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在多核心系統上之高效能雙層計數布隆過濾器 

研究生：陳冠廷              指導教授：賴伯承教授 

 

國立交通大學 

電子工程學系 電子研究所 

 

摘 要 

 

在對稱式多核心系統中，基於廣播的窺探式協議被很廣泛地用於維持快取記憶體一

致性。然而窺探式協議盲目地傳播整個系統的數據共享訊息，並且通常導致十分大量而

不必要的資料傳輸及快取記憶體中的資料搜尋。本文提出了一種新的硬體架構：雙層計

數布隆過濾器，並且使用該架構過濾在對稱式多核心系統中不必要的資料管理。透過階

層式雜湊函數的設計，雙層計數布隆過濾器可以管理較大的檢索空間，並且有效地增加

成功過濾的比例。相較於傳統的布隆過濾器，雙層計數布隆過濾器可以過濾掉 81.99% 

更多的不必要的快取記憶體資料搜尋，並使用 18.75% 更少的記憶體。當應用於階層式

共享匯流排時，雙層計數布隆過濾器可以較傳統布隆過濾器過濾 58% 更多的冗餘本地

資料傳輸和 1.86 倍的冗餘遠距資料傳輸。 
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A High Performance Double Layer Counting Bloom Filter 

for Multicore System 

Student: Kuan-Ting Chen            Advisor: Bo-Cheng Lai 

 

Department of Electronics Engineering and Institute of Electronics 

National Chiao Tung University 

 

ABSTRACT 

The broadcast-based snoopy protocol is a widely used scheme to maintain cache 

coherence in a SMP multicore system. However, the broadcasting snoopy protocol blindly 

disseminates the data sharing information across the system, and usually causes a significant 

amount of unnecessary data transfers on the interconnection and data searches on local caches. 

This paper proposes a novel architecture of Double Layer Counting Bloom Filter (DLCBF), 

and uses DLCBF to screen out the unnecessary data management in a SMP system. By using 

the two-layer hierarchical structure of the hash function, DLCBF can manage a larger query 

space and effectively increase the successful filter rates. When compared to conventional 

Bloom filters, the DLCBF can filter out 81.99% more unnecessary cache searches and use 

18.75% less memory. When applied on a hierarchical shared bus in a SMP system, the 

DLCBF can filter out 58% more redundant local data transmissions and 1.86X remote data 

transmissions than conventional Bloom filters. 
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Chapter 1 Introduction 

In modern computing systems, multi-core architectures have become prominence due to 

its high performance and energy efficiency. The shared-memory Symmetric Multi-processor 

(SMP) is one of the widely developed multicore architectures which exchange data between 

cores via the shared memory space. However, data sharing among multiple cores in a SMP 

introduces cache coherence issues [1]. In order to maintain a coherent memory system, a 

shared memory SMP system needs to update or invalidate the shared data whenever one of its 

owners writes a new value to this data location. The broadcast-based snoopy protocol is a 

widely used scheme to maintain a coherent memory system. This protocol broadcasts the data 

sharing states on the system interconnection to trigger the distributed data management 

mechanisms on each processor. 

Fig. 1. A coherence mechanism when multiple cores share the same data. The colored cache 

blocks are shared among different cores. They should be either updated or invalidated while 

this particular block is being written. 
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Fig. 1 illustrates a simple example of the cache coherence issue on a SMP system with 

three processors (Core 1 to Core 3). Assume that Core 1 and Core 3 share the same data 

(A=5). When Core 1 performs a write operation to its copy of the shared data (A=7), the 

broadcast-based snoopy protocol would update the shared copy in Core 3 with the latest 

written value or otherwise invalidate it. The snoopy protocol can support cache-to-cache 

single-hop data transfers. When compared to the directory-based cache coherence protocol, 

the simple broadcasting scheme makes the snoopy protocol a low complexity design which 

does not require specialized architectures to maintain the sharing information. For a smaller 

scale multicore systems, such as the ones that have been recently applied onto embedded and 

mobile devices, usually adopt the snoopy protocol due to its simplicity and fast 

cache-to-cache transfers. For example, ARM provides a cache coherent interconnect with 

snoopy protocol for its Cortex-A15 processor [2, 3]. 

However, this broadcast-based scheme blindly disseminates the data sharing information 

across the system, and usually causes a significant amount of unnecessary data transfers on 

the interconnection. In general, the data sharing behavior is happened within a certain number 

of parallel tasks. The number of these affined tasks is much smaller than the size of the overall 

multi-core system. With the broadcast-based scheme, the processors which are not involved in 

the current data sharing state would consequently perform needless data searches in their own 

caches. For example, assume that there is a datum owned by only one processor. When this 

particular datum is written, the snoopy protocol would broadcast an invalidation message and 
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invoke searches at all the caches while none of these searches are actually needed. All these 

redundant data management operations would occupy the system resources and degrade the 

performance and energy efficiency. 

Fig. 2. Redundant snoops in PARSEC benchmark suite. 

Fig. 2 shows the percentage of redundant coherence requests for the PARSEC 

benchmark suite on a 16-core SMP system. According to Fig. 2, in average, 78.37% of the 

coherence messages are unnecessary. These redundant requests introduced by the 

broadcasting behavior of the snoopy protocol would unnecessarily put a cache in a busy mode 

and increase the energy consumption. These unnecessary cache operations could even block 

the useful requests from processors and therefore degrade the system performance. This 

problem will be more severe in embedded systems due to its stringent energy constraints and 
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strict performance requirements. If these unnecessary data communication and cache searches 

can be filtered, the effective utilization of the system resources, such as cache and 

interconnection, can be enhanced significantly. This paper proposes a novel architecture of 

Double Layer Counting Bloom filter to screen out the unnecessary data management caused 

by the broadcast-based snoopy protocol in a SMP system. 

A Bloom filter [4] is a classic unit used in database management. It uses hash functions 

to maintain the data mapping structure and provides an effective method to perform 

membership querying. However, due to the limited size of the filter, it suffers from rapid array 

saturation problem [5]. If the dataset of an application is too large, the data mapping structure 

would saturate and make the filtering mechanism ineffective. This paper proposes a novel 

architecture of Double Layer Counting Bloom Filter (DLCBF), which uses a two-layer 

filtering scheme to achieve high filtering rates with low implementation cost. The DLCBF 

implements an extra layer of hash function and the counting feature at each filter entry. By 

using the hierarchical structure of the hash function, DLCBF can manage larger query spaces 

and effectively increase the successful filter rates while requiring a smaller memory usage 

than the conventional Bloom filters. The counting feature of DLCBF further enhances the 

ability to handle the array saturation issue. 

To demonstrate the efficacy of the proposed DLCBF, this paper implements the DLCBF 

on two system modules of a SMP system to reduce unnecessary data processing of the snoopy 

coherence protocol. The first module, depicted in Fig. 10, is the local cache of each processor. 



 

 5 

By connecting a Bloom filter between a cache and system interconnection, the filter 

mechanism can be used to screen out the unnecessary snooping messages that would be 

otherwise handled by each processor. The second module is the hierarchical shared system 

bus illustrated in Fig. 15. A Bloom filter is embedded in the system interconnection to reduce 

the costly system-wide data broadcasting. When compared with conventional Bloom filters, 

the DLCBF can manage larger data set with fast data accesses while requiring smaller 

memory area. By deploying the DLCBF in a SMP system, a substantial amount of redundant 

memory operations and data transmission can be eliminated. In our experiment, the DLCBF 

can reduce up to 65.8% of unnecessary snoops and up to 13.17% of energy consumption to 

local caches with 18.75% less memory usage. Simulation results also show that the DLCBF 

outperforms conventional filters by 58% for local transmissions and 1.86X for remote 

transmissions on a hierarchical system interconnection. Furthermore, we implemented 

DLCBF in Verilog HDL. The RTL simulation shows that the DLCBF can achieve 1.544 ns of 

delay when querying and the overall area is 113,413 μm2 with 90nm technology node. In 

short, our contributions are: 

1. We proposed a novel and area-efficient design of Double Layer Counting Bloom 

Filter (DLCBF), which can effectively manage a larger query space than 

conventional Bloom filters. 

2. We have demonstrated that, on a 16-core SMP system, the DLCBF achieves 81.99% 

better filtering rate over all other conventional Bloom filters while costing 18.75% 
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less memory storage. 

3. We have also demonstrated that, by removing the unnecessary data management, 

the DLCBF can achieve 13.17% of overall energy saving. 

The rest of the paper is organized as follows. In Chapter 2, we introduce the basic 

architecture of a Bloom filter (BF). Two modified versions, Counting Bloom Filter (CBF) and 

Banked Bloom Filter (BBF), are also discussed. Furthermore, several related works are 

reviewed. Chapter 3 shows the proposed filter structure, Double Layer Counting Bloom Filter 

(DLCBF). The detail functionality and implementation concerns are also discussed. Chapter 4 

covers our evaluation methodology and demonstrates the cycle accurate simulation results. 

Finally, we conclude this paper in Chapter 5. 
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Chapter 2 Preliminary 

To give a general background on membership querying techniques, this chapter will first 

introduce a simple hash-based method. Then three types of Bloom filters will be discussed, 

including classic Bloom filter (BF), counting Bloom filter (CBF), and banked Bloom filter 

(BBF). These three Bloom filters are widely used designs and provide different advantages. 

The proposed DLCBF is a novel architecture which combines the features of these three filter 

types and benefits from all of them. Some related works are also reviewed briefly. 

2.1 Previous Work on Bloom Filter Designs 

2.1.1 Simple Hash-based Technique 

A membership querying function returns a value of true or false to identify the existence 

of a given input query. A straightforward way to implement a membership query function is to 

give an entry to each individual member. However, the total number of the members is 

usually much larger than the limitation of the memory size in a design. A hash function is a 

basic yet efficient solution for membership querying. An input query will be sent to a hash 

function, and a hashed value is returned to index the corresponding entry of the query. 

However, the single-index hash table is prone to returning many false positives for different 

queries. For example, a computer system with n-bit memory addresses will introduce 2
n
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distinct memory locations. In an ideal case, a hash function needs 2
n
 bits to distinguish each 

data location. But due to the storage limitation in real systems, the hash function is forced to 

map the 2
n
 memory space to a mapping table with only m bits, where m is much smaller than 

2
n
. The parameter m may vary according to accuracy requirements and available resources. 

Thus, 2
n
 – m datum could be hashed to a bit that has already been used by another data (Fig. 

3(a)). This is referred as a “collision”. The collision problem could make the single-index 

hash function to report a false positive of membership querying. As an example shown in Fig. 

3(b), there exists an element A belonging to a set S. The single-indexed hash unit provides A 

with a particular bit slot in the mapping table and sets this bit to 1. The value 1 indicates that 

A is in set S. But another element B that does not belong to S might also be hashed to the same 

slot. This conflicting scenario pollutes the meaning of the returned value and creates the 

situation of a false positive. From this returned value, users cannot tell if the element B has 

really been assigned to the slot or not. 

 

Fig. 3. (a) Hash collision. (b) Hash reports a false positive for element B. 
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2.1.2 Classic Bloom Filter (BF) 

A Bloom filter is a space-efficient data structure proposed by Bloom in the 1970s [4]. 

Bloom filter uses multiple hash units for each element and sets several bits (depends on k, the 

number of hash functions) for each element. Fig. 4 shows how BF maps a single data to the 

mapping table with k = 3. A specific data C is considered in a particular set T only when all 

the corresponding hashed slots are set. Fig. 3 also shows another element D, which does not 

belong to set T, and the corresponding hashed slots. Two of the slots collide with two of C’s 

slots (colored). However, there is another slot of D that is not set, so the Bloom filter correctly 

reports D as not in the set T. The Bloom filter has less possibility that reports a false positive 

than a simple hash function because collision must happen in all of the k hash functions. 

 

Fig. 4. The mapping mechanism of a Bloom filter (k = 3). 
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2.1.3 Counting Bloom Filter (CBF) 

Classic Bloom filter provides a memory-effective way of reducing hash collisions by 

using multiple hashes. However, a classic Bloom filter suffers from two problems. First, as 

the number of hash function increases, its mapping slot is “polluted” or “saturated” faster 

since the Bloom filter requires setting k bits for each element. Second, the classic Bloom filter 

does not support “deleting” or “resetting” the mapping slots. In other words, once a bit is set, 

the classic Bloom filter has no mechanism to reset it. Eventually, the classic Bloom filter will 

be filled up with 1’s and loses its filtering functionality. 

Fig. 5. Different data maps to same slots in mapping array. In (a), we cannot tell if a slot is 

mapped multiple times. In (b), we can decrease the counter to indicate removal of an element. 

Since the multiple hash function is inevitable for Bloom filters, Fan et al. [6] proposed 

counting Bloom filter (CBF) to enable resetting a mapping slot. Counting Bloom filter adds 

an additional counter array along with the mapping slots of the classic Bloom filter. Each l-bit 
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counter is associated with a mapping slot in a one-to-one fashion. Whenever an element is 

inserted to a set, each hashed slot will increment its corresponding counter by 1 and sets the 

mapping slot to 1. Therefore, the counter indicates the number of elements hashed to it, as 

depicted in Fig. 5. On the other hand, whenever an element is removed, each slot will 

decrement its corresponding counter. When a counter is decreased to zero, its corresponding 

mapping slot will be reset to zero. With this resetting procedure, CBF achieves a lower false 

positive rate and hence reduces the impact of saturation of the classic Bloom filter. 

2.1.4 Banked Bloom Filter (BBF) 

Both BF and CBF requires k lookups from the mapping table because of k hash functions. 

Making these lookups in a serial manner is inefficient and difficult to meet the timing 

constraint in hardware implementation. However, parallelizing k lookups requires large 

memory bandwidth, so each memory in the filter has to implement k read/write ports for 

querying and updating elements. Banked Bloom filter was proposed to address the issue [7]. 

Similar to the banked cache access, BBF supports required bandwidth by using banking 

instead of adding read/write ports. Assume a memory with p ports and each port has B banks, 

it can provide a maximum of p∙B simultaneous access as long as no more than p operations 

are accessing the same bank [7]. 

When applying Bloom filters to the local cache or interconnection of a SMP system, the 

filters are usually accessed at every cycle. Therefore, a delay in the filter is undesirable. 
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However, bank conflicts will stall the accessing procedure and make the filter to be ineffective. 

Banked Bloom filter uses a hard-wired permutation table to prevent bank conflicts. Fig. 6(a) 

shows how a banked Bloom filter is organized. With four hash functions, the BBF is 

configured as four banks to provide a memory bandwidth of 1×4=4 accesses simultaneously. 

Whenever there is a membership querying to the filter, the permutation table will return a 

sequence of bit sets to the multiplexers and guide the hash functions to the corresponding 

banks. Fig. 6(b) depicts a permutation table with four banks (k = 4). 

Fig. 6. (a) Banked Bloom filter with four hash functions. (b) Hard-wired permutation table of 

BBF. 

2.2 Related Work 

In this section, we present several variants of Bloom filter designs. The major objective 

of these variants can be classified into three different categories: to improve the querying 
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speed of a Bloom filter, to reduce the memory utilization, or to lower the probability of false 

positive. 

The two-tier Bloom filter [8] is targeted to reduce the querying time by adding a second 

tier cache Bloom filter. The two-tier Bloom filter will check both the filter cache and main 

filter simultaneously whenever query is invoked. If the querying element is cached, the faster 

filter cache will respond. Otherwise, the main filter will be responsible for returning a result. 

Segmented Bloom filter [9], on the other hand, decouples the bit vector from the counter array 

of a counting Bloom filter and improves the querying speed by avoiding access of the counter 

array. It is equipped with a duplicated hash function to enable faster outcome of a query. 

Whenever a query occurs, the input identifier will go through the extra hash and access the bit 

vector directly. 

Ahmadi and Wong proposed a Bloom filter with an additional hash (BFAH) to reduce the 

memory utilization of a Bloom filter [10]. With the additional hash function, the BFAH stores 

only one out of k memory address for each element. It is no longer required to store other k-1 

redundant copy. Furthermore, the additional hash function helps to distribute incoming 

elements uniformly. The compressed filter [11] is proposed to approach the same objective as 

BFAH. The compressed filter focused on optimizing the transmission size by changing the bit 

distribution in the filter when the Bloom filter is transferred as a network message. 

As for reducing the probability of false positives, the deletable Bloom filter (DlBF) [12] 
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is proposed. The DlBF is built on the simple idea of recording where collisions happen when 

inserting elements. It is able to remove an element like counting Bloom filters, but without 

introducing false negative issue [13]. Interval filter (IF) reduces false positives especially for 

transactional memory [14]. The IF views a memory interval as an element and its index is 

represented as the lower bound and the upper bound of the memory interval. In this way, IF is 

able to extract spatial locality of the memory trace and show a lower false positive probability. 
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Chapter 3 Double Layer Counting Bloom Filter 

Both the classic Bloom filter and counting Bloom filter have difficulty of providing the 

high accessing bandwidth required by k hash functions. The banked Bloom filter mitigates 

this problem by banked memory accesses. However, all filters still pose significant storage 

overhead. The classic Bloom filter implements a 1-bit-per-slot, but needs a large number of 

slots to alleviate the array saturation issue. Although the banked Bloom filter provides large 

memory bandwidth, it has the same 1-bit-per-slot structure as the classic Bloom filter. The 

counting Bloom filter, on the other hand, can handle array saturation better than the classic 

Bloom filter and banked Bloom filter, but it increases the storage overhead by using multi-bit 

counters instead of the single set bit. 

To reduce the storage overhead and further increase membership querying speed while 

preserving the functionality of the Bloom filter, we propose a novel Double Layer Counting 

Bloom Filter architecture (DLCBF). The DLCBF adopts the idea of two-tier Bloom filter [8]. 

By adding a second tier cache Bloom filter, the two-tier Bloom filter is able to reduce the 

membership querying time. Whenever a query is invoked, the two-tier filter will check both 

the filter cache and main filter simultaneously. If the queried element is cached, the faster 

filter cache will respond with either a true or a false. Otherwise, the main filter will be 

responsible for returning the membership querying. 
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Fig. 7. (a) Double layer counting Bloom filter. (b) Memory bank of the upper layer. (c) 

Memory bank of the lower layer (d) Permutation table. 

   Fig. 7(a) depicts the memory structure of the DLCBF. The lower-layer combines the 

design of banked Bloom filter and counting Bloom filter to achieve the required high 

accessing bandwidth while preventing the fast saturation problem of the Bloom filter. Each 

memory bank of the lower-layer is shown in Fig. 7(c); it is constructed by an array of l-bit 

counter and a bit vector. The permutation table adopted from BBF is shown in Fig. 7(d). We 

implemented the similar design as in BBF, except the number the possible outcomes since the 

DLCBF only have three banks in its lower layer. While lower-layer is designed to provide 

higher accessing bandwidth, the upper-layer demonstrates the similar idea of the two-tier 
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Bloom filter. However, the proposed DLCBF differs from the two-tier Bloom filter in the 

utilization of the extra “tier” or “layer”. As we know, if a specific memory location is 

accessed, it is highly possible that the nearby locations will be accessed. This is called the 

spatial locality. The DLCBF introduces an extra upper layer of hash units upon a banked 

Bloom filter (lower layer) to catch the locality behavior. In other words, the upper layer is 

responsible for the membership querying for a consecutive memory region, not only for a 

single element. Besides, the extra hash function (hash3 in Fig. 7(a)) can generate different 

permutation for lower layer hash functions. Here we give a motivational example: Suppose 

we have a 2-core system and its memory access trace is displayed in Fig. 8(a). Fig. 8(b) shows 

that the whole memory space is divided into four consecutive regions. Each region has a 

corresponding entry in the upper layer of the double layer counting Bloom filter, as depicted 

in Fig. 8(c). When time t = 5, we can observe that P2 has to issue a broadcast coherence 

message in order to tell other processors that they have to invalidate the memory location 384. 

In the previous designs, such as classic Bloom filter and counting Bloom filter, filter needs to 

perform a full search in its storage. On the other hand, the DLCBF can show that memory 

location 384 is definitely not in P1 very quickly through its extra layer by identifying that the 

corresponding region (Region B) is not in P1. Therefore, DLCBF could reduce the member 

ship querying time. 
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Fig. 8. (a) Memory trace of motivational example. (b) Memory regions. (c) Upper layer 

entries of DLCBF. 

The detailed connection of the proposed DLCBF, cache and the broadcasting material 

(bus) is shown in Fig. 9. The DLCBF communicates between cache and bus and is 

responsible for filtering redundant coherence messages. In order to achieve these 

functionalities, the DLCBF supports three basic operations: query, insertion, and deletion: 
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Fig. 9. Double layer counting Bloom filter with cache and bus in SMP. 

3.1 Query Operation 

Query operation is the fundamental function of the proposed DLCBF. It is performed 

whenever the snoopy coherence protocol triggers a broadcasting coherence message. The 

query operation also serves as the prerequisite of the deletion operation; we will give an 

explanation later. Every cache, except the one that issues the request, is asked to check itself if 

it has the requesting data. Bus will send the coherence message to both cache and the DLCBF 

simultaneously, in order to prevent the querying procedure from the critical path of coherence 

operation. The faster querying operation and the slower cache search will perform in parallel. 
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When DLCBF receives such coherence message from bus, it takes the memory address of the 

requesting data and checks the filter storage. If the requesting data is not in this cache, the 

DLCBF will responds false and cancel the cache search. In contrary, the DLCBF will respond 

true and the cache search will continue. 

3.2 Insertion Operation 

Whenever a data is read from main memory, the coherent bus not only sends the data and 

the address to cache, it also sends the address to the DLCBF at the same time. The DLCBF 

will set the corresponding upper layer filter entry to one, and then increase the corresponding 

lower layer filter entries of this data by one. 

3.3 Deletion Operation 

In order to keep the correct record of data, the DLCBF will remove an item whenever a 

data is removed from cache under the situation of cache eviction or invalidation caused by 

coherence protocol. However, an item deletion in DLCBF might be incorrect. Guo et al. 

identified the false negative problem of counting Bloom filter in [13]. Guo et al. found that 

the counting Bloom filter produces possible false negative results when it deletes a false 

positive item [13]. For example, suppose that data B is a false positive item in the filter of P2. 

If P2 receives a request for invalidate data B, the CBF will mistakenly reduce the value of 
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each corresponding entries by one. Furthermore, if one of these corresponding entries is 

reduced to zero, a possible false negative will occur. Our proposed DLCBF have the same 

problem because we adopt the similar design of the counting Bloom filter. It becomes a 

serious problem in snoop filtering because the false negatives will make the multicore system 

become incoherent. Guo et al. also proposed a novel scheme, multichoice counting Bloom 

filter, to lower the probability of false negatives. Although, their proposal can be applied on 

DLCBF, they do not guarantee a false negative free condition. Therefore, we propose another 

solution specifically for coherence message filtering. Since the reason of false negatives is 

caused by removing a false positive item, our idea is to perform an actual cache search 

whenever DLCBF wants to delete an item. In the scope of filtering coherence message, a 

deletion in DLCBF can occur only when the cache performs a writeback or invalidation. Both 

of the operations require a real cache search to handle the data or the coherence state, so our 

manipulation in the deletion will not introduce extra cache searches. As depicted in Fig. 9, 

DLCBF has an extra input signal labeled "Exist", which represents the result of the actual 

cache search. The deletion operation of DLCBF will reduce the value of corresponding filter 

entries only when the Exist signal responds a cache hit. Hence, we can solve the false 

negative problem without compromising the overall system performance and guarantees false 

negative free condition for coherence message filtering. 



 

 22 

3.4 Summary 

There are three main benefits enabled by DLCBF. First, DLCBF adopts the banked 

structure and adds an extra layer to meet the heavy memory bandwidth requirement [7] and 

reduce membership querying time. With multiple access banks, the DLCBF requires only one 

lookup for each banked memory while CBF needs k lookups with k different hash functions. 

Second, DLCBF takes the advantage of data locality. It separates memory space into different 

regions. Since data in different regions are less likely to be accessed in a consecutive way, an 

extra layer can filter out unnecessary data operations with higher speed. Third, DLCBF 

benefits from the extra permutation array, which further lowers the probability of data 

collision. 
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Chapter 4 Evaluation 

This chapter first shows the experimental setup used in this paper. Then the performance 

of DLCBF is analyzed and compared with other Bloom filters in a SMP system. The DLCBF 

will be implemented on two system modules to reduce unnecessary data processing. The first 

module is the local cache of each processor. The DLCBF is used to reduce the unnecessary 

cache searches from snoopy coherence protocol. The second module is on the shared system 

bus to filter out the redundant data transmission. We also conducted design parameter 

exploration on the DLCBF design. We will show effects caused by different sizes of the upper 

layer and the lower layer separately and we will show several extensions to triple layer 

design. 

4.1 Experiment Methodology 

We use GEM5 [15], a full-system event-driven simulator, as our experiment platform. 

We use a simple in-order processor model so that we can evaluate the proposed scheme within 

a reasonable simulation time. Table I lists the configuration parameters we used in our 

simulations. A single transaction shared bus takes charge of the communication among 

processors. The experiments were executed with 11 representative workloads from PARSEC 

benchmark suite [16]. 
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COMPONENT PARAMETERS 

Processor core 2GHz, single-issue in-order 

Block size 64bytes 

L1 I-caches (Private) 32kB, 2-way, 2-cycle 

L1 D-caches (Private) 64kB, 2-way, 2-cycle 

Memory 60-cycle access latency 

Bus 

1GHz, single transaction, 1-cycle overhead 

per transaction 

Table. 1 Processor and cache/memory parameters 

Four types of Bloom filters were implemented and compared, including the classic 

Bloom filter (BF), counting Bloom filter (CBF), banked Bloom filter (BBF), and the proposed 

double layer counting Bloom filter (DLCBF). As depicted in Fig. 10 the Bloom filters were 

connected in between of caches and the shared bus. All the filters in the experiment used four 

hash functions. The classic Bloom filter, CBF, and BBF are implemented with 1K bytes of 

memory per processor core. The DLCBF uses only 0.8125K bytes per core, bringing an 

18.75% of memory usage reduction. This difference is from the upper layer of memory array, 

which is only 25% of a standard memory array. 
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Fig. 10. SMP with Bloom filters 

4.2 Results of Filtering Unnecessary Cache Searches 

Fig. 11 shows the filtered snooping rate using classic Bloom filter, CBF, BBF, and 

DLCBF for each benchmark. The filtered rate represents how many snoops are screened out 

by the filter. These are the unnecessary snoops that do not need to be handled by a cache. The 

experiments were performed on multi-core systems with two, four, eight, and sixteen 

processors. We choose the "simmedium" data set of PARSEC benchmark suite to evaluate the 

proposed architecture in a reasonable time. The right most column of Fig. 11 represents the 

geometric mean of the filtered rates observed in the benchmarks. The reason we choose 

geometric mean instead of arithmetic mean is that the total number of snoops in each 

benchmark differs significantly and the results we show here are ratios to them. We can see 

that the classic Bloom filter performs poorly in all benchmarks. The reason is that the classic 

Bloom filter faces array saturation problem and does not support “resetting” a slot whenever 

an element is removed from the set. In this context, removal of an element is considered as 
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cache line invalidation or eviction. Therefore, its mapping array saturates even when data set 

size is small and the classic Bloom filter loses its filtering functionality very quickly. Banked 

Bloom filter suffers from the same reason, although it supports faster querying access. On the 

other hand, because the counting feature enables the “resetting” ability, CBF reduces the array 

saturation rate. With lower saturation rates, CBF achieves better filtering behavior than the 

classic and banked Bloom filters. When compared with a classic Bloom filter, CBF achieves 

up to 3.57X filtered rate improvement. 

With an additional hash function and hard-wired permutation table, DLCBF divides and 

maps the whole memory space to several storage arrays. This design avoids the data in 

different memory spaces colliding with each other. Inside each storage array, DLCBF utilizes 

multiple hash functions to prevent collision. In addition, the counting feature enables a much 

lower probability of collision and the ability to reset an element more effectively. Therefore, 

DLCBF further improves the filtered rate and significantly outperforms the classic Bloom 

filter, CBF, and BBF. The average improvement of filtered rate is 81.99% and 31.36% when 

compared to classic Bloom filter and CBF respectively. 

Another observation from Fig. 11 shows that the filtered rate increases with the number 

of processors for all four filters. This is because that when the number of processors increases, 

each processor is responsible for a smaller size of data set. For example, assume the total data 

set is 1MB; each processor in a 2-core multi-processor system would deal with 512kB of data. 

And in a 4-processor system, each core will be responsible for only 256kB of data. The 
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Fig. 11. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked Bloom 

filter (BBF), and double layer counting Bloom filter (DLCBF) with simmedium PARSEC 

benchmarks 
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effective data set size allocated to each individual core decreases with the increasing number 

of processors. The smaller effective data set size lowers the memory space that needs to be 

handled by each filter. Therefore, the characteristics of each filter are improved with more 

processors in a system. Notice that freqmine and streamcluster do not follow the above 

criteria. The possible reason is that these two benchmarks might have many true-sharings or 

the data set is not evenly distributed among processors as in our example. 

We use Synopsys design compiler and CACTI 5.3 [17] to estimate the area of the 

proposed double layer counting Bloom filter. Two SRAM modules with 1-Byte words and 

one read/write ports were modeled with CACTI to estimate the area and access time of the 

DLCBF. The upper layer module is modeled as a 64-Byte, single-bank SRAM module, while 

the lower layer is a 768-Byte SRAM. We use 2-bank architecture to estimate the lower layer 

module because CACTI does not support 3-bank architecture as the DLCBF. The four hash 

functions, permutation table, and the additional control logic are modeled with Synopsis 

design compiler. We implements H3 hash because it is proven better than others [18]. The 

overall area of DLCBF takes about 113,413 μm
2
 using 90nm technology and the critical path 

is 1.544 ns. 

CACTI is also used to give the energy saving estimation. Fig. 12 depicts the estimated 

energy saving percentage after applying BF and DLCBF, respectively. The energy estimation 

here is calculated with the energy saved by filtering unnecessary snoops subtracts the energy 

consumed by the filter. BF introduces more energy consumption to the system because its  
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Fig. 12. Energy savings introduced by BF and DLCBF 
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filtered rate is so low that it couldn't compensate the energy consumed. DLCBF, on the other 

hand, benefits from its higher filtered rate and is able to contribute energy savings for most of 

cases. In average, the DLCBF could save up to 13.17% of energy in a SMP system. 

 

Fig. 13. Filtered rate of double layer counting Bloom filter with different data set sizes of 

blackscholes 

In order to examine the scalability of the proposed design, we evaluated one of the 

PARSEC benchmark, blackscholes with different data sizes. As shown in Fig. 13, PARSEC 

provides five data set sizes for each benchmark [16]. From the smallest one to the largest are 

test, simdev, simsmall, simmedium, and simlarge. The result shows that filtered rate of the 

DLCBF will decrease with the size of data set. With this insight, we performed an evaluation 

for each benchmark with the largest data set size. These experiments were conducted on the 
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same multi-core system as the previous one, except that we extended the number of 

processors to twenty-four and thirty-two. Fig. 14 shows the filtered snooping rate for each 

benchmark in our evaluation. Notice that facesim does not work with medium-size data set 

and both facesim and fluidanimate do not support twenty-four-processor system. The bottom 

right most column is the geometric mean of the filtered rates. When the data set size increases, 

all the filters performs worse than with the medium-size benchmarks because they have to 

manage a larger size of data. Nevertheless, we can observe that the proposed DLCBF still 

outperform other designs in most of the cases. The average improvement of filtered rate in 

large-size benchmark is 7X and 1.1X when compared to classic Bloom filter and CBF 

respectively. 
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Fig. 14. Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked 

Bloom filter (BBF), and double layer counting Bloom filter (DLCBF) with simlarge PARSEC 

benchmarks 
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4.3 Results of Filtering Unnecessary Data Transmission on a 

Shared Segmented Bus 

 

Fig. 15. Segmented bus architecture for 16-core processor 

The segmented bus is proposed as an energy-efficient, bus-based on-chip interconnection 

[19]. It separates a long bus into several shorter buses and organizes them in a hierarchical 

manner. Fig. 15 depicts a 16-core processor with the segmented bus and filter. As we know, 

not every coherence transaction is expected to be broadcasted to every processor. A 

segmented bus implements two filters, In-filter and Out-filter, at each sub-bus to maintain 

some knowledge of cache contents in the local and remote segments and screens out 

unnecessary transactions. The In-filter keeps track of cache lines that are currently in the 

segment. When a broadcast is invoked, every segment will first look up at its local In-filter. 

And a broadcast to local processors will be performed if the In-filter allows. The Out-filter 

keeps track of cache lines that is sent out to remote segments. If a specific cache line has 

never been sent before, the local segment does not broadcast it to the remote segments. Each 
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segmented bus filter contains two arrays of 8192 entries, one array for In-filter and the other 

for Out-filter. Every entry is consisted of a 10-bit counter. In all, each filter requires 20K bytes 

of storage overhead. 

In this experiment, we apply the DLCBF to a segmented bus. We simulated a 

16-processor system with a segmented bus. We compared two filter schemes. The first scheme 

is the Bloom filter design (HPCA10) used in [19], and the second scheme adopts the proposed 

DLCBF. The HPCA10 is implemented with 20kB of memory, while the DLCBF is 13kB in 

size. Fig. 16 shows the simulation results, DLCBF and HPCA10 [19] are compared. Basically, 

the HPCA10 filter is a counting Bloom filter with big counters and a large storage. The 

outperforming filtered rate of DLCBF confirms that the additional hash is helpful even when 

compared to a large CBF. The average improvement of filtered rate is 58% for In-filter and 

1.86X for Out-filter in comparison to HPCA10. 
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Fig. 16. Filtered rate of DLCBF and HPCA10 filter 
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4.4 DLCBF Design Parameter Exploration 

In this section, we evaluated three design parameters of the proposed DLCBF. The upper 

layer is a fast query structure in the proposed DLCBF. We first compared the filtering 

performance among different sizes of upper layer filter. We also explored the effect of the 

lower layer. We compared the filtered rate among several sizes of the lower layer filter. Finally, 

we added another layer to construct a triple layer counting Bloom filter (TLCBF) and 

evaluated several configurations of the TLCBF. 

4.4.1 Size of Upper Layer 

Upper layer of the DLCBF serves as a fast query mechanism in snoop filtering. Each 

entry in the upper layer represents a consecutive memory region instead of a single memory 

location. DLCBF will check the upper layer and the lower layer simultaneously whenever a 

query request arrives. If the memory region corresponding to the queried memory location is 

not in cache, the upper layer will responds a false; otherwise, it will wait for the query result 

in the lower layer. To explore the influence of the upper layer, we simulated with several 

configurations of the upper layer while the lower layer remains the same as the default one. 

The default DLCBF has 512 entries in its upper layer with each entry representing one bit. 

The size of the default filter is 64 Bytes. We compared six different size of upper layer with 

the default configuration. We used the same simulation parameters listed in Table I. 
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Fig. 17 shows the simulation result with the PARSEC benchmark suite. The vertical axis 

shows the filtered rate and the horizontal axis stands for sizes of the upper layer in Bytes. In 

all the evaluated benchmarks, filtered rate increases with the size of upper layer. However, the 

improvement from 4-Byte to 256-Byte is very subtle because each memory region is too large 

so that the upper layer filter could hardly distinguish memory locations. Recalled the 

motivational example in Fig. 8, the upper layer filter can easily tell that the memory location 

384 is not in P1 since the region it belongs to is not in P1 either. If we divide the whole 

memory space into two regions, instead of four, then the original memory region A and B are 

combined as one. Therefore, the upper filter of P1 will respond a true to the query of memory 

location 384 even if it is not in processor P1. In other words, the proposed DLCBF performs 

better with larger upper layer because it has a lower probability of responding false positives. 

The simulation result of 1k-Bytes to 16k-Bytes supports this criterion. We can observe that 

the filtered rate grows significantly from 256-Byte to 16k-Byte. The average improvement of 

filtered rate with a 16k-Byte upper layer is 1.17X compared to the default configuration 

(64-Byte) in sixteen-core system. 
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Fig. 17. Filtered rate of DLCBF with different sizes of its upper layer 
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4.4.2 Size of Lower Layer 

The lower layer filter is the fundamental building block of the proposed DLCBF. It 

adopts the idea from the banked Bloom filter and the counting Bloom filter to provide a high 

accessing bandwidth while not compromising the filtering performance. In the proposed 

DLCBF, the lower layer is constructed with three identical counter arrays and each array in 

the default configuration contains 512 two-bit counters. Thus, the size of default configuration 

of lower layer in DLCBF is 768 Bytes in total. We compared five DLCBF configurations with 

different sizes of lower layer to the default one. 

We take the simulation parameters shown in Table I. In these experiments, the upper 

layer is fixed to 64 Bytes in size. The simulation result is shown in Fig 18. The horizontal axis 

represents sizes of the lower layer in Bytes. Intuitively, the filter rate will increase with the 

size of lower layer filter because the larger the size of the lower layer filter, the less the 

probability of hash collision will occur. However, not all the benchmarks follow this 

assumption. For example, dedup and ferret shows a U-shape curve and the worst filtered rate 

happens at the configuration with 3k Bytes of lower layer. Nevertheless, the filter rate will 

increase with the size of lower layer when it is larger than 3k Bytes. The reason behind this 

fact has not been identified yet. 

  



 

 40 
Fig. 18. Filtered rate of DLCBF with different sizes of its lower layer 
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4.4.3 Multiple Layer Designs 

We extend the double layer counting Bloom filter by adding another layer to make it as a 

triple layer counting Bloom filter (TLCBF). In the double layer filter, the upper layer only 

takes part of the memory address (m-bit) as its querying index, so each entry represents a 

memory region, as depicted in Fig. 19(a). We extend this idea to the triple layer filter. The top 

layer and the middle layer still served as the fast query mechanism and both layers also take 

partial address as index. A p-q-TLCBF represents that the top layer takes the first p bits and 

the middle layer takes q bits address, respectively. The bottom layer of TLCBF is the same as 

the lower layer of DLCBF, which provides high accessing bandwidth. 

FILTER 

TOP LAYER MIDDLE LAYER 

INDEX 

LENGTH (p) 

SIZE 

INDEX 

LENGTH (q) 

SIZE 

5-4-TLCBF 5-bit 4 Bytes 4-bit 2 Bytes 

6-3-TLCBF 6-bit 8 Bytes 3-bit 1 Bytes 

7-2-TLCBF 7-bit 16 Bytes 2-bit 4 Bits 

8-1-TLCBF 8-bit 32 Bytes 1-bit 2 Bits 

Table. 2 Triple layer counting Bloom filter parameters 
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We first evaluated four TLCBF designs that take the same nine-bit address as in the 

upper layer of DLCBF. Table II lists the parameter of the top layer and the middle layer in 

each filter. Fig. 19(b) only depicts the simulation result with a sixteen-core system because the 

results in two-, four-, and eight-core system have similar outcome. All four configurations of 

TLCBF show almost the same filtering performance and are also comparable with the 

proposed DLCBF. The 5-4-TLCBF is the most cost effective one among all designs because it 

has the smallest storage overhead. From the result of upper layer parameter exploration, we 

know that the difference between each configuration is very subtle when the size of upper 

layer is smaller than 1k Byte. Therefore, we conducted another evaluation with two DLCBFs 

and one TLCBF that have larger upper layer size. As shown in Fig. 19(c), the filtered rate of 

13-13-TLCBF is better than 1k-DLCBF but worse than 2k-DLCBF. The 2k-DLCBF and the 

13-13-TLCBF outperform the 1k-DLCBF by 13.65% and 8.09% in average, respectively. 

Notice that we only show the result with the sixteen-core system here. The 13-13-TLCBF 

uses 2k Byte in the upper layer, just as the same as the 2k-DLCBF. Therefore, the 2k-DLCBF 

is the more cost effective choice to increase the filtered rate. In conclusion, if the storage 

constraint is less than 1k Byte, then the triple layer filter will be a cost effective choice. On 

the other hand, if the storage constraint is relaxed to more than 1k Byte, the DLCBF with 

larger upper layer is the most suitable design. 
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(a) 

 

(b) 

 

(c) 

Fig. 19. (a) The index used in the fast query layers. (b) Filtered rate of default DLCBF and 

TLCBFs. (c) Filtered rate of 1k-DLCBF, 2k-DLCBF and 13-13-TLCBF 
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Chapter 5 Conclusion 

In this paper, we proposed an area efficient double layer architecture of Bloom filter, 

DLCBF. By adding extra filtering layer, DLCBF reduced the memory usage by 18.75% and 

achieved 81.99% and 31.36% better filtered rate when compared with a classic Bloom filter 

and CBF respectively. Besides, the DLCBF also demonstrated a 13.17% reduction on overall 

energy consumption. In this paper, The DLCBF module is implemented by using the 

hardware description language (Verilog) and synthesized by Synopsys’s Design Compiler. 

The synthesized design reports a delay time 1.544ns for each query and the overall area is 

113,413 μm2. When applying on segmented bus, DLCBF outperforms HPCA10 filter by 58% 

for In-filter and 1.86X for Out-filter. Furthermore, according to the explored three design 

parameters of DLCBF: the size of upper layer, the size of lower layer, and multiple layer 

design, it is suggested that increasing the size of each layer would help on the filtered rate of 

DLCBF. The multiple layer design shows almost the same filtering performance when the size 

of upper layer is less than 1k Byte. When the upper layer is enlarged, the multiple layer design 

shows 40.73% degradation in filtering capability compared to the double layer design under 

the same storage constraint. 



 

 45 

REFERENCES 

[1] J. L. Hennessy, and D. A. Patterson, Computer architecture: a quantitative approach: Morgan 

Kaufmann Pub, 2011. 

[2] ARM, “CoreLink (TM) CCI-400 cache coherent interconnect,” 

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470g/DDI0470G_cci400_r1p1_trm.pdf, 

2012. 

[3] ARM, “Introduction to AMBA (R) 4 ACE (TM),” 

http://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf, 2011. 

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, 

vol. 13, no. 7, pp. 422-426, 1970. 

[5] M. Ghosh et al., “Way guard: a segmented counting bloom filter approach to reducing energy 

for set-associative caches,” in Proceedings of the 14th ACM/IEEE international symposium 

on Low power electronics and design, San Fancisco, CA, USA, 2009, pp. 165-170. 

[6] L. Fan et al., “Summary cache: a scalable wide-area web cache sharing protocol,” IEEE/ACM 

Trans. Netw., vol. 8, no. 3, pp. 281-293, 2000. 

[7] M. Breternitz et al., “A Segmented Bloom Filter Algorithm for Efficient Predictors,” in 

Computer Architecture and High Performance Computing, 2008. SBAC-PAD '08. 20th 

International Symposium on, 2008, pp. 123-130. 

[8] M. Jimeno, K. J. Christensen, and A. Roginsky, “Two-tier Bloom filter to achieve faster 

membership testing,” Electronics Letters, vol. 44, no. 7, pp. 503-504, 2008. 

[9] M. Ghosh et al., “Efficient system-on-chip energy management with a segmented bloom 

filter,” in Proceedings of the 19th international conference on Architecture of Computing 

Systems, Frankfurt, Germany, 2006, pp. 283-297. 

[10] M. Ahmadi, and S. Wong, "A Memory-Optimized Bloom Filter Using an Additional Hashing 

Function." pp. 1-5. 



 

 46 

[11] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the twentieth annual ACM 

symposium on Principles of distributed computing, Newport, Rhode Island, United States, 

2001, pp. 144-150. 

[12] C. E. Rothenberg et al., “The deletable Bloom filter: a new member of the Bloom family,” 

Communications Letters, IEEE, vol. 14, no. 6, pp. 557-559, 2010. 

[13] D. Guo et al., “False Negative Problem of Counting Bloom Filter,” Knowledge and Data 

Engineering, IEEE Transactions on, vol. 22, no. 5, pp. 651-664, 2010. 

[14] R. Quislant et al., “Interval filter: a locality-aware alternative to bloom filters for hardware 

membership queries by interval classification,” in Proceedings of the 11th international 

conference on Intelligent data engineering and automated learning, Paisley, UK, 2010, pp. 

162-169. 

[15] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 

1-7, 2011. 

[16] C. Bienia, “Benchmarking modern multiprocessors,” Princeton University, 2011. 

[17] S. Thoziyoor et al., “CACTI 5.1,” HP Labs, Palo Alto, Tech. Rep. HPL-2008-20, 2008. 

[18] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hashing functions for high 

performance computers,” Computers, IEEE Transactions on, vol. 46, no. 12, pp. 1378-1381, 

1997. 

[19] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards scalable, energy-efficient, 

bus-based on-chip networks,” in High Performance Computer Architecture (HPCA), 2010 

IEEE 16th International Symposium on, 2010, pp. 1-12. 


