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A M odel-based Rate Allocation M echanism for
Wavelet-based Embedded | mage and Video Coding

Abstract

In wavelet-based embedded coding for still images and/or videos, a trade-off
between scalability and coding efficiency is achieved via layered-packetization of the
embedded bitstreams optimized for several target operating bitrate points. This
process is called rate alocation (tier-2 coding). The typical rate allocation mechanism
is formulated as a rate-distortion optimization problem and a simple searching method
with slow convergence rate is used. In this paper, a highly efficient model-based rate
alocation mechanism is proposed: The algorithm is based on adaptive analysis of the
relationship between source-coding rate and distortion of the image/video data
Experiments conducted on a scalable videorcodec ‘show that the proposed technique
greatly reduces the search time for the-oeptimal solution. The techniques can be
applied to various wavelet-based embedded image and video coding schemes, such as

the JPEG2000 codec and the MCTF-based scalable video codecs.
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1. Introduction

Data networks for multimedia communications are growing fast nowadays. The
environment varies from broadband cable/ADSL networks, dial-up connections, to
wirelesssmobile networks. Today, data transmission over Internet is common in the
forms of pure text, audio or video. In the future, multimedia information will be more
popular for entertainment, education or business purposes. The expectation of visual
quality of the content will be higher than what we have over Internet today. In
addition, the terminal devices of the transmission system are diversified as well. Also,
media storage ranges from low capacity flash-based memory card to high capacity
DVD. Finally, the display monitor ofstherdevice may be a small size screen on a

mobile device or a high definition projection system:

For different applications on wvarious devices or under different network
conditions, the available bandwidth-and resource may be highly divergent. Therefore,
there are many multimedia transmission techniques proposed to overcome different
application scenarios. In order to adapt to the dynamic network environment, an error
control module is used to conceal the error resulted from lossy transmission while a
rate adaptation module is used to adapt the bitrate of the multimedia data to the
network bandwidth. For efficient real-time adaptation, the rate adaptation module
replies on the design of an embedded scalable codec to achieve best runtime quality. A
common approach for scalable bitstream is to use a layered coding approach such as
MPEG Simple Scalable Profile or FGS. The content can achieve best quality at
certain bitrates conditions. When the adaptation must take into account device
properties (such as screen size) and the quality requirement is higher, a fully

embedded bitstream is a better way to achieve the goal.
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The most desirable property of embedded bitstream is that the video parameters
such as resolution, frame rate, and quality of the bitstream can be dynamically
selected after the encoding procedures. And one of the nice features of such embedded
bitstreams is called multiple-adaptation. For example (Fig 1), the workstation can
transmit different scalable bitstream to different devices. Upon reception of the
embedded bitstreams, the notebook (or the PDA) can truncate the bitstream further
without decoding procedures and send it to another device with a smaller screen.
Hence, the technique is suitable for the communication in the various transmission
environments including the bandwidth of the internet and the properties of the

receiving devices.

Fig 1. Multiple Adaptation Scheme

The operations of the truncation can be implemented by two approaches. The
first one is that the workstation provides a layer structured bitstream, and the
notebook extracts the embedded layers which do not exceed the transport and terminal
constraints of the target device. This approach is quite simple but the bitstream can
not achieve the best quality possible. And the second approach is that the desktop
provides a fully embedded bitstream, the notebook can extract the bitstream according

to the constraint of the target device. This approach is more precise than the previous
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one, but the side information, namely the RD information, is required and the
complexity of the extractor is much higher. The issue is especially true for resource
critical systems, like the handheld device, PDA or cellular phone. Therefore, a rate
allocation mechanism which can extract embedded bitstream with accurate target

bit-rate in tolerable time and within distinct memory usage is very important.

As aresult, the goal of thisthesis is to design arate control extractor for multiple
adaptation applications which needs less side information and also reduces the
computational cost. The organization of the thesis is as follows. Chapter 2 introduces
some previous work of the rate control scheme for embedded codec works and
discusses their strength and weakness. Chapter 3 formulates the problem and the
fundamental theory behind the solutions. Then in chapter 4, the proposed method will
be elaborated, including rate control extractor and multiple adaptation design. The
experimental results for varioustest situationswill be shown in chapter 5. Finally, the

conclusion and discussions will be giveninchapter 6.
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2. PreviousWork

An embedded image/video codec is different from the traditional image/video
codec in the way that an embedded codec generates compressed bitstreams that can be
further reduced to a smaller target bitstream for different application scenarios. The
first well-known wavelet-based embedded image coder is the embedded zero-tree
wavelet compression (EZW) technique, proposed by Shapiro [1]. Later, the basic
concept is then extended to other embedded coding schemes. For example, Taubman
and Zakhor proposed a Layered Zero Coding (LZC) method [3] in 1994, Said and
Pearlman proposed an algorithm that performs Spatial Partitioning of Images into
Hierarchical Trees (SPIHT) [2] in 1996, and Taubman proposed Embedded Block
Coding with Optimized Truncation (EBCOT)-[4] in 2000. EBCOT is adopted by the

well-known image coding standard, JPEG2000.

For embedded image and/or.video coding, rate control is a crucial module after
entropy coding. The purpose of rate control is to extract a smaller sub-bitstream from
a compressed bitstream that meets some application criteria. During the rate control
process, the frame rate, resolution, and bitrate can all be changed to form the target
bitstreams. This is called full-dimensional scalability. A rate control algorithm plays

an important role to achieve full scalability in an optimal way.

Many rate control schemes have been proposed for embedded image/video
codecs. The basic idea behind these rate control techniques is similar. In general, the
rate control scheme for embedded coders is composed of two parts. The first part isto
model the rate-distortion characteristics of a group of input image/video data, and the
second part is the bit alocation mechanism that assigns proper number of bits to

various parts of the input data according to their importance. Since similar techniques
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can be applied to both image and video codecs, the remaining discussions in this

chapter do not distinguish between these two types of applications.

2.1. Rate Distortion Characteristics M oddl

For wavelet-based codecs, image/video data is partitioned into coding units,
which could be a frame, a frequency band, or a coding block. Several rate-distortion
(R-D) modeling techniques have been proposed to establish the R-D relationship for
each coding unit [5]-[9]. An R-D model represents the degree of degradation of a
coding unit when the size of the compressed data is constrained by the available
bandwidth. The R-D models of the coding units can be used by the bit allocation
algorithm to sort out the priority of the coding units. There are two typical ways to
build the R-D characteristics model: The first one computes discrete R-D relationship
data points from the real image data for ‘model eonstruction. The other method is to

use a parameterized close-form'model!

2.1.1. Discrete R-D Modél

In wavelet-based embedded codecs, bitrate scalability is achieved by fractional
bit plane coding. As the available bandwidth of the target applications goes from low
to high, more and more fractional bit planes could be included into the target
bitstreams according to their significance. In other words, an embedded bitstream is
composed of fractional bit planes, and the more fractional bit planes the bitstream
contains, the higher quality it would be. Therefore, inclusion of an additional
fractional bit plane in a coding unit contributes to both the increase of bits (rate) and
reduction of quality loss (distortion). Recording of the rate and distortion data point of
each fractional bit plane provides a precise yet discrete R-D model of the embedded

bitstream [8] [9].
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By using real data points to represent the R-D model of the image/video data, the
tradeoff between rate and distortion a each truncation point can be precisely
determined. However, storing all the discrete R-D values for each fractional bit plane
in each coding unit during the bit allocation procedure requires a lot of memory space,
especially for video coding. Furthermore, in order to find the best truncation point
which matches the rate constraint, some search techniques (possibly time-consuming)

must be applied while doing bit allocation.

2.1.2. Parameterized Closed-form M odel

Different from the discrete R-D model approach, some literatures [5]-[7] use
close-form models to describe the R-D characteristic of the image/video data. This
approach first applies information theory ‘onsa simplified source model and a codec
model to calculate the relationship between coding rate and distortion. In the closed
form R-D equation, content-dependent” information is summarized in a few
parameters. With the parameterized R-D model, the R-D characteristic of each coding
unit will be estimated a runtime by solving the content-dependent parameters. In
general, the parameters can be estimated from the content statistics and/or by curve
fitting of sparse data points.

By using a closed-form R-D model, memory consumption of the rate control
process can be substantially reduced, but the accuracy of bit allocation may decrease,

depending on the accuracy of the R-D model.

2.2. Bit Allocation

The godl of the bit allocation procedure is to achieve maximal quality for a given
bitrate or minimal bitrate for a given distortion. Giving the R-D characteristics models

for each coding unit, nonlinear optimization techniques can then be applied to
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distribute the coding bits among all coding unit in an optimal way. A popular
approach is to use the Lagrange multiplier to transform constrained optimization
problem into unconstrained optimization problem. During this process, some
truncation points will be deleted from the candidates of optimal solutions since they
do not falls on the convex hull of R-D curves. The problem of bit allocation now
comes down to determine which combinations of all possible optimal truncation
points can meet the target bitrate best. The procedure is usually conducted in one of
two ways. The first one is to use an iterative search method to find the best
combination of the bitrate in all coding blocks by trial and error. The other approach is
to design special data structure to store extra information during Lagrange multiplier

optimization for quick location of the optimal truncation points for bit allocation.

2.2.1. Lagrange Multiplier Optimization

For each coding unit, the-Lagrange multiplier -optimization method is used to
achieve better rate distortion tradeoff [5]-[9]. In-this approach, a cost function of a
constrained optimization problem (of rate vs. distortion) is converted to an
unconstrained optimization problem using the Lagrange multiplier formulation. The
optimal solutions (for given constraints) of this cost function are located on the
convex hull of the rate-distortion curve. In another word, the tangent values of the
R-D curve at all the optimal solution points should get smaller as the bitrate increases
(assuming that the R-D function has bitrate as the domain axis). The truncated points
which do not follow the rule are not valid optimal truncation candidates.

With this optimization rule, the non-optimal truncated points at coding unit level
can be eliminated. The frame level bit allocation module for image coder or the GOP
level bit allocation module for video coder can then focus on selecting only optimal

truncation points from all the coding units in order to meet the target bitrate or target
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distortion constraints.

2.2.2. |terative search method

After the establishment of the R-D characteristic model and the optimization
process using Lagrange multiplier, each optimal truncation point contains three
attributes including rate, distortion, and the Lagrange multiplier value (refer to as the
A value hereafter). The next step is to form an optimal target bitstream given a rate or
distortion constraint. Some literatures use iterative search method to achieve this goal
[6]-[9]. Among the optimal truncation point attributes, the A values represent the trade
off parameters between rate and distortion at those truncation points. By applying a
specific A¢ to al coding units, the collective set of all truncation points with their A
values closest to A builds an optimal -bitstream with the given constraint. Simply put,
given A, an optimal bitstream fulfilling-some rate-(or distortion) constraint can be
generated (which may not exactly match'the target-constraint). An iterative search
method, such as bisection search,-¢an be used to iteratively selecting different A until
the composed bitstream meets the target constraint.

The iterative search method can create a bitstream with its bitrate or distortion
close to the target constraint. The weakness of the iterative search method is that the
convergence rate may be slow. Further improvement can be achieved if the search

process takes advantage of the R-D characteristics of the content.

2.2.3. Fast search method using special data structure

Besides the iterative search method, some studies ([5], [10]) designed special
data gructure to record R-D tradeoff points of all coding units. For example, a
heap-based structure has been proposed to process rate allocation for embedded image

coding [10]. The heap structure which contains all possible truncation points is built
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internally during encoding process and some heap manipulations, such as shiftdown
and update root, are conducted according to rate distortion property of each truncation
point. The heap manipulation operations stop when the heap tree is balanced and the
root of the tree meets the target bitrate constraint. At this point, the final bitstream is
composed. Another approach uses quadtree merge-based algorithm is proposed in [9].
Similar to the heap-based proposal, this method tries to achieve fast R-D optimization
by applying simple operations to manipulate the data structure during the bit
allocation process.

One major disadvantage of fast search algorithm with well-designed data
structure is that the memory required may be extremely large in order to build the
complete data structure to store all coding units information, especially for video

coding.
2.3. Shortcomings of Existing Work

For the two stages of embedded coding rate control algorithms, there is ill
plenty of room for improvements, either in model accuracy or in computational
complexity reduction. In the first phase of rate control, namely building R-D
characteristics model, using discrete R-D relationship data points can represent the
real rate distortion data well, but the memory requirement is pretty high. For the
methods of using closed form models, the precision of hitting the target constraint
(rate or distortion) depends on the accuracy of the model. Therefore, in order to meet
the target constraint with high precision and low complexity, an accurate closed form
model based on more elaborated theoretical analysis is necessary.

In the second phase of rate control, namely the bit alocation procedure, neither
iterative search method nor fast data structure approach takes advantage of the
characteristics of the content. Although these types of bit allocation are accurate, the

18



computational complexity is high. A content-adaptive bit allocation scheme should be
developed in order to reduce the computational complexity while maintain the

accuracy of the solution.
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3. Problem Formulation and Analyss

The goal of thisthesisis to formulate an embedded codec rate control algorithm
which can well explore full-dimensional scalability, namely spatial (resolution)
scalability, temporal (frame rate) scalability and SNR (quality) scalability. The
proposed mechanism is designed for low-complexity systems and achieves low
memory usage with high computational efficiency while maintaining same quality. In
addition, the proposed scheme is more suitable for multiple adaptation applications.

To design a scalable rate control algorithm, first, we must derive an R-D model
which can adaptively and accurately describe the characteristics of image/video
contents. The derivation of the model,isibased on information theory. Secondly, it is
crucial to adopt a proper optimization technigue.that'works well with the model. Since
a well-designed bit allocation procedure should achieve better trade-off between rate
and distortion efficiently, the optimization technigue becomes an essential element to
accomplish the goal.

In the following sections, the common embedded coding scheme is first
introduced. The concepts of related information theories are then explained, and the
conditions of using the theories in source coding are also analyzed. Finally, the critical

parts for solving the problem are discussed.

3.1. Introduction to Wavelet-based Embedded Coding

In this section, the coding procedure of a general wavelet-based embedded codec
is introduced. The components related to the proposed rate control mechanism are
presented, and the input and output data format is defined. In addition, the architecture

of ageneral rate control mechanism isillustrated as a basis of the proposed algorithm.
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3.1.1. Overall Scheme of Wavelet-based Embedded Coding

Original
YCsCr data v
Context
Temporal Modeling
Scalability?
y
Arithmetic
A 4 . Coding
Temporal Spatial
MCTF DWT .
Rate
v Allocation
Quantizer l
Output
Embedded
Bitstream

Fig 2. General wavelet coding framework.

A general framework for wavelet-based embedded image/video coding [4] [8] [9]
is shown in Fig 2. The input YCgCr ffame data is-first transformed into frequency
domain via temporal (for video coding only) and spatial (for both image and video
coding) subband decomposition. . The transform process is followed by the
guantization process and the entropy coder with rate alocation mechanism. Popular
wavelet-based image and video coders typically use Discrete Wavelet Transform
(DWT) for spatial subband decomposition and Motion-Compensated Temporal
Filtering (MCTF) for temporal subband decomposition. Arithmetic coding with
adaptive context modeling is adopted as the entropy coder. And the rate allocation
procedure is used to explore bitrate (quality) scalability of the embedded bitstreams.
The input to the rate allocation mechanism is the complete entropy-coded embedded
bitstream while the output is its subset which matches the target criterions.

The differences between embedded image coding and video coding are mainly in
the application of MCTF in temporal axis and the context models for each subband in

the entropy coder. The rate allocation mechanism, the main topic of this paper, can be
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applied to both wavelet image and video codecs in a similar manner.

3.1.2. General Rate Control Algorithm

After temporal and spatial wavelet transform, each decomposed frequency
subbands are coded independently, and the pixels in a subband are split into coding
units. The R-D curve which characterizes the content of a coding unit is established
by achievable rate distortion points and is formed during entropy coding procedure.
The rate alocation process then tries to find the optimal embedded points on the R-D
curve according to the prospective target bitrates. The formation of a quality layer
with a given bitrate criterion is illustrated in Fig 3. The optimal truncated bitstream
that matches the given target bitrate with minimum distortion is typically found by

using iterative optimization techniques:

Coding R-D
Unit 1 » Curve i N
A 4
- Optimization
Coding R-D Technique & Near
Unit 2 » Curve?2 > Bit Target Rate?
Allocation

Y
Coding R-D Forma
Unit n » Curven quality

layer

Fig 3. General algorithm for quality layer formation

The proposed rate control scheme follows the general wavelet coding framework.
Nevertheless, the proposed algorithm reduces memory usage by deriving an efficient
R-D model and slashes computational cost by adopting a better bit allocation

mechanism.
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3.2. Basisof the Proposed Formulation

In this section, the fundamental theories which will be used for the development
of the proposed algorithm are introduced. There are two procedures in a generic
wavelet-based scalable rate control mechanism, namely, the construction of the rate
distortion model and the bit allocation process. The first procedure is based on rate
distortion function analysis, while the second procedure usually utilizes the Lagrange

multiplier optimization technique.

3.2.1. Rate Distortion Function

The concept of rate distortion function is first published by Shannon in 1948 in
his famous paper on Information Theory [11]. The problem is discussed based on a
classical communication system,.which consists. of source, source coder, channel
coder, channel, channel decoder, source decoder and destination. The source content
is transmitted from source to destination_through 'the coders and the channel. The
original source bitsis represented as b;-and the content bits received by the destination
side is symbolized as b’. The distortion made from the source coder, channel coder
and the channel noise is represented as d (b, b’) which is measured by certain
distortion criterion. Because the distinct rate distortion function is difficult to compute,
the approximation can usually be described by various bounds. The best known of
these bounds, the “Shannon Lower Bound’, is designed for continuous amplitude b
and b’ and is given as follows. The E(x) function represents the entropy of the signal

X.
R(D) > E(b) - E(d(b,b")),

(1)
E(x) = | p(x) log, p(x)dx

23



The equation gives the lower bound of the channel capacity required to obtain
the content with distortion lower than d (b, b') on the destination side.

By using the basic form, several literatures elaborate the equation with different
distortion measure criterion and various probability density functions for the source
[12] [13] [14]. Eq (2) shows the function with the distortion criterion, square error,

which is a frequently used measurement in source coding.
1
R(D) > E(b) —5 log, (27eD) 2

The following equations give a general form of the square-error-criterion rate

distortion function by the inference of Eq (2).

R(D) > E(b) —%Iogz(Zﬂ'eD) =R (D)

1 1
R (D) = E|og2 2°E® —Elogz(Zﬂ'eD) -
1 | 22E(b) 22E(b)
R o=
29255 2re
— £|ng 2
2 D

The parameter, w, in Eq (3) is related to the probability density function of the
source signal. Take Gaussian distribution for example, assume the arbitrary mean is x,

the variance is %, and the probability density function is
: —(x—p)?
P9 = (270%) % expl~ 1], @

The entropy of the source signal with Gaussian distribution is
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E(p) :%Iog2 2mec?. (5)

Therefore,
22E()
a):
2me
2meo?
= and
2me
:02
(6)
1 «
D)==log, —
R (D) 5100 5
_llog 0_2
2 %D

In order to make sure that .the R value is.nonnegative, the equation can be

rewritten as

2

_ maxZiea O
R (D) = max(log, ~.0)

2 . 7
_ llogzg—, 0<D<o? 0
=12 D
0 , D> o?
In this section, the general rate distortion relationship is established. The rate
distortion model can be extended by using different distortion measures or content

probability density functions.

3.2.2. Lagrange Multiplier Optimization

In the bit allocation procedure, the goa is to generate a final bitstream which
matches the criterion of the target bitrate and also minimizes the distortion. The
general format of the problem can be described below as a budget-constrained

allocation problem [15].
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Find the optimal quantizer, or operating point, X(i) for each coding unit i such that

N
Zrix(i) <R (8)
i=1

and some metric  f (dy, gy, dyy0)s Aayzyreeeees Qpeny) IS Minimized.

The classical solution for the problem is based on the Lagrange optimization
technique first introduced by Everett [16]. This approach is used for a source coding
application in the beginning and applied to various constrained allocation problem
later. The basic idea is described as follows. For a given Lagrange multiplier A which
is nonnegative, the Lagrangian cost function for each coding unit i under certain

operating criterion j is formulated in Eq (9).
‘Jij(R):dij +/1rij ©)

The concept of the Lagrangian costristittustrated in Fig 4. When the A value is
close to zero, the tangent line (with-'slope %) of the optimal solution is almost like a
horizontal line. As a result, minimizing Lagrangian cost, J, is equal to minimizing the
distortion. On the other hand, minimizing J function when A becomes rather large is
equivalent to minimizing the rate. In another words, A value plays arole to define the
trade-off between rate and distortion. For a given A, the operating point which has the
nearest trade-off property will be selected by minimizing the Lagrangian cost

function.
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Fig 4. The Lagrangian cost function for the operating pointswith different
rate and distortion values

By adopting Lagrange multiplier optimization technique, Eq (8) is simply
transformed into an unconstrained preblem as Eq (9). But the constrained budget
should till be taken care of by the defining:a proper A value. Consequently, the
determination of A value is difficult because both:the trade-off property and the
budget criterion should be considered simultaneously. As soon as the A value is
decided, the best operating point choice’is easily made by minimization of the

Lagrangian cost function.

3.3. Analysisof Source Coding Information Theory

Some issues when applying information theory to source coding are first
discussed in this section. The application of the rate distortion function of wavelet
coder with different content and coding parameters is then presented. Finally, the
operations and insights of applying Lagrange Multiplier optimization techniques to

source coding are described.

3.3.1. Rate Distortion Function

In the previous section, the general form of rate distortion function is formulated
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asin Eq. (10).

D2E(b)

)
RL(D)_ZIOQZD’ = ot (10)

Some literatures apply the function to embedded wavelet coder [5] [6], and make
a little empirical adjustment on the parameters. The revised relationship with an

additional parameter, y, is shown in Eq (11).

D2E(b)

1 @
R(D)ZEZIOQZB’ W= (11)

2me

The parameter, y, characterizes the exponentially decaying rate. Base on the
analysis of the experimental result in the literatures [5] [6], the parameter is proved to
be related to the distribution of .the source. As a.result, the general rate distortion
function which is suitable for embedded wavelet coder with square-error distortion

measure is shown below.

1 a
R = In—=
(®) 2/IogzeZ D w_ZZE“’)
] ) ’ 2me
=ring (12)

We conducted an experiment on the MSRA codec to examine the precision of the
rate distortion relationship in Eq (12). The test sequence is Stefan in CIF resolution.
The partial results for two coding blocks are shown in Fig 5. Each point in the figure
represents an available truncated point in a coding block, and each curve represents
the characteristic model for a coding block. The models are calculated by solving the

parameter y, w in Eq (12) using least-squares-error curve fitting method. According to
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the distribution of the content, these two coding blocks have different values of the
parameters shown in Eq (13). The experiment shows the precision and the reliability
of the rate distortion function when applying to coding blocks with different

characteristics.

Coding Block 1: D,(R)) =3739.1e %R,
(13)
Coding Block 2: D,(R,) =19794 ¢ %' "z,

x10" RD function for coding blocks
3 \ T \
: N
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— | | T
T IR N s .
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g0 N R |
8 CN | |
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Fig 5. R-D Modd for Coding Blocksin the M SRA Codec

3.3.2. Lagrange Multiplier Optimization

The operations while applying the Lagrange Multiplier optimization technique in
source coding are described as follows. For the constraint R < Ruarger, the “achievable”
R-D point on the R-D curve with minimum distortion is the optimal solution. To solve
the constrained optimization problem, it is easier to transform the problem into an
unconstrained problem by adopting Lagrange optimization technique, as Eq (9). For a
given Lagrange multiplier A, a rate-distortion point with minimum J(R) in Eq (9) is
the optimal solution.

To demongraes how R-D optimization works in practical applications, we conducted an
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experiment using the M reference oftware of the H.264/AVC codec. The R-D curves of
possible coding modes corresponding to two macroblocks in Fig 6 are shown in Hg 7. Each
curve in Fg 7 is generated with five different quantization parameters, and the coding modes
including INTER-16x16, INTER-16x8, INTER-8x16, INTER-8x8, INTRA-16x16 and
INTRA-4x4. Fg 8 and Fig 9 show magnified plots of the R-D curves corresponding to the
curve of QP = 11in Fig 7, and the dope of the tangent lines represent the value of the Lagrange
multiplier. In addition, the arrowsin the figures show the pointsthe Lagrange multiplier linefirst
hit, which are the optimized modes with the lowest value of the cogt function.

There are two insights to the R-D optimization scheme. First, for each coding
unit, namely a macroblock in this example, R-D optimization mechanism makes
coding decision according to the trade-off ratio, Lagrange multiplier. The rate
distortion points which do not locate on the convex hull of all possible operating
points will not be selected regardless of the Lagrange multiplier. Secondly, by
applying the same Lagrange multiplier-value-to all-macroblocks, the rate distortion
optimization mechanism automatically-distributes more bits to the macroblocks with
more detail information because the rate distortion curves of these macroblocks are
much steeper. In Fig 8 and Fig 9, the macroblock on Sefan's foot which comparably
contains more complicated details allocates 1250 hits while the macroblock on the tennis court

alocates only 400 bits
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3.4. Implementation I ssues

So far, we have introduced the theory background of scalable rate control

algorithms. However, there are sill some gap between the theory and an actua
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implementation. For example, the determination of the Lagrange multiplier value is
difficult in practice, and the overall bit allocation procedure should be restructured in
order to achieve computational efficiency. Solutions to these issues will be developed

in the proposed scheme in the following chapters.
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4. Proposed Rate Control Framework

In order to design a highly efficient rate control mechanism for resource
constrained system, the general scheme for rate control extractor and the critical part
in the current method are first clarified. Then the proposed algorithm including
rate-lambda model and overall procedures are elaborated according to the theory basis
introduced in the previous section. Finally, a particular application scenario,
multiple-adaptation for media delivery, is introduced. The advantage of using the

proposed algorithm in the multiple-adaptation scenario will be described.

4.1. General Rate Control Extractor

r==="="F — - -  ~ -~~~ - -==== 1

| |

Entropy 1 | Prepare |
Coded —+{ Global Bitpizm | l
Bitstream : Information :

1 Truncate 1

| : |

Layer- | Bitstream |
Structured/ Release Form I
Fully- ! Memo Bitstream !
Embedded | Yy I
Bitstream : :
h e o oo oo oo e o e e e e o e e e e e e e e e o ol

Fig 10. Flow Chart of M SRA Rate Control Extractor

The general scheme for arate control extractor is shown in the flow chart in Fig
10. The extractor may be executed on the server side right after the encoding
procedure or be used as a stand-alone module on a transport gateway or even the
client side. No matter which case the extractor belongs to, the general procedures
begin with global information preparation. The global data includes the entropy-coded
bitstream and the usage scenario criterions for the output bitstream. The usage

scenario determines the video parameters such as the number of layers, the resolution,
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the frame rate, and the bit rate for the target applications. A bitstream encoded using
the MSRA codec is organized in the format shown in Fig 11. A bitstream parser
extracts the information for the truncated candidates from the headers. After all the
required data are collected, the bitstream truncation procedure begins without entropy
decoding involved. The truncation module decides the truncation point in order to
meet the resolution, frame rate, and bit rate criterions. The bitstream is then composed
again with new header information and truncated body bits. The new bitstream should

conform to the usage scenario and can be transmitted over the network to the target

recipient.
GOPO |Layer 0| Comp0| Motion Info TBand0 SBandQTBand0 SBand0 TBand n SBand n
Header | Header | Header | If Comp=0 e Elieer Elige s
= Header Header '['"77° Header
BandOBlock O | BandOBlock 1 BandOBlock n
Body Body °["77° Body
. TBando SBand0TBand0 SBandd TBand n SBand n
Layer 1{ Comp 0| Motion Info
Header | Header | 1f Comp = 0 Block O Block 1 Block n
p= Header Header :f---: Header
BandOBlock O | BandOBlock 1 BandOBlock n
Body Body .|.... Body

Fig 11. Bitstream For mat

In order to reduce the computational cost of the rate control extractor, the profile
of the computation time should be analyzed first. Fig 12 shows the percentage of
computation time for each module in MSRA codec rate control extractor. The
profiling is done by Microsoft Visual C++ development environment. The test
sequence is Foreman in CIF resolution. The pie chart shows that the critical part for
doing rate control is the truncation module. Therefore, reducing the complexity of

bitstream truncation is crucial for a highly efficient rate control extractor.
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Fig 12. Overall Computation Cost Analysis

The truncation operation of a embedded scalable bitstream can be classified into
three cases, including resolution change, frame rate change, and bitrate change. These
cases are shown in Fig 13 to Fig 15. For resolution change, the truncation candidates
are the boundaries of the spatial wavelet subband. ‘The number of the candidates
depends on the level of spatial-wavelet decqmpositibn. Similarly, temporal wavelet
subbands contribute to the frame. rate scalability. The low frequency band in the
highest level has the highest priority. As the subband in the bitstream increase by one
level, the frame rate is doubled. The bitrate scalability is the most complicated
truncation procedure among the three cases. The candidate truncation points are the
fractional pass in each bitplane for each coding block. The truncated bitplane passes
for different coding blocks may be different according to the characteristics of the
contents in the blocks. It is important to distribute the bits to visually more important
subbands in order to compose a bitstream with best quality. The resulting bitstream is
called a rate distortion optimized bitstream for a given target rate. Because the
complexity of the bitrate scalability truncation procedures is very high, reducing its

complexity is the main target of this thesis.
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Fig 15. Truncation for Bitrate (Quality) Scalability.

4.2. Proposed Rate Control Extractor

According to the profiling results in the previous section, it is obvious that the
truncation procedure for bitrate scalability is the most critical part in rate control
scheme. Therefore, under the general rate control framework shown in Fig 16, the

concept of the propose method tries to build a continuous rate lambda relationship
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function for each coding block and each GOP in order to speed up the search for the
optimal truncation points. The rate of each coding block corresponds to the truncation
point, and the rate of each GOP corresponds to the target bit rate. These two values
are related to each others by the lambda value. Therefore, the truncated point for each

coding block can be selected given the target bit rate.

Proposed Rate Control Kernel
Layer-
Entropy Rate Distortion Bit Strlliﬁtltjr?d /
Coded —— Characteristics Allocation y
. . Embedded
Bitstream Mode M echanism .
Bitstream
coding
block Rate (truncation point)«——— Lambda «——— Rate (target bitrate) GOP
level R poa( A) A (Reop) level

Fig 16. The Concept of the Proposed Rate Control Extractor

In the following subsections; the key technigue of the thesis, the R-Lambda
models for coding block level-and GOP level, will first be introduced. Then the
overall algorithm adopting the R-Lambda-model will be elaborated. Finally, the

comparison between the proposed methed-and the current approach will be presented.

4.2.1. R-Lambda Model Analysis

The proposed R-Lambda model for each coding block is established by
combining rate distortion function and Lagrange multiplier optimization technique.
The rate distortion theory has been introduced in 3.2.1 and a practical example for
wavelet based scalable video coding was illustrated in 3.3.1. The rate distortion
function is repeated again in Eq (14) and the Lagrange function introduced in 3.2.2 is

shown in Eq (15).

— yin%
R(D) =7In—. (14)
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J(R)=D+4R. (15)

In Eq (14), the parameter y depends on the distribution of the source, and the
parameter o is related to signal variance. For a given value 4, the minimization of J(R)

in Eq (15) can be obtained when the first derivative dJ(R)/dR =0, that is,

dJ(R) _ dD(R)

W), 30, and (16)
R R
1--9OR) (17)
dR

Solve Eq (14) for D and substitute it into Eq (17), the relationship between the

Lagrange multiplier and the bitrate can be derived as follows,

_dd(R)_ dR%(D)

CTTR TR
vt ' (18)
d| e
__ ( j:ﬁwe%
drR ¥

In summary, the R-Lambda model in coding block level can be written asin Eq

(19) where the parameters a and 3 are source dependent:

A=aeR (19)

In order to prove the accuracy of the model, an experiment is conducted on
MSRA codec. Fig 17 illustrates the practical situation for the test sequence,
FOOTBALL. Each point in the graph represents a truncation point. By curve fitting,
the RD information for each truncated point can be represented as the equation with

only two parameters.
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Fig 17. Coding Block level R-Lambda Relationship Examination

The GOP level R-lambda model can be extended from the model in coding block

level asin Eq (20) and Eq. (21):

A =0, Rznlax(%lng, 0), (20)

For >0, <0

A

_ _ 1.4
RGOP_iZRblocki _Izrnax(ﬂl InO(I ’ O)
:Zj:ﬂijlnaij which{j e S, > A in S 21
=Zj:ﬂij(lnl—lnaj)

:(Zj:ﬂij)lnl—(zj:ﬂijlnaj)

It is straightforward that the rate in a GOP is the sum of the rate in a group of
coding blocks (Eq (21)), and the size of the group is related to the lambda value.

and therefore the two summation terms P and Q as defined in Eq.(22):
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1 1
Pcor = Z_ and Ogop = Z_Inaj ' (22)
i :Bj i :Bj
In order to keep the model simple, we assume that these two summations can be

modeled by polynomials (Eq (23)) asfollows:

P =3, (IN(A))"* +a,(In(2))"* +---+a, and
(23)
Oeop = B (IN(A))" +b,(IN(A))" > +---+ b

n

Finally, the relationship of the GOP level R-lambda model is established (Eq.
(24)).

RGOP = Poor Ind - Ocop

24
— I Pt - 29

GOP level R-Lambda Relationship
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Fig 18. GOPlevel R-Lambda Relationship Examination

The graph in Fig 18 illustrates the accuracy of the proposed R-lambda model in
the GOP level. The order of the function is determined by the experience of the

experimental results. Statistically, a cubic function can be used to fit the data points
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well for awide range of rate.

4.2.2. Overall Framework

The proposed algorithm uses the R-lambda model for two purposes. One is to
search for the optimal A for a quality layer in the GOP level, and the other is to

describe the R-D characteristics of a single block in the coding block level.

The coding block level model Eq (19) is used as an adaptive model since the
source dependent parameters a and 3 are estimated causally based on the input data
Given n pairs of numerical data (A, R), 1 =0, ... n—1, the parameter a and 8 can be
calculated as follows. First, Eq (19) can be rewritten as Ink = Ina + B - R. Therefore,

for n > 2 we have an over-determined system of equations,

InA,
InA,

(Irllg aj : 25)

s

1R
iR
-7

1R

In/‘ih_1

The system can be solved by the least-squares estimation. Once the parameters o
and S are determined, the relationship between the Lagrange multiplier and rate is
directly established. In a similar manner, the GOP level R-lambda model (Eq (24)) is
adaptively built by the least-squares curve fitting method. For certain GOP, assume

that

RGOPl (Inﬂ'l)n (lnﬂi)nil"‘ 1 h
Y =| Ry, |+ A=[(IN4)" (InA)"" -+ Lland | 72 |, (26)

7n+1

the parametersy 1, v o+ 7 3 ae solved by the matrix operations:
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Y = AX, and
(27)
X=(ATATATY.
As the whole GOP level R-lambda model is established, the lambda value is

solved by the following algebraic functions.

If n=2,
28
IM:—72—\/722—471(73—Raga)_ (@)
2y,
If n=3,
let & =717, a=¥lr = R 7
S=IYN+VM3+N?, T=RN-M?*+N? 29)
1
S+T-=
331
1 1 1.
> INA=-=(S+T)-=a, +=iv3(S-T
%( ) :1381 % ( )
—Z(S+T)-Za, -=iV3(S-T
2( ) 3475 ( )

The overall proposed algorithm which adopts the R-lambda model is described
as follows (Fig 19). In the bit allocation mechanism, the R-lambda model is used to
search the lambda value in the GOP level, and in the rate distortion optimization
procedure, the R-lambda function is used to represent the rate distortion properties in

the coding block level.
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Fig 19. Overall Framework of the Proposed Rate Control M echanism

1. Search for the optimal Lagrange multiplier : The GOP level R-lambda model
is adopted in this step to simulate'the behavior. of datain a GOP. The aim is to speed
up optimal Lagrange multiplier 'search by better understanding of the R-lambda
relationship rather than blind iterative searchrwith bisection method. Detail flow chart
of the algorithm is described step by step asfollows:

a) Find the first n pairs of (A, R) in the base layer, and n is typically 4 for the
cubic model in GOP level.

b) Solve for the parameter (7 1, 7 »,-++ 7 3) using Eq (27).

¢) Given target bitrate, estimate A using Eq (29).

d) Use the estimated A to form the bitstream layer and obtain another (A, R) data
point.

€) Add the new (A, R) pair to the data set.

f) Iteratively doing b)-e) until the R value is close enough to the target bitrate
within atolerable error range TR.

h) Repeat the procedure for the enhancement layers.



In the proposed agorithm, no additional memory storage is needed. Furthermore,
the smaller the n is, the lower the computational overhead will be. The experimental
results in next section show that even for a small n value, the accuracy of the
algorithm is still good.

2. Represent RD property of a coding block: In procedure d), a bitstream layer is
formed given a Lagrange multiplier value. The truncation point of each coding block
is determined at the fractional bitplane pass with the nearest Lagrange multiplier value.
To achieve the typical coding block level rate allocation, the Lagrange multiplier
value of each fractional bitplane pass in all coding blocks should be stored during tier
1 of entropy coding. In order to reduce the memory usage of the information and
distribute the rate among all coding blocks based on information theory, the coding
block level R-lambda model is applied to describe.the property of each coding block.
Therefore, only the parameters e and  should-be stored for a single coding block, and
the coding block level rate allocation’can-be easily done by adopting the inverse
R-lambda model with a given Lagrange multiplier. In the proposed method, the

truncation point would be the fractional bitplane pass with the nearest rate.

4.2.3. Lambda Search Procedure

A real example of the comparison of different lambda search procedures in the
GOP level are shown in the graphs Fig 20, Fig 21. The experiment is conducted using
the MSRA codec, the test sequence is FOOTBALL in CIF resolution with frame rate
30 frames per second. The truncation criterions are QCIF resolution, 7.5 frames per
second, bitrate 128 bps for layer 1 and QCIF resolution, 15 frames per second, bitrate
192 bps for layer 2. The original codec uses the conventional bisection method. The
search approach starts from the initial maximum and minimum lambda estimation.

After the bitstream formation, the exact bitrate value will be obtained. Then the next
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estimation of the lambda value is at half of the range between maximum and
minimum values. By half-eliminating the search range at each iterative operation, the
search results converge and the lambda point which meets the target bitrate is

obtained at the end. The number in Fig 20 shows the path of each searching step.

Bisection Search Path Layer2
70000 (QCIF_15fps_192kbps)
60000 / ¢ Layerl
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= 50000 \
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Fig 20. Search Path for Bisection M ethod
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Fig 21. Search Path for the Proposed M ethod

For using the proposed algorithm, the lambda value is estimated in a different
way. Because the model is implemented with a cubic function, the procedures should
start from four initial guess at least which the arrows point to in Fig 21. Then the
model is form using curve fitting method in the figure. Usually, the lambda estimation

using the proposed model can meet the target in two steps.
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The basic difference between these two methods is in the estimation of the rate
distortion behavior. The previous method uses blind bisection search to decide the
bitstream formulation method only by using the real data points. The rate distortion
behavior can be obtained when the test points achieve certain quantity. On the other
hand, the proposed approach tries to model the form of the rate distortion behavior at
the beginning by using the R-A model, and fine tune the parameters of the model
according to the real data points. Therefore, the model represents the characteristic of
the content well, the accuracy of the predicted A value is higher, and the converging

speed is faster.

4.3. Proposed Multiple Adaptation Scheme

Bitstream Adapted
Truncation Bitstream

Encoder

1. Fully embedded bitstream
2. RD side information

Fig 22. Mulitiple Adaptation Behavior

In a multiple adaptation system, the sending device should provide both a fully
embedded bitstream and the RD side information to the receiving device in order for
it to do the second truncation. The bitstream can be adapted and transmitted several
times to different devices with different channel bandwidth and capabilities. The
bitstream truncation can be executed several times without complete bitstream
decoding involved. A multiple adaptation scheme is useful only when the system
overhead is not too high. That is, the RD side information is small and the complexity
of the truncation module is low.

The side information in the MSRA codec is the discrete rate-lambda pairs for all
coding passes. On the contrary, the proposed method translates the discrete R-D

values into a close form R-lambda function with only two parameters. As aresult, the
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size of the side information is reduced. Based on the computation cost analysis from
the previous section, the number of iterations of the search procedures also reduces.
More experimental results will be shown in chapter 5 to support the advantages of the

proposed model.
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5. Experimental Reaults

In this section, some experiments on the proposed algorithm are conducted using
the MSRA scalable video codec, with the MPEG test sequences, STEFAN,
FOREMAN, MOBILE and FOOTBALL in CIF resolution. The coding parameters
used in the experiments are as follows. The GOP size is 64 frames, and the frame rate
is 30 fps. The parameter n in the GOP level model is set to 3, and the bitrate error
threshold Tris set to 3% of the target bitrate.

Even though the experiments are conducted on a wavelet-based scalable video
codec, similar results should apply to wavelet-based still image codec due to the

similarity of these techniques.

5.1. Computational Cost' Reduction in.Rate Control Extractor

The number of iterations required-before the solution converges for the proposed
method and the commonly used bisection'search is shown in TABLE |. The average
computation cost saving is about 47% when the resolution and frame rate setting for

each layer are all different.

Sequence MSRA R- 4 Modd Saving Ratio
Bisection
M obile 9.67 5.30 45.17 %
Foreman 10,68 4.55 57.41 %
Football 7.84 4.70 40.05 %
Average 9.40 4.85 47.54 %

Table 1. Number of Iterations Comparison for Lambda Search

When the number of layers for the each resolution and frame rate setting
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increases, the search procedure can converges even faster by taking advantage of the
R-lambda model from the previous layer. According to our experiments, the saving
ratio is about 60% when the layer number is 5, and up to 80% when the layer number

is12 (Fig 23).
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Fig 23. Saving Ratio of the I teration Times
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Fig 24. Overall Computational Cost Saving for Rate Control Extractor

Besides the lambda search procedures, the overall computational cost saving is
shown in Fig 24. The tes sequence is FOREMAN in CIF resolution and the rate

control extractor truncates the bitstream from 768 bps to 256bps. The CPU usage
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percentage of the bitstream truncation module is reduced from 71% to 26%. Namely,
the overall saving ratio is about 45%.

Since the proposed mechanism allocates rate for each coding block in a model
based method, the rate distribution in a GOP is rearranged. The coding efficiency
graph is shown in Fig 25, Fig 26 and Fig 27. The test sequences are STEFAN,
MOBILE, and FOREMAN in CIF resolution and are truncated at frame rate 30 and
15. The figures show that the proposed rate control mechanism achieves similar
PSNR performance with MSRA codec at any range of the rate. The average PSNR

degradation is only 0.25dB.
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The reason for the PSNR degradation of the proposed approach is explained as
follows. Fig 28 shows the PSNR performance comparison of all frames in the
FOREMAN sequence. The frame level PSNR value'of the proposed method meets the
value of origina method well;with a little degradation in each frame. Taking the
second GOP for example, the results of bit allocation is show in Fig 29 - Fig 31. The
frames in the first row represent the highest frequency in temporal direction, and the
top-left blocks in each frame represent the lowest frequency in spatial direction. The
comparison between Fig 29 and Fig 30 is shown in Fig 31. The blocks with white
color get more bits by using the proposed approach, and the blocks with black color
obtain fewer bits. The figure shows that the proposed method allocates fewer bits to
the top-left blocks in the low frequency frames which contain the most important
information. As a result, the PSNR performance in the proposed method suffers a

little degradation.
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5.2. Sdelnformation Saving for Multiple Adaptation Scheme

The experimental result in the Table 2 shows the saving ratio in different
resolution and frame rate for different sequences in a multiple-adaptation scenario.

The average saving ratio is about 50%, -and the side information percentage in the

bitstream is reduced from 3.5%t0 1.7%.

Sequence | Resolution / #/|:Sde information bits (% in bitstream)| Saving
Name frame rate/ MSRA Proposed Ratio

bit rate (kbps) Method

Mobile | CIF/30/768 | 266,864 (3.39%) | 128,475 (1.63%) | 51.86%

CIF/30/512 | 165,691 (3.16%) | 78,030 (1.49%) | 52.91%

CIF/30/384 | 112,793 (2.87%) | 52,924 (1.35%) | 53.08%

CIF/15/256 | 73,981 (2.82%) | 32,718 (1.26%) | 55.78%

Foreman | CIF/30/768 | 332,417 (4.23%) | 166,249 (2,12%) | 49.99%

CIF/30/512 |234,343(4.47 %) | 107,864 (2.06%) | 53.97%

CIF/30/256 | 109,067 (4.17%) | 49,737 (1.90%) | 54.40%

CIF/15/192 | 86,234(4.40%) | 41,488 (2.12%) | 51.89%

Football | CIF/30/1380 | 347,746 (3.06%) | 186,822 (1.64%) | 46.28%

CIF/30/1024 | 282,381 (3.11%) | 149,396 (1.64%) | 47.09%

CIF/30/768 | 213,047 (3.13%) | 110,072 (1.61%) | 48.33%

CIF/15/512 | 141,205 (3.11%) | 76,603 (1.69%) | 45.75%

Average 3.5% 1.7% 50.94%

Table2. Sidelnformation Saving Ratio




6. Condugon and FutureWork

In this thesis, a novel adaptive model-based rate alocation mechanism for
embedded wavelet image/video coding is proposed. By using the R-lambda model, a
low complexity search procedures in the rate control mechanism is proposed. The
proposed approach has many advantages over the existing ones. Detail comparisons
of different rate control algorithms are listed in Table 3.

In the rate distortion characteristics module, the proposed method translates the
behavior description from discrete data into a ssmple model. The coding block level
lambdap(rate) model is prepared for GOP level bit allocation. The lambda value
search procedure is achieved by using a adaptive rategop(lambda) model constructed
at runtime instead of blind bisection search. And-the distributed bit for each coding
block is decided by the inverse lambdag(rate) madel. The truncation pass is then
determined by finding the pass with the.hearest;rate value. All these procedures aims
at designing alow computational cost rate control extractor.

In addition, the R-D side information for multiple adaptation applications is
reduced, which provides another advantage for the proposed method. The side
information includes only two parameters in lambdag,(rate) model for each coding
block instead of all discrete rate-lambda pairs for all coding pass. Therefore, the size

of the side information is reduced.
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Rate Control Extractor | Original MSRA Proposed Model- Advantage of the
Module codec based approach Proposed method
RD Characteristics/ Discreterate-lambda | Lambda(ratey,) model | Speed up search

Behavior Description pairsfor each pass build procedure with low

(for each coding block) computational cost

Bit Lambda Bisection Adaptively build
Allocation | Search/ Search Rategop(lambda)
(for each Decision model and estimate
GOP) lambdavalue by the
model
Truncation | Search coding pass | 1. Obtain distributed
Pass with the nearest R by inverse
Decision lambda value Lambda(ratey,) model
in coding block level
2. find the pass with
the nearest rate value

Side Information Discreterate-lambda | Two parametersin Low side
pairs Lambda(ratey,) model | information
requirement

Table3. Algorithm Comparison

There are some differences in; the design. of the rate control mechanisms for
different codecs. The comparisons are shown in Table 4. In the case of H.264, the
output format is not an embedded bitstream. The rate control mechanism is involved
in the encoding loop. Namely, the post-encoding rate control mechanism is not
suitable for this type of codec. And fractional bit plane coding which can be easily
used for rate distortion information extraction is not adopted. Therefore, the rate
distortion behavior analysis can not be performed at runtime unless the encoding loop
is executed several times with different quantization values. The approach increases
the complexity of the system. A better way to design a rate control mechanism for a
non-embedded bitstream is by buffer fullness analysis or content complexity analysis.
These approaches can be applied efficiently in the encoding loop and the approximate

rate distortion behavior can be obtained.
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Comparison H.264 Wavelet-based JSVM (H.264
Scalable Codec of | Scalable Extension of
MSRA HHI)
Embedded X o 0]
bitstream
Fractiona bit X 0] o
plane coding (Progressive
refinement)
Rate Distortion | 1. Rate distortion Rate distortion Rate distortion
Behavior behavior isnot behavior can be behavior can be built
Anaysis easily built by built by using by using progressive
runtime data. fraction bit plane refinement
2. Several encoding | information information
loops is needed by
adopting different
QP.
Rate Control Buffer fullness The proposed The proposed
Module analysisand adaptive model can | adaptive model can
content complexity | be used by be used by collecting
analysis collecting therd the rd behavior
behavior

Table4. Rate Control Mechanism Comparison

For embedded bitstream ‘compressed by some scalable codecs, such as the
wavelet-based codec by MSRA or JSVMhy HHI, the architecture and bitstream
format is suitable for post-encoding rate: control mechanism. The rate distortion
behavior can be built by using fractional bit plane information, which is called
progressive refinement in JSVM. Here, the bit plane coding is divided into three scans
in order to increase the rate distortion points on the convex hull and also increase the
truncated points. By taking advantage of this feature, the overall rate distortion
behavior is easily obtained and can be described by the proposed adaptive model.
Hence, the rate control mechanism is more efficient than the methods which use trial
and error approaches to achieve the target bitrate. For embedded coder with this
feature, the rate distortion can be model by a function and the proposed model can be
adopted as an accelerator.

There are ill quite some improvements that can be made to the proposed
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algorithm. For example, one can refine the R-D model and introduce visual quality
measures into the rate allocation process. In addition, the motion bits should be taken
into account and can be analyzed independently using a different model because the
impacts of the motion information and the transform coefficients are different. The
algorithm can be implemented on resource critical embedded system with further
consideration of some platform issues. For example, for a hardware-based solution,
the operations should be simplified further to follow the parallelism and data reused
guidelines for hardware accelerator design. Further improvements can be expected

with these efforts.
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