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Chapter 2  Theory and Calculation method 

 

     The propagation of light in a photonic crystal is governed by the four macroscopic 

Maxwell’s equations. [34] Because we are interested in dielectric medium, we assume that the 

free charge and the electric current are absent. In MKS units they are 

( , ) 0,D r t∇ =
uvvg          (2.1) 

( , ) 0,B r t∇ =
uvvg  (2.2) 

E( , ) ( , ) ,  r t B r t
t

∂
∇× = −

∂

uv uvv v  (2.3) 

H( , ) ( , ).r t D r t
t

∂
∇× =

∂

uv uvv v  (2.4) 

where E and H are the macroscopic electric and magnetic fields, D and B are the 

displacement and magnetic induction field.  

 

2-1 Introduction [35][36] 

     

     In order to solve the wave equations derived from Maxwell’s equations, we need the 

constitution equation between D to E and B to H. Since we do not deal with magnetic 

material, we assume the permeability of the material is equal to that in free space: 

    
0( , ) ( , ).B r t H r tµ=

v vv v                                                    (2.5) 

In general, the relation between D with E can be written as: 

    2 (3) 3
0 2 4D E dE Eε ε χ= + + +L                                           (2.6) 

 

For simplifying the question, we make four assumptions. First we assume the field 

strengths are small enough so that they are in the linear regime, or the operation frequency 
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region far away from the resonance frequency region of the photonic materials. Second, we 

assume the medium is macroscopic and isotropic, so that E(r,w) and D(r,w) are related by a 

scalar dielectric constant ε (r,w). Third, we ignore any explicit frequency dependence of the 

dielectric constant  so the materials which construct the photonic crystals are non-dispersive. 

Four, we assume the material does not absorb the EM wave so the ε (r,w) is treated as a real. 

According to the last four assumptions, the relation between D and E can be rewritten as this 

form: 

( ) ( ) ( ).D r r E rε=
uv v v uv v

                                    (2.7) 

 

If a monochromatic electromagnetic wave is incident, all components of the electric and 

magnetic fields are harmonic functions of time and the same frequency. 

                     
( , ) ( )

( , ) ( )

i t

i t

H r t H r e

E r t E r e

ω

ω

=

=

ruuv uuv v
g

uv v uv v
g

.                                   (2.8) 

When we substitute (2.8) into (2.1) ~ (2.4), we obtain the following equations: 

2

2

1
( ) { ( )} ( ),

( )E E r E r E r
cr
ω

ε
Θ ≡ ∇× ∇× =
uv v uv v uv v
v                                   (2.9) 

    
2

2

1
( ) { ( )} ( ).

( )H H r H r H r
cr
ω

ε
Θ ≡ ∇ × ∇× =
uuv v uuv v uuv v

v                                 (2.10) 

The (2.9) and (2.10) are the eigen-value problems, and that HΘ  is a Hermitian operator. That 

means the eigen functions Hn of HΘ  form an orthonormal complete set. Because ε (r) is a 

period function, we can apply the Bloch’s theorem to (2.9) and (2.10). These wave equations 

can be solved by so-called plane-wave expanding method. 

 

2-2 K.P theory with perfect crystal 

 

2-2.1 One-band model  
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In photonic crystals, ε (r) is periodic function of the spatial coordinate r,  

( ) ( ),r a rε ε+ =v v v                                                     (2.11) 

where a is any lattice vector. 

The eigenstates of (2.10) are Bloch functions. According to Bloch theory, we can write Hkn as 

the following form: 

    ( , ) ( )ik r
n knH k r e u r=

vv
g v

vv v v v
,                                                (2.12) 

where n is a band index and k lies within the first Brillouin zone. The function u(r) has the 

same periodicity with e(r), i.e., u(r+a)=u(r). The Bloch functions Hn(k,r) form a complete set 

of the (2.10): 

* '
, '

( , ) ( , )n m nm k k
H k r H k r dr δ δ=∫ v v
v vv vv v v .                                        (2.13) 

From this orthogonal relation un(k,r) has the follow property: 

( , ) ( , )n m nmu k r u k r δ=
v vv v v v .                                              (2.14) 

where we define  

*
cell

u v u vdr= ∫
v v v v v

g .                                                   (2.15) 

In order to investigate the properties of photonic crystals, we introduce the new basis as 

follows: 

   
0

 ( )= ( ) ( )exp( )n npk
np

H r A k H r iS r⋅∑ v
v vv vv v v,                                     (2.16) 

    S=k-k0 ,  

where k0 is a specific wave-vector which we are interested, Hnpko (r) are the eigen-functions 

of (2.10) at wave-vector k0 and the corresponding eigenvalues are ωn(k0). The eigenvalue and 

eigenvector can be derived by the plane-wave expansion method. S is the displacement of 

wave-vector. In our case, we suppose S= |S |<<1 and ko is near the band edge where the band 

maximum and minimum occur. An(k) is the expansion coefficients where n again is a band 
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index and p represents the index of physical solutions (ωn(k0) ≠ 0) and unphysical solutions 

(ωn(k0) = 0). 

Now, we introduce a new set of basis:   

    0 0( ) ( , )exp( ) ( , )ik r
npnk r H k r iS r e u k rχ ⋅≡ − ⋅ =

vv
v

v vvvv v v v v v
.                              (2.17) 

The properties of orthonormality and completeness can be easily prooved that 

    * ( ) ( )nq mk nm kqr r drχ χ δ δ⋅ =∫
v v ,                                            (2.18) 

    *( , ) ( , ') ( ')n n
n

k r k r dk r rχ χ δ= −∑ ∫ .                                      (2.19) 

From (2.17), we can get ( , )nk k rχ
vv v also obeys the Bloch’s theorem for a wave vector k 

    ( , ) exp( ) ( , )n nk r a ik a k rχ χ+ =
v vv vg ,                                        (2.20) 

where a is lattice constant. For a plane wave Hnk(r) can be expanded by ( , )n rχ kv as [28] 

     ( , ) ( ) ( , ),n nj j
j

H k r A k k rχ= ∑
v v vv vv v                                         (2.21) 

     *( , ) ( , )nj n jA H k r k r drχ= ⋅∫
v vv vv v v.                                          (2.22) 

Since ( , )nH k r
vv v must satisfy (2.10), we operate HΘ  at ( )n rχ k

v  

0

0

0 0 0

( ) 0
0

0
0 0

( )1
[ ( )] { ( ) ( )

( ) ( )

( ) 1
( ) ( ) ( ) ( ) ( )}

( ) ( )

i k k r
jkjk

jk jk j jk

k k
P P r e k k H r

r r

k k
P H r k k P H r E k H r

r r

χ
ε ε

ε ε

− ⋅  −
× × = − × × + 

 
   −

× × + − × × −   
  

v vv
v

v v
v vv v vhv v vhv v

v v
v v vv v v v vh v v vhv v　　　

,     (2.23) 

where 2,  ( / )P i E cω≡ − ∇ ≡
uv uv
h h . Put (2.23) into (2.10) and multiply the equation by 

0

* ( )
lk

u rvv vand integrate over a unit cell of the crystal. We can get 

    ( ) 0lj n ljE k δΓ − =
v

,                                                    (2.24) 

2 2 2 2
0 0 0 0 0 0

0 0

( ) ( ) ( ) ( ) ( )

( ) ( )

lj j jl lj lj

lj

E k k k k k k k k q k

i k k k

α β α β αβ

αβ

δ λ

π

Γ = + − − −

+ − ⋅

∑
v v v v v
h h

v v vv
h　　　　　

.              (2.25) 
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We define 

0 0 0 0 0( ) ( ) ( ) ( ) ( )lj lj lj lj ljk k k k kπ
v v v v vv vv vv
＝P ＋W －Ｕ －Ｖ  

0 0 0

0
0 0

0 0 0

0 0 0

0 0 0

1
( ) ( , ) ( , )

( )

( , )
( ) ( , )

( )

1
( ) ( , ) ( , )

( )

1
( ) ( , ) ( , )

( )

( ) ( , ) ( , )
( )

lj l j

j
lj l

lj l j

lj l j

lj l j

k u k r u k r
r

u k r
P k u k r

i r

q k u k r u k r
r

U k u k r u k r
i r

V k u k r u k r
r i

α
α

αβ α β

λ
ε

ε

ε

ε

ε

=

= ∂

=

= ∇ ⋅

= ∇⋅

v v vv v v v
v

vv vv v hv v
v

v v vv v
v

v v vv hv v v v
v

v v vv hv v v v
v

*
0 0

1
( ) ( ) ( , )

( )lj l j
cell

W k u u k r dr
r iε

= × ∇ ×∫
v vv hv v v v

v

.                                 (2.26) 

where / xα
α∂ = ∂ ∂  and 0( , )lu k rα

vv is the α component of 0( , )lu k r
vv v. If we make unitary 

transformation and ignore the term which has the order of 0s k k= −
v vv  larger than two we can 

get: 

    

2 2 2 2
0 0 0 0 0 0

0 02
0 0

0 0

( ) ( ) ( ) ( ) ( ) ( )

( ( ))( ( ))
( ) ( )

( ) ( )

n n nn nn

nj jn
nn

j n j

E k E k k k k k k k k q k

s k s k
i k k k

E k E k

α β α β αβ

αβ

λ

π π
π

= + − − −

⋅ ⋅
+ − ⋅ +

−

∑

∑

v v v v v v
h h

v vv v v vv v vv v vh h　　　　　
.             (2.27) 

 If 0k
v

is the extreme of the band 

0

( )
| 0n
k k

E k
k ρ

δ
δ =

=v v
v

,                                                     (2.28) 

the ( )nE k
v

 can be rewritten as 

0 02 2 2 2
0 0 0

0 0

( ( ))( ( ))
( ) ( ) ( ( ) ( )

( ) ( )
nj jn

n n nn nn
j n j

s k s k
E k E k s k s s q k

E k E k
α β αβ

αβ

π π
λ

⋅ ⋅
= + −

−∑ ∑
v vv v v vv v v vv v vh h h+ .  (2.29) 

 

Define a reciprocal effective dielectric tensor equation that has a similar structure of the 
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effective-mass equation in semiconductors:  

     

2
0

* 2

0 0 0 0
0 0 0

0 0

( )1 1
( )

2
( ) ( ) ( ) ( )1

( ) ( ) ( )
2 ( ) ( )

            

n

nj jn nj jn
nn nn nn

j n j

E k
k k

k k k k
k q k q k

E k E k

αβ α β

β α α β
αβ βα

αβ

ε
π π π π

λ δ

∂
≡

∂ ∂
+

− −
−∑

uuv

h
v v v v

v v v
v v　      ＝ + .   (2.30)                                     

Using the reciprocal effective-dielectric tensor of (2.30), the (2.29) can be written as an 

eigenvalue equation 

    2
0 *

1
( ) ( ) [ ( ) ( ) ] ( )n n n nE k A k E k s s A kα β

αβ
αβ ε

= +∑
v v v v

h .                            (2.31) 

(2.30) is the well-known effective-mass equation, written, however, in momentum space. To 

get more useful formulation, we introduce an envelope function 

    3( ) ( )i S r
n nF r e A k d k= ∫

vvg
v vv ,                                               (2.32) 

where the integration being over the first Brillouin zone . Thus, we have  

      02 2 2
*

( ) 1
( ) ( ) [( ) ( ) ] ( )n n

n n

k
F r F r

c c x xαβ
αβ α β

ω ω
ε

∂ ∂
= −

∂ ∂∑
v

v vh h
h ,                   (2.33) 

where αand β are indices of three different directions of r . We can also transform Eq. (2.33) 

back to the time space to study the temporal evolution of ( , )F r t
v

. We have a tensor equation: 

     
2

0 2 2
2 *

( ) 1
( , ) [( ) ( ) ] ( , )n

n n

k
F r t F r t

t c x xαβ
αβ α β

ω
ε

∂ ∂ ∂
− = −

∂ ∂ ∂∑
v

v vh
h .                  (2.34) 

Eq. (2.34) is equivalent to the Maxwell equation of (2.10), under the K.P theory, which is the 

generalized Klein-Gordon equation and can be reduced to the Klein-Gordon equation in 

isotropic medium. In this equation, the band interaction is decoupled and the coupling effect 

is introduced into (1/ε*) that can be determined by (2.30) with the simulation result 

(dispersion relation) of plane-wave wave expansion method. This equation indicates there is 

an energy-storing mechanism near band edges, thus we can define  mn=ηωn(k0)/c2 as the 

inertial mass of quasi-particle(QP) of photon. The inertial mass mn is dependent on the band 
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index n and is quantized. We can extend the one-band approximation to the two-band 

approximation in next section, if the band mixing has to be considered. 

 

2-2.2 Two-band model  

 

In solid state physics, the theoretical models for calculating the electronic properties of 

quantum wells and super- lattices fall into two categories: those based on tight-binding 

methods and those based on K.P theory. [37] Now we introduce the two band model in solid 

state physics to explain the phenomenon in photonic crystals. 

 

From (2.24), if we consider the wave-vectors are in principle axes this equation can be 

rewritten as  

0 0 0( ) ( ) ( )lj j jl ljE k i k k kδ πΓ = + − ⋅
v v v vv
h .                                      (2.35) 

When we care about the light traveling at the frequency in first and second band, the bands 

coupling with high order bands can be neglected. (2.35) forms a coupled dielectric and air 

band model. 

    
2

2
a

d

f fE i s p
E

g gi s p E

 ⋅    
=     ⋅     

v vh
v v
h

,                                        (2.36) 

where Ea and Ed are the air- and dielectric-band-edge energies, f and g are the eigenfunctions 

of air band and dielectric  band, E is the eigen energy, /p π=v vh. A specific case is considered 

that the light is normal incident to kx direction. Thus we may set ky and kz equal to zero and 

Eq(2.36) becomes  

2

2 0a

d

fE E i sp
gi sp E E

 −  
=   − −   

h

h
.                                            (2.37) 
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For a bulk photonic crystal, we can then solve for the square of the wave vector 

difference in teams of the energy: 

    2 4 2( )( ) /a ds E E E E p= − − h .                                           (2.38) 

First, we consider the light traveling in the energy of air band, (2.36) may be written in the 

form 

    2 2 *( ) /aE E s ε− = h ,                                                  (2.39) 

where the energy-dependent effective dielectric constant ε*(E) in air band is  

    *
2 2 2 2 2 2

( ) gd a
EE E E E

E
p p p

ε
− −

= = +
h h h

.                                       (2.40) 

In the equation, Eg is the energy gap between air band and dielectric band, i.e., Eg=Ea-Ed. For 

convenience, we define the effective dielectric constant at air-band edge, i.e., E=Ea is 

    
2 2

gE

p
ε =%
h

 or 
1

/gp E ε= %
h

,                                           (2.41) 

then the energy-dependent effective dielectric  constant of (2.40) can be expressed in term of 

the air-band-edge effective dielectric constant as  

    *( ) (1 )a

g

E E
E

E
ε ε

−
= +% .                                                (2.42) 

Inserting (2.41) into (2.37), we can get 

    0

g
a

g
d

E
E E i s

f
gE

i s E E

ε

ε

 
− 

   =     − −
  

h
%

h
%

.                                         (2.43) 

Similarity, if we consider the light trave ling in dielectric band, (2.38) may be written in the 

form 

2 2 *( ) /dE E s ε− = h .                                                  (2.44) 

The energy-dependent effective dielectric constant ε*(E) in dielectric band is  
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    *
2 2 2 2 2 2

( ) ga d
EE E E E

E
p p p

ε
− −

= = +
h h h

,                                       (2.45) 

and the effective dielectric constant at the dielectric band-edge is 

    
2 2

gE

p
ε =%
h

 or 
1

/gp E ε= %
h

,                                           (2.46) 

and (2.45) become 

    *( ) (1 )d

g

E E
E

E
ε ε

−
= +% .                                                (2.47) 

Inserting (2.46) into (2.37), we can still get (2.43). Putting the experiment result or simulation 

result with plane-wave expansion method into (2.47) and (2.42), we can obtain the 

energy-dependent effective dielectric constants in all allowed air and dielectric band. In next 

section, we will introduce the calculated effective dielectric constant into photonic crystal 

with defect. By the effective dielectric constant, we can expand how light is trapped in the 

defect potential well. 

 

2-3 K.P theory with localized defect mode 

 

2-3.1 One-band model 

     If we introduce the defect or disorder perturbation to (2.10), we obtain  

    ∇ ×
∈

+ ∇ × =[
( )

( ( )) ( )] ( )
1

1
2

2r
r H r H rV

c
ω

,                                 (2.48) 

where ( )r∈ vis the periodic dielectric constant. The normalized defect dielectric function is 

( )V rv= - '( )r∈ v/( ( )r∈ v+ '( )r∈ v) and '( )r∈ v is the difference of dielectric constant between the 

bulk and defects or index disorder. By deriving (2.48) as in the section 2-2 (previous section), 

we can get 

0 0 0 0

0

( ( ) ) ( ) ( ) | |

| | 0

l n nl nl n n
n n

n
n

E k E A k k k A dkA lk V nk

dkA lk V nk

δ π  − + − ⋅ + + 

 ∇ = 

∑ ∑∫

∑∫

v v v v v v vvh

v v v ,          (2.49) 
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where we define 

     0( ) *
0 0 0 0| | ( ) ( ) ( , ) ( , )i k k r

n l nlk V nk E k dre V r u k r u k r− ⋅  = ⋅  ∫
v vvv v v v vv v v v ,                     (2.50) 

and neglect 0| |n
n

dkA lk V nk ∇ ∑ ∫
v v v

 because we assume the V vary smoothly and the 

potential well is shallow. The product *
0 0( ) ( )l nu k u k⋅
v vv v  has the same periodicity with ε(r) of 

bulk crystal. So *
0 0( ) ( )l nu k u k⋅
v vv v  can be expanded by reciprocal lattice vector 

    *
0 0( , ) ( , ) ( ) mig r

l n nl m
m

u k r u k r B g e ⋅⋅ = ∑
v vv vv v v v v .                                     (2.51) 

We get Bnl by inversion Fourier transformation   

    *
0 0( ) ( , ) ( , ) mig r

nl m l n
cell

B g u k r u k r e dr− ⋅= ⋅∫
v vv vv v v v v

.                                  (2.52) 

On account of the orthonormality of the 0( , )nu k r
vv v, we can get 

    (0)nl nlB δ= .                                                        (2.53) 

Inserting (2.51) into (2.50), we get 

    0( )
0 0| | ( ) ( ) ( )mi k k g r

n nl m
m

lk V nk E k B k e V r dr− + ⋅  =  ∑ ∫
v vv vv v v v v.                         (2.54) 

If V(r) is varying sufficiently slowly, 0mg ≠v  can be neglected.  

    0 0 0| | ( ) ( )n nllk V nk E k V k kδ  = − 
v v v v

,                                       (2.55) 

    0( )
0( ) ( )i k k rV k k e V r dr− ⋅− = ∫

v vvv v v v.                                           (2.56) 

Put (2.55) into (2.49) and neglect the last term of (2.49), we obtain 

    0 0 0 0 0( ( ) ) ( ) ( ) ( ) ( ) 0l n nl nl n n nl
n

E k E A k k k A E k V k kδ π δ− + − ⋅ + − =∑
v v v v v vvh .            (2.57) 

 

After taking unitary transformation to diagonalize (2.57) in one band approximation 

and transferring back to real space, we can get 

2

0 *

2 2

2 2 ( ) ( ) ( )   
( )

( , ) [ ] ( , )
   nn nk r

i
F r t E U F r t

c t x xαβ α β
αβ ε

∂ ∂
∂ ∂ ∂

= − +∑
v h vh v v .            (2.58) 
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where U(r)= (mnc)2V(r). U(r) is a potential produced by the defect. When we add a dielectric 

defect in the air band, i.e., V(r)<0 and ε*>0, U(r) is negative and becomes an attractive 

potential for the air-band QP (quasi-particle). When we add an air defect in the dielectric band, 

i.e., V(r)>0 andε*<0, U(r) is still an attractive potential for the dielectric-band QP. When 

defect potential is given the envelop function ( , )nF r tv  can be solved. If we consider an 

incident harmonic wave, the eigen energy can be solved from (2.58) 

 

     When we applied the one-band k p⋅ theory to study photons traveling in photonic 

crystal through the defect, the incident photon excites a QP from the periodic dielectric 

constant in the crystal. The QP possesses an inertial mass and hence experiences an attractive 

potential in the defect. It become like quantum mechanics that electron can be trapped by a 

defect no matter how shallow or narrow the defect is. But an arbitrarily weak attractive 

potential can bind a state in one dimension, but not in two or three dimensions. 

 

2-3.2 Two-band model 

 

In the present of an external disorder, when we consider defect energy is located between air 

band and dielectric band, i.e., with in the band gap, (2.57) is written as 

(1 )
0

(1 )
a

d

E V E s f
s E V E g

π

π

+ − ⋅  
=  − ⋅ + −   

v vh
v v
h

.                                  (5.59) 

As the same definition in section 2-2.2 , (5.59) becomes  

2

2

(1 )
0

(1 )
a

d

fE V E i s p
gi s p E V E

 + − ⋅  
=  − ⋅ + −   

v vh
v v
h

.                                  (5.60) 

For concreteness, when we let light travel in x direction or just calculate the 1D photonic 

crystal the vector in (5.60) will become scalar. After transferring it to real space, we can get 
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(1 )

(1 )

g
a

g
d

E d
E V

f fdx
E

g gE d
E V

dx

ε

ε

 
+ 

     =         − +
  

h
%

h
%

.                                   (2.61) 

 

As we discuss in section 2-3.1, when we add air defect in bulk photonic crystals, the 

eigen-energy (E) will rise from dielectric band energy (Ed). On the other hand, when we add 

dielectric in bulks, the eigen-energy will decrease from air band energy. This phenomenon 

still can be expanded well in two-band model. In dielectric defect, the normalized defect 

constant (V) is negative and the band-edge effective dielectric constant ( *ε ) is positive. It is 

an attractive potential. The larger the disorder the more negative V is and the eigen energy 

will be lower. However, when we add air defect in bulk PCs, V is positive and *ε  is 

negative. It is also an attractive potential. The larger the disorder the more positive V is . The 

eigen energy will become higher. From (2.61), we can qualitatively explain the localized 

defect mode. In next chapter, we will try to solve (2.61) in 1-D case and 2-D case. With small 

defect perturbation, the simulation result of two-band model will match well with the exact 

solution which is solved directly from the Plane-wave expansion method. 

 

2-4 Finite different time domain method 

 

   The finite-difference time-domain method is introduced by Yee in 1966. [38] [39] During 

the 1970s and 1980s, several defense agencies working in the areas motivated large-scale 

solutions of Maxwell’s equations. The entire field of computation electrodynamics is shifting 

rapidly in high-speed communications and computing. In 1990, engineers in the general 

electromagnetic  community became aware of the modeling capabilities afforded by FDTD 

and related techniques and the interest in this area has expanded well beyond defense 
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technology. The main reason we introduce FDTD method to solve photonic crystal is that 

when the structure is too complex, it is hard to solve Maxwell’s equation in frequency domain. 

FDTD provide a straight forward to solve it in time domain. With this method, we can see the 

field distribution in photonic crystals. In addition, there are several advantages in FDTD 

method. First, FDTD is accurate and robust. The sources of error are well known. Second, 

being a time domain technology, FDTD treats impulsive behavior and nonlinear behavior 

naturally. Third, FDTD uses no linear algebra. Being a fully explicit computation, FDTD 

avoids the difficulties with linear algebra that limit the size of frequency-domain 

integral-equation. 

 

One-dimensional photonic crystal formulation 

 

     The time-dependent Maxwell’s curl equations in dielectric medium are 

    
0

1
( )

E
H

t rε ε
∂

= ∇ ×
∂

v
v

,                                                  (2.62) 

    
0

1H
E

t µ
∂

= − ∇×
∂

v
v

.                                                    (2.63) 

E and H are vectors in three dimensions. When we start with a 1-D simple case, we can let E 

in x direction and H in y direction. (2.62) and (2.63) become 

    
0

1
( )

yx
HE

t r zε ε

∂∂
= −

∂ ∂
                                                 (2.64) 

    
0

( ) ( )1y x
H t E t

t zµ

∂ ∂
= −

∂ ∂
                                                 (2.65) 

(2.64) and (2.65) are very similar, but because e0 and µ0 differ by several orders of magnitude. 

This is circumvented by making the following change of variables: 

    0

0

E E
ε
µ

=%                                                          (2.66) 

Substituting this in to (2.64) and (2.65) gives 
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0 0

1
( )

yx
HE

t zrε ε µ

∂∂
= −

∂ ∂

%
,                                              (2.67) 

    
0 0

( ) ( )1y x
H t E t

t zε µ

∂ ∂
= −

∂ ∂

%
,                                             (2.68) 

and then go to the finite difference approximations  

1/2 1/2

0 0

( 1/2) ( 1/2)( ) ( ) 1 n nn n
y yx x

H k H kE k E k
t tε ε µ

+ − + − −− −
=

∆ ∆

% %
 ,                  (2.69) 

1 1/2 1/2

0 0

( 1/2) ( 1/2) ( 1) ( )1n n n n
y y x x

H k H k E k E k
t xε µ

+ + ++ − + + −−
=

∆ ∆

% %
.                (2.70) 

 

Let us return to discuss the stability. An electromagnetic wave propagating in free space 

cannot go faster than the speed of light. So the relationship between x∆  and t∆ can be 

written as the well-known “Courant Condition” 

    
x

t
dc

∆
∆ ≤ ,                                                         (2.71) 

where d is the dimension of the simulation and c is the speed of light. In this section, we will 

determine t∆  by 

    
2

x
t

c
∆

∆ = .                                                           (2.72) 

Substituting (2.72) into (2.69) and (2.70), those Equations become 

    1/2 1 /2 0.5
( ) ( ) ( ( 1/2) ( 1/2))n n n n

x x y yE k E k H k H k
ε

+ −= − + − −% % ,                      (2.73) 

    1 1/2 1/2( 1/2) ( 1/2) 0.5[ ( 1) ( )]n n n n
y y x xH k H k E k E k+ + ++ = + − + −% % .                   (2.74) 

 

Besides the last two iterative equations, we still need to add incident wave source 

condition and absorbing boundary condition. It is a great subject in dealing with the wave 

source condition. For simplicity, we divide it into two categories in 1-D case: hard source and 
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soft source. In a hard source, a propagation wave will see that value and be reflected, because 

the hard value of Ex looks like a metal wall to FDTD. However a soft source is added to Ex at 

a certain point and a propagating pulse will just pass through. In calculating photonic crystal, 

we must consider the field scattering from the material. Therefore we use a soft source. 

    
sin(2 * * )

x x

pulse f dt t
E E pulse

π=
= +

.                                              (2.75) 

 

     Absorbing boundary conditions are necessary to keep outgoing E and H fields from 

being reflected. From (2.72), the traveling distance in one time step of the FDTD algorithm is  

    
2

x x
disatnce c t c

c
∆ ∆

= ⋅ ∆ = ⋅ = .                                          (2.76) 

This equation basically explains that it takes two steps for a wave front to cross one cell. So 

the boundary conditions might be 

    
2

2

(0) (1)

( ) ( 1)

n n
x x

n n
x x

E E

E k E k

−

−

=

= −
,                                                  (2.77) 

where 0 and k are the end points and n is a time step. With the iterative equation, wave source 

and absorbing boundary condition, the electric field or magnetic field in 1-D photonic crystals 

can be solved easily.  

 

Two-dimensional photonic crystal formulation 

 

When we start with the Maxwell’s equation in (2.3) and (2.4) and normalize it by these 

equations 

    

0

0

0 0

1

E E

D D

ε
µ

ε µ

=

=

v%

v%
,                                                       (2.78) 
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we will get the normalized Maxwell’s equations  

    
0 0

1D
H

t ε µ
∂

= ∇ ×
∂

% v
,                                                  (2.79) 

    ( ) ( ) ( )D Eω ε ω ω=% % ,                                                   (2.80) 

    
0 0

1H
E

t ε µ
∂

= − ∇×
∂

v
%.                                                 (2.81) 

In simulation a two dimensional case, the six different fields can be divided into two groups: 

(1) the transverse magnetic (TM) modes ( , ,z x yE H H% ) and (2) transverse electric (TE) mode 

( , ,x y zE E H% % ). We will work with TM mode and TE mode can be deal with the similar method. 

In TM mode, (2.79) ~ (2.81) are now reduced to 

    
0 0

1 y xz
H HD

t x yε µ

∂ ∂∂
= − ∂ ∂ ∂ 

,                                           (2.82) 

    ( ) ( ) ( )z zD Eω ε ω ω= ,                                                 (2.83) 

    
0 0

1x zH E
t yε µ

∂ ∂
= −

∂ ∂
,                                                 (2.84) 

    
0 0

1y z
H E
t xε µ

∂ ∂
=

∂ ∂
.                                                  (2.85) 

Put (2.82), (2.84) and (2.85) into the finite difference scheme, and take equivalent incremental 

step in x and y direction, these equation become 

1/2 1/2

0 0

( 1/2, ) ( 1/2, )( , ) ( , ) 1
(

( , 1/2) ( , 1/2)
)

n nn n
y yz z

n n
x x

H i j H i jD i j D i j
t x

H i j H i j
x

ε µ

+ − + − −−
=

∆ ∆

+ − −
−

∆
　　　　　　　　　　　　　　　

 ,          (2.86) 

1/2 1/21

0 0

( , 1) ( , )( , 1/2) ( , 1/2) 1 n nn n
y yx x

E i j E i jH i j H i j
t xε µ

+ ++ + −+ − +
= −

∆ ∆
,          (2.87) 
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1 1/2 1/2

0 0

( 1/2, ) ( 1/2, ) ( 1, ) ( , )1n n n n
y y z z

H i j H i j E i j E i j
t xε µ

+ + ++ − + + −
=

∆ ∆
.           (2.88) 

 

      

The size of the area that can be simulated using FDTD is limited by computer resources. 

In order to decrease the computing time, simulation area must be limited. At the boundary of 

the simulation area, we use the perfectly matched layer (PML) method to minimize the 

reflection from boundary.  If we want to simulate a plane wave in a 2-D FDTD program, we 

must use the total field and the scattered field (TF/CF) method to divide the problem space 

into two regions. The primary reasons for doing this is: (1) The propagating plane wave 

should not interact with the absorbing boundary condition; (2) the load on the absorbing 

boundary conditions should be minimized. 

 

     By subtracting the incident field, the amount of the radiating field hitting the boundary 

is minimized, thereby reducing the amount of error. 

 

PML 

Scattered field 

Total field 

ABCs 

Source point 

Fig. 2-1 Total fields/scattered field of the 2-D problem space 
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2-5 Transfer matrix method 

 

Let’s consider the propagation of a wave through 1-D PCs consisting of N layers with 

thicknesses a and b and refractive indices na and nb.[40] 

    

, 0

1,3,5,...., ( 1)
, 2,4,6,...., ( 1)
, 1

i

a
j

b

o

n j

n j N N
n

n j N N
n j N

=
 = −

= 
= −

 = +

　 　　　　　　　　　

, 　 　　
　 　　
　 　　　　　　　

,                                    (2.89) 

    
, 1,3,5,...., ( 1)
, 1,3,5,...., ( 1)j

a j N N
d

b j N N
= −

=  = −

　

　
.                                       (2.90) 

The wave vector in j layer can be written as 0j jk n k= , where 0 /k cω= . We search for the 

field amplitude Ej in the jth layer as a superposition of incident and reflected wave: 

( ) ( )j ji k x t i k x t
j j jE A e B eω ω− − −= + ,                                           (2.91) 

where Aj and Bj are the amplitudes of the forward and backward waves, respectively. When 

we match the boundary conditions which require that the tangential components of electric 

field and magnetic field must be continuous, we can get the relationship layer by layer. 

1 1 1 1

1 1 , 1 1 1 1 ,

1 1 2 2 , 1 1 1 1 2 2 2 2 0,...

0, 0N N N N N N N N

r i i r i i

i k a i k a ika i k a
i

ik d ik d ik d ik d
N N t N N N N o t

E A B E k E k A k B k E

A e B e A B E k A e k B e k A k B

A e B e E k A e k B e k E

− −

− −

− − = − + − = −

+ − − = − − + + − =

+ − = − + − =

　

　          (2.92) 

where E0, Et, and Er are the amplitude of incident, transmission and reflection field.(2.92) can 

be written as a matrix form: 

    2 2,2 2 2 2 2 2N N N NT E S+ + + +=                                                

( )2 2 1 1 2 2 ...T
N t N N tE E A B A B A B E+ = .                         (2.93) 

( )2 2 1 0 ... 0T
N iS k+ = −  
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1 1

1 1

2 2

2 2

1 1

1 1 2 2

2 2 1 1

1 1 1 0 0 0 0 ... 0 0 0
0 0 0 0 ... 0 0 0

0 1 1 0 0 ... 0 0 0
0 0 0 ... 0 0 0

0 0 0 1 1 ... 0 0 0
0 0 0 ... 0 0 0
. . . . . . . . . . .
. . . . . . . . . . .
0 0 0 0 0 0 0 ... 1
0 0 0 0 0 0 0 ...

N N N N

i
i k a i k a

i ka i k a

i k b i k b

i k b i k b

ik d ik d

k k k
e e
k e k e k k

e e
T

k e k e k k

e e
k

−

−

−

−

− −
−

− −
− −

− −
=

− −

−
− 0

N N N Nik d ik d
N Ne k e k−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Substituting E2N+2 into Eq. (2.91), we will get the electric field distribution in each layer. 

From the solutions of these equations, i.e., Er and Et, transmittance and reflection rate of the 

electric field will be find. 

tt E= ,                                                            (2.94) 

rr E= .                                                            (2.95) 

 

     In 1-D case, transfer matrix method (TMM) is an exact solution so it can get more 

correct solution than FDTD method. Especially, when we calculate the defect mode, the line 

width of frequency is very narrow. If we want to get more correct result in FDTD method, the 

calculating time and space interval must be very small. It is time consuming. So TMM is a 

better way in calculating 1-D PCs. But in 2-D PCs, to construct the matrix T is more difficult 

and the solution is not an exact solution because the dielectric constant must transfer to K 

space. On the contrary, FDTD method is an easy way in calculating 2-D PCs. 


