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摘 要       
 

   本論文之第一部分在探討沉浸邊界法中求解壓力項或是指示函數之精度，我

們提供一維的理論證明與二維的數值結果來說明 L1範數為一階收斂，L2範數為

半階收斂，而 L∞
範數則存在 O(1)的誤差。我們也將討論帶有其他種類界面奇異

項的帕松方程式(Poisson Equation)，求解時的精度預測。 
 
   第二部份我們探討兩項流中分子兩端極性不同的界面活性劑，這些分子通常

喜好駐於兩種液體的界面上，而且能透過吸收與釋放等過程跟可溶於液體中之界

面活性劑交流。這類問題牽涉到在可變形界面上或是複雜區域內求解偏微分方

程，因此在界面變動時如何精確計算界面與外在區域耦合之對流擴散方程實為本

問題重點所在。我們首先改寫可溶的複雜區域內界面活性劑濃度方程，透過前述

指示函數讓該方程鑲嵌於規則空間以方便計算，此外界面與外在區域之間的界面

活性劑交流，例如吸收與釋放等過程，則可視為界面的奇異項導入外在區域之濃

度方程中。在沉浸邊界法的模型之下，我們發展守衡數值格式求解界面與外在區

域耦合之濃度方程，在數值計算下依舊保持界面活性劑之總質量守衡。我們做了

一系列的數值測試來驗證我們提出的數值方法的正確性。我們也將過去針對不可

溶性界面活性劑的研究工作拓展到可溶性界面活性劑，並且將探討界面活性劑的

可溶性對於液體界面的形變造成的影響。 
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ABSTRACT 

In the first part of this thesis, we provide a simplified one-dimensional analysis and 
two-dimensional numerical experiments to predict that the overall accuracy for the 
pressure problem or indicator function in immersed boundary calculations is 
first-order accurate in L1 norm, half-order accurate in L2 norm, but has O(1) error in  
L∞ norm. We also discuss the accuracy for another type of source terms for solving 

Poisson problems with singular conditions on the interface. 
   In the second part, we consider the surfactant, which is an amphiphilic molecular, 
under multi-phase fluids. These particles usually favor the presence in the fluid 
interface, and they may couple with the surfactant soluble in one of bulk domains 
through adsorption and desorption processes. This type of problem needs to solve 
partial differential equations in deformable interfaces or complex domains. Thus, it is 
important to accurately solve coupled surface-bulk convection-diffusion equations 
especially when the interface is moving. We first rewrite the original bulk 
concentration equation in an irregular domain (soluble region) into a regular 
computational domain via the usage of the indicator function, which is described in 
previous part, so that the concentration flux across the interface due to adsorption and 
desorption processes can be termed as a singular source in the modified equation. 
Based on the immersed boundary formulation, we then develop a new conservative 
scheme for solving this coupled surface-bulk concentration equations which the total 
surfactant mass is conserved in discrete sense. A series of numerical tests has been 
conducted to validate the present scheme. As an application, we extend our previous 
work to the soluble case and investigate the effect of solubility on drop deformations.  
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Chapter 1

Preliminaries

This thesis is a combination of our previous works. The first part is based on the article [12]

”K.-Y. Chen, K.-A. Feng, Y. Kim, M.-C. Lai, A note on pressure accuracy in immersed

boundary method for Stokes flow, Journal of Computational Physics, 230 (2011), 4377–

4383.” We provide a simplified one-dimensional analysis and two-dimensional numerical

experiments to predict that the overall accuracy for the pressure problem or indicator

function in immersed boundary calculations is first-order accurate in L1 norm, half-order

accurate in L2 norm, but has O(1) error in L∞ norm. We also discuss the accuracy for

another type of source terms for solving Poisson problems with singular conditions on

the interface. In this case, we prove that the convergent rate is second-order accurate in

L1 norm, one and half-order accurate in L2 norm, and first-order accurate in L∞ norm.

Moreover, we will give some applications to solve second-order elliptic equations with

piecewise-constant coefficients by indicator function, and compute the velocity in Stokes

equations by using the solution of pressure equations we obtained.

The following part provides the details of the paper [13] ”K.-Y. Chen, M.-C. Lai, A con-

servative scheme for solving coupled surface-bulk convection-diffusion equations with an

application to interfacial flows with soluble surfactant, Journal of Computational Physics,

257(2014), 1–18.” We consider the surfactant, which is an amphiphilic molecular, under

multi-phase fluids. These particles usually favor the presence in the fluid interface, and

they may couple with the surfactant soluble in one of bulk domains through adsorption

1



and desorption processes. This type of problem needs to solve partial differential equa-

tions in deformable interfaces or complex domains. Thus, it is important to accurately

solve coupled surface-bulk convection-diffusion equations especially when the interface is

moving. We first rewrite the original bulk concentration equation in an irregular do-

main (soluble region) into a regular computational domain via the usage of the indicator

function, which is described in previous part, so that the concentration flux across the

interface due to adsorption and desorption processes can be termed as a singular source

in the modified equation. Based on the immersed boundary formulation, we then develop

a new conservative scheme for solving this coupled surface-bulk concentration equations

which the total surfactant mass is conserved in discrete sense. A series of numerical

tests has been conducted to validate the present scheme. As an application, we extend

our previous work [24] ”M.-C. Lai, Y.-H. Tseng and H. Huang, An immersed boundary

method for interfacial flows with insoluble surfactant, Journal of Computational Physics,

227 (2008) 7279-7293” to the soluble case. The effects of solubility of surfactant on drop

deformations in a quiescent and shear flow are investigated in detail.
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Part I

Numerical research on Poisson

problems with interfacial source

terms
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Chapter 2

Introduction 1

In this part, we consider the problems of solving a Poisson equation in the computational

domain Ω (either in one-dimension or in two-dimension) with a source term defined only

on a boundary (one point for one-dimensional case, and one-dimensional interface for

two-dimensional case, respectively) Σ immersed in Ω. This type of the problems arise

from using Immersed Boundary Method to solve the stationary Stokes flow defined on

irregular domain or containing interfacial singularities inside the regular domain. The

Stokes problem in the immersed boundary formulation is defined as

−∇p + µ∆u+

∫

Σ

F(s) δ2(x−X(s)) ds = 0, (1)

∇ · u = 0. (2)

The two-dimensional Dirac delta function is defined as

δ2(x) = δ(x) δ(y), (3)

which is the combination of two one-dimensional Dirac delta functions. Since the im-

mersed boundary force F is only exerted along the interface Σ, we use the integral with

the Dirac delta function to keep the formulation is defined along the interface Σ. There-

fore, the above immersed boundary formulation is a typical singular problem with a delta

function source. To solve this problem, a simple ansatz is by taking the divergence oper-

ator on Eq. (1), which means that

−∆p(x) + µ∇ ·∆u+∇ ·
∫

Σ

F(s) δ2(x−X(s)) ds = 0. (4)
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Use the incompressibility constraint in Eq. (2) to take out u, we obtain the pressure

equation

∆p(x) = ∇ ·
∫

Σ

F (s) δ2(x−X(s)) ds. (5)

Notice that, the above equation is what we mention before, which involves solving Poisson

equation with a source term which can be written as the derivatives of Dirac delta function.

Furthermore, in the general immersed boundary computations, one often uses periodic or

Neumann boundary conditions to solve pressure equation. For simplicity, throughout this

work, we just use the Dirichlet boundary condition since we are more concerned about

the accuracy caused by the derivatives of Dirac delta function near the interface.

After solving the pressure p, we have to solve the velocity field u by solving the

equation (1) with substituting p. In this case, we need to solve another two Poisson

equations with source terms on the interface, which can be described as Dirac delta

function. Therefore, we deal with two kinds of source terms to the Poisson equations

introduced by the Stokes flow problem.

Another example comes from two-phase flow problem. In the former work by Tryg-

gvason et. al. [37], they introduced the indicator function in order to track the regions of

two-phase flow. For any quantity q, which could be density, viscosity or others, is valued

piecewise constant in the domain, i.e. it is discontinuous across the interface. It can be

represented by the following:

q(x) = qout + (qin − qout)I(x), (6)

where qin and qout are the constant quantity inside and outside of the interface, respec-

tively. Note that, the indicator function has the value one (I = 1) inside the immersed

boundary Γ and the value zero (I = 0) outside. Assume we use the immersed boundary

Σ to divide the domain Ω into two parts: Ω0, which is inside Σ; and Ω1, which is outside

Σ. The indicator function can be written as

I(x, t) =











1 if x ∈ Ω0

0 if x ∈ Ω1

(7)
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The indicator function can be calculated as the following procedure [37]. Let n be the

unit outward normal to the interface, then the indicator function can be represented by

I(x) =

∫

Ω0

δ2(x− x̃) dx̃.

By taking the gradient and then the divergence operators, we have

∇I(x) = −
∫

Σ

n δ2(x−X(s)) ds,

∆I(x) = −∇ ·
∫

Σ

n δ2(x−X(s)) ds. (8)

Thus, the indicator function can be obtained by solving a similar equation as Eq. (5) with

the special singular forcing term F(s) = −n(s).

In the following of this part, our goal is to use the standard finite difference scheme with

smoothing discrete delta function to discretize the equations (5) and (8), and to investigate

the numerical accuracy. Moreover, we will also discuss other types of singularity on

the interface to the Poisson equations, and do further analysis and validations to these

problems.
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Chapter 3

One-dimensional analysis

In this chapter, we will discuss the accuracy of numerical solution by using simple finite-

difference schemes to our problems.

3.1 One-dimensional analysis for source terms as deriva-

tives of delta functions

We consider the one-dimensional equation as

d2u

dx2
= c

d

dx
δ(x− α), 0 ≤ x ≤ 1 (9)

with boundary condition

u(0) = u(1) = 0, (10)

and the interface is located at x = α ∈ (0, 1). The exact solution of Eq. (9) can be

expressed as

u(x) =

∫ 1

0

G(x; y) c
d

dy
δ(y − α) dy (11)

where G(x; y) is the well-known Green’s function, which solves

d2G

dx2
(x; y) = δ(x− y). (12)
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The Green’s function G(x; y) can be explicit written as

G(x; y) =











x(y − 1), 0 ≤ x ≤ y,

y(x− 1), y < x ≤ 1
. (13)

Without losing the generality, we set c = 1. By applying the integration by parts into

Eq. (11) , we obtain

u(x) =

∫ 1

0

G(x; y) c
d

dy
δ(y − α) dy

= G(x; y)δ(y − α)|y=1
0 −

∫ 1

0

d

dy
G(x; y) δ(y − α) dy

= −
∫ 1

0

d

dy
G(x; y) δ(y − α) dy. (14)

The Boundary terms vanish by using the definition of Green’s function.

Based on uniform grid with grid points xj = jh, j = 0, 1, ..., N where h = 1/N , we use

the standard centered difference scheme to discretize Eq. (9) with c = 1 as following

Uj−1 − 2Uj + Uj+1

h2
=

δh(xj+1 − α)− δh(xj−1 − α)

2h
. (15)

The discrete delta function in [31] defined as

δh(x)
cos =











1
4h
(1 + cos(πx

2h
)), if |x| ≤ 2h,

0, otherwise
. (16)

Although there are more different discrete delta functions can be found in [4, 44] and

other papers, the usage of different delta functions cannot lead to different conclusions

that will be given in this subsection.

The discrete delta functions above satisfies

N
∑

m=0

δh(xm − α)h = 1, (17)

which is the corresponding basic requirement for discrete delta function. For simplicity,

we denote the first-order and second-order centered difference operators as Dh and D2
h,

respectively. Analog to analytic solution in (11), the discrete solution Uj of Eq. (15) can

also be written as

Uj = h
N
∑

m=0

GjmDhδh(xm − α) (18)
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where Gjm = G(xj; xm) is the discrete version of Green’s function defined as

Gjm =











xj(xm − 1), 0 ≤ j ≤ m,

xm(xj − 1), m < j ≤ N
. (19)

We can immediately check that G satisfies D2
hGjm = 1

h
δjm where δjm is the Kronecker

delta function.

Now, by taking summation by parts and the property of discrete delta function, we

can rewrite the numerical solution Uj as

Uj = h

N
∑

m=0

GjmDhδh(xm − α)

= h

N−1
∑

m=1

Gjm
δh(xm+1 − α)− δh(xm−1 − α)

2h

= h
N
∑

m=2

Gj(m−1)
δh(xm − α)

2h
− h

N−2
∑

m=0

Gj(m+1)
δh(xm − α)

2h

= −h

N−1
∑

m=1

Gj(m+1) −Gj(m−1)

2h
δh(xm − α)

= −h
N
∑

m=0

DhGjmδh(xm − α) (20)

Hence the point-wise error between Uj and u(xj) can be expressed as

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h
N
∑

m=0

DhGjmδh(xm − α)−
∫ 1

0

d

dy
G(xj ; y) δ(y − α) dy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

h
N
∑

m=0

DhGjmδh(xm − α)− h
N
∑

m=0

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

h

N
∑

m=0

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)− d

dy
G(xj ; y)

∣

∣

∣

∣

y=α

∣

∣

∣

∣

∣

= E1 + E2

First, E1 is the error from discretizing the differentiation of Green’s function. Using

the fact that the derivative of Greens function is

d

dy
G(xj; y)

∣

∣

∣

∣

y=xm

=











xj , 0 ≤ xj ≤ xm

xj − 1, xm < xj ≤ 1
(21)
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and that its discrete counterpart is

DhGjm =























xj , j < m

xj − 1
2
, j = m

xj − 1, j > m

, (22)

we obtain

DhGjm − d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

=











1
2
, if m = j

0, otherwise
(23)

By using (23), we compute

E1 =

∣

∣

∣

∣

∣

h

N
∑

m=0

DhGjmδh(xm − α)− h

N
∑

m=0

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

N
∑

m=0

(

DhGjm − d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

)

δh(xm − α)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

h
1

2
δh(xj − α)

∣

∣

∣

∣

=











O(1), when |xj − α| ≤ 2h

0, otherwise
(24)

The second part of the error E2 is simply an interpolating error for the function

d
dy
G(xj ; y)

∣

∣

∣

y=xm

. Using the formula in Eq. (21) and the first moment condition in (17),

since the discrete delta function has finite support 4h, we can obtain

E2 =

∣

∣

∣

∣

∣

h

N
∑

m=0

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)− d

dy
G(xj ; y)

∣

∣

∣

∣

y=α

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

j−1
∑

m=0

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)

+ h

N
∑

m=j

d

dy
G(xj ; y)

∣

∣

∣

∣

y=xm

δh(xm − α)− d

dy
G(xj ; y)

∣

∣

∣

∣

y=α

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

j−1
∑

m=0

(xj − 1)δh(xm − α) + h
N
∑

m=j

xjδh(xm − α)− d

dy
G(xj ; y)

∣

∣

∣

∣

y=α

∣

∣

∣

∣

∣
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For xj ≤ α, d
dy
G(xj ; y)

∣

∣

∣

y=α
= xj , then

E2 =

∣

∣

∣

∣

∣

h

j−1
∑

m=0

(xj − 1)δh(xm − α) + h
N
∑

m=j

xjδh(xm − α)− xj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

j−1
∑

m=0

δh(xm − α)

∣

∣

∣

∣

∣

=











O(1), as α− xj ≤ 2h

0, otherwise
(25)

Similarly, for xj > α, d
dy
G(xj ; y)

∣

∣

∣

y=α
= xj − 1, then

E2 =

∣

∣

∣

∣

∣

h

j−1
∑

m=0

(xj − 1)δh(xm − α) + h
N
∑

m=j

xjδh(xm − α)− (xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

N
∑

m=j

δh(xm − α)

∣

∣

∣

∣

∣

=











O(1), as xj − α ≤ 2h

0, otherwise
(26)

Therefore, we combine (25) and (26) to get

E2 =











O(1), as |xj − α| ≤ 2h

0, otherwise
(27)

From the above analysis, one can immediately see that the point-wise error appears

only at some points around the singular point α, which means that the maximum er-

ror ‖uh − u‖∞ is of order O(1). For the same reason, we can conclude that L1(‖uh − u‖1)

and L2(‖uh − u‖2) errors are of order O(h) and O(h1/2), respectively. Our numerical

results in final section will confirm this conclusion.

3.2 One-dimensional analysis for source terms as delta

functions

We consider the one-dimensional equation as

d2u

dx2
= cδ(x− α), 0 ≤ x ≤ 1 (28)
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with the same boundary condition as Eq. (10), and the interface is located at x = α ∈

(0, 1). The exact solution of (28) can be expressed as

u(x) =

∫ 1

0

G(x; y) cδ(y − α) dy (29)

we use the standard centered difference scheme to discretize Eq. (28) with c = 1 as

following

Uj−1 − 2Uj + Uj+1

h2
= δh(xj − α), (30)

Analog to analytic solution in Eq. (29), the discrete solution Uj of Eq. (30) can also be

written as

Uj = h

N
∑

m=0

Gjmδh(xm − α) (31)

Hence the point-wise error between Uj and u(xj) can be expressed as

|Uj − u(xj)| =
∣

∣

∣

∣

∣

h

N
∑

m=0

Gjmδh(xm − α)−
∫ 1

0

G(x; y)δ(y − α) dy

∣

∣

∣

∣

∣

(32)

According to [38], [44] and [4], we consider two different discrete delta functions

δcosh =











1
4h
(1 + cos(πx

2h
)), if |x| ≤ 2h,

0, otherwise
; (33)

δ
√

h =



























1
8

(

3− 2
∣

∣

x
h

∣

∣+
√

1 + 4
∣

∣

x
h

∣

∣− 4
∣

∣

x
h

∣

∣

2
)

if |x| ≤ h,

1
8

(

5− 2
∣

∣

x
h

∣

∣−
√

−7 + 12
∣

∣

x
h

∣

∣− 4
∣

∣

x
h

∣

∣

2
)

if h < |x| ≤ 2h,

0, otherwise

. (34)

with the relative moment conditions

h

N
∑

m=0

(xm − α)δcosh (xm − α) = O(h) (35)

h
N
∑

m=0

(xm − α)δ
√

h (xm − α) = 0 (36)
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Suppose α lies in some interval (xi, xi+1). For xj < α− h, we have

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h
i+2
∑

m=i−1

Gjmδh(xm − α)− xj(α− 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h
i+2
∑

m=i−1

xj(xm − 1)δh(xm − α)− xj(α− 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

xj(xm − α + α− 1)δh(xm − α)− xj(α− 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

xj(xm − α)δh(xm − α)

∣

∣

∣

∣

∣

=











O(h), for δcosh

0, for δ
√

h

(37)

For α− h ≤ xj ≤ α, we compute

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

Gjmδh(xm − α)− xj(α− 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

(

xi−1(xj − 1)δh(xi−1 − α) +

i+2
∑

m=i

xj(xm − 1)δh(xm − α)

)

− xj(α− 1)

∣

∣

∣

∣

∣

= |h [(xj(xi−1 − α + α− 1) + h) δh(xi−1 − α)

+

i+2
∑

m=i

xj(xm − α + α− 1)δh(xm − α)

]

− xj(α− 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h2δh(xi−1 − α) + h

i+2
∑

m=i−1

xj(xm − α)δh(xm − α)

∣

∣

∣

∣

∣

= O(h). (38)

For α = xj , we derive

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h

j+1
∑

m=j−1

Gjmδh(xm − α)− xj(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

xj−1(xj − 1)

4
+

xj(xj − 1)

2
+

xj(xj+1 − 1)

4
− xj(xj − 1)

∣

∣

∣

∣

= h (39)
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For α < xj ≤ α + h, we calculate

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

Gjmδh(xm − α)− α(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

(

xj(xi+2 − 1)δh(xi+2 − α) +

i+1
∑

m=i−1

xm(xj − 1)δh(xm − α)

)

− α(xj − 1)

∣

∣

∣

∣

∣

= |h [((xi+2 − α + α)(xj − 1) + h) δh(xi+2 − α)

+
i+2
∑

m=i

(xm − α + α)(xj − 1)δh(xm − α)

]

− α(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h2δh(xi+2 − α) + h
i+2
∑

m=i−1

(xj − 1)(xm − α)δh(xm − α)

∣

∣

∣

∣

∣

= O(h). (40)

For xj > α+ h, we obtain

|Uj − u(xj)| =

∣

∣

∣

∣

∣

h
i+2
∑

m=i−1

Gjmδh(xm − α)− α(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

xm(xj − 1)δh(xm − α)− α(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h

i+2
∑

m=i−1

(xm − α + α)(xj − 1)δh(xm − α)− α(xj − 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h
i+2
∑

m=i−1

(xj − 1)(xm − α)δh(xm − α)

∣

∣

∣

∣

∣

=











O(h), for δcosh

0, for δ
√

h

(41)

Hence we combine Eq. (37) to Eq. (41) to get

for δcosh , |Uj − u(xj)| = O(h) ∀j (42)

for δ
√

h , |Uj − u(xj)| =











O(h), as |xj − α| ≤ h

0, otherwise
(43)

From the above analysis, one can immediately see that, under proper moment condi-

tions satisfied, the point-wise error appears only at some points around the singular point

α, which means that the maximum error ‖uh − u‖∞ is of order O(h). For the same rea-

son, we can conclude that L1(‖uh − u‖1) and L2(‖uh − u‖2) errors are of order O(h2) and

O(h3/2), respectively. Our numerical results in final section will confirm this conclusion.
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Chapter 4

Numerical results 1

Throughout this chapter, we validate our derivations of convergence analysis via a series

of examples. For different kinds of source term, we check one-dimensional cases at first.

We also test on two-dimensional examples to see if our analysis is hold numerically.

4.1 Convergent test for source terms as derivatives

of delta functions

In this section, we will show the convergent results of solving Poisson problems with source

terms as derivatives of delta functions. Since the proof we derived is valid for any kinds

of discrete delta functions, we pick up δcosh and δ
√

h from [4, 44] for comparison. The ratio

in all tables of this section means the convergent orders of accuracy, which is computed

by

log(
‖u− uN‖
‖u− u2N‖

)/ log(
1/N

1/2N
), (44)

where u is the exact solution, uN is the numerical solution with mesh size N .
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4.1.1 One-dimensional problem 1

In this subsection, we consider the following one-dimensional problem to verify the proof

in section 3.1. The equation is

d2u

dx2
= c

d

dx
δ(x− α) + g, 0 < x < 1. (45)

Here, the interface is set at the point α = π/6. The exact solution is given as

u(x) =











x3 + 2αx2 if x ≤ α

7
3
(x3 − 1) if x > α

(46)

where the jump of solution u at the interface c is equal to −(2α3 + 7)/3. The regular

source term g can be computed by the analytic solution, which is written as

g(x) =











6x+ 4α if x ≤ α

14x if x > α
. (47)

Table 4.1 shows the order of accuracy for our test with using δcosh which confirms our one-

dimensional analysis in previous section. In Table 4.2 we use δ
√

h to verify the conclusion

we mention. We could observe the same behavior of the errors even if we change the

discrete delta function. Figure 4.1 shows the maximum error always occurs across the

interface. Even if we refine the mesh, there still exists an O(1) error, which matches our

derivations of proof in previous section.

mesh ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32 8.8827E-01 – 1.7057E-01 – 4.2479E-02 –

64 6.1709E-01 0.5255 1.0736E-01 0.6678 1.9004E-02 1.1604

128 1.1847E-00 -.9409 1.0708E-01 0.0038 1.2980E-02 0.5500

256 1.1579E-00 0.0329 7.4120E-02 0.5307 6.3791E-03 1.0248

512 1.1030E-00 0.0700 5.0171E-02 0.5630 3.0741E-03 1.0531

Table 4.1: Order of accuracy for one-dimensional test with δcosh .
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mesh ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32 9.1311E-01 – 1.7356E-01 – 4.2955E-02 –

64 6.1970E-01 0.5592 1.0738E-01 0.6927 1.9005E-02 1.1764

128 1.1875E-00 -.9382 1.0731E-01 0.0008 1.3001E-02 0.5477

256 1.1634E-00 0.0295 7.4446E-02 0.5275 6.3993E-03 1.0226

512 1.1138E-00 0.0628 5.0603E-02 0.5569 3.0926E-03 1.0490

Table 4.2: Order of accuracy for one-dimensional test with δ
√

h .

4.1.2 Two-dimensional problems 1

For two-dimensional problem, we generally write the equation in the form :

∆u = ∇ ·
∫

Σ

F (s) δ2(x−X(s)) ds+ g (48)

in a rectangular domain Ω = [a, b] × [c, d] with given Dirichlet boundary conditions. We

use an M ×N uniform grid with mesh width ∆x = ∆y = h to divide the domain Ω. The

notation Ui,j represents the discrete solution at (xi, yj), where xi = ih, h = 0, ...,M and

yj = jh, j = 0, ..., N . We also use a group of marker points X(sk) = (Xk, Yk) along the

interface Σ with the mesh points sk = k∆s. In this case, the mesh width ∆s is about a

half of h. Then we use regular centered difference scheme to discrete Eq. (48) as

Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2

=
Fi+1/2,j − Fi−1/2,j

h
+

Fi,j+1/2 − Fi,j−1/2

h
+ gi,j (49)

where

Fi+1/2,j =
∑

k

F (sk) δh(xi + h/2−X(sk))δh(yj − Y (sk))∆s, (50)

Fi−1/2,j =
∑

k

F (sk) δh(xi − h/2−X(sk))δh(yj − Y (sk))∆s, (51)

Fi,j+1/2 =
∑

k

F (sk) δh(xi −X(sk))δh(yj + 1/2− Y (sk))∆s, (52)

and

Fi,j−1/2 =
∑

k

F (sk) δh(xi −X(sk))δh(yj − 1/2− Y (sk))∆s. (53)
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The resultant matrix equation can be solved efficiently by the fast direct solver in Fishpack

[3].

Example 4.1.2.1: In the first example, we test the accuracy of the indicator function

which is described in Eq. (8). For completeness, we test three different interface Σ in the

domain [−1, 1]× [−1, 1] as follows.

1. Σ is a circle with the radius 0.3, which is centered at (0, 0).

2. Σ is an ellipse with the major radius 0.9 and minor radius 0.1, which is centered at

(0, 0).

3. Σ is a simple closed curve written in polar coordinates : r = 0.5 + 0.25 cos(5θ).

Table 4.3-4.5 show the convergence tests for those three different cases with using δcosh ,

while Table 4.6-4.8 are the correspondent results with using δ
√

h . The convergent results

of the indicator function calculation are strongly supporting our conclusion, which shows

first-order convergence in L1 norm and half-order convergence in L2 norm, although there

is an O(1) error in maximum norm. The results are consistent with one-dimensional

analysis. Figure 4.5 shows the cross section of the numerical and analytic solutions along

the line y = 0. It implies that there exists an O(1) error at the transition area of the

indicator function.

M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 3.6463E-01 – 1.3162E-01 – 6.3848E-02 –

64×64 4.5555E-01 -.3212 9.5529E-02 0.4622 3.2182E-02 0.9883

128×128 4.8736E-01 -.0974 7.2764E-02 0.3926 1.6837E-02 0.9345

256×256 4.8610E-01 0.0037 4.9738E-02 0.5488 8.2361E-03 1.0316

512×512 4.9805E-01 -.0620 3.4744E-02 0.5175 4.0955E-03 1.0078

Table 4.3: Convergent test using δcosh for indicator function case 1 : a circle.
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M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 6.7302E-01 – 1.9248E-01 – 1.2276E-01 –

64×64 5.0021E-01 0.4280 1.4391E-01 0.4194 6.5139E-02 0.9141

128×128 4.9922E-01 0.0027 9.7919E-02 0.5555 3.1954E-02 1.0275

256×256 4.9834E-01 0.0024 6.8903E-02 0.5070 1.5951E-02 1.0023

512×512 4.9617E-01 0.0061 4.8685E-02 0.5010 7.9510E-03 1.0043

Table 4.4: Convergent test using δcosh for indicator function case 2 : an ellipse.

M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 5.9986E-01 – 2.5162E-01 – 2.0860E-01 –

64×64 5.5492E-01 0.1123 1.8259E-01 0.4625 1.0827E-01 0.9460

128×128 5.3029E-01 0.0654 1.2910E-01 0.5000 5.4431E-02 0.9211

256×256 5.1669E-01 0.0374 9.0547E-02 0.5116 2.7064E-02 1.0079

512×512 5.1194E-01 0.0132 6.4251E-02 0.4948 1.3547E-02 0.9983

Table 4.5: Convergent test using δcosh for indicator function case 3 : a simple closed curve.

M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 3.6989E-01 – 1.3208E-01 – 6.3755E-02 –

64×64 4.5684E-01 -.3047 9.5640E-02 0.4657 3.2222E-02 0.9844

128×128 4.8714E-01 -.0926 7.2906E-02 0.3915 1.6858E-02 0.9346

256×256 4.8617E-01 0.0028 4.9854E-02 0.5483 8.2307E-03 1.0342

512×512 4.9809E-01 -.0350 3.4826E-02 0.5175 4.0799E-03 1.0124

Table 4.6: Convergent test using δ
√

h for indicator function case 1 : a circle.

Example 4.1.2.2: In this example, we solve a pressure equation from Stokes flow

problem in [14]. Since the analytic solutions to this problem are available, Lai et el. [23]

had use a simplified version of this example to test immersed interface method. The

pressure equation to be solved is described in Eq. (5). The computational domain is
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Figure 4.2: Numerical solution for indicator function case 3 : a simple closed curve.

M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 6.7492E-01 – 1.9304E-01 – 1.2199E-01 –

64×64 5.0036E-01 0.4316 1.4485E-01 0.4142 6.4800E-02 0.9126

128×128 4.9957E-01 0.0021 9.8565E-02 0.5554 3.1684E-02 1.0322

256×256 4.9850E-01 0.0030 6.9379E-02 0.5065 1.5807E-02 1.0031

512×512 4.9660E-01 0.0054 4.8969E-02 0.5025 7.8913E-03 1.0022

Table 4.7: Convergent test using δ
√

h for indicator function case 2 : an ellipse.

Ω = [−2, 2] × [−2, 2], and the interface is a unit circle centered at (0, 0), i.e. X(θ) =

(cos θ, sin θ). The exact solution is written in polar coordinates as

p(r, θ) =















−r3 sin(3θ) if r ≤ 1

r−3 sin(3θ) if r > 1

(54)

and the boundary force F (θ) = 2 sin(3θ)X(θ).
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Figure 4.3: Comparison between numerical and analytic solutions for indicator function

case 1 : a circle.
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M ×N ‖I − Ih‖∞ ratio ‖I − Ih‖2 ratio ‖I − Ih‖1 ratio

32×32 5.9802E-01 – 2.5211E-01 – 2.0901E-01 –

64×64 5.5251E-01 0.1141 1.8301E-01 0.4620 1.0829E-01 0.9486

128×128 5.2782E-01 0.0658 1.2940E-01 0.5000 5.4356E-02 0.9942

256×256 5.1434E-01 0.0371 9.0733E-02 0.5120 2.7025E-02 1.0081

512×512 5.1359E-01 0.0020 6.4375E-02 0.4950 1.3529E-02 0.9982

Table 4.8: Convergent test using δ
√

h for indicator function case 3 : a simple closed curve.

Table 4.9 shows the convergence tests for this case with using δcosh , and table 4.10

presents the computation results with using δ
√

h , respectively. Figure 4.6 shows the com-

parison of numerical and analytic solution along the cross section x = 0. One can see

that the maximum error of pressure occurs at the interface.

M ×N ‖p− Ph‖∞ ratio ‖p− Ph‖2 ratio ‖p− Ph‖1 ratio

32×32 1.5643E-00 – 9.5960E-01 – 2.0421E-00 –

64×64 1.7182E-00 -.1354 6.9177E-01 0.4720 1.1867E-00 0.7831

128×128 1.8342E-00 -.0943 4.9447E-01 0.4843 6.4868E-01 0.8712

256×256 1.9086E-00 -.0573 3.4999E-01 0.4985 3.4044E-01 0.9300

512×512 1.9284E-00 -.0149 2.4775E-01 0.4983 1.7495E-01 0.9604

Table 4.9: Convergent test using δcosh for Example 4.1.2.2.
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M ×N ‖p− Ph‖∞ ratio ‖p− Ph‖2 ratio ‖p− Ph‖1 ratio

32×32 1.5054E-00 – 8.4134E-01 – 1.5983E-00 –

64×64 1.6069E-00 -.1676 6.4567E-01 0.3818 9.4537E-01 0.7576

128×128 1.8046E-00 -.0938 4.7711E-01 0.4364 5.2107E-01 0.8594

256×256 1.8913E-00 -.0676 3.4350E-01 0.4740 2.7398E-01 0.9274

512×512 1.9219E-00 -.0231 2.4531E-01 0.4857 1.4085E-01 0.9599

Table 4.10: Convergent test using δ
√

h for Example 4.1.2.2.

Example 4.1.2.3: As a last example, we consider Eq. (48) in the square domain

Ω = [−1, 1] × [−1, 1] with analytic solutions. The interface Σ dividing Ω into inner

part Ω0 and outer part Ω1, which is a simple closed curve written in polar coordinates

r = 0.5 + 0.25 cos(5θ). The solution u is given by

u =















(x2 − 1)(y2 − 1) + 1 if (x, y) ∈ Ω0

(x2 − 1)(y2 − 1) if (x, y) ∈ Ω1

, (55)

thus the boundary force F is simply the normal vector n along the interface Σ. The

external source g can be easily computed from the solution u as g = 2(x2 + y2 − 2).

The convergence tests based on δcosh are shown in table 4.11, while table 4.12 lists

the corresponding order of accuracy with using δ
√

h . Figure 4.7 shows the numerical and

analytic solution along the line y = 0. It indicates that refining mesh could not improve

the maximum error.

One can observe that the convergent results from example 2 and 3 are consistent with

our conclusion, i.e. first-order accurate in L1 norm, half-order accurate in L2 norm, but

have O(1) errors in L∞ norm.
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M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 9.7976E-01 – 4.6428E-01 – 3.6083E-01 –

64×64 9.8231E-01 -.0037 3.4142E-01 0.4434 1.9150E-01 0.9140

128×128 9.8129E-01 0.0015 2.4376E-01 0.4860 9.7187E-02 0.9784

256×256 9.8105E-01 0.0003 1.7146E-01 0.5075 4.8266E-02 1.0097

512×512 9.8169E-01 -.0009 1.2165E-01 0.4951 2.4217E-02 0.9950

Table 4.11: Convergent test using δcosh for Example 4.1.2.3.

M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 9.8024E-01 – 4.6421E-01 – 3.6094E-01 –

64×64 9.8190E-01 -.0024 3.4141E-01 0.4432 1.9136E-01 0.9155

128×128 9.8141E-01 0.0007 2.4374E-01 0.4861 9.7017E-02 0.9799

256×256 9.8090E-01 0.0007 1.7145E-01 0.5075 4.8187E-02 1.0095

512×512 9.8150E-01 -.0008 1.2164E-01 0.4952 2.4179E-02 0.9948

Table 4.12: Convergent test using δ
√

h for Example 4.1.2.3.

4.2 Convergent test for source terms as delta func-

tions

In this section, we will show the convergent results of solving Poisson problems with

source terms as delta functions. Since the conclusion we obtained depends on the moment

condition of discrete delta functions, we pick up δcosh and δ
√

h from [4, 44] for comparison.

The ratio in all tables of this section is the same as previous section, which means the

orders of accuracy.
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4.2.1 One-dimensional problem 2

In this subsection, we consider the following one-dimensional problem to verify the proof

in section 3.2. The equation is

d2u

dx2
= cδ(x− α) + g, 0 < x < 1. (56)

Here, the interface is fixed at the point α = π/4− 0.15. The exact solution is given as

u(x) =











(x− α)3 if x ≤ α

(x− α)3 + cx+ d if x > α
(57)

where the jump of derivative of solution u at the interface c is set as c = −1 and the

constant d for keeping the continuity of u is d = −cα The regular source term g can be

derived from the analytic solution, which is represented by g(x) = 6(x− α).

By using δcosh , table 4.13 shows the order of accuracy for our test. Since this type of

discrete delta function does not have the moment condition, the convergent rate is nearly

of first order. In Table 4.14 we use δ
√

h to verify the conclusion we mention. In this case,

the discrete delta function holds the moment condition, thus we can obtain the same

result as we proved in previous subsection. Figure 4.8 shows that the maximum error is

improving as the mesh is refining.

mesh ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32 3.5924E-03 – 6.8746E-04 – 2.7290E-04 –

64 1.8555E-03 0.9531 2.5911E-04 1.4077 1.0378E-04 1.3948

128 9.0120E-04 1.0419 9.3268E-05 1.4740 4.3089E-05 1.2681

256 4.5930E-04 0.9724 3.6476E-05 1.3544 1.8986E-05 1.1823

512 2.2936E-04 1.0018 1.4989E-05 1.2830 9.4484E-06 1.0068

Table 4.13: Order of accuracy for one-dimensional test with δcosh .
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mesh ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32 3.7517E-03 – 6.9307E-04 – 1.5281E-04 –

64 1.8672E-03 1.0066 2.4420E-04 1.5049 3.8151E-05 2.0019

128 9.4225E-04 0.9867 8.6932E-05 1.4900 9.5640E-06 1.9960

256 4.6251E-04 1.0266 3.0318E-05 1.5197 2.3780E-06 2.0078

512 2.3990E-04 0.9470 1.1019E-05 1.4602 6.0116E-07 1.9838

Table 4.14: Order of accuracy for one-dimensional test with δ
√

h .

4.2.2 Two-dimensional problems 2

In this subsection, the problems we need to solve can be written generally in the following

formulation :

∆u =

∫

Γ

f(s) δ2(x−X(s)) ds+ g (58)

in the computational domain Ω = [a, b] × [c, d] with an interface Σ inside, while the

boundary conditions are still Dirichlet type. We use the same mesh structure as it was

stated in previous section. Here, we use regular centered difference scheme to discrete

Eq. (58) as

Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2
= fi,j + gi,j (59)

where

fi,j =
∑

k

f(sk) δh(xi −X(sk))δh(yj − Y (sk))∆s. (60)

Example 4.2.2.1: The first example is coming from LeVeque and Li’s work [22]. The

computational domain is Ω = [−1, 1] × [−1, 1], and the interface Σ inside Ω is a circle

centered at (0, 0) with radius 0.5. The analytic solution u is written in polar coordinates

as

u(r) =











1 if r ≤ 0.5

1 + log(Cr) if r > 0.5
, (61)

where the jump on the interface f = C. Here, C is set to be 2, and the external source

term g is zero, which can be verified easily.
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The convergence tests based on δcosh are shown in table 4.15, while table 4.16 lists the

corresponding order of accuracy with using δ
√

h . Figure 4.9 shows the difference between

numerical and analytic solutions near the interface. The maximum error is decreasing

after the mesh refined.

M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 5.6933E-02 – 2.7227E-02 – 3.8063E-02 –

64×64 2.8740E-02 0.9862 1.3437E-02 1.0187 1.8874E-02 1.0120

128×128 1.4463E-02 0.9907 6.7304E-03 0.9974 9.4448E-03 0.9987

256×256 7.2452E-03 0.9972 3.3629E-03 1.0009 4.7169E-03 1.0016

512×512 3.6247E-03 0.9991 1.6816E-03 0.9998 2.3582E-03 1.0001

Table 4.15: Convergent test using δcosh for Example 4.2.2.1.

M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 3.2541E-02 – 1.0381E-02 – 5.6095E-03 –

64×64 1.6039E-02 1.0206 3.4241E-03 1.6000 1.3934E-03 2.0092

128×128 8.0821E-03 0.9887 1.2542E-03 1.4489 3.6329E-04 1.9393

256×256 4.0789E-03 0.9865 4.3528E-04 1.5267 9.1119E-05 1.9952

512×512 2.0854E-03 0.9678 1.5457E-04 1.4936 2.3011E-05 1.9854

Table 4.16: Convergent test using δ
√

h for Example 4.2.2.1.
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Example 4.2.2.2: The next example is a modification from Zhou and his collabo-

rators’ work [47]. The domain Ω of the problem is [−1, 1] × [−1, 1], which contains an

circular interface Σ centered at (0, 0) with radius 0.5. For convenience, the problem is

described in the polar coordinates. The exact solution u is written as

u(r) =











r2 if r ≤ 0.5

7/64 + r4/4 + r2/2 if r > 0.5
. (62)

The right hand side f is given by

g(r) =











4 if r ≤ 0.5

4r2 + 2 if r > 0.5
, (63)

with the source term on the interface f = −0.375.

The table 4.17 provides the convergence results based on δcosh , while the corresponding

order of accuracy with using δ
√

h is listed in table 4.18. Figure 4.10 shows the maximum

error at the interface improves as the mesh number N increases.

M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 1.0692E-02 – 6.8852E-03 – 9.8518E-03 –

64×64 5.3116E-03 1.0092 2.9823E-03 1.2070 4.3218E-03 1.1887

128×128 2.6178E-03 1.0207 1.3325E-03 1.1622 1.9038E-03 1.1827

256×256 1.3075E-03 1.0015 6.5268E-04 1.0297 9.2571E-04 1.0402

512×512 6.7053E-04 0.9634 3.2934E-04 0.9867 4.6689E-04 0.9874

Table 4.17: Convergent test using δcosh for Example 4.2.2.2.
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Figure 4.8: Comparison between numerical and analytic solutions for 2D case 4.2.2.2
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M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 5.2739E-03 – 5.2757E-03 – 8.4898E-03 –

64×64 1.8829E-03 1.4858 1.7842E-03 1.5641 2.8787E-03 1.5603

128×128 1.1681E-03 0.6887 5.0356E-04 1.8250 7.9509E-04 1.8562

256×256 6.2013E-04 0.9135 1.9113E-04 1.3976 2.9956E-04 1.4082

512×512 3.1040E-04 0.9984 1.0044E-04 0.9282 1.5913E-04 0.9126

Table 4.18: Convergent test using δ
√

h for Example 4.2.2.2.

Example 4.2.2.3: The computational domain Ω of the final example is [−1, 1] ×

[−1, 1]. There is an interface Σ inside the domain Ω, which is a circle centered at (0, 0)

with radius 0.5. The analytic solution of u is given in the polar coordinates as

u(r) =











exp(−r2) if r ≤ 0.5

1/(er2)− 4/e+ exp(−1/4) if r > 0.5
. (64)

The source term on the interface f = −16/e + exp(−1/4), while the right hand side g

could be derived as

g(r) =











4(r2 − 1) exp(−r2) if r ≤ 0.5

4/(er4) if r > 0.5
. (65)

The convergence tests based on δcosh are shown in table 4.19, while table 4.20 lists the

corresponding order of accuracy with using δ
√

h . Figure 4.11 shows the numerical solution

converges to the analytic solution as we refine the grid.
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Figure 4.9: Comparison between numerical and analytic solutions for 2D case 4.2.2.3
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M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 3.7152E-01 – 1.9625E-01 – 2.8326E-01 –

64×64 1.7040E-01 1.1245 8.1905E-02 1.2606 1.1891E-01 1.2522

128×128 7.7697E-02 1.1330 3.6186E-02 1.1785 5.1663E-02 1.2026

256×256 3.7131E-02 1.0652 1.7712E-02 1.0306 2.5111E-02 1.0408

512×512 1.8568E-02 0.9997 8.9366E-03 0.9869 1.2662E-02 0.9878

Table 4.19: Convergent test using δcosh for Example 4.2.2.3.

M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 2.1936E-01 – 1.3733E-01 – 2.0976E-01 –

64×64 9.0241E-02 1.2815 4.5147E-02 1.6049 6.9359E-02 1.5965

128×128 3.6605E-02 1.3017 1.2348E-02 1.8703 1.8486E-02 1.9076

256×256 1.6330E-02 1.1645 4.6871E-03 1.3974 7.1454E-03 1.3713

512×512 8.1021E-03 1.0111 2.5386E-03 0.8846 3.9730E-03 0.8467

Table 4.20: Convergent test using δ
√

h for Example 4.2.2.3.

4.3 Applications to indicator functions and pressure

The indicator function is not only providing a method to determine whether the position

is in the inside region or the outside part of the closed interface, but also a useful tool

to solve other kinds of partial differential equations. For example, this function can be

applied when solving the following second-order variable-coefficient elliptic equation:

∇ · (b∇Ψ) = f +

∫

Σ

g δ2(x−X(s)) ds. (66)

Here b is a piecewise constant coefficient matrix, i.e. b = b0 inside Σ (in Ω0), and b = b1

outside Σ (in Ω1). We may use the indicator function to represent b by

b = b1 + I(x)(b0 − b1). (67)
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The source term on the surface g can be computed by

g = (b1∇Ψ1 − b0∇Ψ0) · n, (68)

which is the jump of the normal derivative of the solution across the interface.

By using the indicator function, one can solve this type of equations without deal-

ing with complex domain or complicated conditions on the boundary (interface). For

convenience, we only use δ
√

h in the following computation.

4.3.1 One-dimensional problem 3

The equation (66) in one dimension could be rewrite as

d

dx

(

b
dΨ

dx

)

= f + gδ(x− Ip) , (69)

where Ip is the point that the interface lies in the domain.

To calculate the solution of equation (69), we adapt the simple discretization

bj+1/2
Ψj+1−Ψj

∆x
− bj−1/2

Ψj−Ψj−1

∆x

∆x
= fi,j + gi,j (70)

Here bj+1/2 = (bj+1+bj)/2, bj−1/2 = (bj+bj−1)/2. Let b be a piecewise constant coefficient

in the compuational domain, where b = bL if the position x < Ip, and b = bR for the case

x > Ip. By using the indicator function I(x) under the definition

I(x) =











1 if x > Ip

0 if x < Ip

, (71)

which can be calculated by solving the following equation

d2I

dx2
=

d

dx
δ(x− Ip). (72)

We can write the coefficient bj as bj = bL + I(xj)(bR − bL).

Example 4.3.1: In the first example, we consider the equation (69) in the domain

[0, 4] with the exact solution

Ψ(x) =











(x+ 1)2/bL if x < Ip

((x+ 1)2 + cx+ d)/bR if x > Ip

. (73)
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Here the interface point Ip = 2π/3, the right hand side function f = 2, and the jump

condition g = c = 1. The coefficients bL = 1 and bR = 10000, while the constant d in the

exact solution can be derived as

d = (Ip + 1)2
(

bR
bL

− 1

)

− cIp (74)

Table 4.21 shows the accuracy analysis of our scheme. One can find about first-order

convergence obviously. Figure 4.12 provides the comparison between analytic and numer-

ical solutions. The maximum error of numerical solution comes from the neighborhood

of the interface point, but it will be improved after we refine the mesh.

mesh ‖Ψ−Ψh‖∞ ratio ‖Ψ−Ψh‖2 ratio ‖Ψ−Ψh‖1 ratio

32 1.3088E-00 – 1.1052E-00 – 1.3808E-00 –

64 5.7502E-01 1.1865 4.8300E-01 1.1942 6.0531E-01 1.1897

128 3.8643E-01 0.5733 3.2351E-01 0.5781 4.0480E-01 0.5804

256 1.9618E-01 0.9780 1.6407E-01 0.9795 2.0549E-01 0.9781

512 1.0032E-01 0.9676 8.3856E-02 0.9683 1.0508E-01 0.9676

Table 4.21: Order of accuracy for one-dimensional test with δ
√

h .
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Figure 4.10: Comparison between numerical and analytic solutions for 1D case

4.3.2 Two-dimensional problems 3

In order to solve equation (66) in two-dimensional domain, we extend previous discretiza-

tion in one-dimensional case as

bi+1/2,j
Ψi+1,j−Ψi,j

∆x
− bi−1/2,j

Ψi,j−Ψi−1,j

∆x

∆x

+
bi,j+1/2

Ψi,j+1−Ψi,j

∆y
− bi,j−1/2

Ψi,j−Ψi,j−1

∆y

∆y
= fi,j + gi,j, (75)

where

gi,j =
∑

k

g(sk) δh(xi −X(sk))δh(yj − Y (sk))∆s. (76)

Here we approximate the coefficients without integer index by taking averages of nearby

values on the grid

bi+1/2,j = (bi+1,j + bi,j)/2

bi−1/2,j = (bi,j + bi−1,j)/2

bi,j+1/2 = (bi,j+1 + bi,j)/2

bi,j−1/2 = (bi,j + bi,j−1)/2 (77)
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Example 4.3.2.1: The following example can be found in Beale and Layton’s work

[4]. The computational domain is [−1.3, 1.3] × [−1.31.3]. There is an interface Γ, which

is an ellipse, inside the domain with major radius ra = 0.9 and minor radius rb = 0.7.

The whole problem is written in elliptic coordinates, which could defined by a conformal

mapping x + iy = a0 cosh(ρ + iΘ), i.e. x = a0 cosh ρ cosΘ and y = a0 sinh ρ sinΘ. Here

a0 =
√

r2a − r2b ≈ 0.565685 is the focus length of the ellipse. The interface Γ can be

represented by Γ = {ρ = ρ0 ≈ 1.039721, 0 ≤ Θ ≤ 2π} in elliptic coordinates, which

divides the domain into inner region Ω0 and outer part Ω1. The exact solution Ψ is

Ψ(ρ,Θ) =











a30(cosh
2 ρ sinh ρ cos2ΘsinΘ + sinh3 ρ sin3Θ) if ρ < ρ0

c exp(−3ρ) sin(3Θ) + d exp(−ρ) sin Θ if ρ > ρ0

, (78)

where c ≈ 1.267135 and d ≈ 1.128542 are given to provide the continuity of solution

across interface. The constant coefficient inside the interface b0 is set as b0 = 0.2, while

the one of outer region b1 is equal to 100. Thus, the piecewise constant coefficient b can

be defined as b = b1 + I(x)(b0 − b1). The right hand side function f to this problem is

f(ρ,Θ) =











8b0a0 sinh ρ sinΘ if ρ < ρ0

0 if ρ > ρ0

, (79)

and the source term on the interface g can be derived by g = (b1∇Ψ1− b0∇Ψ0) ·n, where

Ψ1 and Ψ0 are the limit of Ψ from outer region and that from inner area along normal

direction, respectively.

Figure 4.13 shows the comparison between analytic solution and numerical solution

on different grids, where we use the snapshot of the values along x = 0. One can see

the maximum error occurs inside the interface, and the scale of error is decreasing as the

mesh size is getting smaller. Table 4.22 lists the convergence rates of numerical solutions

in different norms, which is about first-order.
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M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 2.1097E-01 – 1.6389E-01 – 2.0212E-01 –

64×64 1.2118E-01 0.7999 9.5354E-02 0.7813 1.1720E-01 0.7863

128×128 6.4839E-02 0.9021 5.1056E-02 0.9012 6.2913E-02 0.8974

256×256 3.3470E-02 0.9539 2.6293E-02 0.9574 3.2434E-02 0.9558

512×512 1.7063E-02 0.9719 1.3393E-02 0.9731 1.6537E-02 0.9718

Table 4.22: Convergent test for Example 4.3.2.1.
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Figure 4.11: Comparison between numerical and analytic solutions for 2D case 4.3.2.1.

Example 4.3.2.2: The final example of this section is modified from Stokes problem

in [14] and [23]. By using the pressure we have solved in example 4.1.2.2, we try to solve

the velocity field by Eq. (1). The domain to the problem is Ω = [−2, 2] × [−2, 2] with

an interface inside, which is a unit circle centered at (0, 0), i.e. X(θ) = (cos θ, sin θ). For
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convenience, the exact solution is written in polar coordinates as

u(r, θ) =















3r2 sin(2θ)/8 + r4 sin(4θ)/16− r4 sin(2θ)/4 if r ≤ 1

r−2 sin(2θ)/8− 3r−4 sin(4θ)/16 + r−2 sin(4θ)/4 if r > 1

, (80)

v(r, θ) =















3r2 cos(2θ)/8− r4 cos(4θ)/16− r4 cos(2θ)/4 if r ≤ 1

r−2 cos(2θ)/8 + 3r−4 cos(4θ)/16− r−2 cos(4θ)/4 if r > 1

(81)

where u, v are the velocity in x direction and in y direction, respectively. The right hand

side function is ∇p, which can be computed in component-wise direction by

(

∂p

∂x

)

i,j

=
pi+1,j − pi−1,j

2∆x
,

(

∂p

∂y

)

i,j

=
pi,j+1 − pi,j−1

2∆x
, (82)

where pi,j is obtained in example 4.1.2.2. Again, the boundary force is F (θ) = 2 sin(3θ)X(θ).

Table 4.23-4.24 presents the computation results of velocity field in x-direction u and

that in y-direction v, respectively. One can see first-order convergence in each component.

Figure 4.14 shows the cross section of numerical solution of u along x = y, where we use

x as horizontal index rather than exact distance from the origin. The interface and the

line x = y meets at (±1/
√
2,±1/

√
2) ≈ (±0.7071,±0.7071), one can observe that the

maximum error occurs at the neighborhood of the interface. Figure 4.15 plots the cross

section of numerical solution of v along x-axis. We can find similar behavior as that of u.

Moreover, we have to check if our numerical solutions satisfy Eq. (2) since we use it

to derive our scheme. Table 4.25 shows the calculations of divergence of velocity field.

The behavior of convergence is similar to numerical solution of pressure with first-order

convergence in L1 norm and half-order convergence in L2 norm, but there is an O(1) error

in maximum norm. Figure 4.16 shows the divergence of velocity field of our numerical

solutions. One can see most of the error lies near the interface.
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Figure 4.12: Comparison between numerical and analytic solutions for u in case 4.3.2.2.
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Figure 4.13: Comparison between numerical and analytic solutions for v in case 4.3.2.2.
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Figure 4.14: Divergence of velocity field of numerical solution in case 4.3.2.2.
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M ×N ‖u− Uh‖∞ ratio ‖u− Uh‖2 ratio ‖u− Uh‖1 ratio

32×32 1.5926E-02 – 1.9452E-02 – 5.2813E-02 –

64×64 8.1197E-03 0.9719 9.2765E-03 1.0682 2.5472E-02 1.0519

128×128 4.7473E-03 0.7743 4.5961E-03 1.0131 1.2788E-02 0.9941

256×256 2.5170E-03 0.9154 2.2974E-03 1.0003 6.4287E-03 0.9921

512×512 1.3052E-03 0.9473 1.1499E-03 0.9985 3.2258E-03 0.9948

Table 4.23: Convergent test of u for Example 4.3.2.2.

M ×N ‖v − Vh‖∞ ratio ‖v − Vh‖2 ratio ‖v − Vh‖1 ratio

32×32 1.8223E-02 – 1.9585E-02 – 5.3126E-02 –

64×64 8.5764E-03 1.0873 9.5074E-03 1.0426 2.5785E-02 1.0429

128×128 4.6931E-03 0.8698 4.7328E-03 1.0063 1.2865E-02 1.0030

256×256 2.5314E-03 0.8906 2.3682E-03 0.9989 6.4465E-03 0.9968

512×512 1.3107E-03 0.9495 1.1855E-03 0.9982 3.2308E-03 0.9966

Table 4.24: Convergent test of v for Example 4.3.2.2.

M ×N ‖∇ · uh‖∞ ratio ‖∇ · uh‖2 ratio ‖∇ · uh‖1 ratio

32×32 6.2054E-02 – 5.4389E-02 – 1.2858E-01 –

64×64 6.7047E-02 -.1116 3.9285E-02 0.4693 7.0513E-02 0.8667

128×128 6.9974E-02 -.0616 2.7684E-02 0.5049 3.5625E-02 0.9849

256×256 7.2527E-02 -.0516 1.9457E-02 0.5087 1.7657E-02 1.0126

512×512 7.3314E-02 -.0155 1.3699E-02 0.5062 8.7447E-03 1.0137

Table 4.25: Convergent test of ∇ · uh for Example 4.3.2.2.
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Part II

Computational methods on

interfacial flows with soluble

surfactant
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Chapter 5

Introduction 2

There are many problems in physical, biological and material sciences needing to solve

partial differential equations in complex domains or deformable interfaces. Especially,

the material quantities which we interest on the interface may interact with the one in

the bulk domain through desorption and adsorption processes. At the same time, the

concentration of quantities on the surface may change the interfacial forces, which lead to

the modification of the physical behavior of the interface. For instance, The structure of

the surfactant molecules typically consists of a hydrophilic head, which tends to lie in the

water, and a hydrophobic tail, which likes to stay in the oil or other liquid rather than in

the water.

The interaction such as adsorption and desorption between the interface and the bulk

fluids would change the concentration of surfactant on the surface, thus the surface tension

could be reduced. Meanwhile, the dynamics is also affected by the Marangoni force along

the tangential direction of the surface, which is produced by the non-uniform distribution

of surfactant molecules. In practice, the surfactant might be soluble into only some

portion of the bulk domain. This region is enclosed by the interface, where the soluble

area and the interface are evolving at the same time. In order to simulate this problem, the

following two surfactant concentrations are introduced in this system: one is the volume

concentration in the bulk domain, and the other is the surface concentration along the

interface. Thus, we need to solve a coupled system of surface-bulk convection-diffusion
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Figure 5.1: Schematic diagram of surfactant particles with hydrophilic heads and hy-

drophobic tails, cited from ”http://en.wikipedia.org/wiki/Surfactant”.

equations [28, 46, 40].

In cell biology applications [30], some kinds of mobile proteins exists both in the cy-

tosol and cell membrane. They could diffuse both inside the cell and on the membrane.

The process that the proteins bind to the membrane correlates with initiation of down-

stream signaling. To simulate this type of problems, we have to solve a coupled system

of interface-volume reaction-diffusion equations. There are many examples in material

science, physics, or biologies that have the similar mechanisms such as absorption or

desorption in the dynamics, one can found those in the reference [40].

It is a well-known challenging problem to solve differential equations in complex do-

mains or deformable interface in numerical methods, especially when the surface, or the

interior boundary of domains is moving. To deal with a coupled system of surface-bulk

equations is more complicated. Even in the case of solving surface quantities only, i.e.

without coupling those in the bulk region, it is still a major issue in scientific computing

community that to develop better numerical methods for convection-diffusion equations

on an evolving interface.
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It is known that solving a coupled system of surface-bulk equations in complex domains

or deformable interfaces numerically is quite challenging especially when the interface (or

the interior boundary of domains) is moving. Even in the case of only surface material

(without bulk coupling), developing numerical methods for convection-diffusion equations

on an evolving interface is still of major interest in scientific computing community. These

methods include phase field method [35, 40, 17], level set method [2, 9, 43, 36, 27], surface

element method [7, 8, 15, 16], and much more to follow. In one-dimensional case, front

tracking method is typically more accurate for interface problem, since it only deals with

a curve in 2D space. But the complexity for two-dimensional surface is more difficult to

use this type of methods, especially the implementation involves surface mesh distortion

or even topological changes.

In[24], we have successfully developed a mass conservative scheme for convection-

diffusion equation on moving interface and applied to simulate the interfacial flows with

insoluble surfactant [24, 25, 26]. A recent work of Khatri and Tornberg [20] used segment

projection method to represent the interface and solve the surfactant equation. More

up-to-dated numerical methods for solving Navier-Stokes flows with insoluble surfactant

can be found in [20] as well.

In this part, we shall extend our previous work of insoluble surfactant to soluble

case. However, as a very first step, we need to develop a numerical scheme for solving

coupled surface-bulk convection-diffusion equations. From our point of view, there are

several major numerical issues to deal with. The first problem is how to handle the flux

between the interface and the bulk from the adsorption and desorption accurately? The

second question is how to maintain the mass conservation of total surfactant during the

evolution? The third issue is how to avoid the surfactant being present in other bulk

regions via either convection or diffusion mechanism if the surfactant might be soluble to

only one of buck fluid? Here, we formulate the coupled surface-bulk convection-diffusion

equations in the immersed boundary framework so that the adsorption and desorption

processes can be termed as a singular source in the bulk equation. Moreover, by using

the indicator function, we can embed the bulk equation into the whole computational
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domain so that regular Eulerian finite difference scheme can be applied without handling

the complicated moving irregular domain. We develop a new conservative scheme for

solving the coupled bulk-surface concentration equations which the total surfactant mass

can be conserved exactly in discrete sense. By introducing the indicator function and

solving the bulk equation in the regular computational domain, one can avoid evaluating

the surfactant flux across the interface due to adsorption and desorption processes.

The present formulation is similar to other front tracking approaches such as in [46, 28]

but differs from their numerical computations. For instance, in order to let the surfactant

be depleted from only one bulk phase, some one-sided discretized delta functions were used

in [46] which results the numerical integration of the discrete function does not yield the

exact value of unity. The authors have tried different forms of one-sided delta function

and the mass error is within 1%. Here, we use the traditional discrete delta function

for the spreading and interpolating operators in the immersed boundary method so that

the surfactant mass leaking error is much smaller compared with [46]. There are other

numerical methods in literature for interfacial flows with soluble surfactant dynamics such

as in [1, 6, 41, 45].

The rest of this part is organized as follows. In Chapter 6, we present a coupled

surface-bulk concentration model for surfactant and show their property about conser-

vation of mass. By applying the indicator function, we then embed the bulk equation

from irregular region into a regular Cartesian computational domain. Based on our im-

mersed boundary formulation, we develop a conservative scheme for solving the coupled

surface-bulk equations in Chapter 7. As an application, we apply the present scheme to

solve Navier-Stokes flow with soluble surfactant in Chapter 8. In Chapter 9, a detailed

numerical tests have been conducted to validate our present scheme and study the effect

of soluble surfactant on drop deformations in a quiescent and shear flow.
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Chapter 6

A coupled surface-bulk

concentration model

As in [40], we consider the same coupled bulk-surface material (or surfactant) concen-

tration model in which the adsorption and desorption can be occurred on the moving

deformable interface. Consider a domain Ω in R2 and there is an interface Σ, which is a

simple closed curve immersed in Ω. The interior of the interface is Ω0, and the exterior is

Ω1 so that Ω = Ω0 ∪ Ω1, see the illustration of these domains in Figure 1. The interface

is represented by a Lagrangian form X(α, t), 0 ≤ α ≤ Lb, where α is the Lagrangian

material coordinate attached to the interface which is not necessarily to be the arc-length

parameter. The unit tangent vector of the interface can be written as τ = ∂X
∂α

/
∣

∣

∣

∂X
∂α

∣

∣

∣
;

thus, the unit outward normal vector n pointing into Ω1 can be defined accordingly. In

addition, the interface Σ is moving with a given velocity field u = (u, v) in Ω; that is,

∂X(α, t)

∂t
= U(α, t) =

∫

Ω

u(x, t)δ2(x−X(α, t)) dx, (83)

where δ2(x) = δ(x) δ(y) is the two-dimensional Dirac delta function. We use the above

usual delta function formulation in the immersed boundary method [32] to represent the

interpolation of the velocity field into the interface. Here we assume the velocity field is

incompressible (∇ · u = 0) in Ω and no flow boundary condition (u · n1 = 0) is imposed

on ∂Ω = ∂Ω1. Notice that, in later section, the velocity field can be obtained by solving
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the Navier-Stokes equations.

Figure 6.1: Illustration of domains.

It is assumed that the surfactant exists on the interface as a monolayer and is adsorbed

from or desorbed into the bulk fluid in Ω1; that is, the surfactant is soluble in the exterior

bulk Ω1 but not in the interior one Ω0. Therefore, we have to introduce two surfactant

concentrations in the system; namely, the surface concentration Γ(α, t) along the interface

Σ, and the bulk concentration C(x, y, t) in the region Ω1.

Assume the surfactant concentration Γ(s, t) on an interfacial segment L(t) is defined

as the mass of the surfactant per unit length. Since there is no absorption or desorption

between the surface and the surrounding bulk fluids, the surfactant would remain on the

surface element, i.e. the total mass is conserved.

d

dt

∫

L(t)

Γ(s, t) ds = 0, (84)

where s is arc-length parameter and ds is the arc-length element. In order to adapt our

parameterization mentioned before, we rewrite the above equation in terms of Lagrangian

material coordinate α as

d

dt

∫

L(0)

Γ(α, t)

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

dα = 0. (85)
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By taking the time derivative inside the integral, we get

∫

L(0)

∂Γ(α, t)

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

+ Γ(α, t)
∂

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

dα = 0. (86)

Note that we use Lagrangian structure to track the interface and the surfactant. Therefore,

the time derivative of the first term in Eq. (86) is exactly the material derivative of Stone’s

derivation [18]. The time derivative of the second term is due to interface stretching.

Let X(α, t) = (X(α, t), Y (α, t)), and U(α, t) = (U(X , t), V (X, t)) be the Lagrangian

representation of the position and the velocity of interface, respectively. Since

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

=

√

(

∂X

∂α

)2

+

(

∂Y

∂α

)2

, (87)

by using the fact that

∂X(α, t)

∂t
= U (α, t), (88)

We obtain

∂

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

=
∂X
∂α

∂
∂α

∂X
∂t

+ ∂Y
∂α

∂
∂α

∂Y
∂t

∣

∣

∣

∂X
∂α

∣

∣

∣

=
∂X
∂α

∂U
∂α

+ ∂Y
∂α

∂V
∂α

∣

∣

∣

∂X
∂α

∣

∣

∣

=

∂X
∂α

(

∇U · ∂X
∂α

)

+ ∂Y
∂α

(

∇V · ∂X
∂α

)

∣

∣

∣

∂X
∂α

∣

∣

∣

=

(

∂U

∂τ
· τ
) ∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

= (∇s ·U)

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

(89)

Here, the notation ∇s ·U means the surface divergence of velocity, which is widely used

in the literature. Since the interface segment is chosen arbitrary, we have

∂Γ

∂t
+ (∇s ·U)Γ = 0. (90)

By taking the adsorption and desorption of bulk surfactant into account, the dimen-

sionless surface concentration equation can be modified as

∂Γ

∂t
+ (∇s · u) Γ =

1

Pes
∇2

sΓ + (Sa/λ)Cs(1− Γ)− SdΓ, (91)

where ∇s = (I−n⊗n)∇ and ∇2
s = ∇s ·∇s are the surface gradient and surface Laplacian

operators, respectively. The dimensionless number Pes is the surface Peclet number, Sa
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and Sd are the absorption and desorption Stanton number, respectively, and λ is the

dimensionless adsorption depth. Those parameters are defined as

Pes = U∞R/Ds, Sa = ka/U∞, Sd = kdR/U∞, λ = Γ∞/(C∞R)

where R,U∞,Γ∞, C∞ are the reference values for the length, flow velocity, the surface and

bulk concentration, and ka, kd are the absorption and desorption coefficients. Cs is the

bulk surfactant concentration adjacent to the interface which can be defined later. The

above non-dimensionalization process can be found in [46, 28, 24]. Notice that, as in [24],

the interface is tracked in Lagrangian manner and the surface concentration is defined

at the material point, so the time derivative in Eq. (91) has the meaning of the material

derivative naturally.

The dimensionless bulk concentration in the exterior region Ω1 [28, 40, 41, 46] can be

written as

∂C

∂t
+ u · ∇C =

1

Pe
∇2C (92)

1

λPe

∂C

∂n
|Σ = (Sa/λ)Cs(1− Γ)− SdΓ

∂C

∂n1
|∂Ω1

= 0, (93)

where Pe is the Peclet number, n is the unit normal vector on Σ pointing into Ω1 and n1

is the unit outward normal to the boundary ∂Ω1 = ∂Ω.

Eqs. (91)-(93) describe the present coupled surface-bulk concentration equations. Since

the fluid is incompressible and no flow velocity boundary condition is imposed on ∂Ω1,

one can conclude that the total surfactant mass (the surfactant mass on the interface Σ

and the mass in the bulk region Ω1) must be conserved. The conservation property can

be proved easily as follows.

By first taking the integration of Γ over the interface, then applying the time derivative

and using Eq. (91), the rate of change of surfactant mass in the interface Σ can be written

as

d

dt

∫

Σ

Γdl =

∫

Σ

(

∂Γ

∂t
+ (∇s · u) Γ

)

dl

=

∫

Σ

(

1

Pes
∇2

sΓ + (Sa/λ)Cs(1− Γ)− SdΓ

)

dl

=

∫

Σ

((Sa/λ)Cs(1− Γ)− SdΓ)dl, (94)
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where dl =
∣

∣

∣

∂X
∂α

∣

∣

∣
dα is the arc-length element. The last equality is obtained by using

the fact that Σ is a closed interface. Similarly, the rate of change of surfactant mass in

the bulk region Ω1 can be obtained by taking the integration of C over the region Ω1,

applying the time derivative, and then using Eq. (92) as

d

dt

∫

Ω1

Cdx =

∫

Ω1

DC

Dt
dx =

∫

Ω1

1

Pe
∇2Cdx =

∫

∂Ω1

1

Pe

∂C

∂n1

dl −
∫

Σ

1

Pe

∂C

∂n
dl

= −
∫

Σ

(SaCs(1− Γ)− SdλΓ)dl, (95)

where the last equality is obtained by using the boundary conditions of Eq. (93). One

can immediately lead to the total surfactant mass conservation by summing Eq. (94) and

Eq. (95) so we have

d

dt

(
∫

Ω1

Cdx+ λ

∫

Σ

Γdl

)

= 0. (96)

6.1 An embedding bulk concentration equation in a

regular Cartesian domain

As mentioned before, solving the bulk concentration equation involves solving a convection-

diffusion equation in an evolving irregular domain Ω1. In order to describe the solution in

a regular Cartesian domain Ω = Ω0 ∪ Ω1, we introduce the indicator function H defined

as

H(x, t) = 1−
∫

Ω0

δ2(x− x̃) dx̃ =











1 if x ∈ Ω1

0 if x ∈ Ω0

(97)

In the previous part, we use the indicator function I to point out the inner subdomain

Ω0. Here, instead of using I, we use the opposite function H to indicate the outer region.

The above indicator function is nothing but the Heaviside function across the interface.

By taking the gradient and then divergence operators on both sides, we have

∇H(x, t) =

∫

Σ

n δ2(x−X) dl,

∇2H(x, t) = ∇ ·
∫

Σ

n δ2(x−X) dl. (98)
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Thus, the indicator function can be obtained by solving Poisson equation with a singular

source term [42].

By introducing the indicator function, one can rewrite the bulk concentration equation

(92) in Ω1 with the absorption and desorption on the interface described in Eq. (93) into

one equation in the whole domain Ω as

∂

∂t
(H C) +∇ · (uH C) =

1

Pe
∇ · (H∇C)−

∫

Σ

(SaCs(1− Γ)− SdλΓ)δ
2(x−X)dl. (99)

Here, we rewrite the convection term in a divergence form since the velocity is incom-

pressible. Notice that, in the domain Ω1 where the indicator function H = 1 so the above

equation recovers to the original bulk surfactant equation (92). Moreover, since H = 0 in

the domain Ω0, we have HC = 0 no matter what are the values of C which restricts that

the surfactant is insoluble in Ω0. One should mention that the above bulk concentration

equation (99) has the similar form as the diffuse-interface approach proposed by Teigen

et. al. [40] except the expression of last term.

By taking the integration of Eq. (99) over the domain Ω, we have

d

dt

∫

Ω

HCdx =

∫

Ω

∂

∂t
(HC)dx

= −
∫

Ω

∇ · (uH C)dx+

∫

Ω

1

Pe
∇ · (H∇C)dx

−
∫

Ω

∫

Σ

(SaCs(1− Γ)− SdλΓ)δ
2(x−X)dldx

= −
∫

Σ

(SaCs(1− Γ)− SdλΓ)dl,

where the last equality is obtained by using the no flow velocity boundary condition

u · n1 = 0, the zero surfactant flux ∂C
∂n1

|∂Ω1
= 0, and the integral identity of the Dirac

delta function
∫

Ω

δ2(x−X)dx = 1. (100)

One can immediately see that the above rate of change of bulk surfactant mass in the

domain Ω is exactly the same as the one in the domain Ω1 as shown in Eq. (95). Based on

our new formulation, the bulk surfactant adjacent to the interface can be simply evaluated

as

Cs(α, t) =

∫

Ω

H Cδ2(x−X(α, t))dx. (101)

58



Chapter 7

A conservative scheme for solving

the coupled surface-bulk

concentration equations

In this chapter, we give the details of our numerical scheme to solve the coupled surface-

bulk concentration equations (91) and (99). For simplicity, assume our computational

domain to be a rectangular domain Ω = [a, b] × [c, d]. Within this domain, we use a

uniform lattice grid with mesh width h and adapt the usual staggered grid structure

[19] where the given velocity components u and v are defined at usual at (xi−1/2, yj) =

(a+ (i− 1)h, c+ (j − 1/2)h) and (xi, yj−1/2) = (a+ (i− 1/2)h, c+ (j − 1)h), respectively.

However, the bulk surfactant concentration Ci,j and the discrete indicator function

Hi,j, are both defined at the cell center labelled as x = (xi, yj) = (a+ (i− 1/2)h, c+ (j −

1/2)h). For the immersed interface, we use a collection of discrete points αk = k∆α, k =

0, 1, . . .M such that the Lagrangian markers are denoted by Xk = X(αk) = (Xk, Yk).

The unit tangent vector τ k and the discrete stretching factor |DαXk| are defined at the

“half-integer” points αk+1/2 = (k+1/2)∆α, where the unit tangent can be approximated

by

τ k = DαXk/ |DαXk| =
Xk+1 −Xk

∆α
/

∣

∣

∣

∣

Xk+1 −Xk

∆α

∣

∣

∣

∣

. (102)

Once we have defined the unit tangent vector on the interface, the unit outward normal
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Figure 7.1: The computational domain Ω using staggered grid with mesh size h.

Figure 7.2: Illustration of Lagrangian markers.
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vector nk can be calculated straightforwardly, i.e. nk = (nk1 , nk2) = (τk2 ,−τk1) where

τ k = (τk1 , τk2) The surface concentration Γk is also defined at the “half-integer” points.

Let ∆t be the time step size, and n be the superscript time step index. At the

beginning of each time step, e.g., step n, the variables Xn,Γn and Cn are all given.

Step 1: Compute the new interface position. Since the velocity field u is given

through the computation, the first step is to get the velocity on the marker points and to

move the marker points to new positions. The velocity on the Lagrangian markers can

be interpolated from the new velocity at the fluid lattice points surrounding the marker

points, i.e.

Un+1
k =

∑

i,j

un+1
i,j δ2h(xi,j −Xn

k)h
2

Xn+1
k = Xn

k +∆tUn+1
k , (103)

where δ2h is a two-dimensional discrete delta function used in the immersed boundary

method such as the one we use in previous part, which can be found in [32, 44].

Step 2: Compute the indicator function. Based on the new interface position

Xn+1
k calculated in previous step, we can compute the corresponding indicator function

Hn+1 by numerically solving Eq. (98) as

∇2
hH

n+1
i,j = ∇h ·

(

∑

k

nn+1
k δ2h(xi,j −Xn+1

k+1/2)
∣

∣DαX
n+1
k

∣

∣∆α

)

, (104)

where Xn+1
k+1/2 = (Xn+1

k+1 + Xn+1
k )/2. We use the general five-point stencil discretization

to approximate the Laplacian, i.e.

∇2
hH

n+1
i,j =

Hn+1
i+1,j +Hn+1

i,j+1 − 4Hn+1
i,j +Hn+1

i−1,j +Hn+1
i,j−1

h2
(105)

Fast direct solvers to the Poisson problems can be found in the popular software package

FISHPACK [3], We just use the subroutines in FISHPACK to solve the above discrete

Poisson equation efficiently. The detailed accuracy issue about solving Eq. (104) can be

found in previous part.

Step 3: Compute the surface concentration. As the same procedures written

in [24], by multiply the interface stretching factor to Eq. (91), we rewrite the equation in
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terms of the material coordinate explicitly to obtain

∂Γ

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

+ (∇s · u)
∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

Γ =
1

Pes

∂

∂α

(

∂Γ

∂α
/

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

)

+ qs

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

where qs = (Sa/λ)Cs(1 − Γ)− SdΓ represents the flux between surface and bulk concen-

tration. Using the identity of ∂
∂t

∣

∣

∣

∂X
∂α

∣

∣

∣
= (∇s · u)

∣

∣

∣

∂X
∂α

∣

∣

∣
, the above equation becomes

∂Γ

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

+
∂

∂t

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

Γ =
1

Pes

∂

∂α

(

∂Γ

∂α
/

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

)

+ qs

∣

∣

∣

∣

∂X

∂α

∣

∣

∣

∣

(106)

We then discretize the above equation by the following Crank-Nicholson scheme.

Γn+1
k − Γn

k

∆t

∣

∣DαX
n+1
k

∣

∣ + |DαX
n
k |

2
+

∣

∣DαX
n+1
k

∣

∣− |DαX
n
k |

∆t

Γn+1
k + Γn

k

2
(107)

=
1

2Pes

1

∆α

(

(Γn+1
k+1 − Γn+1

k )/∆α

(
∣

∣DαX
n+1
k+1

∣

∣+
∣

∣DαX
n+1
k

∣

∣)/2
− (Γn+1

k − Γn+1
k−1)/∆α

(
∣

∣DαX
n+1
k

∣

∣+
∣

∣DαX
n+1
k−1

∣

∣)/2

)

+
1

2Pes

1

∆α

(

(Γn
k+1 − Γn

k)/∆α

(
∣

∣DαX
n
k+1

∣

∣+ |DαX
n
k |)/2

− (Γn
k − Γn

k−1)/∆α

(|DαX
n
k |+

∣

∣DαX
n
k−1

∣

∣)/2

)

+
((Sa/λ)C

∗
k(1− Γn+1

k )− SdΓ
n+1
k )

∣

∣DαX
n+1
k

∣

∣+ ((Sa/λ)C
n
k (1− Γn

k)− SdΓ
n
k) |DαX

n
k |

2
.

The adjacent bulk concentration C∗
k and Cn

k in last term can be obtained through Eq. (101)

as

C∗
k =

∑

i,j

Hn+1
i,j Cn

i,jδ
2
h(xi,j −Xn+1

k+1/2)h
2

Cn
k =

∑

i,j

Hn
i,jC

n
ijδ

2
h(xi,j −Xn

k+1/2)h
2, (108)

where Xn+1
k+1/2 = (Xn+1

k+1 + Xn+1
k )/2 since the surface concentration is defined at the

“half integer” material coordinate αk+1/2. Since the new interface marker location Xn+1
k

and the corresponding indicator function Hn+1 are both obtained in previous steps, the

above discretization results in a symmetric tri-diagonal linear system which can be solved

easily. For instance, we can use the tri-diagonal matrix algorithm, also known as the

Thomas algorithm. One should notice that if the Lagrangian markers are required to

be equally distributed for some applications, the above surface concentration equation

(106) and its numerical scheme (107) can be modified accordingly. The detail of an

equi-distributed technique for Lagrangian markers, which is related to adding an artificial

tangential velocity, can be found in our recent work [25].
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Step 4: Compute the bulk concentration. The last step is to update the bulk

concentration C. We discretize the bulk concentration equation (99) by the following

Crank-Nicholson scheme

(HC)n+1
i,j − (HC)ni,j

∆t
+∇h · (

(uHC)n+1
i,j + (uHC)ni,j

2
) (109)

=
1

Pe
(
∇h · (H∇hC)n+1

i,j +∇h · (H∇hC)ni,j
2

)−Qi,j

where Qi,j is the discrete version of the singular integral in Eq. (99) as

Qi,j =
1

2

∑

k

(SaC
∗
k(1− Γn+1

k )− SdλΓ
n+1
k )

∣

∣DαX
n+1
k

∣

∣ δ2h(xi,j −Xn+1
k+1/2)∆α

+
1

2

∑

k

(SaC
n
k (1− Γn

k)− SdλΓ
n
k) |DαX

n
k | δ2h(xi,j −Xn

k+1/2)∆α. (110)

The difference operator ∇h = (Dx
h, D

y
h) is the regular centered difference approximation

on the staggered grid to the gradient operator.

Dx
h(uHC)i,j =

ui+1/2,jHi+1/2,jCi+1/2,j − ui−1/2,jHi−1/2,jCi−1/2,j

h
,

Dy
h(vHC)i,j =

vi,j+1/2Hi,j+1/2Ci,j+1/2 − vi,j−1/2Hi,j−1/2Ci,j−1/2

h
,

Dx
h(HDx

hC)i,j =
Hi+1/2,j(Ci+1,j − Ci,j)/h−Hi−1/2,j(Ci,j − Ci−1,j)/h

h
,

Dy
h(HDy

hC)i,j =
Hi,j+1/2(Ci,j+1 − Ci,j)/h−Hi,j−1/2(Ci,j − Ci,j−1)/h

h
, (111)

where the approximate values defined at the cell edges are evaluated as the average of

two neighboring values. For instance,

Hi+1/2,j = (Hi+1,j +Hi,j)/2

Hi−1/2,j = (Hi,j +Hi−1,j)/2

Hi,j+1/2 = (Hi,j+1 +Hi,j)/2

Hi,j−1/2 = (Hi,j +Hi,j−1)/2. (112)

The same manner can be applied to the bulk concentration terms, such as Ci+1/2,j.

One should notice that, since H = 0 in Ω0, to avoid the division by zero in above

scheme causing singularities in the linear systems, we regularize the indicator function H
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by using
√
H2 + ǫ2 instead of H itself where ǫ is chosen about 10−6. This regularization

is commonly adopted in literature such as in [40].

Furthermore, we need to check if our proposed method is preserving the mass conser-

vation of surfactant. First we take the summation of Eq. (107) over the interface. The

periodicity of the quantities are provided due to the fact that the interface is a simple

closed curve. It leads to the following discrete rate of change of surface concentration

λ

∆t

(

∑

k

Γn+1
k

∣

∣DαX
n+1
k

∣

∣ ∆α−
∑

k

Γn
k |DαX

n
k | ∆α

)

=
∑

k

(SaC
∗
k(1− Γn+1

k )− SdλΓ
n+1
k )

∣

∣DαX
n+1
k

∣

∣ + (SaC
n
k (1− Γn

k)− SdλΓ
n
k) |DαX

n
k |

2
∆α

Similarly, we take the summation of Eq. (109) over the whole computational domain,

then apply the no-outgoing flow boundary conditions for velocity and no-flux boundary

conditions for bulk concentration, i.e. (u · n1 = 0,∇hC · n1 = 0 on ∂Ω). Thus we obtain

1

∆t

(

∑

ij

(HC)n+1
ij h2 −

∑

ij

(HC)nijh
2

)

= −
∑

k

(SaC
∗
k(1− Γn+1

k )− SdλΓ
n+1
k )

∣

∣DαX
n+1
k

∣

∣ + (SaC
n
k (1− Γn

k)− SdλΓ
n
k) |DαX

n
k |

2
∆α

where we use the discrete analogue of the delta function integral identity (zero moment

condition)
∑

ij

δ2h(xij −Xk+1/2)h
2 = 1. (113)

By combining the above two summations, we have proved the following discrete conser-

vation for the total surfactant mass as

∑

ij

(HC)n+1
ij h2+λ

∑

k

Γn+1
k

∣

∣DαX
n+1
k

∣

∣ ∆α =
∑

ij

(HC)nijh
2+λ

∑

k

Γn
k |DαX

n
k | ∆α. (114)
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Chapter 8

Navier-Stokes flow with soluble

surfactant

Consider an incompressible flow problem consisting of two-phase fluids in a fixed two-

dimensional square domain Ω = Ω0 ∪ Ω1 where an interface Σ separates Ω0 from Ω1 as

illustrated in Figure 1. As in previous section, it is assumed that the surfactant exists

on the interface as a monolayer and is adsorbed from or desorbed to the bulk fluid in

Ω1; that is, the surfactant is soluble in the exterior bulk but not in the interior one.

The interface is contaminated by the surfactant so that the distribution of the surfactant

changes the surface tension accordingly. In order to formulate the problem using the

immersed boundary approach, we simply treat the interface as an immersed boundary

that exerts force to the fluids and moves with local fluid velocity. For simplicity, we

assume equal viscosity and density for both fluids, and neglect the gravity. Certainly,

the present Navier-Stokes solver can be replaced by the one with different density and

viscosity ratios.

As in [24], the non-dimensional Navier-Stokes flow in the usual immersed boundary

65



formulation can be written as

∂u

∂t
+ (u · ∇)u+∇p =

1

Re
∇2u+

f

Re Ca
, (115)

∇ · u = 0, (116)

f(x, t) =

∫

Σ

F (α, t) δ(x−X(α, t)) dα, (117)

∂X(α, t)

∂t
= U(α, t) =

∫

Ω

u(x, t) δ(x−X(α, t))dx, (118)

F (α, t) =
∂

∂α
(σ(α, t)τ (α, t)), (119)

where u is the fluid velocity and p is the pressure. The dimensionless numbers are the

Reynolds number (Re = ρU∞R/µ) describing the ratio between the inertial force and the

viscous force, and the Capillary number (Ca = µU∞/σ∞) describing the strength of the

surface tension. The presence of surfactant will reduce the surface tension of the interface

by the Langmuir equation of state [34]

σ = 1 + El ln(1− Γ), (120)

where σ is the surface tension, and El is the elasticity number measuring the sensitivity

of the surface tension to the surfactant concentration. Since the surfactant is soluble in

Ω1, we need to solve the coupled surface-bulk concentration equations (91)-(93) to close

the system.

8.1 Fluid solver for Navier-Stokes equations

In this section, we introduce our fluid solver which used in previous work [24]. Let

u(x, t) = (u(x, t), v(x, t)), f(x, t) = (f(x, t), g(x, t)), and p(x, t) be the fluid velocity, ex-

ternal forces and fluid pressure, respectively, where x = (x, y) is the Eulerian coordinates.

We can write down the Navier-Stokes Equations (115) and (116) in explicit form

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂p

∂x
=

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

+
f

ReCa
(121)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂p

∂y
=

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

+
g

ReCa
(122)

∂u

∂x
+

∂v

∂y
= 0 (123)
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Note that we use the continuity equation (123) to express the convection term as a con-

servative form. That is,

u · ∇u =







u∂u
∂x

+ v ∂u
∂y

u ∂v
∂x

+ v ∂v
∂y






.

In x-direction we rewrite

u
∂u

∂x
+ v

∂u

∂y

= u
∂u

∂x
+ v

∂u

∂y
+ u(

∂u

∂x
+

∂v

∂y
)

=
∂u2

∂x
+

∂uv

∂y
. (124)

Then similar procedure is applied in y-direction

u
∂v

∂x
+ v

∂v

∂y

= u
∂v

∂x
+ v

∂v

∂y
+ v(

∂u

∂x
+

∂v

∂y
)

=
∂uv

∂x
+

∂v2

∂y
(125)

In order to discretize (121) to (123), the following second-order accurate finite-difference

expressions for derivatives with respect to space for (i, j)-cell are used [11]

(

∂u2

∂x

)

i+1/2,j

=
(ui+1,j)

2 − (ui,j)
2

∆x
,

(

∂uv

∂y

)

i+1/2,j

=
(uv)i+1/2,j+1/2 − (uv)i+1/2,j−1/2

∆y
,

(

∂2u

∂x2

)

i+1/2,j

=
ui+3/2,j − 2ui+1/2,j + ui−1/2,j

∆x2
,

(

∂2u

∂y2

)

i+1/2,j

=
ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

∆y2
,

(

∂uv

∂x

)

i,j+1/2

=
(uv)i+1/2,j+1/2 − (uv)i−1/2,j+1/2

∆x
,

(

∂v2

∂y

)

i,j+1/2

=
(vi,j+1)

2 − (vi,j)
2

∆y
,

(

∂2v

∂x2

)

i,j+1/2

=
vi+1,j+1/2 − 2vi,j+1/2 + vi−1,j+1/2

∆x2
,

(

∂2v

∂y2

)

i,j+1/2

=
vi,j+3/2 − 2vi,j+1/2 + vi,j−1/2

∆y2
. (126)

67



In the above expression, terms like ui,j, vi,j, ui+1/2,j+1/2, vi+1/2,j+1/2 appear, which are not

defined in Figure 7. To evaluate such terms, linear interpolation is employed, that is,

ui,j =
ui+1/2,j + ui−1/2,j

2
,

ui+1/2,j+1/2 =
ui+1/2,j+1 + ui+1/2,j

2
,

vi,j =
vi,j+1/2 + vi,j−1/2

2
,

vi+1/2,j+1/2 =
vi+1,j+1/2 + ui,j+1/2

2
. (127)

We adapt Crank-Nicholson scheme to the projection method proposed by Chorin [10],

which is a modification to the Marker and Cell (MAC) method proposed by Amsden and

Harlow [19] where the method is characterized by the use of a staggered grid. The general

procedure for a projection method is a prediction-correction approach. In the first step

we use the momentum equations to compute an intermediate velocity field denoted by

u⋆. This velocity does not satisfy the continuity equation. In the second step we solve a

Poisson equation for the pressure which is derived from the continuity equation. Finally,

we project the solution u⋆ to the real divergence-free velocity field by the computed

pressure.

We write down the semi-discretization of momentum equations (121)

un+1
i+1/2,j − un

i+1/2,j

∆t
+

(

∂u2

∂x

)n+1/2

i+1/2,j

+

(

∂uv

∂y

)n+1/2

i+1/2,j

+
p
n+1/2
i+1,j − p

n+1/2
i,j

∆x

=
1

Re

{

(

∂2u

∂x2

)n+1/2

i+1/2,j

+

(

∂2u

∂y2

)n+1/2

i+1/2,j

}

+
f
n+1/2
i+1/2,j

ReCa
, (128)

vn+1
i,j+1/2 − vni,j+1/2

∆t
+

(

∂uv

∂x

)n+1/2

i,j+1/2

+

(

∂v2

∂y

)n+1/2

i,j+1/2

+
p
n+1/2
i,j+1 − p

n+1/2
i,j

∆y

=
1

Re

{

(

∂2v

∂x2

)n+1/2

i,j+1/2

+

(

∂2v

∂y2

)n+1/2

i,j+1/2

}

+
g
n+1/2
i,j+1/2

ReCa
.

In order to reduce the complexity of computation, we use Adams-Bashforth scheme to
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approximate the convection terms
(

∂u2

∂x

)n+1/2

i+1/2,j

+

(

∂uv

∂y

)n+1/2

i+1/2,j

=
3

2

{

(

∂u2

∂x

)n

i+1/2,j

+

(

∂uv

∂y

)n

i+1/2,j

}

− 1

2

{

(

∂u2

∂x

)n−1

i+1/2,j

+

(

∂uv

∂y

)n−1

i+1/2,j

}

, (129)

(

∂uv

∂x

)n+1/2

i,j+1/2

+

(

∂v2

∂y

)n+1/2

i,j+1/2

=
3

2

{

(

∂uv

∂x

)n

i,j+1/2

+

(

∂v2

∂y

)n

i,j+1/2

}

− 1

2

{

(

∂uv

∂x

)n−1

i,j+1/2

+

(

∂v2

∂y

)n−1

i,j+1/2

}

.

The external forcing terms f and g are substituted by fn
i+1/2,j and gni,j+1/2, which are

computed from the data in previous time step.

The first step is to find prediction solutions u⋆ by using the pressure of previous time

step

u⋆
i+1/2,j

∆t
− 1

2Re

{

(

∂2u

∂x2

)⋆

i+1/2,j

+

(

∂2u

∂y2

)⋆

i+1/2,j

}

=
un
i+1/2,j

∆t
−

p
n−1/2
i+1,j − p

n−1/2
i,j

∆x
−
(

∂u2

∂x

)n+1/2

i+1/2,j

+

(

∂uv

∂y

)n+1/2

i+1/2,j

+
1

2Re

{

(

∂2u

∂x2

)n

i+1/2,j

+

(

∂2u

∂y2

)n

i+1/2,j

}

+
fn
i+1/2,j

ReCa
, (130)

v⋆i,j+1/2

∆t
− 1

2Re

{

(

∂2v

∂x2

)⋆

i,j+1/2

+

(

∂2v

∂y2

)⋆

i,j+1/2

}

=
un
i+1/2,j

∆t
−

p
n−1/2
i,j+1 − p

n−1/2
i,j

∆y
−
(

∂uv

∂x

)n+1/2

i,j+1/2

+

(

∂v2

∂y

)n+1/2

i,j+1/2

+
1

2Re

{

(

∂2v

∂x2

)n

i,j+1/2

+

(

∂2v

∂y2

)n

i,j+1/2

}

+
gni,j+1/2

ReCa
.

These system of equations lead to solving two Helmholtz equations. one can use fast

direct solvers such as FISHPACK to compute u⋆ and v⋆.

Compare with original semi-discretization (128), we have to solve

un+1 − u⋆

∆t
= −∇h(p

n+1/2 − pn−1/2) +
1

2Re
∇2

h(u
n+1 − u⋆) (131)

Assume un+1 is the final solution satisfying divergence-free condition. By using the Hodge

decomposition, there exists a potential function φ such that

un+1 − u⋆

∆t
= ∇hφ. (132)
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We take divergence on Eq. (132) and obtain

−∇h · u⋆

∆t
= ∇2

hφ, (133)

which is a Poisson equation with zero Neumann boundary conditions.

By solving the Poisson equation for potential function φ, we can get the velocity field

satisying the continuity equation by

un+1 = u⋆ +∆t∇hφ. (134)

At the same time, the pressure is updated by

pn+1/2 = pn−1/2 + φ− ∇h · u⋆

2Re
(135)

8.2 Algorithm for Navier-Stokes flow with soluble

surfactant

In the following, we describe how to march one time step for the solutions. At the

beginning of each time step, the interface position, the fluid velocity, the surface and bulk

concentrations must be given. The numerical algorithm is as follows.

Step 1: Compute the surface tension and unit tangent on the interface.

σn
k = 1 + El ln(1− Γn

k), (136)

τ n
k = DαXk/ |DαXk| (137)

Note that both surface tension and unit tangent are defined on half integer points αk+1/2.

Then the tension force is given by

F n
k = Dα(σ

n
kτ

n
k) (138)

Step 2: Distribute the interfacial force from the Lagrangian markers into

the fluid.

fn(x) =
∑

k

F n
k δ

2
h(x−Xn

k) |DαXk|∆α. (139)
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Step 3: Solve the Navier-Stokes equations by the projection method.

By using the procedures stated in previous section, one need to solve the following

system

(u · ∇h)u
n+1/2 =

3

2
(un · ∇h)u

n − 1

2
(un−1 · ∇h)u

n−1

u∗ − un

∆t
+ (u · ∇h)u

n+1/2 = −∇hp
n−1/2

+
1

2Re
∇2

h(u
∗ + un) +

fn

ReCa

u∗ = ub, on ∂Ω

∇2
hφ

n+1 =
∇h · u∗

∆t
,

∂φ

∂n
= 0, on ∂Ω

un+1 = u∗ −∆t∇hφ
n+1,

pn+1/2 = pn−1/2 + φn+1 − ∇h · u∗

2Re
.

Basically, two Helmholtz equations and one Poisson equation are solved by FISHPACK

at each time step.

Step 4: Compute the new interface position.

Un+1
k =

∑

i,j

un+1
i,j δ2h(xi,j −Xn

k)h
2

Xn+1
k = Xn

k +∆tUn+1
k , (140)

Step 5: Compute the indicator function.

Step 6: Compute the surface concentration.

Step 7: Compute the bulk concentration.

The first four steps are the standard implementation in immersed boundary method.

The last four steps are exactly the same four steps shown in previous chapter.

71



Chapter 9

Numerical results 2

In this chapter, in order to validate the numerical methods we proposed for solving surface-

bulk coupled surfactant system, we try to do a series of tests to check if our solver is

correct. Since the algorithms in our previous work [24] provided the conservation of surface

concentration in numerical sense, here the numerical solution of bulk concentration is our

main focus, and we also concern about the conservation of concentration when bulk part

is coupling with the surface part. Throughout this chapter, the dimensionless adsorption

depth λ is chosen to be 1, which refers approximately to a drop of micron in glycerol/water

solutions of the polyethoxylate surfactant C12E6 [33]. We set the computational domain

Ω as [−1, 1]× [−1, 1]; unless stated otherwise.

9.1 Bulk diffusion with a fixed interface

For the first example, we test the diffusion of bulk surfactant in the exterior phase Ω1.

We fix the inner boundary of Ω1, or the interface, and choose it as a circle centered at

(x0, y0) = (0, 0) with radius r0 = 0.3. In order to consider the diffusion of the bulk

concentration only, the velocity is set to be zero, and the bulk-surface coupling is turned

off, that is, we solve Eqs. (92)-(93) with u = 0 and Sa = Sd = 0. The Peclet number is

set as Pe = 100.
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The initial bulk concentration is set as

C(x, y, 0) =























0.5 + 0.4 cos(πx) cos(πy) if r > 2.5r0

C̄ + (0.4 cos(πx) cos(πy) + 0.5− C̄)w(r) if r0 ≤ r ≤ 2.5r0

0 otherwise

(141)

where the function

w(r) =
1

2

(

1− cos

(

(r − r0)π

1.5r0

))

(142)

with r =
√

(x− x0)2 + (y − y0)2, and C̄ is the concentration value at the interface. Here,

C̄ is set as the average value of the function 0.5 + 0.4 cos(πx) cos(πy) along the interface

r = r0. Note that, by the choice of w(r), one can immediately check that this initial

condition satisfies the boundary condition Eq. (93) since w(r0) = w′(r0) = 0.

We first present the convergence study of the proposed scheme. Here, the grid numbers

N ×N which we perform the computations vary from N = 64, 128, 256, 512 to N = 1024

in the domain Ω = [−1, 1]× [−1, 1] so the spatial mesh width is h = 2/N . The Lagrangian

marker width is chosen as ∆α ≈ h/2 and the time step size is ∆t = h/8. The solutions

are computed at time T = 0.5. Due to no analytic solutions in these simulations, we

compute the error between two successive grids denoted by ‖(HC)2N − (HC)N‖, so the

rate of convergence can be computed as

rate = log2
‖(HC)N − (HC)N/2‖
‖(HC)2N − (HC)N‖

(143)

Table 9.1 shows the mesh refinement analysis of the bulk concentration in L2 and L1

norms. The rate convergence is about first-order, which is a typical accuracy behavior

using the immersed boundary method [32].

Figure 9.1 shows the bulk concentration along the horizontal line y = 0 at different

times using the grid number N = 256. For Ω0, the inner part of the domain, the bulk

concentration is almost zero which reflects the insolubility of the inner region. Meanwhile,

the surfactant in the outer region diffuses gradually as time evolves in these plots. To

verify whether the total surfactant mass is conserved in the domain, we plot the relative

error defined by Mt−M0

M0
, where M0 is the initial total surfactant mass while Mt is the total
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N ×N ‖(HC)2N − (HC)N‖2 rate ‖(HC)2N − (HC)N‖1 rate

64×64 2.0344E-02 – 1.0424E-02 –

128×128 1.6218E-02 0.3270 4.7816E-03 1.1243

256×256 1.0940E-02 0.5679 2.4963E-03 0.9376

512×512 3.8809E-03 1.4951 2.9607E-04 3.0757

Table 9.1: The L2 and L1 errors and their convergent rates for the bulk diffusion with a

fixed interface at T = 0.5.

mass computed at time t. The upper panel of Figure 9.2 shows the time evolutionary plot

of the total mass relative error. The relative error is in the magnitude of 10−13, which

indicates that the present scheme has excellent conservation property.

Although in the plots of Figure 9.1, the bulk concentration is indistinct zero inside

the interface; however, there is still an O(ǫ) amount of mass leaking into the region Ω0.

In the lower panel of Figure 9.2, we show the time evolutionary plot of the relative error

for the leaking mass inside the interface. This relative error is defined as ML

M0
, where the

leaking mass ML is computed by

ML =
∑

ij

(HC)ijh
2 when Hij ≤ 0.01. (144)

Note that, the present relative error is within 10−5 which is only about 0.001%.

This mass leaking is caused by the regularization of the indicator function. In order

to further understand the dependence of the regularization parameter ǫ on the effect of

numerical leakage error, we test three different choice of ǫ = 10−6, 0.1h, and 0.1h2 as

shown in Table 9.2. The errors are all computed up to time T = 0.5. One can see that

all three cases show similar first-order convergence as the mesh is refined. Meanwhile, the

errors of ǫ = 10−6 and ǫ = 0.1h2 are both comparable, and are better than the choice of

ǫ = 0.1h. Throughout the rest of computations, we therefore simply use ǫ = 10−6.
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Figure 9.1: The bulk concentration along the horizontal line y = 0 at different times.
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Figure 9.2: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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N ×N ǫ = 10−6 rate ǫ = 0.1h rate ǫ = 0.1h2 rate

64×64 1.7175E-05 – 1.4376E-04 – 2.1261E-05 –

128×128 1.2707E-05 0.4346 8.1861E-05 0.8124 1.3810E-05 0.6225

256×256 7.0408E-06 0.8518 4.3141E-05 0.9241 7.3280E-06 0.9142

512×512 3.3182E-06 1.0853 2.1641E-05 0.9953 3.3904E-06 1.1119

Table 9.2: The convergent study of numerical leakage relative error ML

M0
at T = 0.5 for

three different regularization parameter ǫ.

9.2 Bulk convection-diffusion with a moving inter-

face

In the following test, we the same initial setup as the previous test but the convection

effect is added into the equation. The flow and the interface are now moving with a

prescribed incompressible velocity field u = (u, v) as

u = −1

2
(1 + cos(πx)) sin(πy), (145)

v =
1

2
(1 + cos(πy)) sin(πx).

The center of the circular interface is shifted to the point of (x0, y0) = (0.1, 0) initially so

that the asymmetric flow can be developed.

Table 9.3 shows the convergent rate analysis of the bulk concentration in Ω as we

refine the mesh. Again, one can see that the rate of convergence is first-order even with

a moving interface.

Figure 9.4 shows the snapshots of the the bulk concentration at different times. The

plots at left hand side are the contour plots of the concentration of bulk surfactant and

the position of the interface in the same time. The figures at right hand side are the cross

section of the concentration along the horizontal line y = 0. The asymmetric flow could

be found among the plots, and the effects of both convection and diffusion are shown

obviously on the distribution of bulk concentration. Figure 9.3 shows the relative errors
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N ×N ‖(HC)2N − (HC)N‖2 rate ‖(HC)2N − (HC)N‖1 rate

64×64 2.3101E-02 – 1.1570E-02 –

128×128 1.5788E-02 0.5491 5.3424E-03 1.1149

256×256 1.1002E-02 0.5210 2.7364E-03 0.9652

512×512 3.9145E-03 1.4909 3.2451E-04 3.0759

Table 9.3: The L2 and L1 errors and their convergent rates for the bulk convection-

diffusion with a moving interface at T = 0.5.

for total mass in Ω and leaking mass into Ω0. Again, the total surfactant mass (upper

panel) is conserved almost as well as the first test and the leaking mass error is still

controlled within 0.002%. Note that, the oscillatory behavior of the latter error is due to

the convection of the flow.
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Figure 9.3: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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9.3 Surface-bulk coupling with a moving interface

In the third test, we take the surface-bulk coupling of the system with a moving interface

into consideration; that is, we need to solve the coupling equations (91)-(93) with the

prescribed velocity u defined in Eq. (146). The bulk Peclet number Pe and the surface

Peclet number Pes are chosen as Pe = Pes = 100, and we set the adsorption and

desorption Stanton numbers as Sa = Sd = 1.0. As previously, the initial interface is a

circle with the center located at (x0, y0) = (0.1, 0) and the radius r0 = 0.3. The initial

bulk concentration is defined as

C(x, y, 0) =























0.5(1− x2)2 if r > 2.5r0

0.5(1− x2)2w(r) if r0 ≤ r ≤ 2.5r0

0 otherwise

where the function w(r) is defined as same as Eq. (142). We also set the initial sur-

face concentration to be identically zero (i.e. Γ(α, 0) = 0) so that one can observe the

significant surface absorption near the interface.

As before, by the choice of w(r), the initial bulk and surface concentrations satisfy the

boundary condition Eq. (93). Table 9.4 shows the mesh refinement analysis of the bulk

and surface concentrations in L2 norm. One can see that the rate of convergence is roughly

first-order for the bulk while it is better than first-order for the surface concentration.

N ×N ‖(HC)2N − (HC)N‖2 rate ‖Γ2N − ΓN‖2 rate

64×64 1.9479E-03 – 1.9494E-04 –

128×128 8.5982E-04 1.1798 5.2554E-05 1.8911

256×256 4.3928E-04 0.9689 1.5999E-05 1.7158

512×512 1.2794E-04 1.7796 5.2204E-06 1.6157

Table 9.4: The L2 errors and their convergent rates for the bulk and surface concentrations

at T = 0.5.

Figure 9.6 shows the bulk concentration at different times. The upper panel shows the

contour plots of bulk concentration and the instantaneous interface positions. The lower
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left column of the figure shows the plots of cross section of the bulk concentration along

the horizontal line y = 0, while the lower right column shows the surface concentration

along the interface. Since the total mass is conserved, the surface concentration increases

while the bulk concentration decreases significantly due to the surface adsorption process.

The relative errors for total mass in Ω and leaking mass into Ω0 are shown in Figure 9.5.

Again, the total surfactant mass is conserved as well as before and the leaking mass error

is controlled within 0.0005%.
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Figure 9.5: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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9.4 A freely oscillating drop

In the following section, we consider a freely oscillating drop immersed in a quiescent flow

as our first numerical test for Navier-Stokes flow with soluble surfactant. The initial drop

interface is an ellipse centered at the origin with major and minor radius 0.6 and 0.15,

respectively. That is, the initial interface configuration is defined as

X(α, 0) = (0.6 cosα, 0.15 sinα), 0 ≤ α ≤ 2π (146)

. Unlike the previous tests, we now set the initial bulk concentration in Ω1 (outside of

the ellipse) to be a constant C̄s, i.e. C(x, y, 0) = C̄s in Ω1. The bulk surfactant adjacent

to the interface Cs(α) is naturally equal to Cs which leads to zero Neumann condition

∂C

∂n
= 0 (147)

along the interface. We then choose the initial surface concentration Γ(α, 0) to be another

constant Γ̄ such that

Sa

λ
C̄s(1− Γ̄) = SdΓ̄. (148)

Based on the above choices of the initial bulk and surface concentrations, one can im-

mediately see those initial conditions satisfy the boundary conditions in Eq (93). Since

the flow is quiescent initially, the initial velocity of Navier-Stokes is zero everywhere and

the no-slip boundary conditions are imposed on the computational boundary. The other

parameters are set to be fixed as the bulk and surface Peclet numbers Pe = Pes = 100,

the adsorption and desorption Stanton numbers Sa = Sd = 1.0, the Reynolds number

Re = 10, the Capillary number Ca = 2, and the surfactant elasticity number El = 0.5,

respectively.

As before, we first provides a convergence analysis of the present numerical scheme

described in Chapter 8. Here, we perform four different computations with varying grid

numbers N = 64, 128, 256, 512. The Lagrangian marker width is chosen as ∆α ≈ h/2

and the time step size is ∆t = h/8. The solutions are computed at time T = 0.5.

Again, since the analytic solutions to these simulations are not available, we compute
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the L2 error between two successive grids and the rate of convergence is computed as in

previous examples. Table 9.5 shows the mesh refinement analysis of the bulk and surface

concentration, and the velocity field at T = 0.5. One can see that the rate of convergence

still behaves like first-order. The time evolutionary plots of relative errors for the total

mass and the leaking mass inside the interface are similar to those in previous tests so we

omit here.

N ×N ‖(HC)2N − (HC)N‖2 rate ‖Γ2N − ΓN‖2 rate

64×64 1.9723E-02 – 1.4433E-03 –

128×128 1.2555E-02 0.6516 4.7029E-04 1.6178

256×256 9.2176E-03 0.4457 1.9054E-04 1.3034

N ×N ‖u2N − uN‖2 rate ‖v2N − vN‖2 rate

64×64 4.3642E-03 – 4.0541E-03 –

128×128 1.2665E-03 1.7848 1.2908E-03 1.6511

256×256 4.0467E-04 1.6460 4.3488E-04 1.5695

Table 9.5: The L2 errors and their convergent rates for the bulk and surface surfactant

concentrations, and the fluid velocity field at T = 0.5.

We then make the comparison of a freely oscillating drop in a quiescent flow with

a soluble or an insoluble surfactant. Note that, for the insoluble surfactant case, there

is no surface-bulk coupling thus no need to solve the bulk concentration equation (92).

Figure 9.8 shows the comparison between insoluble (denoted by dash-dotted line) and

soluble (denoted by solid line) cases for a freely oscillating drop. The upper panel shows

the interface positions at different times, while the lower left and right show the bulk

concentration along y = 0 (soluble case only) and surface concentrations, respectively.

Due to the surface tension force, the drop tends to oscillate until it reaches to a sta-

tionary circular shape. For the soluble case, since the surface surfactant will be desorbed

into the neighboring bulk region (see the lower left panel), the surface concentration is

less than the one of the insoluble case (see the lower right panel). Therefore, the surface
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tension will not be reduced as much as in the insoluble case so the drop with soluble

surfactant tends to oscillate faster than the insoluble case. Our numerical simulation

confirms the above drop behaviors qualitatively.
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Figure 9.7: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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interfacial flows for a freely oscillating drop.
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9.5 A drop under shear flow

In the last test, we consider a circular drop centered at the origin with radius r0 = 0.3

is put initially in the domain Ω = [−1, 1]× [−1, 1] under the shear flow. The initial and

boundary conditions for the velocity used in this simulations are based on the setup of

Tornberg et al. in [39]. That is, the velocity boundary conditions are

u = 1, v = 0 at y = 1 (149)

u = −1, v = 0 at y = −1,

respectively and u, v are both periodic at x = ±1. As also suggested in [39], we set

the initial velocity as the quiescent flow to avoid unrealistic flow interior to the drop

during the transition caused by using the linear velocity initially. That is, the flow is

set to motion simply by the boundary shear. The boundary conditions for the bulk

concentration equation are chosen as

∂C

∂n
= 0 at y = ±1 (150)

and are periodic at x = ±1 to be consistent with the flow conditions. Therefore, the total

surfactant mass is still conserved in this case. The initial bulk concentration is defined as

C(x, y, 0) =























sin2(πx) if r > 2.5r0

sin2(πx)w(r) if r0 ≤ r ≤ 2.5r0

0 otherwise

where the function w(r) is defined as same as Eq. (142). We also set the initial surface

concentration to be identically zero (i.e. Γ(α, 0) = 0) so that significant surface absorption

can be expected naer the interface. As before, by the choice of w(r), the initial bulk and

surface concentrations satisfy the boundary condition Eq. (93) at the interface r = r0

because of w(r0) = w′(r0) = 0. Other dimensionless numbers are λ = 1, Sa = 3, Sd =

1, P e = 10, P es = 100, Re = 10, Ca = 4/3, and El = 0.5.

As in previous test, we first perform four different computations by varying grid num-

ber N = 64, 128, 256, 512 with the associated mesh width h = 2/N . The Lagrangian
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interfacial flows for a drop under shear flow.
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Figure 9.10: Left: the bulk concentration plots along the horizontal line y = 0. The

dashed line in the first plot denotes the initial bulk concentration. Right: the surface

concentration along the interface in counter-clockwise way starting from the point marked

by ”o”.
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panel: Time evolutionary plot of leaking mass relative error inside the interface.
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N ×N ‖(HC)2N − (HC)N‖2 rate ‖Γ2N − ΓN‖2 rate

64×64 6.2645E-03 – 1.1654E-03 –

128×128 3.8501E-03 0.7022 3.9683E-04 1.5542

256×256 2.3775E-03 0.6954 1.2670E-04 1.6471

N ×N ‖u2N − uN‖2 rate ‖v2N − vN‖2 rate

64×64 5.8396E-04 – 3.7335E-04 –

128×128 2.7426E-04 1.0903 1.8524E-04 1.0111

256×256 1.4308E-04 0.9386 9.1926E-05 1.0109

Table 9.6: The L2 errors and their convergent rates for the bulk and surface surfactant

concentrations, and the fluid velocity field at T = 0.5.

marker width is chosen as ∆α ≈ h/2 and the time step size is dt = h/8. Table 9.6 shows

the mesh refinement analysis of the bulk and surface concentrations, and the velocity field

at T = 0.5. One can see that again the rate of convergence behaves like first-order in

general.

Figure 9.9 shows the evolutionary interface positions of clean (denoted by dash-dotted

line) and soluble surfactant (denoted by solid line) cases for a drop under shear flow based

on the results of grid number N = 256. The clean drop bears no surfactant along the

interface throughout the evolution so no bulk and surface surfactant equations are needed

to be solved and the surface tension remains to be a constant σ = 1. (Note that, we

use the clean drop as a comparison simply because of zero initial surface concentration is

chosen in present setting.)

Due to shear stresses, both drops will be elongated and gradually aligned with the flow

directions. For the soluble case, the interface will start to absorb the bulk surfactant so the

bulk concentration decreases while the surface concentration increases in the beginning,

see Fig. 9.10 in detail. Later, both absorption and desorption processes become more

balanced so the bulk and surface concentrations become quite steady. As expected, the

largest surface concentration appears to occur at the drop tips after the drop aligned with
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the flow. The drop with soluble surfactant has smaller surface tension than the clean

drop so the deformation tends to be larger. One can see from Fig. 9.9 that the clean

drop approaches to a steady state shape after T = 9.0 while the soluble surfactant drop

continues to deform slightly afterwards.

By using the aspect ratio, we can verify if the deformation of drops attends to a steady

state more seriously. Figure 9.11 shows the aspect ratio comparison between the soluble

case and the clean one, where the ratio is defined as

LM − Lm

LM + Lm

, (151)

which LM is the major radius (about the furthest distance of the interface to the origin),

and Lm is the minor radius (about the shortest distance of the interface to the origin).

One can see the aspect ratio of the clean drop is almost fixed as time large enough, while

that in the soluble case is still deforming.

Figure 9.12 shows the total mass error and the mass leaking of the soluble case un-

der the shear flow. The conservation of the mass of the surfactant is good, while the

mass leaking is less than 0.001%. Our numerical results are physically reasonable and

qualitatively consistent with those obtained in other literature such as in [41].
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Chapter 10

Conclusion and future work

In the first part of this thesis, we discuss the convergence of Poisson equations with source

terms defined on embedded interface in the computational domain. We provide one-

dimensional proof and two-dimensional numerical tests to judge the results. For the source

terms as derivatives of delta functions, such as pressure problem in Stokes equations, or

indicator function in front tracking methods, the overall accuracy is first-order accurate in

L1 norm, half-order accurate in L2 norm, but has O(1) error in L∞ norm. For the singular

source as delta functions, the overall convergent rate is second-order accurate in L1 norm,

one and half-order accurate in L2 norm, and first-order accurate in L∞ norm. We also

give some applications to solve second-order elliptic equations with piecewise-constant

coefficients or Stokes problems by using the solution of Poisson equations we obtained.

In the second part of this thesis, we consider the surfactant, an amphiphilic molecular,

in the multi-phase fluids. Due to the particle structure, it usually favor the presence

in the fluid interface. We take solubility of the surfactant in one subdivision of the

domain into account, and discuss the interactions between bulk domain and interface

such as adsorption and desorption. These form a coupled surface-bulk interaction system

of convection-diffusion equations. In order to reduce difficulties in the calculations, we

rewrite the bulk concentration equation into a regular domain by using the indicator

function introduced in first part. The concentration flux across the interface is treated

as a singular source term in the equation. Based on immersed boundary formulation, we
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propose a numerical scheme to solve this coupled surface-bulk concentration equations

with providing the conservation of total surfactant mass. We use a series of examples

to validate the proposed scheme, and combine with Navier-Stokes solver to extend our

previous works.

In the present thesis, all studies are done in one-dimension or two-dimension, we will

try to expand our work into three-dimensional cases in the future. The challenges are

much harder, for instance, how to set a good grid on the complex surface? how to modify

the grid when it has large deformation, especially under the flow? how to solve convection-

diffusion equations on this grid? and how to maintain the mass conservation property in

the computation? Such problems are the major issues that we need to conquer.
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[8] E. Bänsch, P. Morin, R. H. Nochetto, A finite element method for surface diffusion:

the parametric case, J. Comput. Phys., 203 (2005), 321–343.

[9] M. Bertalmio, L.-T. Cheng, S. J. Osher, G. Sapiro, Variational problems and partial

differential equations on implicit surfaces, J. Comput. Phys., 174 (2001), 759–780.

94



[10] A. J. Chorin, Numerical Solution of the Navier-Stokes Equations, Math. Comp., 22

(1968), 745–762.

[11] C. A. J. Fletcher, Computational techniques for fluid dynamics: fundamental and

general techniques, Springer-Verlag, 1991.

[12] K.-Y. Chen, K.-A. Feng, Y. Kim, M.-C. Lai, A note on pressure accuracy in immersed

boundary method for Stokes flow, J. Comput. Phys., 230 (2011), 4377–4383.

[13] K.-Y. Chen, M.-C. Lai, A conservative scheme for solving coupled surface-bulk

convection-diffusion equations with an application to interfacial flows with soluble

surfactant, J. Comput. Phys., 257 (2014), 1–18.

[14] R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput., 23 (2001),

1204–1225.

[15] G. Dziuk, C. M. Elliott, Finite element on evolving surfaces, IMA J. Numer. Anal.,

27 (2007), 262–292.

[16] G. Dziuk, C. M. Elliott, Surface finite elements for parabolic equations, J. Comput.

Math., 25 (2007), 385–407.

[17] C. M. Elliott, B. Stinner, V. Styles, R. Welford, Numerical computation of advection

and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31 (2011), 786–812.

[18] H. A. Stone, A simple derivation of the time-dependent convective-diffusion equation

for surfactant transport along a deforming interface, Phys. Fluids A, 2, (1990), 111–

112.

[19] F. H. Harlow, J. E. Welsh, Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with a free surface, Phys. Fluids, 8 (1965), 2181–2189.

[20] S. Khatri, A.-K. Tornberg, A numerical method for two phase flows with insoluble

surfactant, Computers & Fluids, 49 (2011), 150–165.

95



[21] Z. Li, K. Ito, The Immersed Interface Method, SIAM, 2006.

[22] R. J. LeVeque, Z. Li, The immersed interface method for elliptic equations with

discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994),

1019–1044.

[23] M.-C. Lai, H.-C. Tseng, A simple implementation of the immersed interface methods

for Stokes flows with singular forces, Computers & Fluids, 37 (2008), 99–106.

[24] M.-C. Lai, Y.-H. Tseng, H. Huang, An immersed boundary method for interfacial

flows with insoluble surfactant, J. Comput. Phys., 227 (2008), 7279–7293.

[25] M.-C. Lai, Y.-H. Tseng, H. Huang, Numerical simulation of moving contact lines

with surfactant by immersed boundary method, Commun. Comput. Phys., 8 (2010),

735–757.

[26] M.-C. Lai, C.-Y. Huang, Y.-M. Huang, Simulating the axisymmetric interfacial flows

with insoluble surfactant by immersed boundary method, International Journal of

Numerical Analysis and Modeling, 8 (2011), 105-117.

[27] S. Leung, J. S. Lowengrub, H.-K. Zhao, A grid based particle method for high order

geometrical motions and local inextensible flows, J. Comput. Phys., 230 (2011), 2540–

2561.

[28] M. Muradoglu, G. Tryggvason, A front-tracking method for computation of interfa-

cial flows with soluble surfactants, J. Comput. Phys., 227 (2008), 2238–2262.

[29] Y. Mori, Convergence proof of the velocity field for a Stokes flow immersed boundary

method, Communications on Pure and Applied Mathematics, 61 (2008), 1213-1263.

[30] I. L. Novak, E. Gao, Y.-S. Choi, D. Resasco, J. C. Schaff, B. M. Slepchenko, Diffusion

on a curved surface coupled to diffusion in the volume: Application to cell biology,

J. Comput. Phys., 226 (2007), 1271–1290.

96



[31] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25

(1977), 220–252.

[32] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479–517.

[33] R. Palaparthi, D. T. Papageorgiou, C. Maldarelli, Theory and experiments on the

stagnant cap regime in the motion of spherical surfactant-laden bubbles, J. Fluid

Mech., 559 (2006), 1–44.

[34] Y. Pawar, K. J. Stebe, Marangoni effects on drop deformation in an extensional flow:

the role of surfactant physical chemistry, I. Insoluble surfactants, Phys. Fluids, 8

(1996), 1738–1751.

[35] A. Rätz, A. Voigt, PDE’s on surfaces - A diffuse interface approach, Commun. Math.

Sci., 4 (2006), 575–590.

[36] P. Schwartz, D. Adalsteinsson, P. Colella, A. P. Arkin, M. Onsum, Numerical com-

putation of diffusion on a surface, PNAS, 102 (2005), 11151–11156.

[37] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han,

S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow,

J. Comput. Phys., 169 (2001), 708–759.

[38] A.-K. Tornberg, B. Engquist, Numerical approximations of singular source terms in

differential equations, J. Comput. Phys., 200 (2004), 462-V488.

[39] A.-K. Tornberg, R.W. Metcalfe, L.R. Scott, B. Bagheri, A front-tracking method

for simulating fluid particle motion using high-order finite element methods, ASME

Fluids Engineering Division Summer Meeting FEDSM97-3493, 1997.

[40] K. E. Teigen, X. Li, J. Lowengrub, F. Wang, A. Voigt, A diffuse-interface approach

for modeling transport, diffusion and adsorption/desorption of material quantities

on a deformation interface, Commun. Math. Sci. 7 (2009), 1009-1037.

97



[41] K. E. Teigen, P. Song, J. Lowengrub, A. Voigt, A diffuse-interface method for two-

phase flows with soluble surfactants, J. Comput. Phys., 230 (2011), 375–393.

[42] S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous incompressible

multi-fluid flows, J. Comput. Phys., 100 (1992), 25–37.

[43] J.-J. Xu, H.-K. Zhao, An Eulerian formulation for solving partial differential equa-

tions along a moving interface, J. Sci. Comput., 19 (2003), 573–594.

[44] X. Yang, X. Zhang, Z. Li, G.-W. He, A Smoothing technique for discrete delta

functions with application to immersed boundary method in moving boundary sim-

ulations, J. Comput. Phys., 228 (2009), 7821–7836.

[45] Y. N. Young, M. R. Booty, M. Sigel, J. Li, Influence of surfactant solubility on the

deformation and breakup of a bubble or capillary jet in a viscous fluid, Phys. Fluids,

21 (2009), 072105.

[46] J. Zhang, D. M. Eckmann, P. S. Ayyaswamy, A front tracking method for a de-

formable intravascular bubble in a tube with soluble surfactant transport, J. Comput.

Phys., 214 (2006), 366–396.

[47] Y. C. Zhou, S. Zhao, M. Feig, G. W. Wei, High order matched interface and boundary

method for elliptic equations with discontinuous coefficients and singular sources, J.

Comput. Phys., 213 (2006), 1–30.

98


	face-ch
	An immersed boundary method for simulating the interfacial flows with soluble surfactant 

	face-en
	An immersed boundary method for simulating the interfacial flowswith soluble surfactant

	abstract-ch
	abstract-en
	acknowledgement
	content
	tablecontent
	figurecontent
	natation
	main

