

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

在多核心系統上之高效能雙層計數布隆過濾器

A High Performance Double Layer Counting Bloom

Filter for Multicore System

研 究 生：陳冠廷

指導教授：賴伯承 教授

中 華 民 國 一百零二年 九月

在多核心系統上之高效能雙層計數布隆過濾器

A High Performance Double Layer Counting Bloom

Filter for Multicore System

研究生：陳冠廷 Student：Kuan-Ting Chen

指導教授：賴伯承 Advisor：Bo-Cheng Lai

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

March 2013

Hsinchu, Taiwan, Republic of China

中華民國 一百零二年 九月

 i

在多核心系統上之高效能雙層計數布隆過濾器

研究生：陳冠廷 指導教授：賴伯承教授

國立交通大學

電子工程學系 電子研究所

摘 要

在對稱式多核心系統中，基於廣播的窺探式協議被很廣泛地用於維持快取記憶體一

致性。然而窺探式協議盲目地傳播整個系統的數據共享訊息，並且通常導致十分大量而

不必要的資料傳輸及快取記憶體中的資料搜尋。本文提出了一種新的硬體架構：雙層計

數布隆過濾器，並且使用該架構過濾在對稱式多核心系統中不必要的資料管理。透過階

層式雜湊函數的設計，雙層計數布隆過濾器可以管理較大的檢索空間，並且有效地增加

成功過濾的比例。相較於傳統的布隆過濾器，雙層計數布隆過濾器可以過濾掉 81.99%

更多的不必要的快取記憶體資料搜尋，並使用 18.75% 更少的記憶體。當應用於階層式

共享匯流排時，雙層計數布隆過濾器可以較傳統布隆過濾器過濾 58% 更多的冗餘本地

資料傳輸和 1.86 倍的冗餘遠距資料傳輸。

 ii

A High Performance Double Layer Counting Bloom Filter

for Multicore System

Student: Kuan-Ting Chen Advisor: Bo-Cheng Lai

Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University

ABSTRACT

The broadcast-based snoopy protocol is a widely used scheme to maintain cache

coherence in a SMP multicore system. However, the broadcasting snoopy protocol blindly

disseminates the data sharing information across the system, and usually causes a significant

amount of unnecessary data transfers on the interconnection and data searches on local caches.

This paper proposes a novel architecture of Double Layer Counting Bloom Filter (DLCBF),

and uses DLCBF to screen out the unnecessary data management in a SMP system. By using

the two-layer hierarchical structure of the hash function, DLCBF can manage a larger query

space and effectively increase the successful filter rates. When compared to conventional

Bloom filters, the DLCBF can filter out 81.99% more unnecessary cache searches and use

18.75% less memory. When applied on a hierarchical shared bus in a SMP system, the

DLCBF can filter out 58% more redundant local data transmissions and 1.86X remote data

transmissions than conventional Bloom filters.

 iii

誌謝

 本篇論文得以完成，首先要感謝指導教授賴伯承博士不厭其煩的指導和督促，無論

是在研究態度、解決問題的方法或專業知識培養，都使我獲益良多；兩年半的碩士班過

程當中，難免會遇到瓶頸或困難，教授總是適時地給予建議與方向，十分感謝賴伯承教

授。另外特別感謝實驗室的學長姐、同學及學弟妹們的鼓勵和協助，才能在課業抑或是

研究上順利進行；玹凱學長時常給我建議，協助突破研究上的瓶頸，也特別感謝他幫忙

本篇論文初版的校稿；與奏翰學長聊天總是能得到不同的想法；感謝建斈學弟幫忙完成

本篇論文的 RTL 實作及模擬。謝謝在論文撰寫過程中一直鼓勵我的朋友們，李啟偉、

黃川嘉、江咨霆、賴之彥、曾韋翰、許庭瑜以及林翠真。最後，特別感謝一直在背後默

默支持我的家人，真的很感謝他們，也由衷感謝一路上曾經幫助過我的大家。

謹以此篇論文獻給所有關心我以及我所關心的人們。

中華民國一百零二年九月

研究生陳冠廷謹誌於國立交通大學

 iv

CONTENTS

在多核心系統上之高效能雙層計數布隆過濾器 ... i

A High Performance Double Layer Counting Bloom Filter for Multicore System ii

誌謝 ... iii

CONTENTS .. iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

Chapter 1 Introduction ... 1

Chapter 2 Preliminary .. 7

2.1 Previous Work on Bloom Filter Designs ... 7

2.1.1 Simple Hash-based Technique ... 7

2.1.2 Classic Bloom Filter (BF) .. 9

2.1.3 Counting Bloom Filter (CBF) .. 10

2.1.4 Banked Bloom Filter (BBF) ... 11

2.2 Related Work ... 12

 v

Chapter 3 Double Layer Counting Bloom Filter ... 15

3.1 Query Operation .. 19

3.2 Insertion Operation .. 20

3.3 Deletion Operation... 20

Chapter 4 Evaluation .. 23

4.1 Experiment Methodology .. 23

4.2 Results of Filtering Unnecessary Cache Searches ... 25

4.3 Results of Filtering Unnecessary Data Transmission on a Shared Segmented Bus

 33

4.4 DLCBF Design Parameter Exploration ... 36

4.4.1 Size of Upper Layer ... 36

4.4.2 Size of Lower Layer ... 39

4.4.3 Multiple Layer Designs .. 41

Chapter 5 Conclusion ... 44

REFERENCES ... 45

 vi

LIST OF TABLES

Table. 1 Processor and cache/memory parameters ... 24

Table. 2 Triple layer counting Bloom filter parameters .. 41

 vii

LIST OF FIGURES

Fig. 1. A coherence mechanism when multiple cores share the same data. The colored cache

blocks are shared among different cores. They should be either updated or

invalidated while this particular block is being written. .. 1

Fig. 2. Redundant snoops in PARSEC benchmark suite. ... 3

Fig. 3. (a) Hash collision. (b) Hash reports a false positive for element B. 8

Fig. 4. The mapping mechanism of a Bloom filter (k = 3). .. 9

Fig. 5. Different data maps to same slots in mapping array. In (a), we cannot tell if a slot is

mapped multiple times. In (b), we can decrease the counter to indicate removal of

an element. ... 10

Fig. 6. (a) Banked Bloom filter with four hash functions. (b) Hard-wired permutation table of

BBF. ... 12

Fig. 7. (a) Double layer counting Bloom filter. (b) Memory bank of the upper layer. (c)

Memory bank of the lower layer (d) Permutation table. 16

Fig. 8. (a) Memory trace of motivational example. (b) Memory regions. (c) Upper layer

entries of DLCBF. .. 18

Fig. 9. Double layer counting Bloom filter with cache and bus in SMP. 19

Fig. 10. SMP with Bloom filters ... 25

 viii

Fig. 11. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked Bloom

filter (BBF), and double layer counting Bloom filter (DLCBF) with simmedium

PARSEC benchmarks .. 27

Fig. 12. Energy savings introduced by BF and DLCBF ... 29

Fig. 13. Filtered rate of double layer counting Bloom filter with different data set sizes of

blackscholes ... 30

Fig. 14. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked

Bloom filter (BBF), and double layer counting Bloom filter (DLCBF) with

simlarge PARSEC benchmarks ... 32

Fig. 15. Segmented bus architecture for 16-core processor ... 33

Fig. 16. Filtered rate of DLCBF and HPCA10 filter .. 35

Fig. 17. Filtered rate of DLCBF with different sizes of its upper layer 38

Fig. 18. Filtered rate of DLCBF with different sizes of its lower layer 40

Fig. 19. (a) The index used in the fast query layers. (b) Filtered rate of default DLCBF and

TLCBFs. (c) Filtered rate of 1k-DLCBF, 2k-DLCBF and 13-13-TLCBF 43

 1

Chapter 1 Introduction

In modern computing systems, multi-core architectures have become prominence due to

its high performance and energy efficiency. The shared-memory Symmetric Multi-processor

(SMP) is one of the widely developed multicore architectures which exchange data between

cores via the shared memory space. However, data sharing among multiple cores in a SMP

introduces cache coherence issues [1]. In order to maintain a coherent memory system, a

shared memory SMP system needs to update or invalidate the shared data whenever one of its

owners writes a new value to this data location. The broadcast-based snoopy protocol is a

widely used scheme to maintain a coherent memory system. This protocol broadcasts the data

sharing states on the system interconnection to trigger the distributed data management

mechanisms on each processor.

Fig. 1. A coherence mechanism when multiple cores share the same data. The colored cache

blocks are shared among different cores. They should be either updated or invalidated while

this particular block is being written.

 2

Fig. 1 illustrates a simple example of the cache coherence issue on a SMP system with

three processors (Core 1 to Core 3). Assume that Core 1 and Core 3 share the same data

(A=5). When Core 1 performs a write operation to its copy of the shared data (A=7), the

broadcast-based snoopy protocol would update the shared copy in Core 3 with the latest

written value or otherwise invalidate it. The snoopy protocol can support cache-to-cache

single-hop data transfers. When compared to the directory-based cache coherence protocol,

the simple broadcasting scheme makes the snoopy protocol a low complexity design which

does not require specialized architectures to maintain the sharing information. For a smaller

scale multicore systems, such as the ones that have been recently applied onto embedded and

mobile devices, usually adopt the snoopy protocol due to its simplicity and fast

cache-to-cache transfers. For example, ARM provides a cache coherent interconnect with

snoopy protocol for its Cortex-A15 processor [2, 3].

However, this broadcast-based scheme blindly disseminates the data sharing information

across the system, and usually causes a significant amount of unnecessary data transfers on

the interconnection. In general, the data sharing behavior is happened within a certain number

of parallel tasks. The number of these affined tasks is much smaller than the size of the overall

multi-core system. With the broadcast-based scheme, the processors which are not involved in

the current data sharing state would consequently perform needless data searches in their own

caches. For example, assume that there is a datum owned by only one processor. When this

particular datum is written, the snoopy protocol would broadcast an invalidation message and

 3

invoke searches at all the caches while none of these searches are actually needed. All these

redundant data management operations would occupy the system resources and degrade the

performance and energy efficiency.

Fig. 2. Redundant snoops in PARSEC benchmark suite.

Fig. 2 shows the percentage of redundant coherence requests for the PARSEC

benchmark suite on a 16-core SMP system. According to Fig. 2, in average, 78.37% of the

coherence messages are unnecessary. These redundant requests introduced by the

broadcasting behavior of the snoopy protocol would unnecessarily put a cache in a busy mode

and increase the energy consumption. These unnecessary cache operations could even block

the useful requests from processors and therefore degrade the system performance. This

problem will be more severe in embedded systems due to its stringent energy constraints and

 4

strict performance requirements. If these unnecessary data communication and cache searches

can be filtered, the effective utilization of the system resources, such as cache and

interconnection, can be enhanced significantly. This paper proposes a novel architecture of

Double Layer Counting Bloom filter to screen out the unnecessary data management caused

by the broadcast-based snoopy protocol in a SMP system.

A Bloom filter [4] is a classic unit used in database management. It uses hash functions

to maintain the data mapping structure and provides an effective method to perform

membership querying. However, due to the limited size of the filter, it suffers from rapid array

saturation problem [5]. If the dataset of an application is too large, the data mapping structure

would saturate and make the filtering mechanism ineffective. This paper proposes a novel

architecture of Double Layer Counting Bloom Filter (DLCBF), which uses a two-layer

filtering scheme to achieve high filtering rates with low implementation cost. The DLCBF

implements an extra layer of hash function and the counting feature at each filter entry. By

using the hierarchical structure of the hash function, DLCBF can manage larger query spaces

and effectively increase the successful filter rates while requiring a smaller memory usage

than the conventional Bloom filters. The counting feature of DLCBF further enhances the

ability to handle the array saturation issue.

To demonstrate the efficacy of the proposed DLCBF, this paper implements the DLCBF

on two system modules of a SMP system to reduce unnecessary data processing of the snoopy

coherence protocol. The first module, depicted in Fig. 10, is the local cache of each processor.

 5

By connecting a Bloom filter between a cache and system interconnection, the filter

mechanism can be used to screen out the unnecessary snooping messages that would be

otherwise handled by each processor. The second module is the hierarchical shared system

bus illustrated in Fig. 15. A Bloom filter is embedded in the system interconnection to reduce

the costly system-wide data broadcasting. When compared with conventional Bloom filters,

the DLCBF can manage larger data set with fast data accesses while requiring smaller

memory area. By deploying the DLCBF in a SMP system, a substantial amount of redundant

memory operations and data transmission can be eliminated. In our experiment, the DLCBF

can reduce up to 65.8% of unnecessary snoops and up to 13.17% of energy consumption to

local caches with 18.75% less memory usage. Simulation results also show that the DLCBF

outperforms conventional filters by 58% for local transmissions and 1.86X for remote

transmissions on a hierarchical system interconnection. Furthermore, we implemented

DLCBF in Verilog HDL. The RTL simulation shows that the DLCBF can achieve 1.544 ns of

delay when querying and the overall area is 113,413 μm2 with 90nm technology node. In

short, our contributions are:

1. We proposed a novel and area-efficient design of Double Layer Counting Bloom

Filter (DLCBF), which can effectively manage a larger query space than

conventional Bloom filters.

2. We have demonstrated that, on a 16-core SMP system, the DLCBF achieves 81.99%

better filtering rate over all other conventional Bloom filters while costing 18.75%

 6

less memory storage.

3. We have also demonstrated that, by removing the unnecessary data management,

the DLCBF can achieve 13.17% of overall energy saving.

The rest of the paper is organized as follows. In Chapter 2, we introduce the basic

architecture of a Bloom filter (BF). Two modified versions, Counting Bloom Filter (CBF) and

Banked Bloom Filter (BBF), are also discussed. Furthermore, several related works are

reviewed. Chapter 3 shows the proposed filter structure, Double Layer Counting Bloom Filter

(DLCBF). The detail functionality and implementation concerns are also discussed. Chapter 4

covers our evaluation methodology and demonstrates the cycle accurate simulation results.

Finally, we conclude this paper in Chapter 5.

 7

Chapter 2 Preliminary

To give a general background on membership querying techniques, this chapter will first

introduce a simple hash-based method. Then three types of Bloom filters will be discussed,

including classic Bloom filter (BF), counting Bloom filter (CBF), and banked Bloom filter

(BBF). These three Bloom filters are widely used designs and provide different advantages.

The proposed DLCBF is a novel architecture which combines the features of these three filter

types and benefits from all of them. Some related works are also reviewed briefly.

2.1 Previous Work on Bloom Filter Designs

2.1.1 Simple Hash-based Technique

A membership querying function returns a value of true or false to identify the existence

of a given input query. A straightforward way to implement a membership query function is to

give an entry to each individual member. However, the total number of the members is

usually much larger than the limitation of the memory size in a design. A hash function is a

basic yet efficient solution for membership querying. An input query will be sent to a hash

function, and a hashed value is returned to index the corresponding entry of the query.

However, the single-index hash table is prone to returning many false positives for different

queries. For example, a computer system with n-bit memory addresses will introduce 2
n

 8

distinct memory locations. In an ideal case, a hash function needs 2
n
 bits to distinguish each

data location. But due to the storage limitation in real systems, the hash function is forced to

map the 2
n
 memory space to a mapping table with only m bits, where m is much smaller than

2
n
. The parameter m may vary according to accuracy requirements and available resources.

Thus, 2
n
 – m datum could be hashed to a bit that has already been used by another data (Fig.

3(a)). This is referred as a “collision”. The collision problem could make the single-index

hash function to report a false positive of membership querying. As an example shown in Fig.

3(b), there exists an element A belonging to a set S. The single-indexed hash unit provides A

with a particular bit slot in the mapping table and sets this bit to 1. The value 1 indicates that

A is in set S. But another element B that does not belong to S might also be hashed to the same

slot. This conflicting scenario pollutes the meaning of the returned value and creates the

situation of a false positive. From this returned value, users cannot tell if the element B has

really been assigned to the slot or not.

Fig. 3. (a) Hash collision. (b) Hash reports a false positive for element B.

 9

2.1.2 Classic Bloom Filter (BF)

A Bloom filter is a space-efficient data structure proposed by Bloom in the 1970s [4].

Bloom filter uses multiple hash units for each element and sets several bits (depends on k, the

number of hash functions) for each element. Fig. 4 shows how BF maps a single data to the

mapping table with k = 3. A specific data C is considered in a particular set T only when all

the corresponding hashed slots are set. Fig. 3 also shows another element D, which does not

belong to set T, and the corresponding hashed slots. Two of the slots collide with two of C’s

slots (colored). However, there is another slot of D that is not set, so the Bloom filter correctly

reports D as not in the set T. The Bloom filter has less possibility that reports a false positive

than a simple hash function because collision must happen in all of the k hash functions.

Fig. 4. The mapping mechanism of a Bloom filter (k = 3).

 10

2.1.3 Counting Bloom Filter (CBF)

Classic Bloom filter provides a memory-effective way of reducing hash collisions by

using multiple hashes. However, a classic Bloom filter suffers from two problems. First, as

the number of hash function increases, its mapping slot is “polluted” or “saturated” faster

since the Bloom filter requires setting k bits for each element. Second, the classic Bloom filter

does not support “deleting” or “resetting” the mapping slots. In other words, once a bit is set,

the classic Bloom filter has no mechanism to reset it. Eventually, the classic Bloom filter will

be filled up with 1’s and loses its filtering functionality.

Fig. 5. Different data maps to same slots in mapping array. In (a), we cannot tell if a slot is

mapped multiple times. In (b), we can decrease the counter to indicate removal of an element.

Since the multiple hash function is inevitable for Bloom filters, Fan et al. [6] proposed

counting Bloom filter (CBF) to enable resetting a mapping slot. Counting Bloom filter adds

an additional counter array along with the mapping slots of the classic Bloom filter. Each l-bit

 11

counter is associated with a mapping slot in a one-to-one fashion. Whenever an element is

inserted to a set, each hashed slot will increment its corresponding counter by 1 and sets the

mapping slot to 1. Therefore, the counter indicates the number of elements hashed to it, as

depicted in Fig. 5. On the other hand, whenever an element is removed, each slot will

decrement its corresponding counter. When a counter is decreased to zero, its corresponding

mapping slot will be reset to zero. With this resetting procedure, CBF achieves a lower false

positive rate and hence reduces the impact of saturation of the classic Bloom filter.

2.1.4 Banked Bloom Filter (BBF)

Both BF and CBF requires k lookups from the mapping table because of k hash functions.

Making these lookups in a serial manner is inefficient and difficult to meet the timing

constraint in hardware implementation. However, parallelizing k lookups requires large

memory bandwidth, so each memory in the filter has to implement k read/write ports for

querying and updating elements. Banked Bloom filter was proposed to address the issue [7].

Similar to the banked cache access, BBF supports required bandwidth by using banking

instead of adding read/write ports. Assume a memory with p ports and each port has B banks,

it can provide a maximum of p∙B simultaneous access as long as no more than p operations

are accessing the same bank [7].

When applying Bloom filters to the local cache or interconnection of a SMP system, the

filters are usually accessed at every cycle. Therefore, a delay in the filter is undesirable.

 12

However, bank conflicts will stall the accessing procedure and make the filter to be ineffective.

Banked Bloom filter uses a hard-wired permutation table to prevent bank conflicts. Fig. 6(a)

shows how a banked Bloom filter is organized. With four hash functions, the BBF is

configured as four banks to provide a memory bandwidth of 1×4=4 accesses simultaneously.

Whenever there is a membership querying to the filter, the permutation table will return a

sequence of bit sets to the multiplexers and guide the hash functions to the corresponding

banks. Fig. 6(b) depicts a permutation table with four banks (k = 4).

Fig. 6. (a) Banked Bloom filter with four hash functions. (b) Hard-wired permutation table of

BBF.

2.2 Related Work

In this section, we present several variants of Bloom filter designs. The major objective

of these variants can be classified into three different categories: to improve the querying

 13

speed of a Bloom filter, to reduce the memory utilization, or to lower the probability of false

positive.

The two-tier Bloom filter [8] is targeted to reduce the querying time by adding a second

tier cache Bloom filter. The two-tier Bloom filter will check both the filter cache and main

filter simultaneously whenever query is invoked. If the querying element is cached, the faster

filter cache will respond. Otherwise, the main filter will be responsible for returning a result.

Segmented Bloom filter [9], on the other hand, decouples the bit vector from the counter array

of a counting Bloom filter and improves the querying speed by avoiding access of the counter

array. It is equipped with a duplicated hash function to enable faster outcome of a query.

Whenever a query occurs, the input identifier will go through the extra hash and access the bit

vector directly.

Ahmadi and Wong proposed a Bloom filter with an additional hash (BFAH) to reduce the

memory utilization of a Bloom filter [10]. With the additional hash function, the BFAH stores

only one out of k memory address for each element. It is no longer required to store other k-1

redundant copy. Furthermore, the additional hash function helps to distribute incoming

elements uniformly. The compressed filter [11] is proposed to approach the same objective as

BFAH. The compressed filter focused on optimizing the transmission size by changing the bit

distribution in the filter when the Bloom filter is transferred as a network message.

As for reducing the probability of false positives, the deletable Bloom filter (DlBF) [12]

 14

is proposed. The DlBF is built on the simple idea of recording where collisions happen when

inserting elements. It is able to remove an element like counting Bloom filters, but without

introducing false negative issue [13]. Interval filter (IF) reduces false positives especially for

transactional memory [14]. The IF views a memory interval as an element and its index is

represented as the lower bound and the upper bound of the memory interval. In this way, IF is

able to extract spatial locality of the memory trace and show a lower false positive probability.

 15

Chapter 3 Double Layer Counting Bloom Filter

Both the classic Bloom filter and counting Bloom filter have difficulty of providing the

high accessing bandwidth required by k hash functions. The banked Bloom filter mitigates

this problem by banked memory accesses. However, all filters still pose significant storage

overhead. The classic Bloom filter implements a 1-bit-per-slot, but needs a large number of

slots to alleviate the array saturation issue. Although the banked Bloom filter provides large

memory bandwidth, it has the same 1-bit-per-slot structure as the classic Bloom filter. The

counting Bloom filter, on the other hand, can handle array saturation better than the classic

Bloom filter and banked Bloom filter, but it increases the storage overhead by using multi-bit

counters instead of the single set bit.

To reduce the storage overhead and further increase membership querying speed while

preserving the functionality of the Bloom filter, we propose a novel Double Layer Counting

Bloom Filter architecture (DLCBF). The DLCBF adopts the idea of two-tier Bloom filter [8].

By adding a second tier cache Bloom filter, the two-tier Bloom filter is able to reduce the

membership querying time. Whenever a query is invoked, the two-tier filter will check both

the filter cache and main filter simultaneously. If the queried element is cached, the faster

filter cache will respond with either a true or a false. Otherwise, the main filter will be

responsible for returning the membership querying.

 16

Fig. 7. (a) Double layer counting Bloom filter. (b) Memory bank of the upper layer. (c)

Memory bank of the lower layer (d) Permutation table.

 Fig. 7(a) depicts the memory structure of the DLCBF. The lower-layer combines the

design of banked Bloom filter and counting Bloom filter to achieve the required high

accessing bandwidth while preventing the fast saturation problem of the Bloom filter. Each

memory bank of the lower-layer is shown in Fig. 7(c); it is constructed by an array of l-bit

counter and a bit vector. The permutation table adopted from BBF is shown in Fig. 7(d). We

implemented the similar design as in BBF, except the number the possible outcomes since the

DLCBF only have three banks in its lower layer. While lower-layer is designed to provide

higher accessing bandwidth, the upper-layer demonstrates the similar idea of the two-tier

 17

Bloom filter. However, the proposed DLCBF differs from the two-tier Bloom filter in the

utilization of the extra “tier” or “layer”. As we know, if a specific memory location is

accessed, it is highly possible that the nearby locations will be accessed. This is called the

spatial locality. The DLCBF introduces an extra upper layer of hash units upon a banked

Bloom filter (lower layer) to catch the locality behavior. In other words, the upper layer is

responsible for the membership querying for a consecutive memory region, not only for a

single element. Besides, the extra hash function (hash3 in Fig. 7(a)) can generate different

permutation for lower layer hash functions. Here we give a motivational example: Suppose

we have a 2-core system and its memory access trace is displayed in Fig. 8(a). Fig. 8(b) shows

that the whole memory space is divided into four consecutive regions. Each region has a

corresponding entry in the upper layer of the double layer counting Bloom filter, as depicted

in Fig. 8(c). When time t = 5, we can observe that P2 has to issue a broadcast coherence

message in order to tell other processors that they have to invalidate the memory location 384.

In the previous designs, such as classic Bloom filter and counting Bloom filter, filter needs to

perform a full search in its storage. On the other hand, the DLCBF can show that memory

location 384 is definitely not in P1 very quickly through its extra layer by identifying that the

corresponding region (Region B) is not in P1. Therefore, DLCBF could reduce the member

ship querying time.

 18

Fig. 8. (a) Memory trace of motivational example. (b) Memory regions. (c) Upper layer

entries of DLCBF.

The detailed connection of the proposed DLCBF, cache and the broadcasting material

(bus) is shown in Fig. 9. The DLCBF communicates between cache and bus and is

responsible for filtering redundant coherence messages. In order to achieve these

functionalities, the DLCBF supports three basic operations: query, insertion, and deletion:

 19

Fig. 9. Double layer counting Bloom filter with cache and bus in SMP.

3.1 Query Operation

Query operation is the fundamental function of the proposed DLCBF. It is performed

whenever the snoopy coherence protocol triggers a broadcasting coherence message. The

query operation also serves as the prerequisite of the deletion operation; we will give an

explanation later. Every cache, except the one that issues the request, is asked to check itself if

it has the requesting data. Bus will send the coherence message to both cache and the DLCBF

simultaneously, in order to prevent the querying procedure from the critical path of coherence

operation. The faster querying operation and the slower cache search will perform in parallel.

 20

When DLCBF receives such coherence message from bus, it takes the memory address of the

requesting data and checks the filter storage. If the requesting data is not in this cache, the

DLCBF will responds false and cancel the cache search. In contrary, the DLCBF will respond

true and the cache search will continue.

3.2 Insertion Operation

Whenever a data is read from main memory, the coherent bus not only sends the data and

the address to cache, it also sends the address to the DLCBF at the same time. The DLCBF

will set the corresponding upper layer filter entry to one, and then increase the corresponding

lower layer filter entries of this data by one.

3.3 Deletion Operation

In order to keep the correct record of data, the DLCBF will remove an item whenever a

data is removed from cache under the situation of cache eviction or invalidation caused by

coherence protocol. However, an item deletion in DLCBF might be incorrect. Guo et al.

identified the false negative problem of counting Bloom filter in [13]. Guo et al. found that

the counting Bloom filter produces possible false negative results when it deletes a false

positive item [13]. For example, suppose that data B is a false positive item in the filter of P2.

If P2 receives a request for invalidate data B, the CBF will mistakenly reduce the value of

 21

each corresponding entries by one. Furthermore, if one of these corresponding entries is

reduced to zero, a possible false negative will occur. Our proposed DLCBF have the same

problem because we adopt the similar design of the counting Bloom filter. It becomes a

serious problem in snoop filtering because the false negatives will make the multicore system

become incoherent. Guo et al. also proposed a novel scheme, multichoice counting Bloom

filter, to lower the probability of false negatives. Although, their proposal can be applied on

DLCBF, they do not guarantee a false negative free condition. Therefore, we propose another

solution specifically for coherence message filtering. Since the reason of false negatives is

caused by removing a false positive item, our idea is to perform an actual cache search

whenever DLCBF wants to delete an item. In the scope of filtering coherence message, a

deletion in DLCBF can occur only when the cache performs a writeback or invalidation. Both

of the operations require a real cache search to handle the data or the coherence state, so our

manipulation in the deletion will not introduce extra cache searches. As depicted in Fig. 9,

DLCBF has an extra input signal labeled "Exist", which represents the result of the actual

cache search. The deletion operation of DLCBF will reduce the value of corresponding filter

entries only when the Exist signal responds a cache hit. Hence, we can solve the false

negative problem without compromising the overall system performance and guarantees false

negative free condition for coherence message filtering.

 22

3.4 Summary

There are three main benefits enabled by DLCBF. First, DLCBF adopts the banked

structure and adds an extra layer to meet the heavy memory bandwidth requirement [7] and

reduce membership querying time. With multiple access banks, the DLCBF requires only one

lookup for each banked memory while CBF needs k lookups with k different hash functions.

Second, DLCBF takes the advantage of data locality. It separates memory space into different

regions. Since data in different regions are less likely to be accessed in a consecutive way, an

extra layer can filter out unnecessary data operations with higher speed. Third, DLCBF

benefits from the extra permutation array, which further lowers the probability of data

collision.

 23

Chapter 4 Evaluation

This chapter first shows the experimental setup used in this paper. Then the performance

of DLCBF is analyzed and compared with other Bloom filters in a SMP system. The DLCBF

will be implemented on two system modules to reduce unnecessary data processing. The first

module is the local cache of each processor. The DLCBF is used to reduce the unnecessary

cache searches from snoopy coherence protocol. The second module is on the shared system

bus to filter out the redundant data transmission. We also conducted design parameter

exploration on the DLCBF design. We will show effects caused by different sizes of the upper

layer and the lower layer separately and we will show several extensions to triple layer

design.

4.1 Experiment Methodology

We use GEM5 [15], a full-system event-driven simulator, as our experiment platform.

We use a simple in-order processor model so that we can evaluate the proposed scheme within

a reasonable simulation time. Table I lists the configuration parameters we used in our

simulations. A single transaction shared bus takes charge of the communication among

processors. The experiments were executed with 11 representative workloads from PARSEC

benchmark suite [16].

 24

COMPONENT PARAMETERS

Processor core 2GHz, single-issue in-order

Block size 64bytes

L1 I-caches (Private) 32kB, 2-way, 2-cycle

L1 D-caches (Private) 64kB, 2-way, 2-cycle

Memory 60-cycle access latency

Bus

1GHz, single transaction, 1-cycle overhead

per transaction

Table. 1 Processor and cache/memory parameters

Four types of Bloom filters were implemented and compared, including the classic

Bloom filter (BF), counting Bloom filter (CBF), banked Bloom filter (BBF), and the proposed

double layer counting Bloom filter (DLCBF). As depicted in Fig. 10 the Bloom filters were

connected in between of caches and the shared bus. All the filters in the experiment used four

hash functions. The classic Bloom filter, CBF, and BBF are implemented with 1K bytes of

memory per processor core. The DLCBF uses only 0.8125K bytes per core, bringing an

18.75% of memory usage reduction. This difference is from the upper layer of memory array,

which is only 25% of a standard memory array.

 25

Fig. 10. SMP with Bloom filters

4.2 Results of Filtering Unnecessary Cache Searches

Fig. 11 shows the filtered snooping rate using classic Bloom filter, CBF, BBF, and

DLCBF for each benchmark. The filtered rate represents how many snoops are screened out

by the filter. These are the unnecessary snoops that do not need to be handled by a cache. The

experiments were performed on multi-core systems with two, four, eight, and sixteen

processors. We choose the "simmedium" data set of PARSEC benchmark suite to evaluate the

proposed architecture in a reasonable time. The right most column of Fig. 11 represents the

geometric mean of the filtered rates observed in the benchmarks. The reason we choose

geometric mean instead of arithmetic mean is that the total number of snoops in each

benchmark differs significantly and the results we show here are ratios to them. We can see

that the classic Bloom filter performs poorly in all benchmarks. The reason is that the classic

Bloom filter faces array saturation problem and does not support “resetting” a slot whenever

an element is removed from the set. In this context, removal of an element is considered as

 26

cache line invalidation or eviction. Therefore, its mapping array saturates even when data set

size is small and the classic Bloom filter loses its filtering functionality very quickly. Banked

Bloom filter suffers from the same reason, although it supports faster querying access. On the

other hand, because the counting feature enables the “resetting” ability, CBF reduces the array

saturation rate. With lower saturation rates, CBF achieves better filtering behavior than the

classic and banked Bloom filters. When compared with a classic Bloom filter, CBF achieves

up to 3.57X filtered rate improvement.

With an additional hash function and hard-wired permutation table, DLCBF divides and

maps the whole memory space to several storage arrays. This design avoids the data in

different memory spaces colliding with each other. Inside each storage array, DLCBF utilizes

multiple hash functions to prevent collision. In addition, the counting feature enables a much

lower probability of collision and the ability to reset an element more effectively. Therefore,

DLCBF further improves the filtered rate and significantly outperforms the classic Bloom

filter, CBF, and BBF. The average improvement of filtered rate is 81.99% and 31.36% when

compared to classic Bloom filter and CBF respectively.

Another observation from Fig. 11 shows that the filtered rate increases with the number

of processors for all four filters. This is because that when the number of processors increases,

each processor is responsible for a smaller size of data set. For example, assume the total data

set is 1MB; each processor in a 2-core multi-processor system would deal with 512kB of data.

And in a 4-processor system, each core will be responsible for only 256kB of data. The

 27

Fig. 11. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked Bloom

filter (BBF), and double layer counting Bloom filter (DLCBF) with simmedium PARSEC

benchmarks

 28

effective data set size allocated to each individual core decreases with the increasing number

of processors. The smaller effective data set size lowers the memory space that needs to be

handled by each filter. Therefore, the characteristics of each filter are improved with more

processors in a system. Notice that freqmine and streamcluster do not follow the above

criteria. The possible reason is that these two benchmarks might have many true-sharings or

the data set is not evenly distributed among processors as in our example.

We use Synopsys design compiler and CACTI 5.3 [17] to estimate the area of the

proposed double layer counting Bloom filter. Two SRAM modules with 1-Byte words and

one read/write ports were modeled with CACTI to estimate the area and access time of the

DLCBF. The upper layer module is modeled as a 64-Byte, single-bank SRAM module, while

the lower layer is a 768-Byte SRAM. We use 2-bank architecture to estimate the lower layer

module because CACTI does not support 3-bank architecture as the DLCBF. The four hash

functions, permutation table, and the additional control logic are modeled with Synopsis

design compiler. We implements H3 hash because it is proven better than others [18]. The

overall area of DLCBF takes about 113,413 μm
2
 using 90nm technology and the critical path

is 1.544 ns.

CACTI is also used to give the energy saving estimation. Fig. 12 depicts the estimated

energy saving percentage after applying BF and DLCBF, respectively. The energy estimation

here is calculated with the energy saved by filtering unnecessary snoops subtracts the energy

consumed by the filter. BF introduces more energy consumption to the system because its

 29

Fig. 12. Energy savings introduced by BF and DLCBF

 30

filtered rate is so low that it couldn't compensate the energy consumed. DLCBF, on the other

hand, benefits from its higher filtered rate and is able to contribute energy savings for most of

cases. In average, the DLCBF could save up to 13.17% of energy in a SMP system.

Fig. 13. Filtered rate of double layer counting Bloom filter with different data set sizes of

blackscholes

In order to examine the scalability of the proposed design, we evaluated one of the

PARSEC benchmark, blackscholes with different data sizes. As shown in Fig. 13, PARSEC

provides five data set sizes for each benchmark [16]. From the smallest one to the largest are

test, simdev, simsmall, simmedium, and simlarge. The result shows that filtered rate of the

DLCBF will decrease with the size of data set. With this insight, we performed an evaluation

for each benchmark with the largest data set size. These experiments were conducted on the

 31

same multi-core system as the previous one, except that we extended the number of

processors to twenty-four and thirty-two. Fig. 14 shows the filtered snooping rate for each

benchmark in our evaluation. Notice that facesim does not work with medium-size data set

and both facesim and fluidanimate do not support twenty-four-processor system. The bottom

right most column is the geometric mean of the filtered rates. When the data set size increases,

all the filters performs worse than with the medium-size benchmarks because they have to

manage a larger size of data. Nevertheless, we can observe that the proposed DLCBF still

outperform other designs in most of the cases. The average improvement of filtered rate in

large-size benchmark is 7X and 1.1X when compared to classic Bloom filter and CBF

respectively.

 32

Fig. 14. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked

Bloom filter (BBF), and double layer counting Bloom filter (DLCBF) with simlarge PARSEC

benchmarks

 33

4.3 Results of Filtering Unnecessary Data Transmission on a

Shared Segmented Bus

Fig. 15. Segmented bus architecture for 16-core processor

The segmented bus is proposed as an energy-efficient, bus-based on-chip interconnection

[19]. It separates a long bus into several shorter buses and organizes them in a hierarchical

manner. Fig. 15 depicts a 16-core processor with the segmented bus and filter. As we know,

not every coherence transaction is expected to be broadcasted to every processor. A

segmented bus implements two filters, In-filter and Out-filter, at each sub-bus to maintain

some knowledge of cache contents in the local and remote segments and screens out

unnecessary transactions. The In-filter keeps track of cache lines that are currently in the

segment. When a broadcast is invoked, every segment will first look up at its local In-filter.

And a broadcast to local processors will be performed if the In-filter allows. The Out-filter

keeps track of cache lines that is sent out to remote segments. If a specific cache line has

never been sent before, the local segment does not broadcast it to the remote segments. Each

 34

segmented bus filter contains two arrays of 8192 entries, one array for In-filter and the other

for Out-filter. Every entry is consisted of a 10-bit counter. In all, each filter requires 20K bytes

of storage overhead.

In this experiment, we apply the DLCBF to a segmented bus. We simulated a

16-processor system with a segmented bus. We compared two filter schemes. The first scheme

is the Bloom filter design (HPCA10) used in [19], and the second scheme adopts the proposed

DLCBF. The HPCA10 is implemented with 20kB of memory, while the DLCBF is 13kB in

size. Fig. 16 shows the simulation results, DLCBF and HPCA10 [19] are compared. Basically,

the HPCA10 filter is a counting Bloom filter with big counters and a large storage. The

outperforming filtered rate of DLCBF confirms that the additional hash is helpful even when

compared to a large CBF. The average improvement of filtered rate is 58% for In-filter and

1.86X for Out-filter in comparison to HPCA10.

 35

Fig. 16. Filtered rate of DLCBF and HPCA10 filter

 36

4.4 DLCBF Design Parameter Exploration

In this section, we evaluated three design parameters of the proposed DLCBF. The upper

layer is a fast query structure in the proposed DLCBF. We first compared the filtering

performance among different sizes of upper layer filter. We also explored the effect of the

lower layer. We compared the filtered rate among several sizes of the lower layer filter. Finally,

we added another layer to construct a triple layer counting Bloom filter (TLCBF) and

evaluated several configurations of the TLCBF.

4.4.1 Size of Upper Layer

Upper layer of the DLCBF serves as a fast query mechanism in snoop filtering. Each

entry in the upper layer represents a consecutive memory region instead of a single memory

location. DLCBF will check the upper layer and the lower layer simultaneously whenever a

query request arrives. If the memory region corresponding to the queried memory location is

not in cache, the upper layer will responds a false; otherwise, it will wait for the query result

in the lower layer. To explore the influence of the upper layer, we simulated with several

configurations of the upper layer while the lower layer remains the same as the default one.

The default DLCBF has 512 entries in its upper layer with each entry representing one bit.

The size of the default filter is 64 Bytes. We compared six different size of upper layer with

the default configuration. We used the same simulation parameters listed in Table I.

 37

Fig. 17 shows the simulation result with the PARSEC benchmark suite. The vertical axis

shows the filtered rate and the horizontal axis stands for sizes of the upper layer in Bytes. In

all the evaluated benchmarks, filtered rate increases with the size of upper layer. However, the

improvement from 4-Byte to 256-Byte is very subtle because each memory region is too large

so that the upper layer filter could hardly distinguish memory locations. Recalled the

motivational example in Fig. 8, the upper layer filter can easily tell that the memory location

384 is not in P1 since the region it belongs to is not in P1 either. If we divide the whole

memory space into two regions, instead of four, then the original memory region A and B are

combined as one. Therefore, the upper filter of P1 will respond a true to the query of memory

location 384 even if it is not in processor P1. In other words, the proposed DLCBF performs

better with larger upper layer because it has a lower probability of responding false positives.

The simulation result of 1k-Bytes to 16k-Bytes supports this criterion. We can observe that

the filtered rate grows significantly from 256-Byte to 16k-Byte. The average improvement of

filtered rate with a 16k-Byte upper layer is 1.17X compared to the default configuration

(64-Byte) in sixteen-core system.

 38
Fig. 17. Filtered rate of DLCBF with different sizes of its upper layer

 39

4.4.2 Size of Lower Layer

The lower layer filter is the fundamental building block of the proposed DLCBF. It

adopts the idea from the banked Bloom filter and the counting Bloom filter to provide a high

accessing bandwidth while not compromising the filtering performance. In the proposed

DLCBF, the lower layer is constructed with three identical counter arrays and each array in

the default configuration contains 512 two-bit counters. Thus, the size of default configuration

of lower layer in DLCBF is 768 Bytes in total. We compared five DLCBF configurations with

different sizes of lower layer to the default one.

We take the simulation parameters shown in Table I. In these experiments, the upper

layer is fixed to 64 Bytes in size. The simulation result is shown in Fig 18. The horizontal axis

represents sizes of the lower layer in Bytes. Intuitively, the filter rate will increase with the

size of lower layer filter because the larger the size of the lower layer filter, the less the

probability of hash collision will occur. However, not all the benchmarks follow this

assumption. For example, dedup and ferret shows a U-shape curve and the worst filtered rate

happens at the configuration with 3k Bytes of lower layer. Nevertheless, the filter rate will

increase with the size of lower layer when it is larger than 3k Bytes. The reason behind this

fact has not been identified yet.

 40
Fig. 18. Filtered rate of DLCBF with different sizes of its lower layer

 41

4.4.3 Multiple Layer Designs

We extend the double layer counting Bloom filter by adding another layer to make it as a

triple layer counting Bloom filter (TLCBF). In the double layer filter, the upper layer only

takes part of the memory address (m-bit) as its querying index, so each entry represents a

memory region, as depicted in Fig. 19(a). We extend this idea to the triple layer filter. The top

layer and the middle layer still served as the fast query mechanism and both layers also take

partial address as index. A p-q-TLCBF represents that the top layer takes the first p bits and

the middle layer takes q bits address, respectively. The bottom layer of TLCBF is the same as

the lower layer of DLCBF, which provides high accessing bandwidth.

FILTER

TOP LAYER MIDDLE LAYER

INDEX

LENGTH (p)

SIZE

INDEX

LENGTH (q)

SIZE

5-4-TLCBF 5-bit 4 Bytes 4-bit 2 Bytes

6-3-TLCBF 6-bit 8 Bytes 3-bit 1 Bytes

7-2-TLCBF 7-bit 16 Bytes 2-bit 4 Bits

8-1-TLCBF 8-bit 32 Bytes 1-bit 2 Bits

Table. 2 Triple layer counting Bloom filter parameters

 42

We first evaluated four TLCBF designs that take the same nine-bit address as in the

upper layer of DLCBF. Table II lists the parameter of the top layer and the middle layer in

each filter. Fig. 19(b) only depicts the simulation result with a sixteen-core system because the

results in two-, four-, and eight-core system have similar outcome. All four configurations of

TLCBF show almost the same filtering performance and are also comparable with the

proposed DLCBF. The 5-4-TLCBF is the most cost effective one among all designs because it

has the smallest storage overhead. From the result of upper layer parameter exploration, we

know that the difference between each configuration is very subtle when the size of upper

layer is smaller than 1k Byte. Therefore, we conducted another evaluation with two DLCBFs

and one TLCBF that have larger upper layer size. As shown in Fig. 19(c), the filtered rate of

13-13-TLCBF is better than 1k-DLCBF but worse than 2k-DLCBF. The 2k-DLCBF and the

13-13-TLCBF outperform the 1k-DLCBF by 13.65% and 8.09% in average, respectively.

Notice that we only show the result with the sixteen-core system here. The 13-13-TLCBF

uses 2k Byte in the upper layer, just as the same as the 2k-DLCBF. Therefore, the 2k-DLCBF

is the more cost effective choice to increase the filtered rate. In conclusion, if the storage

constraint is less than 1k Byte, then the triple layer filter will be a cost effective choice. On

the other hand, if the storage constraint is relaxed to more than 1k Byte, the DLCBF with

larger upper layer is the most suitable design.

 43

(a)

(b)

(c)

Fig. 19. (a) The index used in the fast query layers. (b) Filtered rate of default DLCBF and

TLCBFs. (c) Filtered rate of 1k-DLCBF, 2k-DLCBF and 13-13-TLCBF

 44

Chapter 5 Conclusion

In this paper, we proposed an area efficient double layer architecture of Bloom filter,

DLCBF. By adding extra filtering layer, DLCBF reduced the memory usage by 18.75% and

achieved 81.99% and 31.36% better filtered rate when compared with a classic Bloom filter

and CBF respectively. Besides, the DLCBF also demonstrated a 13.17% reduction on overall

energy consumption. In this paper, The DLCBF module is implemented by using the

hardware description language (Verilog) and synthesized by Synopsys’s Design Compiler.

The synthesized design reports a delay time 1.544ns for each query and the overall area is

113,413 μm2. When applying on segmented bus, DLCBF outperforms HPCA10 filter by 58%

for In-filter and 1.86X for Out-filter. Furthermore, according to the explored three design

parameters of DLCBF: the size of upper layer, the size of lower layer, and multiple layer

design, it is suggested that increasing the size of each layer would help on the filtered rate of

DLCBF. The multiple layer design shows almost the same filtering performance when the size

of upper layer is less than 1k Byte. When the upper layer is enlarged, the multiple layer design

shows 40.73% degradation in filtering capability compared to the double layer design under

the same storage constraint.

 45

REFERENCES

[1] J. L. Hennessy, and D. A. Patterson, Computer architecture: a quantitative approach: Morgan

Kaufmann Pub, 2011.

[2] ARM, “CoreLink (TM) CCI-400 cache coherent interconnect,”

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470g/DDI0470G_cci400_r1p1_trm.pdf,

2012.

[3] ARM, “Introduction to AMBA (R) 4 ACE (TM),”

http://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf, 2011.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM,

vol. 13, no. 7, pp. 422-426, 1970.

[5] M. Ghosh et al., “Way guard: a segmented counting bloom filter approach to reducing energy

for set-associative caches,” in Proceedings of the 14th ACM/IEEE international symposium

on Low power electronics and design, San Fancisco, CA, USA, 2009, pp. 165-170.

[6] L. Fan et al., “Summary cache: a scalable wide-area web cache sharing protocol,” IEEE/ACM

Trans. Netw., vol. 8, no. 3, pp. 281-293, 2000.

[7] M. Breternitz et al., “A Segmented Bloom Filter Algorithm for Efficient Predictors,” in

Computer Architecture and High Performance Computing, 2008. SBAC-PAD '08. 20th

International Symposium on, 2008, pp. 123-130.

[8] M. Jimeno, K. J. Christensen, and A. Roginsky, “Two-tier Bloom filter to achieve faster

membership testing,” Electronics Letters, vol. 44, no. 7, pp. 503-504, 2008.

[9] M. Ghosh et al., “Efficient system-on-chip energy management with a segmented bloom

filter,” in Proceedings of the 19th international conference on Architecture of Computing

Systems, Frankfurt, Germany, 2006, pp. 283-297.

[10] M. Ahmadi, and S. Wong, "A Memory-Optimized Bloom Filter Using an Additional Hashing

Function." pp. 1-5.

 46

[11] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the twentieth annual ACM

symposium on Principles of distributed computing, Newport, Rhode Island, United States,

2001, pp. 144-150.

[12] C. E. Rothenberg et al., “The deletable Bloom filter: a new member of the Bloom family,”

Communications Letters, IEEE, vol. 14, no. 6, pp. 557-559, 2010.

[13] D. Guo et al., “False Negative Problem of Counting Bloom Filter,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 22, no. 5, pp. 651-664, 2010.

[14] R. Quislant et al., “Interval filter: a locality-aware alternative to bloom filters for hardware

membership queries by interval classification,” in Proceedings of the 11th international

conference on Intelligent data engineering and automated learning, Paisley, UK, 2010, pp.

162-169.

[15] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.

1-7, 2011.

[16] C. Bienia, “Benchmarking modern multiprocessors,” Princeton University, 2011.

[17] S. Thoziyoor et al., “CACTI 5.1,” HP Labs, Palo Alto, Tech. Rep. HPL-2008-20, 2008.

[18] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hashing functions for high

performance computers,” Computers, IEEE Transactions on, vol. 46, no. 12, pp. 1378-1381,

1997.

[19] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards scalable, energy-efficient,

bus-based on-chip networks,” in High Performance Computer Architecture (HPCA), 2010

IEEE 16th International Symposium on, 2010, pp. 1-12.

