x+ î�ŵi = �Q̂�x��x+ î�t̂/2+ R̂�x��mod�x+ î�t̂/2= R̂�x�.
herefore, return R̂�x�.

Case 2. If ŵi� t̂ /2, then f̂�x�mod�x+ î�ŵi = �Q̂�x��x+ î�t̂/2

R̂�x��mod�x+ î�ŵi = R̂�x�mod�x+ î�ŵi. Then, R̂�x�mod�x
î�ŵi is recursively computed by A�R̂�x� , î , ŵi , t̂ /2�. Finally,

eturn R̂�x�mod�x+ î�ŵi.

Case 3. If ŵi� t̂ /2, then f̂�x�mod�x+ î�ŵi = �Q̂�x��x+ î�t̂/2

R̂�x��mod�x+ î�ŵi = �Q̂�x�mod�x+ î�ŵi−t̂/2��x+ î�t̂/2+ R̂�x�.
ptical Engineering 077008-
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From Eq. �11�, because �x+ î�t̂/2=xt̂/2+ it̂/2, f̂�x�mod�x+ î�ŵi

= �Q̂�x�mod�x+ î�ŵi−t̂/2��x+ î�t̂/2+ R̂�x�= �Q̂�x�mod�x+ î�ŵi−t̂/2�

��xt̂/2+ ît̂/2�+ R̂�x�. Then, Q̂�x�mod�x+ î�ŵi−t̂/2 is recursively

computed by A�Q̂�x� , î , ŵi− t̂ /2, t̂ /2�. Finally, return

�Q̂�x�mod�x+ î�ŵi−t̂/2��xt̂/2+ ît̂/2�+ R̂�x�.
Notably, the above algorithm can be abbreviated as a

recursive function. Let î= i, ŵi=wi, t̂=2�log t� and f̂�x�
=�i=t

t̂ 0xi+ f�x�. Then,
� f̂�x�, î,ŵi, t̂� = A�Q̂�x��x + î�t̂/2 + R̂�x�, î,ŵi, t̂� = �Case 1: R̂�x� , if ŵi = t̂/2,

Case 2: A�R̂�x�, î,ŵi, t̂/2� , if ŵi � t̂/2,

Case 3: A�Q̂�x�, î,ŵi − t̂/2, t̂/2��xt̂/2 + ît̂/2� + R̂�x� , if ŵi � t̂/2.



Now, for the recursive function above, an example is
iven below.

.4 Demonstration Example of Fast-Weighted
Secret Image Sharing

.4.1 Input of the demonstration

1. A polynomial f�x�=2x5+5x4+2x3+6x2+3x+1 whose
coefficients are all in GF�23=8� �i.e., all in the range
�0, 1, 2, 3, 4, 5, 6, 7��

2. A shadow index i=1, a shadow weight wi=5, and a
threshold t=6

.4.2 Demonstration purpose
how how to compute the corresponding shadow value

1
5�x�= f̂�x�mod�x+ î�ŵi = �0x7+0x6+2x5+5x4+2x3+6x2+3x

1�mod�x+1�5 where î= i=1, ŵi=wi=5, and f̂�x�=�i=t
t̂ 0xi

Fig. 1 The 512�512 secret image Lena.
+ f�x�=0x7+0x6+2x5+5x4+2x3+6x2+3x+1 is the whole-
power-of-two version of f �by adding the missing zero co-
efficients to f so that all t̂=2�log2 t�=2�log26�=8 coefficients
appear�.

3.4.3 Demonstration detail

According to the recursive function of our sharing algo-
rithm, we have

A� f̂�x�, î,ŵi, t̂� = A�0x7 + 0x6 + 2x5 + 5x4 + 2x3 + 6x2 + 3x

+ 1,1,5,8�

= A��0x3 + 0x2 + 2x + 5��x + 1�4 + �2x3 + 6x2

+ 1x + 4�,1,5,8� �� Eq. �12��

= A�0x3 + 0x2 + 2x + 5,1,1,4��x4 + 14� + �2x3

+ 6x2 + 1x + 4�

�� ŵi = 5 � t̂/2 = 4, � case 3�

= A��0x + 0��x + 1�2 + �2x + 5�,1,1,4��x4

+ 14� + �2x3 + 6x2 + 1x + 4� �� Eq. �12��

= A�2x + 5,1,1,2��x4 + 14� + �2x3 + 6x2 + 1x

+ 4� �� ŵi = 1 � t̂/2 = 2, � case 2�

= A�2�x + 1�1 + 7,1,1,2��x4 + 14� + �2x3 + 6x2

+ 1x + 4� �� Eq. �12��

= 7�x4 + 14� + �2x3 + 6x2 + 1x + 4�

�� ŵi = 1 = t̂/2 = 1, � case 1�

= 7x4 + 2x3 + 6x2 + 1x + 3.
July 2009/Vol. 48�7�4
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herefore, g1
5�x�= �2x5+5x4+2x3+6x2+3x+1�mod�x+1�5

A�0x7+0x6+2x5+5x4+2x3+6x2+3x+1,1 ,5 ,8�=7x4

2x3+6x2+1x+3.

Experimental Results, Comparisons, and
Security Analysis

ection 4.1 shows the experimental results. Section 4.2
ompares our method to Thien and Lin’s method.3 Section
.3 is a discussion about the security of our method.

.1 Experimental Results
he standard 512�512 gray-level image Lena is shown in
ig. 1, which is used as the secret image in the experiments.
igure 2 shows the encrypted image of Fig. 1; the encryp-

ion uses exclusive-OR operation between a random se-
uence and the gray values of the secret image. Then, the
roposed fast-weighted secret image sharing with �t=256,
=7� threshold scheme over GF�28� is used to share the
ncrypted secret image �Fig. 2�, and n=7 shadows are thus
enerated and shown in Figs. 3�a�–3�g� with the shadow

Fig. 2 Encrypted image of Lena.

(a) (b)

Fig. 3 Seven generated shadows with the shad
and �g� 3.
ptical Engineering 077008-
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weight 160, 64, 24, 8, 134, 12, and 3, respectively. Figure 4
is the image revealed by Figs. 3�a�–3�d�, and the revealed
image is identical to Fig. 1.

Figure 5 compares the execution time in the weighted
secret image–sharing phase using Thien and Lin’s �t=256,
n=wi� threshold scheme3 and our �t=256, n=1� threshold
scheme. The two schemes are both tested on an AMD Ath-
lon 3500� computer with 3GB of RAM. Notably, the ex-
ecution time of our sharing algorithm is 7	3 ms for each
of these 255 sets of weights, whereas the execution time
increases linearly as the weight value increases in Thien
and Lin’s direct and repeated application �using multiple
shadows to simulate weighted feature�.

4.2 Comparisons to Thien and Lin’s Scheme3

Some advantages of our method are presented in this sec-
tion �compared to Thien and Lin’s method3�.

4.2.1 Time complexity
The time complexity of the weighted secret image sharing
using Thien and Lin’s scheme3 and our scheme is analyzed
as follows. For Thien and Lin’s �t ,n� threshold scheme,
when sharing each nonoverlapping t pixels of the secret
image among �i=1

n wi shadows, based on Shamir’s2 seminal
work, f�1�, f�2� , . . . , f��i=1

n wi� are computed by Eq. �1�.
Because there are t multiplications and �t−1� additions in
Eq. �1�, the time complexity of sharing secret image with
size �S� among �i=1

n wi shadows by Thien and Lin’s scheme
is 
��i=1

n wi��
�t��
��S� / t�=
��S���i=1
n wi�. Because

�i=1
n wi�nt, we have 
��S��i=1

p wi�=O��S�nt�.
As for our scheme, when sharing each nonoverlapping t

pixels of the secret image among n shadows, f�x�=a0

+a1x+ ¯+at−1xt−1 in Eq. �4� is expanded to f�x�=a0+a1x

+ ¯+at−1xt−1+0xt+ ¯+0x2�log2 t�
if the value of t is not

power of 2. Then, g1
w1�x� ,g2

w2�x� , . . . ,gn
wn�x� in Eq. �5� are

computed using our fast-weighted secret image-sharing al-
gorithm. Suppose the time complexity of computing each

(d) (e) (f) (g)

ight �a� 160, �b� 64, �c� 24, �d� 8, �e� 134, �f� 12,
(c)

ow we
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i
wi�x� in Eq. �5� is T�t̂�, where i=1,2 , ¯ ,n. Because the
oncept of the recursive function is applied in our algo-
ithm, and there are t̂ /2 multiplications and t̂ /2 additions in
he step 1 of Algorithm 1, the recurrence relation T�t̂�
T�t̂ /2�+
�t̂� can be derived. The recurrence relation is

hen solved by the substitution method to obtain T�t̂�

�t̂�. Because t̂←2�log2 t�, the value of t̂ is at most two

imes of t. Therefore, we have T�t̂�=
�t̂�=
�t�. Thus, the
ime complexity of sharing secret image with size �S�
mong n shadows by our scheme is 
�n��
�t��
��S� / t�

��S�n�.

.2.2 More general scheme for polynomial-based
sharing

n our weighted sharing scheme, according to the Chinese
emainder theorem for polynomials, the n polynomials x
1, x−2, . . . ,x−n in Eq. �3� can be replaced by n other

haring polynomials, such as x2+x+1, x2+x+2, . . . ,x2+x
n, as long as these n polynomials are pairwise relatively
rime �i.e., no pair of polynomials has a nontrivial common
actor�. Notably, Thien and Lin’s method3 is only a special
ase of this generalized scheme �i.e., the n shadows of
hien and Lin’s are evaluated by f�i�= f�x�mod�x− i�, for
=1,2 , . . . ,n. In other words, only �x−1,x−2, . . . ,x−n�
ere used by Thien and Lin,3 whereas we can use all shar-

ng polynomials that are pairwise relatively prime�.

.2.3 Better Performance when pixel values
are �250

he computations in Thien and Lin’s sharing process are
ver GF�251�. All the gray values 251–255 of the gray-
evel secret image have to be truncated to 250. Therefore,
he recovered secret image is lossy. To recover the secret
mage without any loss, Thien and Lin3 introduce a prepro-
essing to decompose the gray value of �250; for example,
53 is separated as a pair of pixels �250 and 3�. This pre-
rocessing will waste time and slightly increase the size of
heir shadows. However, because we use GF�256� in our
eighted sharing procedure, the secret image can be loss-

ess reconstructed without additional postprocessing.

Fig. 4 Image revealed from Figs. 3�a�–3�d�.
ptical Engineering 077008-
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4.2.4 Each participant keeps only one index and
only one shadow (hence, more convenient
and space savings)

If a company wants to apply Thien and Lin’s �t ,n� scheme3

directly to achieve the goal of weighted participants, then
the company can let some participants hold multiple shad-
ows. To be more specific, because each shadow generated
by Thien and Lin’s scheme3 has weight 1, the participant
i�1� i�n� whose weight is wi should be assigned wi shad-
ows, and each of which will be attached with an index
value for the secret-recovery meeting in the future. The wi
indices for participant i will cause an inconvenience, and
the wi shadows �rather than a single shadow� also waste the
storage space of participant i. Moreover, if there are three
participants whose weights are, respectively, 128, 122, and
99, then, Thien and Lin’s method3 will be in trouble. This is
because the first participant will obtain 128 shadows with
the 128 indices values being 1, 2, …, 128; and the second
participant will obtain 122 shadows with the indices values
being 129, 130, …, 250. As for the third participant, there is
“no” shadow left for him because GF�251� restricts the in-
put index value be �251; therefore, the system cannot gen-
erate �250 shadows. However, by using our method, the
first participant will obtain only a shadow with the index
value 1 and the weight value 128; the second participant
will obtain a shadow with the index value 2 and the weight
value 122; and the third participant will obtain a shadow
with the index value 1 and the weight value 99. Hence,
besides giving convenience to each participant, the pro-
posed method also keeps the storage space of each partici-
pant much more economically.

4.3 Security Analysis
The security analysis is divided into two parts: �i� a group
of shadows with total weights t−1 cannot reveal the secret
image, and �ii� shadows of different weights are not equally
secure.

First, suppose that the m� obtained shadows are

��h̃k1
,wk1

� , �h̃k2
,wk2

� , . . . , �h̃km�
,wkm�

�� and the sum of their

weights is t−1 �i.e., � j=1
m� wkj

= t−1�, then we analyze the
probability of obtaining the secret image by guessing. Ac-

Fig. 5 Execution time in the weighted secret image-sharing using
Thien and Lin’s �t=256, n=wi� threshold scheme3 and our �t=256,
n=1� threshold scheme.
July 2009/Vol. 48�7�6
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ording the Chinese remainder theorem for polynomials,

e can construct a unique polynomial f̃��x� where the de-

ree is less than � j=1
m� wkj

= t−1 from these m� shadows. Af-

er obtaining f̃��x�, to reveal the f̃�x� in Eq. �7� by f̃��x�, we
ave

f�x� = �

j=1

m�

�x − kj�wkj + f̃��x� ,

here � is a non-negative integer less than 28=256 �be-
ause GF�28� is used in our experiments�. Because there are
8=256 possible values of �, the possibility of guessing the

ight solution f̃�x� is 1 /256. For a 512�512 secret image,
ecause there are 512�512 / t polynomials, the possibility
f obtaining the right secret image is �1 /256��512�512�/t,
hich is a form similar to the �1 /251��512�512�/t given in
hien and Lin’s paper3.

Second, we analyze the probability of obtaining the se-
ret image by using only one shadow. Given a shadow hwi

f weight wi, then the polynomial gi
wi�x� can be obtained

sing the shadow hwi
. Now, to use gi

wi�x� to reveal the f̃�x�
n Eq. �7�, we have f̃�x�=Q��x��x− i�wi +gi

wi�x�, where Q��x�
s an unknown polynomial with a degree of less than
−wi. Therefore, there is 1 /256t−wi chance to find out the
olynomial Q��x� by guessing. On the other hand, there are
12�512 / t polynomials for a given 512�512 secret im-
ge; thus, the possibility of finding out the secret image is
1 /256t−wi��512�512�/t= �1 /256�512�512��1−�wi/t��. This shows
hat shadows of different weights are not equally secure,
ecause the security of each shadow is weight dependent.
o find out the secret image by guessing, the owner of a

arger-weight shadow has more of a chance than the owner
f a smaller weight has. This agrees with our daily-life
xperience: a higher-ranking manager �having heavier
eight� has more of a chance to uncover the company’s

ecret than a lower-ranking employee has.

Conclusions
n this paper, a fast-weighted secret image–sharing with
t ,n� threshold method is proposed. The method shares the
ecret image among the weighted participants, and the se-
ret image can be losslessly recovered if the sum of the
eights of the participants is greater than or equal to the

hreshold t. Besides, the execution time in the weighted
ecret image–sharing phase is improved by using the prop-
rties of GF�2r�. As shown in Fig. 5, our execution time is
etter than that of Thien and Lin3 when wi�1. The execu-
ives of a company can use our method to share the secret
mage.
ptical Engineering 077008-

m: http://opticalengineering.spiedigitallibrary.org/ on 04/25/2014 Terms of U
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