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Abstract Existing research works on time-dependent origin-destination (O-D)
estimation focus on the surveillance data usually assume the prior information of
the O-D matrix (or transition matrix) is known (or at least partially known). In this
paper, we relax such assumption by combining Gibbs sampler and Kalman filter in a
state space model. A solution algorithm with parallel chain convergence control is
proposed and implemented. To enhance its efficiency, a parallel structure is
suggested with efficiency and speedup demonstrated using PC-cluster. Two
numerical examples (one for Taipei Mass Rapid Transit network and the other for
Taiwan Area National Freeway network) are included to show the proposed model
could be effective of time-dependent origin-destination estimation.

Keywords Time-dependent origin-destination estimation . State space model .

Gibbs sampler . Kalman Filter . Parallel computing

1 Introduction

This investigation considers a time dependent origin-destination (O-D) estimation
involving the state space model, Gibbs sampler, and Kalman Filter. The O-D
matrices, representing the number of traffic moving between node (or zone) pairs of
the transportation network, are fundamental information of the transportation
planning, operation, and control problems. The static O-D matrices are interesting
owing to its important role in numerous real world problems, namely, transportation
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planning, urban and regional planning; an average zone-to-zone O-D matrix for a
whole period of interest is acceptable for this purpose. Regarding the time dependent
O-D, it is particularly crucial in the field of transportation operation and
management; most advanced traveler information system (ATIS) and advanced
traffic management system (ATMS) require time-dependent O-D information as an
input for generating traffic evolution over the interested network (Bernstein et al.
1996, 2001; Chang and Wu 1994; Jou and Hwang 2002; Lee et al. 2001). O-D
information is not only important in the traffic network but also crucial for the IP
network; some researchers had identified the issues faced in inferring the
transportation network of an IP network (Benameur and Roberts 2004). Because
of the importance of the O-D estimation, many researches had focused on this
problem for the past three decades. Customary O-D estimations can be classified into
three major methodologies including (1) extensive data survey, i.e., home-based
survey, road-side survey, license plate recognizing, and so on; (2) trip distribution
models, i.e., gravity model, assignment-based model; and (3) estimation of the O-D
matrices by non-assignment-based model using traffic counts of the link derived
from the surveillance system.

The first approach, an extensive panel survey, would yields accurate results when
conducted carefully. This approach often involves home-based survey, road-side
survey, license plate recognizing, and so on; all of them require a large amount of
resources and are not possible to undertake frequently. This survey method is time-
consuming and not able to give real-time results of O-D matrices; hence, it is not
suitable for traffic operation problems, and other real-time applications. This survey
data can be treated as priori information about the network and be updated during
the estimation period (Doblas and Benitez 2005). By using new technologies, such
as Automatic Vehicle Identification (AVI), to sample the O-D matrix can lower the
cost of survey process (Dixon and Rilett 2005). But in the real world, the installation
density of such AVI facilities on the network is still far from practical. Jou had
proposed a statistical approach to estimate the O-D matrix from such incomplete
sample, but it still cannot fulfill the need of dynamic O-D (Jou et al. 2006).

The second approach, estimate O-D matrices by trip distribution models. These
approaches include gravity model, Tobit model, and dynamic traffic assignment
(DTA); among these models, the assignment based models have caught most
attentions in the past two decades. These models are based on the assumption that
reliable model for describing network flow assignment is available for generating the
link flow pattern; entropy maximization, maximum likelihood methods, and
generalized least squares methods have been widely used (Van Zuylen and
Willumsen 1980; Maher 1983; Cascetta 1984; Bell 1991). A comprehensive review
of researches in this approach can be found in Cascetta and Nguyen (1988).
Willumsen was the first researcher who extended the entropy concept to multiple
time intervals, and Nguyen was the first to address the O-D estimation problem from
a network equilibrium approach (in technical report 60 of University of Montreal
1977). Cascetta and et al. extended the statistical estimators of updating O-D
matrices, developed by Cascetta and Nguyen (1988), and established two dynamic
estimators for approximating the dynamic O-D matrices (Cascetta et al. 1993). More
recently, Ashok and Ben-Akiva introduced stochasticity to map the assignment
matrix between time-dependent O-D flows and link volumes both in off-line and
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real-time applications (Ashok and Ben-Akiva 2002). Lo and Chan further improved
the assignment-based model by propose an statistical approach to simultaneous
estimate an O-D matrix and link choice proportions from O-D survey data and traffic
counts (Lo and Chan 2003). Nie and Zhang proposed a relaxation approach for
estimating static O-D matrix that minimizes a distance metric between measured and
estimated traffic condition while the condition satisfies user equilibrium (Nie and
Zhang 2008). It is worthy to note, for these models developed with this approach to
effectively estimate the O-D matrices, there should exist a reliable assignment model
and an accurate consecutive interval of O-D matrices. The real challenge of this
approach lies on a reliable descriptive dynamic network assignment model remained
to be developed by researchers.

The third approach, estimate the O-D matrices by non-assignment models. O-D
estimation methods in this category estimate the O-D matrices directly from time-
series of network flows. It assumes that each O-D parameter remains approximately
constant during several consecutive intervals of estimations. The concept was
originally proposed by Cremer and Keller for identifying turning counts from link
traffic count, with the assumption of constant link travel time (Cremer and Keller
1981). Most non-assignment based studies are conducted successfully against simple
networks with assumption that most entering and leaving flows at network origin/
destination nodes are available. Chang and Wu proposed a model employs
information from mainline traffic counts, ramp flow measurements, and macroscopic
traffic characteristics to construct a set of dynamic equations to describe the O-D
distributions and observed flows (Chang and Wu 1994). Chang and Tao further
employed the link flow counts and specially-designed dynamic screenline flows to
estimate the O-D matrix; the target network is also decomposed into several sub-
networks for parallel computing (Chang and Tao 1995). The limitation of this
approach lies on the limited traffic surveillance facilities in a real-world network.
Most non-assignment-based models require considerably large amounts of link flow
information for computing the O-D flow; these models in general are also too
computationally intensive for real-time implementations in large-scale networks.

Okutani first introduced state space model into time-dependent O-D estimation
with the state vector indicating the unknown O-D flows; prior data is required to
identify the parameter matrix (Okutani 1987). In 1993, Ashok and Ben-Akiva
introduced another state space model approach with the state vector defined in terms
of O-D flow deviations (Ashok and Ben-Akiva 1993). Jou suggested an approach
based on state-space modeling with the state vector also indicates the O-D flows, but
no prior information of state vectors and transition matrices are needed; while most
of the aforementioned studies assume that the transition matrix is known or at least
approximately known, which is unrealistic for a real world network (Jou and Hwang
2002). Kalman Filter is an efficient recursive filter that estimates the state of a
dynamic system from a series of incomplete and noisy measurements. This character
is similar to the behavior of traffic; the link flow counts derived from vehicle
detectors are noisy. While the least square method, being widely used in many
researches, is mainly used to solve overdetermined systems, which is usually
violated in traffic system.

In this paper, Gibbs sampler is combined with Kalman filter to estimate the state
vector and transition matrix simultaneously; parallel technique is introduced to the
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proposed algorithm and improved the performance. We begin, in Section 2, with the
introduction of time-dependent origin destination estimation by state space model
with Gibbs sampler. The parallel chain convergence control and parallel implemen-
tation is addressed in Section 3, numerical examples are demonstrated in Section 4,
and the conclusion is outlined in the last section.

2 Time-dependent origin-destination estimation

Existing research works on traffic assignment usually assume the existence of user
equilibrium status or pursuit some system optimal situation. However, it is
questionable whether such equilibrium state really exists or not. In this study, we
relax such assumption by some statistical approaches. The basic assumption in this
research is the path-flows in time-series have an unknown relationship, the
assumption is similar to Okutani does. While Okutani assumed a time invariant
relation between time-series O-D flow exists; and this relationship can be estimated
by some prior information. In this study, we do not estimate the relationship by prior
information. The relationship is estimated simultaneously with path flows.

For convenience, we use the following notations in this chapter as Table 1:

2.1 Time-dependent origin-destination estimation by state space model

In this subsection, only the most basic modeling is introduced. The transition matrix
that describe the relationship among path-flows in different time period is assumed
to be fixed. The link travel time, which is an important issue, is not considered. The
above assumptions are made in this section; while the travel time issue will be
considered in the next section.

State space model is introduced to estimate path flows from link traffic counts.
The state space model is coupled with two parts: transition equations and observation
equations. First, the state equation which assumed that the path flows at time t can be
related to the path flows at time t–1 by the following autoregressive form,

xt ¼ Fxt�1 þ ut; t ¼ 1; 2; 3; :::; n ð1Þ

Table 1 Notations

Notation Descriptions

F a p×p path flow transition matrix
xt a p×1 network path flows on time t
xlagt a p(MaxLag+1)×1 matrix composed of series of path flows
yt a q×1 link traffic observation vector on time t
H a q×p zero-one matrix which denotes the path-observation incidence matrix
Ht a q×p(MaxLag+1) zero-one matrix which denotes the path-observation incidence matrix

at time t
P number of elements in path set P
Q number of observations in the target network
ut, vt independently and identically distributed Gaussian noise terms
T The transport of a matrix is mark by superscript T
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where xt is the state vector which is unobservable, F is a random transition matrix,
ut~Np(0, Σ) is independently and identically distributed noise term, where Np denotes
the p-dimensional normal distribution, Σ is the corresponding covariance matrix. x,
the p×1 state vector, is defined to be the path flows belonging to O-D pairs. Next, the
observation equation,

yt ¼ Hxt þ vt; t ¼ 1; 2; 3; . . . n ð2Þ
where yt is the q×1 observation vector which means there are q detectors on the
network. The number of paths is denoted by p. H is a q×p zero-one matrix, which
denotes the path-observation incidence matrix. The path-observation is pre-determined
by generating possible path set and given travel time on each link. vt is also a noise
term that vt~Nq(0, Γ).

2.2 Time-dependent origin-destination estimation by state space model considering
travel time

Travel time is an important issue while facing transportation problems. It is no exception in
path flow estimation. We consider travel time effect into the estimation model in this
subsection.

The model in this section had been modified from the previous section (Section 2.1)
to consider travel time effect. The state transition equation is the same as in previous
section, but the observation equation had been modified as follows.

xt ¼ Fxt�1 þ ut; t ¼ 1; 2; 3; . . . ; n ð3Þ

yt ¼ Htx
lag
t þ vt; t ¼ 1; 2; 3; . . . n ð4Þ

The state variable, xlagt , is modified here to take the travel time into account. It is a p
(MaxLag+1)×1 matrix composed of series of state vectors,

xlagt ¼ xTt x
T
t�1x

T
t�2 � � � xTt�MaxLag

n oT
:

Let the element in xt, a p×1 vector, be represented as
xt 1ð Þ
xt 2ð Þ
..
.

xt pð Þ

26664
37775
p�1

.
Then,

xTt ¼ xt 1ð Þxt 2ð Þ � � � xt pð Þ½ �1�p;

and

xlagt ¼ xt 1ð Þ � � � xt pð Þ½ � xt�1 1ð Þ � � � xt�1 pð Þ½ � � � �f
xt�MaxLagþ1 1ð Þ � � � xt�MaxLagþ1 pð Þ½ � xt�MaxLag 1ð Þ � � � xt�MaxLag pð Þ½ ��T

1�p MaxLagþ1ð Þ

:

The term MaxLag denotes the maximum time lag intervals that can be observed on
observation sites at time t. The path-observation incidence matrix, Ht, is a zero-one
q×p(MaxLag+1) matrix at time t. If the flow of a path can be observed at detector q,
then the corresponding element in Ht is one; else, it is zero.
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Both x and F are unobservable, thus Kalman filter is not suitable to directly
estimate and forecast the state vector. Hence, Gibbs sampler is used to tackle the
problem of simultaneous estimation of F and x by available information.

There are two major elements to be incorporated in the solution method, (1) filtering
states by observations, and (2) sampling scheme of transition matrix, F, and state
vector, x. Since the observations, yt, are not used directly in the conditional
distribution, the Kalman filter and the Gibbs sampler must be combined. For
simplicity, in the following section of Kalman Filter and Gibbs sampler, the time-
dependent path-observation incidence matrix, Ht is denoted as H. After the estimation
of state vector, O-D flows can be calculated by the summation of path flows.

2.3 Kalman filter

State-space model in conjunction with Gibbs sampler and Kalman filter had been
used in a wide variety of applications in many disciplines. Kalman filter gives an
estimator for the linear–quadratic–Gaussian problem, which estimates the instanta-
neous state of a linear dynamic system perturbed by Gaussian white noise (the same
as our purposed model). It utilizes measurements, corrupted by Gaussian white
noise, linearly related to the state and gives a statistically optimal estimator with
respect to quadratic function of estimation error. The structure of the filter can be
derived in a Bayesian framework as follows. At the first stage (i.e. t=1), there’s no
observation exists, thus the state vector x0 must be generated by a prior distribution
that x0~N(μ0, V0), where μ0 is the mean and V0 is the covariance matrix. By using
Eq. (1), the distribution for the state vector in the first stage will be normal with
parameters

E xt yt�1j½ � ¼ mt t�1j ¼ Fmt�1 ð5Þ

Var xt yt�1j½ � ¼ Vt t�1j ¼ FVt�1F
T þΣ ð6Þ

where μt|t−1 denotes the expect value of xt and Vt|t−1 denotes the variance of xt when
yt−1 is observed. By the above information, the forecast observation would be normal
distribution with parameters

E yt yt�1j½ � ¼ byt ¼ Hmt t�1j ð7Þ

Var yt yt�1j½ � ¼ Mt ¼ HVt t�1j HT þ g ð8Þ

The above Eqs. (5)–(8) holds for any t.
As the new observation yt become available, the parameter vector would be

updated according to Baye’s rule,

p xt ytjð Þ / p yt xtjð Þp xt yt�1jð Þ

150 H. -J. Cho et al.



by using Bayes’ rule and standard Bayesian theory, the posterior will be normal
distribution with parameters

mt tj ¼ mt t�1j þ Vt t�1j HTM�1
t yt � Hmt t�1j

� �
ð9Þ

Vt tj ¼ Vt t�1j � Vt t�1j HTM�1
t HVt t�1j ð10Þ

After the filtering Vt|t and μt|t at time t, set Vt=Vt|t and μt=μt|t for the next time
stage. The algorithm of Kalman filter is illustrated as follows,

Algorithm Kalman Filter
Input: μ0, V0, yt :=observation vector
Output: Filtered m and V

Begin

FOR each time step of the observation vector

Generate prediction of the new observation bybyt ¼ H � F � mt�1

Mt ¼ H F � Vt�1 � FT þ
X� �

HT þ Γ

Update the parameter by

mt tj ¼ mt t�1j þ Vt t�1j HTM�1
t yt � Hmt t�1j

� �
Vt tj ¼ Vt t�1j � Vt t�1j HTM�1

t HVt t�1j

END FOR
END

2.4 Gibbs sampler

Gibbs sampler is a technique for generating random variables from a distribution
indirectly, without having to calculate the density. In this paper, we make the
following assumptions, (a) The initial x0~N(μ0, V0), (b) The covariance matrix Σ
and Γ are known, and (c) Given F, the distribution xt is Gaussian.

The state equation can be written

xTt ¼ xTt�1F
T þ uTt ; t ¼ 1; 2; . . . ; n ð11Þ

that is

xT1
..
.

xTn

264
375 ¼

xT0
..
.

xTn�1

264
375F 0 þ

uT1
..
.

uTn

264
375
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The following notation is used for simplification.

Xn ¼
xT1
..
.

xTn

264
375; Xn�1 ¼

xT0
..
.

xTn�1

264
375; Un ¼

uT1
..
.

uTn

264
375; FT ¼ FT

1 � � �FT
i � � �FT

p

h i

where FT
i denotes the ith column vector of FT. Then the Eq. (11) can be re-written as

Xn ¼ Xn�1F
T þ Un

Consider the element of S, the p×p covariance matrix being used to estimate the
variance–covariance matrix of F,

S FT
� � ¼ Sij FT

i ;F
T
j

� �n o
where Sij denotes the (i, j) element of the matrix. Sij can be calculated by the
following equation.

Sij ¼ XT
n ið Þ � XT

n�1F
T
i

� �T
X T
n jð Þ � XT

n�1
bFT
j

� �
¼ XT

n ið Þ � XT
n�1

bFT
i

� �
XT
n jð Þ � XT

n�1
bFT
j

� �
þ FT

i � bFT
i

� �
Xn�1X

T
n�1 FT

j � bFT
j

� �
ð12Þ

where bFT
i ¼ Xn�1XT

n�1

� ��1
Xn�1XT

n ið Þ is the least square estimate of FT
i , and Xn(i) is

the i-th column vector of Xn. Consequently,

S FT
� � ¼ Aþ FT � bFT

� �T
Xn�1X

T
n�1 FT � bFT

� �
ð13Þ

where A is a p×p matrix. A={aij}, where aij is the (i, j) elements of A, with

aij ¼ XT
n ið Þ � XT

n�1
bFT
i

� �T
X T
n jð Þ � XT

n�1
bFT
j

� �
`: ð14Þ

That means A is proportional to the sample covariance matrix. From the general
result in the Gaussian model, the posterior distribution of F′ is then

p FT Xjð Þ / S FTð Þj j�n
2 ; �1 < FT < 1

¼ Aþ FT � bFT
� �T

Xn�1XT
n�1 FT � bFT

� ����� �����n=2 ð15Þ

The distribution in Eq. (15) is a matrix-variate generalization of the t-distribution.
The following sampler for generating FT and X is then proposed.

The sampling scheme generate from the conditional distributions

a. xt F; xt�1;
P� N Fxt�1;

Pð Þj
b. FT Xj ;

P� k n; p; pð Þ½ ��1 A n�pð Þ=2�� Xn�1XT
n�1

�� p=2
�� Aþ FXn�1XT

n�1

�� FT �n=2
����
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The above sampling scheme would be the key component of the Gibbs sampler.The
Gibbs sampler is a Markovian updating scheme that proceeds as follows. Given an
arbitrary starting set of values Z 0ð Þ

1 ; Z 0ð Þ
2 ; Z 0ð Þ

3 ; . . . ;Z 0ð Þ
k

n o
, and then draw

Z 1ð Þ
1 � Z1 Z 0ð Þ

2 ; Z 0ð Þ
3 ; . . . Z 0ð Þ

k

���h i
;

Z 1ð Þ
2 � Z2 Z 1ð Þ

1 ; Z 0ð Þ
3 ; . . . Z 0ð Þ

k

���h i
;

Z 1ð Þ
3 � Z3 Z 1ð Þ

1 ; Z 1ð Þ
2 ; . . . Z 0ð Þ

k

���h i
; . . .

Z 1ð Þ
k � Zk Z 1ð Þ

1 ; Z 1ð Þ
2 ; . . . Z 1ð Þ

k�1

���h i
:

Each variable is visited in the natural order and a cycle requires k random variate
generations. After i iterations we have Z ið Þ

1 ; Z ið Þ
2 ; Z ið Þ

3 ; . . . ; Z ið Þ
k

� �
. Under mild

conditions, the following results hold (Geman and Geman 1984)

Result 1: Convergence

As the iteration continues, Z ið Þ
1 ; Z ið Þ

2 ; Z ið Þ
3 ; . . . ; Z ið Þ

k

� �
! Z1; Z2; Z3; . . . ; Zk½ �. Hence,

for each sequence s, Z ið Þ
s ! Zs½ � as i→∞.

Result 2: Rate

Using the sup norm, the joint density of Z ið Þ
1 ; Z ið Þ

2 ; Z ið Þ
3 ; . . . ; Z ið Þ

k

� �
converges to the

true density at a geometric rate, under visiting in the natural order.

Result 3: Ergodic theorem

For any measurable function T of Z1, Z2, Z3,…, Zk whose expectation exists,

lim
i!1

1

i

Xi

l¼1

T Z lð Þ
1 ; Z lð Þ

2 ; Z lð Þ
3 ; . . . ; Z lð Þ

k

� �
! E T Z1; Z2; Z3; . . . Zkð Þð Þ:

For every function T on the possible configurations of the system and for every
starting configuration holds with probability one.

Analytical convergence rates for Gibbs sampler applied to state space models are
further discussed by Pitt and Shephard in 1996 and Robert (Pitt and Shephard 1996;
Robert and Cellier 1998).

As Gibbs sampling through m replications of the aforementioned i iterations
produces i independent and identically distributed k tuples Z ið Þ

1j ; Z
ið Þ
2j ; Z

ið Þ
3j ; . . . ; Z

ið Þ
kj , j=

1,2,3,…, m, which the proposed density estimate for [Zs] having form

Ẑs
h i

¼ 1

m

Xm

j¼1
Zs Z

jð Þ
r ; r 6¼ s

��h i
:

The above Gibbs sampling scheme on a random transition matrix and state vector
forms the center part of the algorithm. In the process of generating state vectors,
Kalman filtering mechanism is added. While a simple monitoring of the chain (Zs)
can only expose strong non-stationarities, it is more relevant to consider the
cumulated sums, since they need to stabilize for convergence to be achieved. The
convergence control of Gibbs sampler is discussed in Section 3.
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Algorithm Gibbs Sampler

Input: H :=path-observation incidence matrix, yt :=observation sequence

Output: bX , bF
Begin

Initialize

F(0) :=Ip, Σ :=Ip, γ :=Ip
Xstore ¼ ff g, Fstore ¼ ff g

SET GibbsCount (g) to 0
WHILE not Converge

Generate x(g)~N(μ, V)
Append x(g) to Xstore

CALL Kalman Filter with μ, V, and observation sequence
Generate F′(g) by

A gð Þ ¼ a gð Þ
ij

n o
, a gð Þ

ij ¼ X
0 gð Þ
n ið Þ � X

0 gð Þ
n�1

bF 0 gð Þ
i

� �0

X
0 gð Þ
n jð Þ � X

0 gð Þ
n�1

bF 0 gð Þ
j

� �
Generate w � Wishart X gð Þ

n�1X
0
n�1 gð Þ; n� p

� �
Generate Z ¼ z

0
1; z

0
2; z

0
3; . . . ; z

0
p

� �
, zk �iid Np 0;A gð Þ� �

COMPUTE F
0 gð Þ ¼ w

1
2

� �0� ��1

Z

APPEND F′(g) to Fstore

INCREMENT GibbsCount
END WHILE
READ last k items from Xstore and put in Xn

COMPUTE bX ¼ 1
k

P
Xn

READ last k items from Fstore and put in Fn

COMPUTE bF ¼ 1
k

P
Fn

END

2.5 Solution framework

In this subsection, the solution framework of applying Gibbs sampler and Kalman
filter to the state space model is illustrated. The solution framework that combines the
algorithm of Kalman filter and Gibbs sampler is demonstrated in Fig. 1. The solution
framework is an iterative estimation of state vectors and transition matrix. It first
filters the state vector by given transition matrix, path-observation incidence matrix
(some may refer as mapping matrix), and observation vector; and then turns to
estimate the transition matrix by filtered state vector. During the Kalman filter stage
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Fig. 1 The solution framework of state space model
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of the framework, transition matrix and mapping matrix are fixed; while in the
transition matrix estimating stage, the state vector is fixed. As the algorithm reach
convergence, the transition matrix, bF, and state vector, bx, can be estimated.

After deriving the estimated transition matrix and state vector, prediction of state
vector can be represent as,

x̂tþ1 ¼ F � xt þ utþ1: ð16Þ
And the estimation of state vector after h time periods, x̂tþh, is

bxtþh ¼ F � bxtþh�1 þ utþh

¼ F � F � bxtþh�2 þ utþh�1ð Þ þ utþh

¼ F � F � F � F � � � F � bxt þ utþ1ð Þ � � �ð Þ þ utþh�2ð Þ þ utþh�1ð Þ þ utþh

ð17Þ

Since the expectation value of u is zero. The prediction of x̂tþh can be written as

x̂tþh ¼ Fhxt: ð18Þ

3 Convergence control of Gibbs sampler and parallel implementation

Gibbs sampler, an example of a Markov Chain Monte Carlo method, is an algorithm
that generate sequences of samples from a joint probability distribution. It has been
used to tackle a wide variety of statistical problems. If the method had been used
naively without convergence control, it might result a misleading answer. Properties
of applying Gibbs Sampler to state space model can be referred to Frühwirth-
Schnatter (1994), Carter and Kohn (1994), Gamerman (1998), and Jungbacker and
Koopman (2007); while analytic convergence rates for Gibbs sampler applied to uni-
variate state space model can be referred to Pitt and Shephard (1996).

Theoretical guarantee of convergence is different from the practical requirement.
It is thus necessary to develop a tool that determines whether the chain is converged
or not. Monitoring the chain that Gibbs sampler produce is a reasonable method.
However, monitoring the elements in a chain would only expose strong non-
stationarities. Therefore, it is more relevant to consider the cumulated averages; since
they need to stabilize for convergence to be achieved. Let the number of Gibbs
iterations be denoted as g, and the corresponding element x(g). The difference
between cumulated averages should be less than ɛ,

1

g

X
g

x gð Þ � 1

g � 1

X
g�1

x gð Þ
�����

����� � ": ð19Þ

Possible alternatives to empirical averages would be importance sampling,
conditional expectations, or Riemann approximation techniques. However, the
average may only correspond to the exploration of a single mode of the distribution
by the chain; the single chain methods can never guarantee that the whole support of
target distribution has been explored (Robert and Cellier 1998).

156 H. -J. Cho et al.



3.1 Multiple chain convergence of Gibbs sampler

The main idea of Gibbs sampler, an iterative simulation method, is to draw values of
a random variable x from a sequence of distributions that converge to a desired target
distribution of x. Single chain (sequence) methods hardly bring information on the
regions of the space it does not visit. Parallel chain methods try to overcome such
defect by generating parallel chains, aiming at eliminating the dependence on initial
conditions. The convergence control is most often based on the comparison of the
estimations of different quantities for the parallel chains. More precisely, the
criterion is based on the difference between a weighted estimator of variance for
each chain and the variance of the estimators on the different chains. The estimation
method composed of two steps. First, create an estimate of the target distribution,
centered about its mode (or modes), and over-dispersed in the sense of being more
variable than the target distribution. The approximate distribution is then used to
start several independent chains of the iterative simulation. The second step is to
analyze the multiple chains to form a distributional estimate of the target random
variable.

The monitor of convergence of the iterative simulation is to estimate the factor by
which the scale of the current distribution for the target distribution might be reduced
if the simulations were continued to the limit n→∞. This potential scale reduction
can be estimated byffiffiffî

R

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂

W

df

df � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

n
þ M þ 1

Mn

B

W

� �
df

df � 2

s
ð20Þ

where

df ¼
PM
m¼1

S2m
n

� �2

PM
m¼1

S4m

n2 n�1ð Þ

¼
PM
m¼1

S2m

� �2

n� 1ð Þ
PM
m¼1

S4m

ð21Þ

R̂ declines to 1 as n→∞. R̂ is the ratio of the current variance estimate, V̂ , to the
within-chain variance, W. n is the count of iterations, Sm are the standard deviation of
each chain, B is the between-chain variance and the M is the number of parallel
chains. The between- and within-chain variances, B and W, are defined as follows.

B ¼ 1

M

XM
m¼1

xm � x
� �2

; ð22Þ

W ¼ 1

M

XM
m¼1

S2m ¼ 1

M

XM
m¼1

1

n

Xn
i¼1

x ið Þ
m � xm

� �2
; ð23Þ

with

xm ¼ 1

n

Xn
i¼1

x ið Þ
m ; x ¼ 1

M

XM
m¼1

xm ð24Þ

where x ið Þ
m is the i-th element in chain m.
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Once R̂ is near 1, it is conclude that each set of the simulated values is close to the
target distribution. In practice, the potential scale reduction is chosen to be 10%
R̂ � 1:1
� �

. After it converges, we can calculate the desired sample value (the state
vector) based on the empirical distribution of the n simulated iterates for each
simulated chain.

3.2 Parallel implementation of the proposed algorithm

Gibbs sampler, a particular type of Markov Chain Monte Carlo method, requires
tremendous iterations during computation; normally, there would be tens of
thousands iterations in the proposed algorithm. To achieve real-time information
requirement, parallel computing technique is introduced to increase the performance.
The solution algorithm should be modified to adopt the parallel implementation. It is
divided into several computing parts by dividing at the WHILE-LOOP. With
different random seed, each computing part will lead to a different solution chain.
The chain in each computing part will then be gathered to check the convergence. In
this situation, communication between computing nodes is minimum, and
computing power can be easily increased without communication bandwidth
limitation. Figure 2 describes the parallel architecture. The parallel environment of
this PC-cluster consists of 16 computing nodes; each contains two processors
equivalent to Intel XEON 3.2 GHz and 1 GB memory. Nodes are connected with a
Gigabits Ethernet switch for MPI protocol and a 100 Mbits PCI fast Ethernet switch
for Network File System (NFS) and Network Information System (NIS).

Server Node
2 + 3.2GHz processors 

2Gb Memory 
Task: 
1. Load Network Data. 
2. Assign Jobs to Computing Nodes. 
3. Check Convergence. 
4. Final Estimation of x and F from 

multiple chains after convergent.

Computing Node 1
2  3.2GHz processors 

1Gb Memory 
Task: 
1. Receive Job from Server Node. 
2. Calculate Single Sequence of x 

and F. 
3. Send Local Computation 

Result to Server Node. 

MPI Data Bus (Gigabits Switch) 

NFS & NIS Data Bus (Fast Ethernet) 

Computing Node 16 
2  3.2GHz processors 

1Gb Memory 
Task: 
1. Receive Job from Server Node. 
2. Calculate Single Sequence of x 

and F. 
3. Send Local Computation 

Result to Server Node. 

…

+ +

Fig. 2 The parallel environment
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In the server node, parameters used in our algorithm are initialized, so does the
necessary input data. When assign jobs, these input data are sent to computing nodes
in the cluster through TCP/IP base intranet with Message Passing Interface (MPI)
Library through gigabit switch. The computational procedure for the parallel process
consists of:

1. Load input data and parameters. Initialize MPI environment.
2. Count the computing nodes exists in the cluster environment. Send data to

each computing nodes.
3. Each computing nodes generate its own X̂ and F̂' sequences by given input

data. These results were sending to the server for convergence check.
4. The server check the convergence of each X̂ and F̂'. If R̂ > 1:1, the

computing nodes will continue step 3. As R̂ � 1:1, the server estimate the
global X̂ and F̂' by sequences generated by computing nodes.

5. Stop MPI environment. Output data.

Figure 3 shows the speedups and efficiencies of the proposed algorithm, where
the speedups is the ratio of the code execution time on a single processor to that on
multiple processors and efficiency is defined as the speedup divided by the number
of processors. As shown in Fig. 3, the parallel scheme has efficiency of 72.5% in a
32 processors environment.

4 Numerical examples

Two numerical examples are discussed in this section: (a) part of a real network of
the Taipei Mass Rapid Transit (MRT) and (b) part of the Taiwan Freeway Network
with Electronic Toll Collection information.

4.1 Taipei Mass Rapid Transit network

A real network of Taipei MRT is tested in this section. The test network consists of
nine stations in Nangkang line, the topology of test network is demonstrated in

Fig. 3 Speedups and efficiencies for the parallel computing
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Fig. 4. The nodes are denoted with capital letters; while the links are denoted with
lowercase letters.

Real path-flow data are the numbers of passengers traverse between stations from
18:05–20:00 in 5-minute interval; for example, there are 30 persons travel from
Ximen to Taipei Main Station in the time-period of 18:00–18:35. Eight paths are
included in this example defined as travelers toward Taipei Main Station from the
rest of stations. These paths are demonstrated in Table 2.

In the MRT test, travel time is not considered. Therefore, link flows can be easily
obtained by the summation path flows on them, i.e., flow on link c is equal to x(3)+x
(4)+x(5)+x(6)+x(7)+x(8), and the flow on link e is equal to x(5)+x(6)+v(7)+x(8).
The time-dependent link flows, illustrated in Table 3. Link flows on b and c are
treated as the observation vector, yt, in this test.

The computing environment of this test consists of four computing nodes, each
nodes is responsible for a particular chain, and the server node will be responsible
for, R̂, the convergence check. Each particular chain has a unique random seed with
difference initial values. The convergence of the estimation of the O-D pair is shown
in Fig. 4 below. In convenience, only two single O-D pairs are shown; but in reality,
every O-D pair must satisfy the convergence assessment. From Fig. 5(a), we might
observe that after about 2.26×105 iterations, four chains converge to the same point;
in Fig. 5(b) it converges after about 1.69×105 iterations.

After the algorithm reach convergent, transition matrix and state vector can then
be estimated. The comparison of estimation output and real data is illustrated in
Table 4.

Comparisons of real and estimated O-D flows by this study is measured by the
value of mean absolute error (MAE)

MAE ¼
Pn
i¼1

xiESTIMATE � xiREAL
�� ��

n
: ð25Þ

City HallZhongxiao 
Dunhua

Zhongxiao 
Fuxing

Zhongxiao 
Xinsheng 

Shandao 
Temple

Taipei Main 
Station

Ximen 

Longshan 
Temple 

A B C D E F G H I
a b c d e f g h 

Sun Y.-S. 
Memorial Hall 

Fig. 4 The MRT test network

Path O-D pair Link set

x(1) A→C a, b
x(2) B→C b
x(3) D→C c
x(4) E→C d, c
x(5) F→C e, d, c
x(6) G→C f, e, d, c
x(7) H→C g, f, e, d, c
x(8) I→C h, g, f, e, d, c

Table 2 Path set of example
MRT network
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The value of MAE in this case is 3.97. The time-dependent differences between
real and estimated O-D flows at each time interval are plotted in Fig. 6; the black
line indicates the real O-D data derived from the Taipei Mass Rapid Transit
company, and the grey line indicates the estimation result of the proposed algorithm.
The correlation between real and estimated data is 0.898, which indicate a strong
association between real and estimated data. Nearly all of the 8 O-D estimations pass
the paired-samples T test of 95% confidence interval; only the third O-D pair has
failed. We further examine the O-D pair 3 by chi-squared test, and the result leads to
the conclusion of no significant difference between real and estimated data. The
result shows that the proposed algorithm is capable to capture the pattern of real O-D
flows.

Table 3 Time-dependent link flows on MRT test network

Time
interval

Link flow
a

Link flow
b

Link flow
c

Link flow
d

Link flow
e

Link
flow f

Link flow
g

Link flow
h

1 1 12 31 27 27 17 13 7
2 3 14 116 108 103 50 30 23
3 0 12 85 84 77 39 14 9
4 6 15 82 77 72 33 21 11
5 5 25 74 69 63 42 16 10
6 2 10 71 69 65 34 17 11
7 3 33 115 108 101 56 28 12
8 3 26 62 58 56 29 12 7
9 6 29 62 59 58 34 23 15
10 1 28 84 81 71 45 21 10
11 3 19 80 72 65 28 15 7
12 3 29 113 107 103 63 31 20
13 7 35 129 119 110 51 25 17
14 2 18 50 45 44 18 7 7
15 6 39 128 121 113 58 20 12
16 6 35 97 91 83 43 15 11
17 1 12 107 100 93 58 35 25
18 3 16 108 101 97 50 25 15
19 0 22 76 76 71 32 19 8
20 4 29 69 66 63 26 13 7
21 1 17 101 100 96 63 18 12
22 2 9 41 40 37 29 10 5
23 2 6 59 57 55 35 14 8

(a) (b)

Fig. 5 Estimation value of the multiple chain convergence
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4.2 The Taiwan freeway network with Electronic Toll Collection information

A real freeway network with Electronic Toll Collection (ETC) information is tested
in this section. ETC can provide where and when the particular vehicle appeared,
and helped us to trace the vehicle. The test network consists of the northern part of
Taiwan freeway network, including part of freeway No.1, No. 2, and No. 3. The
network is illustrated as Fig. 7. The nodes are denoted with capital letters; while the
links are denoted with lowercase letters.

The test network consists of 22 O-D pairs and 30 paths, demonstrated in Table 5.
Path flow data are the number of vehicles depart from their origin toll station to their
destination toll station, only vehicles with ETC equipment and travel longer than two
toll stations will be count. Since ETC information provides when and where a
particular vehicle appears, travel time between every two stations can be calculated.
Therefore, link flow on certain time can be obtained by the summation of
corresponding path flows departs from their origin on particular time. For example,
flow on link e at time t can be calculated by the summation of path 2, 4, 6, 8, 10 at
time t−2 and path 12, 14, 16, 18, 20 at time t−1. The flow count is based on ETC
information on 2008/04/13.

In this subsection, transition matrix is assumed to be fixed, while path-observation
incidence matrix, Ht, is generated by real data. The observation vector is time-
dependent link flows, aggregated as 30-min interval, on the network. Estimated O-D

Table 4 The comparison of real and estimated O-D flow

Time
interval

O-D pair 1 O-D pair 2 O-D pair 3 O-D pair 4 O-D pair 5 O-D pair 6 O-D pair 7 O-D pair 8

Real Est. Real Est. Real Est. Real Est. Real Est. Real Est. Real Est. Real Est.

1 1 1.7 11 4.1 4 3.1 0 0.4 10 12.3 4 2.4 6 4.6 7 10.4
2 3 4.3 11 15 8 10.2 5 7.2 53 47.2 20 15.1 7 4.1 23 18.1
3 0 1.4 12 14.1 1 4.1 7 8.6 38 29.3 25 17.6 5 8.5 9 5.3
4 6 0.7 9 10.7 5 4 5 7.3 39 33.4 12 20.7 10 8.8 11 9.7
5 5 3.5 20 27.7 5 8.6 6 5.5 21 47.9 26 17.1 6 3.9 10 5.6
6 2 1.2 8 13.4 2 5.7 4 6.2 31 32.4 17 7.9 6 5.7 11 4.9
7 3 0.8 30 23.3 7 5 7 9.8 45 40.9 28 28.2 16 15.4 12 15.7
8 3 4.7 23 8.7 4 6 2 4.1 27 32.4 17 10.7 5 11.1 7 9
9 6 5.4 23 17.3 3 5.2 1 2.2 24 27.9 11 10.6 8 6.7 15 11.9
10 1 4.1 27 18.4 3 4.1 10 8.3 26 31.7 24 19.2 11 8.3 10 14.1
11 3 5 16 19.2 8 6.7 7 5.1 37 33.1 13 16.4 8 3.5 7 9.6
12 3 5.5 26 16.9 6 9.5 4 7.9 40 45.7 32 19.1 11 11 20 20.6
13 7 4.4 28 27.2 10 9.6 9 3.7 59 66 26 20.6 8 13 17 11.3
14 2 3.2 16 4 5 5.2 1 4.2 26 23.1 11 5.9 0 6 7 13.5
15 6 5.5 33 33.8 7 8.3 8 11.9 55 57.3 38 31.7 8 11.3 12 13.1
16 6 7.9 29 18.5 6 9.1 8 3.6 40 50.9 28 21.8 4 5.3 11 16.2
17 1 4.4 11 8.8 7 7.5 7 6.3 35 46.2 23 15.3 10 11.3 25 18.3
18 3 2.9 13 13.1 7 6.8 4 2.3 47 57.2 25 22.7 10 13.8 15 16.2
19 0 3.2 22 16.3 0 4.6 5 6.8 39 24.7 13 16.6 11 6.8 8 6.2
20 4 0.6 25 18.3 3 6.5 3 6.2 37 45 13 3.9 6 14.6 7 9.3
21 1 3.8 16 5.6 1 1.3 4 8.8 33 48.6 45 18.7 6 6.8 12 10.5
22 2 0.8 7 5.8 1 2 3 1.1 8 7.9 19 26.1 5 3.1 5 4.6
23 2 0.1 4 3.2 2 0.8 2 4.3 20 22.1 21 13.6 6 4.3 8 5.1
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flows are obtained by multiplying path-flow with path-OD incidence matrix. The
estimated O-D flows compare to O-D path flows are demonstrated in Fig. 8 as
follows. In Fig. 8, the estimated, predicted, and real O-D flows are indicated in grey,
dash, and black lines respectively.

The correlation between real and estimated O-D flows is 0.982, which indicates a
strong association between real and estimated data. The mean absolute error is 2.41,
and the mean absolute percentage error is 31.69%. Twenty out of 22 paths pass the
paired-sample T test of 95% confidence interval; we further test the rest two paths,
all of them pass the chi-square test of 95% interval.

(a) O-D Flow 1 (b) O-D Flow 2 

(c) O-D Flow 3 (d) O-D Flow 4 

(e) O-D Flow 5 (f) O-D Flow 6 

(g) O-D Flow 7 (h) O-D Flow 8 

Fig. 6 The comparison of real and estimated data on MRT network
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4.3 Comparison with predetermined transition matrix method

Existing researches concerning time-dependent O-D estimation usually assume the
prior information of the O-D matrix (or transition matrix) is known (or at least
partially known). This subsection compares the algorithm proposed in this study
with predetermined transition matrix method. The example is based on the freeway
network as previous section. However, the proposed algorithm no longer generates
the transition matrix; it is now calculated by historical data. The transition matrix in
this example is a time-dependent diagonal matrix that

Ft ¼

x 1ð Þtþ1

x 1ð Þt 0 0

0 . .
.

0
0 0

x pð Þtþ1

x pð Þt

2664
3775 ð26Þ

where x 1ð Þt denotes the path flow of first path on time t.
The comparison of predetermined transition matrix and algorithm proposed in this

research is demonstrated in Fig. 9; only O-D 1 to 4 are illustrated for simplicity. In
Fig. 9, the real OD flow, flow estimated by predetermined transition matrix, and flow
estimated by the proposed model are indicated in black, dash, and grey lines
respectively.

The mean absolute error is 4.79, and the mean absolute percentage error is
61.87%. Predetermined transition matrix tends to preserve the O-D pattern of

Taishan Toll 

Station

Yangmei Toll 

Station

Zaociao Toll

Station

Houli Toll

Station

Shulin Toll

Station

Longtan Toll

Station

Houlong Toll 

Station

Dajia Toll 

Station

A 

C

F 

D 

B 

H 

E 

G 

a bc

e f

g h

i j

k l

I J 

K 

d

Fig. 7 The test freeway network
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historical data; however, the O-D pattern may vary from day to day. Although
predetermined transition matrix might have the advantage of preserving O-D pattern,
but it might sometimes misleading the results.

5 Conclusions

This research presents a time-dependent origin-destination estimation method based
on the state space model. Combining Gibbs Sampler and Kalman filter, we propose
an algorithm loosens the assumption of known transition matrix that exists in other
studies. A multiple chain convergence for the Gibbs Sampler is discussed to monitor
the convergence for the proposed algorithm. To enhance the computing efficiency of
this algorithm, a parallel structure is suggested and implemented on a PC-based
Linux cluster. Two numerical examples are demonstrated to show the effectiveness
of the proposed model. The first example is part of MRT network to address the
basic model; the second example is part of freeway network to illustrate the model
considering travel time. Preliminary results indicate that the proposed model is

Path O-D pair Link set

x(1) B→D b
x(2) B→C b, d, e
x(3) B→E b, f, h, i
x(4) B→E b, d, e, g, i
x(5) B→G b, f, h, i, k
x(6) B→G b, d, e, g, i, k
x(7) B→F b, f, h, j
x(8) B→F b, d, e, g, j
x(9) B→H b, f, h, j, l
x(10) B→H b, d, e, g, j, l
x(11) A→D a, c, f
x(12) A→C a, e
x(13) A→E a, c, f, h, i
x(14) A→E a, e, g, i
x(15) A→G a, c, f, h, i, k
x(16) A→G a, e, g, i, k
x(17) A→F a, c, f, h, j
x(18) A→F a, e, g, j
x(19) A→H a, c, f, h, j, l
x(20) A→H a, e, g, j, l
x(21) D→E h, i
x(22) D→G h, i, k
x(23) D→F h, j
x(24) D→H h, j, l
x(25) C→E g, i
x(26) C→G g, i, k
x(27) C→F g, j
x(28) C→H g, j, l
x(29) E→G k
x(30) F→H l

Table 5 Path set of example
MRT network
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Fig. 8 The test results of freeway network
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Fig. 8 (continued)
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effective in the estimation of time-dependent O-D flows by inexpensive link traffic
counts without prior knowledge of the O-D matrix and the transition matrix.
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Fig. 8 (continued)

Fig. 9 The result comparison with predetermined transition matrix
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