Chapter 2 Theory and Calculation method

The propagation of light in a photonic crystal is governed by the four macroscopic
Maxwell’'s equatiors. [34] Because we are interested in dielectric medium, we assume that the

free charge and the dectric current are absent. In MK S units they are

NP, =0, (2.1)
N =0, “
N~ Lé(VP’, t)=- %B(P,\){), (2.3)
\§ ﬁ%’?’, t) =% D(l?,‘)t’). (2.4)

where E and H are the macroscopic electric and magnetic fields, D and B are the

displacement and magnetic induction fied.

2-1 Introduction [35][36]

In order to solve the wave equations derived from Maxwell’s equations, we need the
constitution equation between D to E and B to H. Since we do not deal with magnetic
meteria, we assume the permegbility of the materia isequd to that in free space:

B(Y,t)=mH(r Y). (25)
In generd, the relation between D with E can be written as.

D=eeE+2dE* +4c ®PE®+L (2.6)

For simplifying the question we make four assumptiors. First we assume the field

strengths are small enough so that they are in the linear regime, or the operation frequency



region far away from the resonance frequency region of the photonic materials. Second, we
assume the medium is macroscopic and isotropic, so that E(r,w) and D(r,w) are related by a
scalar dielectric constant e (r,w). Third, we ignore any explicit frequency dependence of the
dielectric constant so the materials which construct the photonic crystals are non-dispersive.
Four, we assume the materia does not absorb the EM wave so the e (r,w) istreated asareal.
According to the last four assumptions, the relation between D and E can be rewritten as this

form:

D(r) =e(r)E(r). (2.7)

If a monochromatic electromagnetic wave is incident, all components of the electric and

magnetic fidlds are harmonic functions of time and the same frequency.

H(r t) H(L)V'W‘V (2.8)
E(r t) E(r)oe™

When we subgtitute (2.8) into (2.1) ~ (2.4), we obtain the following equations:

QE%(Vrﬂ—(l»;N'{N' E(r)‘iiﬁ;E(r), (29)
uuv U2 Vv
Q H(r)° N {—(V;N H (r)} — H(r). (2.10)

The (2.9) and (2.10) are the eigen-value problems, and that Q,, is aHermitian operator. That

means the eigen functions H, of Q, forman orthonormal complete set. Because e(r) is a

period function, we can apply the Bloch's theorem to (2.9) and (2.10). These wave equations

can be solved by so-cdled plane-wave expanding method.

2-2 K.P theory with perfect crystal

2-2.1 One-band model



In photonic crystds, e (r) is periodic function of the spatid coordinater,

e(+a)=e(r), (2.11)
where a is any lattice vector.
The eigenstates of (2.10) are Bloch functions. According to Bloch theory, we can write Hy, as

the fallowing form:

H, (k1) = 9u)(r), (2.12)
where n is a band index and k lies within the first Brillouin zone. The function u(r) has the
same periodicity with €(r), i.e, u(r+a)=u(r). The Bloch functions Hn(k,r) form a complete set

of the (2.10):

Ho M K Yar 2d_dy v (2.13)
From this orthogond rdation u,(k,r) has the follow property:

(6. u K r))d, . (2.14)
where we define

<l\,l/ |V>V: Ou *Qur . (2.15)

cell

In order to investigate the properties of photonic crystals, we introduce the new basis as

follows

H()=8 A K)H v (r fexp(iSx), (2.16)

S=k-ko
where Kq is a specific wave-vector which we are interested, Hnpko (1) are the eigen-functions
of (2.10) at wave-vector ko and the corresponding eigenvalues are wy(ko). The eilgenvalue and
eigenvector can be derived by the plane-wave expansion method. S is the displacement of
wave-vector. In our case, we suppose S= |S |<<1 and k, is near the band edge where the band

maximum and minimum occur. An(k) is the exparsion coefficients where n again is a band



index and p represents the index of physical solutions (wn(ko)® 0) and unphysical solutions
(Wn(ko) = 0).
Now, we introduce a new st of bass

()0 H,, (Ko 1)exp(- 1S x) L& u(kyrr). 2.17)

The properties of orthonormality and completeness can be easily prooved that

OF na(1) € (N =d ., (2.18)
a ¢a ke, (krydk=d(r-r). (2.19)

From (2.17), we can get (\:Irk (kv, ?’) aso obeys the Bloch's theorem for awave vector k

¢ (K,r +a) =exp(ikga)c (K,r), (2.20)

where a is lattice congtant. For a plane wave Hnk (r) can be expanded byc\:'n(k, r) as[28]

Ho(,¥) =& A, (K)E, (Y, (221)
= e (k)< (ko ar 2.22)

Since H (IZ,P’) must satisfy (2.10), we operate Q,, at c\;'nk (r)

n

\" \"
V. 1 Vv oy by V, éhk-k). , vV W
P P’ &N = e hk- k) & Ho (0%
[e_(rv)_ cy(r] {h(k - k) o) Jko(r)ld’f 029
v : .

v

vV éhlle . V oy U V. oV é v V),u‘ I Y

B Shik- k). H, Mg+h(k- k) S_lvp' Hy, (g E (Q)H,, (0F
G 0 ee(r) u

where PO -ihf, E° ( tv/c)?. Put (2.23) into (2.10) and multiply the equation by

\/x Vv
Uy (r)

and integrate over aunit cdl of the crystal. We can get

G; - E,(k)d,; =0, (2.24)

G, = E; (Ko)d,, +h?(k*- k)T (ko) - P& (KK - kKD )i (k)
ab

v vy v (2.25)
+|h(k' ko) >pu(ko)



0,(k) Po) W) (k) (k)

b V V 1 b Vv
a; (k) =<U.a (Ko 1) | w5 U (ko’r)\>
(") (2.26)

v vy _ v,V vyhe 1

UI](kO) _<ul(k0’ rj"TNe_(rV)_mj(Ko r)>

V.J(IYO)=<¥.(K), r)ﬂ—@—ﬂm,(\% r)> v

e(r)i
W,(ko)— (—N) u (ks Ty

cell ( )

where §, =71/1¢ and U} (kvo, rV) is the a component of l\fl(ﬁo r)V. If we make unitary

transformation and ignore the term which has the order of d=k- ko\ larger than two we can
Qget:
E,(K) = E, (ko) +h*(k? - k)1 1y (ko) - P (KK - k3 kg ey (k)
ab

Uy (2.27)
Fin(k- ), () 1 Eﬁkf;)-(seﬁlf‘%ko»

If R'O is the extreme of the band

d E"(k) e (2.28)
the En(k) can be rewritten as
A B OIS P Y ";"Jgkkﬁ)»(E . D e

Define areciprocal effective dielectric tensor equation that has a similar structure of the
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effective-mass equation in semiconductors:.

3y 0 1 TEE
* Jab 2h2 ﬂkaﬂkb

1 O pnj (kO)pJn(kp) pnj(kQ)pJn(kO)
9 E.(k)- E (ko) '

(Ko - G0 ()~ 62 (k)2 (2.30)

Using the reciproca effective-dielectric tensor of (2.30), the (2.29) can be written as an
elgenvaue equation
Y v Vi, o, 1 .
E.k)A K)=[E,(ko)+Q h (e—*)ab s's’IAL (k). (2.31)
ab
(2.30) is the well-known effective- mass eguation, written, however, in momentum space. To

get more ussful formulation, we introduce an envelope function
F.(M) =g YA KK, 2.32)
where the integration being over the firg Brillouin zone . Thus, we have

w (ko)) o

ab

ey, () =I( e )ab 1Fn(r)v, (2.33)

wherea and B areindices of three different directions of r . We can also transform Eq. (2.33)

back to the time space to study the tempord evolution of F (}I ,t) . We have atensor equation:

(—) — ]F (r, t) (2.34)

F(t) [(—— * Tx

Eq. (2.34) is equivaent to the Maxwell equation of (2.10), under the K.Ptheory, which is the
generadized Klein-Gordon equation and can be reduced to the KleinrGordon equation in
isotropic medium. In this equation, the band interaction is decoupled and the coupling effect
is introduced into (/e °) that can be determined by (2.30) with the simulation result
(dispersion relation) of plane-wave wave expansion method. This equation indicates there is
an energy-storing mechanism near band edges, thus we can define my=hwn(ko)/c® as the
inertial mass of quasi-particle(QP) of photon. The inertial mass m, is dependent on the band
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index n and is quantized. We can extend the one-band approximation to the two-band

gpproximation in next section, if the band mixing has to be considered.

2-2.2 Two-band model

In olid state physics, the theoretical models for calculating the electronic properties of
guantum wells and super-lattices fall into two categories. those based on tight-binding
methods and those based on K.P theory. [37] Now we introduce the two band model in solid

date physics to explain the phenomenon in photonic crystas.

From (2.24), if we consider the wave-vectors are in principle axes this equation can be

rewritten as
G, = E; (ko)d; +ih(k= ko)p; (k;) (2.35)

When we care about the light traveling at the frequency in first and second band, the bands

coupling with high order bands can be neglected. (2.35) forms a coupled dielectric and air

band model.
¢ Einsholefu__éfu 23
é ,v Vv ué g—Eeé o .
an’sxp’  E, §é90  &90

where E, and E; are the air- and dielectric-band-edge energies, f and g are the eigenfunctions
of air band and dielectric band, E isthe eigen energy, p=ph. A specific caseis considered
that the light is normal incident to ky direction. Thus we may set k, and k; equal to zero and
Eq(2.36) becomes

¢E,- £ ibfp ugty_

e . ug g=0. (2.37)
&ih’sp E, - EG&gy



For a bulk photonic crystal, we can then solve for the square of the wave vector
difference in teams of the energy:

s=(E- E)(E- E,)/h*p®. (2.38)
First, we consider the light traveling in the energy of air band, (2.36) may be written in the
form

(E- E,)=s" /e, (2.39)
where the energy-dependent effective dieectric constant € *(E) inar band is

E-E, E-E, FE

e'(E) = AR s 2 (2.40)

In the equation, E; is the energy gap between air band and dielectric band, i.e., Eg=Es-Eq. For

convenience, we define the effective didectric condant at ar-band edge, i.e., E=E; is

E
hzrg)z or p:% E, /¢, (2.41)

g

&6

then the energy-dependent effective dielectric constant of (2.40) can be expressed in term of

the ar-band-edge effective dielectric congtant as

e (E) =&+ EI-E Eﬂ) . (2.42)

g

Inserting (2.41) into (2.37), we can get

é ] Egu

EE-E | s,/—u, .

é é/ougfl:I_O (2.43)
e [E Uggl '
& ihs,[—> -EU

é &0 S 0!

Similarity, if we consder the light traveling in dielectric band, (2.38) may be written in the

form
(E- E,)=s’h?/¢e . (2.44)

The energy-dependent effective didectric congstant € * (E) in didlectric band is
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R E-E, E-E E
e (E)= o hp;’ + p , (2.45)
and the effective didectric congtant at the dielectric band-edge is
E 1
& thg)z or p=E E, /¢, (2.46)
and (2.45) become
e () =8+———). @47

g

Inserting (2.46) into (2.37), we can still get (2.43). Putting the experiment result or simulation
result with plane-wave expansion method into (2.47) ad (2.42), we can obtain the
energy-dependent effective dielectric constants in all allowed air and dielectric band. In next
section, we will introduce the calculated effective dielectric constant into photonic crystal
with defect. By the effective dielectric constant, we can expand how light is trapped in the

defect potential well.

2-3 K.P theory with localized defect mode

2-3.1 One-band model

If we introduce the defect or disorder perturbation to (2.10), we obtain

R e (VR H(r)]=$H(r), (2.48)
I (r) C

wherel (f)is the periodic dielectric constant. The normalized defect dielectric function is
V(H)=-T ("I )+ (7)) and T () isthe difference of dielectric constant between the
bulk and defects or index disorder. By deriving (2.48) as in the section 2-2 (previous section),

we can get
(E/(k) - E)AG, + & h(k= k), (o)A, +& (kA §K [V [ nk, i+

o - vV o V. \ , (249)
A kA, gk [NV [nk =0
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where we define
gK 1V [k = E, (k) cte © v e i yr)ou, (). (2.50)

and neglect § (‘)jI}A gIkTNV |nkog because we assume the V vary smoothly and the
potential well is shallow. The product l\J',*(IZO)m,Y(kOV) has the same periodicity with € (r) of

bulk crystd. So ﬁﬂ*(ﬁo)mg’(ko") can be expanded by reciprocd lattice vector
8 (6 ), (k1) =8 By (g8 (251)

We get By by inverson Fourier transformetion

B, (0n) = O (K 1), (K r)e ¥ ar | (252)

cell

On account of the orthonormality of the l\,I/n (R'O, r)V, we can get

B, (0)=d,. (2.53)
Inserting (2.51) into (2.50), we get

GKIV [ nky B= E, (k)8 By (k)7 & BV (P)ar (2554
If V/(r) is varying uffidently Sowly, d_ 1 O can be neglected.

gKIV I nkof= E, (k)d,V (k- k). (2.55)

v V.

V(K- k) = gV (Yydr (2.56)

Put (2.55) into (2.49) and neglect the last term of (2.49), we obtain

(E(K)- E)Ad, + & h(k: k)38, (k) A, +Eq(kd,V (K - ko) =0. (2.557)

After taking unitary transformation to diagonalize (2.57) in one band approximation

and transferring back to real space, we can get

(Ih) ) |:(r t) =[E, (ko) a( )ab !

258
Lo ATy —+UMIREY) - (2.58)
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where U(r)= (mc)?V(r). U(r) is a potential produced by the defect. When we add a dielectric
defect in the air band, i.e, V(r)<0 and € ">0, U(r) is negative and becomes an attractive
potential for the air-band QP (quasi-particle). When we add an air defect in the dielectric band,
i.e, V(r)>0 ande “<0, U(r) is still an attractive potentia for the dielectric-band QP. When

defect potential is given the envelop functionFn(?',t) can be solved. If we consider an

Incident harmonic wave, the eigen energy can be solved from (2.58)

When we applied the one-band k >p theory to study photons traveling in photonic
crystal through the defect, the incident photon excites a QP from the periodic dielectric
congtant in the crystal. The QP possesses an inertial mass and hence experiences an attractive
potential in the defect. It become like quantum mechanics that electron can be trapped by a
defect no matter how shallow or narrow the defect 5 But an arbitrarily weak attractive

potential can bind a state in one dimension, but not in two or three dimensions.
2-3.2 Two-band model

In the present of an external disorder, when we consider defect energy is located between air

band and dielectric band, i.e., within the band gap, (2.57) iswritten as

E.1+V)-E  hp'xs' efy
é -hpx E;(1+V)- Egagg
Asthe same definition in section 2-2.2 , (5.59) becomes

E 1+V)- E i xp¥ ety
INAVRY ue g=0. (5.60)
e -ih'sxp’  E(1+V)- Egédq

For concreteness, when we let light travel in x direction or just calculate the 1D photonic

crystd the vector in (5.60) will become scalar. After trandferring it to real space, we can get
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s ‘
8 E,(1+V) -2 —(

SEMYV) M giaxietu sty

= -6 u=Ee (- (2.61)
S, [E d Usgy &9

&nl—2S g @+v)u

& \ &d a

As we discuss in section 2-3.1, when we add air defect in bulk photonic crystals, the
eigenenergy (E) will rise from dielectric band energy (Eg). On the other hand, when we add
dielectric in bulks, the eigen-energy will decrease from air band energy. This phenomenon
gill can be expanded well in two-band model. In dielectric defect, the normalized defect
constant (V) is negative and the band-edge effective dielectric constant (e*) is positive. It is
an attractive potential. The larger the disorder the more negative V is and the eigen energy
will be lower. However, when we add air defect in bulk PCs, V is postive and e* is
negative. It is also an attractive potential. The larger the disorder the more posttive V is. The
eigen energy will become higher. From (2.61), we can qualitatively explain the localized
defect mode. In next chapter, we will try to solve (2.61) in 1-D case and 2-D case. With small
defect perturbation, the simulation result of two-band nodel will match well with the exact

solution which is solved directly from the Plane-wave expansion method.

2-4 Finite different time domain method

The finite-difference time-domain method is introduced by Yee in 1966. [38] [39] During
the 1970s and 1980s, several defense agencies working in the areas motivated large-scale
solutions of Maxwell’s equations. The entire field of computation electrodynamics is shifting
rapidly in high-speed communications and computing. In 1990, engineers in the genera
electromagnetic community became aware of the modeling capabilities afforded by FDTD

and related techniques and the interest in this area has expanded well beyond defense
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technology. The main reason we introduce FDTD method to solve photonic crystal is that
when the structure is too comple, it is hard to solve Maxwell’s equation in frequency domain.
FDTD provide a straight forward to solve it in time domain. With this method, we can see the
field distribution in photonic crystals. In addition there are several advantages in FDTD
method. First, FDTD is accurate and robust. The sources of error are well known. Second,
being a time domain technology, FDTD treats impulsive behavior and nonlinear behavior
naturally. Third, FDTD uses no linear algebra. Being a fully explicit computation, FDTD
avoids the difficulties with linear algebra that limit the size of frequency-domain

integral-equation.
One-dimensional photonic crystal formulation

The time-dependent Maxwell’s curl equationsin dielectric medium are
= Y
E = 1 N” H

2.62

it e(e, (262

1:1—:': 1R E. (2.63)
m

E and H are vectors in three dimensions. When we start with a 1-D simple case we can let E

inx direction and H in 'y direction. (2.62) and (2.63) become

fE,_ 1 TH, (2.64)
it e(re, Tz
HO_ 1EWO (2.65)

it m 1z
(2.64) and (2.65) are very similar, but because ey and o differ by several orders of magnitude.

Thisis drcumvented by making the following change of variables

e |Sog 2.66
5 o

Subdtituting thisin to (2.64) and (2.65) gives
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0 H

1 y
0. , 26
Tt e(r)fem 12 -
T, (t) 1 1Y)
_ A0 2.68
It Jem 1z o
and then go to the finite difference approximations
@?«Ll/z(k)_ E}:@l/Z(k) _ -1 H;(k+1/2)- H;(k' 1/2) (2 69)
Dt eJe,m D |
HI™(k+1/2)- H)(k+1/2) _ -1 BOL2(k +1) - ng'&l/z(k)_ (2.70)

Dt A /eorq) Dx

Let us return to discuss the stability. An electromagnetic wave propagating in free space
cannot go faster than the speed of light. So the relatiorship between Dx and Dtcan be

written as the wdl-known “Courant Condition’

oo e 2% 2.71)

Jdc'

where dis the dimension of the simulation and c is the speed of light. In this section we will

determine Dt by

_ Dx
= (2.72)
Subdtituting (2.72) into (2.69) and (2.70), those Equations become
BOY2 (k) = EY2(K) - %(H;(k +1/2)- HJ(k- 1/2)) (2.73)
HI"(k+1/2) = H] (k+1/2) - 05[BF"*(k+1) - E/0"*(K)]. (2.74)

Besides the last two iterative equatiors, we still need to add incident wave source
condition and absorbing boundary condition. It is a great subject in dealing with the wave
source condition. For simplicity, we divide it into two categoriesin 1-D case: hard source and

19



soft source. In a hard source, a propagation wave will see that value and be reflected, because
the hard value of E looks like a metal wall to FDTD. However a soft source is added to E; at
a certain point and a propagating pulse will just pass through. In calculating photonic crystal,

we must congder the field scattering from the materid. Therefore we use a soft source.

pulse=sin(2p f * dt*t)

(2.75)
E, =E, + pulse

Absorbing boundary conditions are necessary to keep outgoing E and H fields from

being reflected. From (2.72), the traveling distance in one time step of the FDTD dgorithmis

disatnce= cxDt :cx% :%. (2.76)
c

This equation basically explains that it takes two steps for a wave front to cross one cell. So

the boundary conditions might be

EO=E"D

EN(k)=Ef2k-1) @70

where 0 and k are the end points and n is a time step. With the iterative equation, wave source
and absorbing boundary condition, theelectric field or magnetic field in 1-D photonic crystals
can be solved easly.

Two-dimensional photonic crystal formulation

When we start with the Maxwell’s equationin (2.3) and (2.4) and normalize it by these

equations
e \/gé'
m : (2.78)
8 -1 3

€M
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we will get the normdized Maxwdl’s equations

me. 1 ..V

—= N H, 2.79
Tt Jem (2.79)
Bow) =e w)E@), (2.80)
W L e (2.81)
Tt &M,

In simulation a two dimensiona case, the six different fields can be divided into two groups:

(2) the transverse magnetic (TM) modes ( E{O H., H,) and (2) transverse electric (TE) mode

(I%’, @{0 H,). We will work with TM mode and TE mode can be deal with the similar method.

In TM mode, (2.79) ~ (2.81) are now reduced to

D 1 odH, qH,0
2= - —=, 2.82
ft Jemé™ Tyg (282)
D,(w) =e(w)E,(w), (2.83)
H 1 E
X =- z, 2.84
it Jem, Ty (289
™, 1 9E
- 2 2.85
Tt Je,m TX (2.85)

Put (2.82), (2.84) and (2.85) into the finite difference scheme, and take equivadent incrementd

step in x and y direction, these equation become

D;+1/2(i,j)' D;-l/Z(i’j) _ 1 (H;(I+1/2,])' H;(l'l/Z;J)

2 Veam ox : (2.86)
CHRGL+1/2)- HIG - 1/2))
Dx
HetG,j+1/2)- HGL j+1/2) - 1 EJ™P3, i+ - BJ™2(L ) (287
Dt Jem Dx ’ '
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HYP(+2/2,))- Hy(+2/2,)) . 1 EF*?(+1))- EFY°GL0) (2.89)

Dt em Dx
ABCs| ] PML
s

cucerin Yy YY:

Scattered field

Fig. 2-1 Totd fields/scattered fidd of the 2-D problem space

The size of the area that can be smulated using FDTD is limited by computer resources.
In order to decrease the computing time, simulation area must be limited. At the boundary of
the simulation area, we use the perfectly matched layer (PML) method to minimize the
reflection from boundary. If we want to simulate a plane wave in a 2-D FDTD program, we
must use the total field and the scattered field (TF/CF) method to divide the problem space
into two regions. The primary reasons for doing this is: (1) The propagating plane wave
should not interact with the absorbing boundary condition; (2) the load on the absorbing

boundary conditions should be minimized.

By subtracting the incident field, the amount of the radiating field hitting the boundary

is minimized, thereby reducing the amount of error.



2-5 Transfer matrix method

Let’s consider the propagation of a wave through 1-D PCs consisting of N layers with

thicknesses aand b and refractive indices ny and n,.[40]

in, j=0
I .
n, j=135,.. ,N(N-1
nj ::' a J 1, ( ) ’ (289)
i, 1=246,..,N(N-J
fn, j=N+1
134, ; =1,35,....N(N-1
’ | J ( ) (2.90)

I Tib, j=135,....N(N- 1)
The wave vector in j layer can be written ask; = nk,, where k, =w/c. We search for the
field amplitude E; in the jth layer as a superposition of incident and reflected wave:

E, =Ae“ ™ +Be M, (2.91)
where A and B; are the amplitudes of the forward and backward waves, respectively. When

we match the boundary conditions which require that the tangential components of electric

fiddd and magnetic fidld must be continuous, we can get the rdationship layer by layer.

E-A-B=-E KE+kA-kB =-KkE
A€ +BE - A - B, =-E - kA" +kBe " +k,A - kB, =0,.. (292
A\leikNdN +BNe-ikNdN _ Et: O,- kNANékNdN +kNBNe-ikNdN _ koEl =0

where By, E, and E are the amplitude of incident, transmissionand reflection field.(2.92) can

be written as a matrix form:

T2N+2,2N+2 E2N+2 = S2N+2

Ev.=(E A B A B, . A, B E) (293)

SzTN+2:(':|- k 0 .. O)
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da -1 -1 0 0O 0 O 0 0 06
EK k -k O O 0 O 0 0 0.
o ¥ el 1 -1 0 O© 0 0 0+
¢ ika i ka -
S0 -ke* ket K, -k, 0 0 0 0 0.
GO 0 0 d® g .1 -1 0 0 0%

T=¢ i kb -ikb N
cO 0 0 -ke ke k. -k 0 0 0+
G. : N
(; -
0 o0 0 0 0O 0 0 gt glde 17
éo 0 0 0 0O 0 O k€M kg™ kg

Substituting Epxn+2 into Eq. (2.91), we will get the electric field distribution in each layer.
From the solutions of these equations, i.e., & and E, transmittance and reflection rate of the

dectric fidd will be find.

t=|g|, (2.94)

r=|E|. (2.95)

In 1D case, transfer matrix method (TMM) is an exact solution soO it can get more
correct solution than FDTD method. Especially, when we calculate the defect mode, the line
width of frequency is very narrow. If we want to get more correct result in FDTD method, the
calculating time and space interval must be very small. It is time consuming. So TMM is a
better way in calculating 1-D PCs. But in 2-D PCs, to congtruct the matrix T is more difficult
and the solution is not an exact solution because the dielectric constant must transfer to K

gpace. On the cortrary, FDTD method is an easy way in caculating 2-D PCs.
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