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with soluble surfactant

Student : Kuan-Yu Chen Advisors : Dr. Ming-Chih Lai
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National Chiao Tung University

ABSTRACT

In the first part of this'thesis, we-provide a simplified one-dimensional analysis and
two-dimensional numerical experiments to predict that the overall accuracy for the
pressure problem or indicator function in immersed boundary calculations is
first-order accurate in L'.norm, half-order accurate in L norm, but has O(1) error in
L™ norm. We also discuss the accuracy for anothertype of source terms for solving
Poisson problems with singular.conditions on the interface.

In the second part, we consider-the surfactant, which’is an-amphiphilic molecular,
under multi-phase fluids. These particles usually-favor the presence in the fluid
interface, and they may couple with the surfactant soluble in one of bulk domains
through adsorption and desorption processes. This type of problem needs to solve
partial differential equations in deformable interfaces or complex domains. Thus, it is
important to accurately solve coupled surface-bulk convection-diffusion equations
especially when the interface is moving. We first rewrite the original bulk
concentration equation in an irregular domain (soluble region) into a regular
computational domain via the usage of the indicator function, which is described in
previous part, so that the concentration flux across the interface due to adsorption and
desorption processes can be termed as a singular source in the modified equation.
Based on the immersed boundary formulation, we then develop a new conservative
scheme for solving this coupled surface-bulk concentration equations which the total
surfactant mass is conserved in discrete sense. A series of numerical tests has been
conducted to validate the present scheme. As an application, we extend our previous
work to the soluble case and investigate the effect of solubility on drop deformations.
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h : unit mesh width
a : surface parameterization
da  : surface element under parameterization

A a  : discrete surface mesh.width
X(a) : parameterized-position.of the interface

oX|  : stretching factor

o
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p . pressure

u : velocity field

u : velocity component in x-direction
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Chapter 1

Preliminaries

This thesis is a combination of our previous works. The first part is based on the article [12]
"K.-Y. Chen, K.-A. Feng, Y. Kim, M.-C. Lai,"A- note on pressure accuracy in immersed
boundary method for Stokes flow, Journal of Computational Physics, 230 (2011), 4377—
4383.” We provide a simplified one-dimensional analysis and two-dimensional numerical
experiments to predict that the overall accuracy for the pressure problem or indicator
function in immersed boundary calculations is first-order accurate in L' norm, half-order
accurate in L? norm,.-but has O(1) error in L*® norm. We also discuss the accuracy for
another type of source terms for selving Poisson. problems /with singular conditions on
the interface. In this case, we prove that the convergent rate is second-order accurate in
L! norm, one and half-order accurate.in L? norm; and first-order accurate in L* norm.
Moreover, we will give some applications to solve second-order elliptic equations with
piecewise-constant coefficients by indicator function, and compute the velocity in Stokes
equations by using the solution of pressure equations we obtained.

The following part provides the details of the paper [13] "K.-Y. Chen, M.-C. Lai, A con-
servative scheme for solving coupled surface-bulk convection-diffusion equations with an
application to interfacial flows with soluble surfactant, Journal of Computational Physics,
257(2014), 1-18.” We consider the surfactant, which is an amphiphilic molecular, under
multi-phase fluids. These particles usually favor the presence in the fluid interface, and

they may couple with the surfactant soluble in one of bulk domains through adsorption



and desorption processes. This type of problem needs to solve partial differential equa-
tions in deformable interfaces or complex domains. Thus, it is important to accurately
solve coupled surface-bulk convection-diffusion equations especially when the interface is
moving. We first rewrite the original bulk concentration equation in an irregular do-
main (soluble region) into a regular computational domain via the usage of the indicator
function, which is described in previous part, so that the concentration flux across the
interface due to adsorption and desorption processes can be termed as a singular source
in the modified equation. Based on the immersed boundary formulation, we then develop
a new conservative scheme for solving this coupled surface-bulk concentration equations
which the total surfactant mass is conserved in discrete sense. A series of numerical
tests has been conducted to validate the present scheme. As an application, we extend
our previous work [24] "M.-C. Lai, Y:-H. Tsengrand H. Huang, An immersed boundary
method for interfacial flows with insoluble surfactant, Journal of Computational Physics,
227 (2008) 7279-7293" t0 the soluble case: The effects of solubility of surfactant on drop

deformations in a quiescent and shear flow are investigated in detail.



Part 1

Numerical research on Poisson
problems with interfacial source

terms



Chapter 2

Introduction 1

In this part, we consider the problems of solving a Poisson equation in the computational
domain 2 (either in one-dimension or-in two-dimension) with a source term defined only
on a boundary (one point. for one-dimensional case, ‘and one-dimensional interface for
two-dimensional case, ‘respectively)-3 immersed in . This type of the problems arise
from using Immersed Boundary Method to solve the stationary Stokes flow defined on
irregular domain or containing interfacial singularities inside the regular domain. The

Stokes problem in the immersed boundary formulation is defined as

—Vp + pAu + /E F(s) 6 (x~X(s)) ds'=0, (1)
V.-u=0. (2)

The two-dimensional Dirac delta/function-isdefined as

6%(x) = 8(z) 8(y), (3)
which is the combination of two one-dimensional Dirac delta functions. Since the im-
mersed boundary force F is only exerted along the interface Y, we use the integral with
the Dirac delta function to keep the formulation is defined along the interface . There-
fore, the above immersed boundary formulation is a typical singular problem with a delta
function source. To solve this problem, a simple ansatz is by taking the divergence oper-

ator on Eq. (1), which means that

—Ap(x) + 4V - Au+ V- /Z F(s) 8*(x — X(s)) ds = 0. (4)

4



Use the incompressibility constraint in Eq. (2) to take out u, we obtain the pressure
equation

Ap(x) = V- /Z F(s) 02(x — X(s)) ds. (5)

Notice that, the above equation is what we mention before, which involves solving Poisson
equation with a source term which can be written as the derivatives of Dirac delta function.
Furthermore, in the general immersed boundary computations, one often uses periodic or
Neumann boundary conditions to solve pressure equation. For simplicity, throughout this
work, we just use the Dirichlet boundary condition since we are more concerned about
the accuracy caused by the derivatives of Dirac delta function near the interface.

After solving the pressure p, we have to solve the velocity field u by solving the
equation (1) with substituting p.. In' this case, we.need to solve another two Poisson
equations with source terms on the interface, which can be described as Dirac delta
function. Therefore, we deal with two kinds of source terms to the Poisson equations
introduced by the Stokes flow problem.

Another example comes from two-phase flow problem. In the former work by Tryg-
gvason et. al. [37], they introduced the indicator function in order:to track the regions of
two-phase flow. For any quantity ¢, which could be density, viscosity or others, is valued
piecewise constant in the domain,d.e. it is discontinuous across the interface. It can be

represented by the following:

Q(X) = Gout + (Qin - QOut)I(X)a (6)

where ¢;, and g, are the constant quantity inside and outside of the interface, respec-
tively. Note that, the indicator function has the value one (I = 1) inside the immersed
boundary I" and the value zero (I = 0) outside. Assume we use the immersed boundary
Y to divide the domain €2 into two parts: 2y, which is inside ¥; and §2;, which is outside

Y. The indicator function can be written as

1 if e Q(]
I(x,t) = (7)
0 if = S Ql



The indicator function can be calculated as the following procedure [37]. Let n be the

unit outward normal to the interface, then the indicator function can be represented by

I(x) = /QO 6% (x — x) dx.

By taking the gradient and then the divergence operators, we have

VI(x) = —/Enéz(x — X(s)) ds,

Al(x) = -V . / n8%(x — X(s)) ds. (8)

b

Thus, the indicator function can be obtained by solving a similar equation as Eq. (5) with
the special singular forcing term F(s) = —n(s).

In the following of this part, our goal is to use the standard finite difference scheme with
smoothing discrete delta function to discretize the equations (5) and (8), and to investigate
the numerical accuracy. Moreover..we will also discuss other types of singularity on
the interface to the Peisson equations, and do further analysis-and validations to these

problems.



Chapter 3

One-dimensional analysis

In this chapter, we will discuss the accuracy of numerical solution by using simple finite-

difference schemes to our problems.

3.1 One-dimensional-analysis for source terms as deriva-
tives of.delta functions

We consider the one-dimensional equation as

d*u d
@:caé(x—a),nggl (9)
with boundary condition
u(0) =u(1) =0, (10)

and the interface is located at x = a € (0,1). The exact solution of Eq. (9) can be
expressed as
! d
ule) = [ Gy 3ty —a) dy (1)
0 dy
where G(x;y) is the well-known Green’s function, which solves

) =b(r ). (12)



The Green’s function G(z;y) can be explicit written as
G(ryy) = I (13)

Without losing the generality, we set ¢ = 1. By applying the integration by parts into

Eq. (11) , we obtain
1 d
u(e) = / Glaiy) e 3y =) dy

= Glay)ily— ) — / d%a@y) 5y —a) dy

= — /0 din(x;y) My — ) dy. (14)

The Boundary terms vanish by using the definition of Green’s function.
Based on uniform grid with ‘grid points-w;= jhsj =0,1,..., N where h = 1/N, we use
the standard centered difference scheme_to discretize Eq. (9) with ¢ = 1 as following

Ujea =2U; 051 | 0n(Zjaa — @) = 00 (Zjo0= @)

h? 2h (15)
The discrete delta function in [31] defined as
(1 4 cos(Z2)), if |z| < 2h,
o 4] AT 1= < D "

0, otherwise

Although there are more different discrete delta functions ean be found in [4, 44] and
other papers, the usage of different delta functions cannot lead to different conclusions
that will be given in this subsection.

The discrete delta functions above satisfies

Zéh(xm —a)h =1, (17)

which is the corresponding basic requirement for discrete delta function. For simplicity,
we denote the first-order and second-order centered difference operators as D, and D2,
respectively. Analog to analytic solution in (11), the discrete solution U; of Eq. (15) can

also be written as

N
U= GimDypby(am — ) (18)

m=0



where G, = G(z;;2,,) is the discrete version of Green’s function defined as

We can immediately check that G satisfies D,%Gjm = 30j,n where d;,, is the Kronecker

=

delta function.
Now, by taking summation by parts and the property of discrete delta function, we
can rewrite the numerical solution U; as

N
Uy = hY_ GimDidy(z, — )

m=0

N-1
- h Z Gjm(sh(xm—i-l - O‘)Q_h(sh(xm—l - Oé)

= hZG(ml _hZG(m-H a)

j(m+1) = j(m—1
_ _hz J( +)2h J( )Jh(xm—oz)

—=g=th Z Dthméh(l'm =~ Oé) (20)

m=0

Hence the point-wise error between U;-and w(a;) can be expressed as

N 1
d
Uj = ()] = |7 ) DpGimOn(m — ) —/ d—yG(fl?j;y) oy —a) dy
m=0 0
N Ny
< |h Z DyGribp(xm — ) = h Z d—yG(xj; Y) on (T — @)
m=0 m=0 Y=Tm
+ hz G(z; on(xm — ) — ﬁG(x Y)
d Y . m dy 7 o
= E1 + E2

First, F; is the error from discretizing the differentiation of Green’s function. Using
the fact that the derivative of Greens function is
d X, 0 S T S Tm

Y=Tm LIZ‘j—l, .C(,’m<$j§1



and that its discrete counterpart is

Dthm = Tj — 1 j =m (22)

we obtain
d 5, ifm=j
DpGjp — d—G(% Y) = ? (23)
Yy Yy=om 0, otherwise
By using (23), we compute
N Ny
E, = |h Z DG jpdp(xm —a) — h Z d—yG(xj; ) on(xm — @)
m=0 m=0 y=om
al d
= |h Z DyG = d—G(%';y) O (Tm — @)
m=0 Y Y=am
1
= hiéh(x] o O{)
O(1), when-ja;— a.< 2k (24)

0, otherwise
The second part of the error, Es is simply an interpolating error for the function
d%G(xj; Y) . Using the formula in Eq. (21) and the first moment condition in (17),
Y=Tm

since the discrete delta function has finite support 4h, we can obtain

N
d d
By = |hY —G(z;4) op(Tm —a) = —G(z;y)
m=0 dy Y=Tm dy y=a
j—1 d
= |h Z —G(z51y) On(Tm — @)
m=0 dy y=zm
Nod d
+ h —G(zy; (T —a) — —G(xy;
WlZ:j dy ( J y) y— h( ) dy ( J y) y—a
7j—1 N d
— hmzo(xj — )op(zm —a) + h;xﬁh(mm a) — d—yG(xj; ) -

10



For z; < «, %G(xj;y)’y_

Es

Es

= x;, then

O(1), asa—x; <2h

0, otherwise

xj — 1, then

+hz%5h

O(1), ‘asz; —a £2h

0, otherwise

Therefore, we combine (25) and (26) to get

O(1), as|z; — ol <2h
g ) O s o

0, otherwise

(25)

(26)

(27)

From the above analysis, one can immediately see that the point-wise error appears

only at some points around the singular point a,-which means that the maximum er-

ror |lup, — u||

is of order O(1). For/the same reason, we can conclude that L; (||u, — ul|,)

and Ly(|lup, — ul|,) errors are of order O(h) and O(h'/?), respectively. Our numerical

results in final section will confirm this conclusion.

3.2 One-dimensional analysis for source terms as delta

functions

We consider the one-dimensional equation as

d2
—u:cé(x—oz), 0<z<l1

11

(28)



with the same boundary condition as Eq. (10), and the interface is located at © = « €

(0,1). The exact solution of (28) can be expressed as

u(z) = / Gla:y) ey — a) dy (20)

we use the standard centered difference scheme to discretize Eq. (28) with ¢ = 1 as

following
Uj_l — QUJ + Uj+1
2

= 0p(z; — ), (30)

Analog to analytic solution in Eq. (29), the discrete solution U; of Eq. (30) can also be

written as
N
U= Gimbp(xm — a) (31)
m=0

Hence the point-wise error between U; and w(a;) can be expressed as

N 1
s = ule S S Gy =) | G5y — a) dy (32)
m=0 0
According to [38], [44] and [4];-we consider two different discrete delta functions
L (1 + cos(Z2)), if |z| < 2h,
5205 _ 4h( (2h)) l | 7 (33)
0, otherwise
( B X X 2 g
(SRR TR IRR) el <
0=\ (5 - RS2 =) <l <2 G
\ 0, otherwise
with the relative moment conditions
N
R (m — )5 (2 — a) = O(h) (35)
m=0
N
hYy (T, — oz)é,{(mm —a)=0 (36)
m=0

12



Suppose « lies in some interval (z;, z;41). For z; < a — h, we have

i+2
U —u(z))| = | Y Gimn(wm —a) —zj(a—1)
m=i—1

i+2
= |h Z (X — 1)0p (T, — @) —xj(ac — 1)
m=i—1

i+2
= |h Z (X —a+a—1)0p(z, —a) —zj(a—1)
m=i—1

i+2
= |h Z (X — @)op (2, — @)

m=i—1

O(h), for 62

0, for 5,‘{

For o — h < z; < o, we compute

i+2
U —u(ay)] = | Y Gimdn(wm — )= ai(a —1)

m=i—1

— |n (.xi_l(xj — Do g = o)+ Y (g — 1)z, — a)) —zj(a—1)

= 10l s <k a1 b — )
+ szj(xm —a+a=1)0(T, — 04)} —z;(a=1)
o i+2
= |R%p(ziir =)+ h Z (T — Q)0p (@ = 1)
= O(h). i (38)

For oo = x, we derive

j+1
\U; —u(z;)] = |h GjmOn(tm — @) — xj(z; — 1)
m=j—1
w1 wi(m 1) (@i — 1) —
— T 4 5 + 1 xj(x; — 1)
— h (39)

13



For o < z; < o + h, we calculate

i+2

U —u(@y)] = |h Y Gimn(wm —a) —alz; —1)

m=i—1

= h <.§L’j(.§(3i+2 — 1)5h(xi+2 - Oé) +

= |h[((zir2 —a+a)(z; — 1) + h) op(Tig2 — @)

+ Z(xm—a+a)(xj—1)5h(xm—a)] —a(z; — 1)
= |h20(2is — @) + I Z (2; — 1) (Zm — Q)0 (T — )
— O). ) (40)
For x; > o+ h, we obtain
Uj —u(z;)| = |h Z G jmOn (T =ar).—a(vp— 1)
St Z (@ — 1)0n (@ — @) — (@ — 1)
"
S Z m — o+ a) (@, <1)0u(x,, = a)p— afz; —1)
= | Z (25 — ANy = @) (2, — )

O(h), for 65>

= (41)
0, for 5{
Hence we combine Eq. (37) to Eq. (41) to get
for 6;%, |U; —u(z;)] = O(h)Vj (42)
O(h), asl|z;—a|<h
for 8, |U; — u(z;)| = (), 8 los = e (43)

0, otherwise
From the above analysis, one can immediately see that, under proper moment condi-
tions satisfied, the point-wise error appears only at some points around the singular point
«, which means that the maximum error ||u;, — u|| is of order O(h). For the same rea-
son, we can conclude that Ly (||up, — ul|,) and La(|lus — ul|,) errors are of order O(h?) and

O(R*?), respectively. Our numerical results in final section will confirm this conclusion.
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Chapter 4

Numerical results 1

Throughout this chapter, we validate our derivations of convergence analysis via a series
of examples. For different kinds of source term, we check one-dimensional cases at first.

We also test on two-dimensional examples to see if our.analysis is hold numerically.

4.1 Convergent test for source terms- as derivatives
of delta functions

In this section, we will show the convergent results of solving Poisson problems with source
terms as derivatives of delta functions. Since the proofwe derived is valid for any kinds
of discrete delta functions, we pick up J;7°*-and 5,{ from [4, 44] for comparison. The ratio
in all tables of this section means the convergent orders of accuracy, which is computed
by

1/N

lu — un|
1/2N

|u — |

log( )/ log( ); (44)

where u is the exact solution, uy is the numerical solution with mesh size N.

15



4.1.1 One-dimensional problem 1

In this subsection, we consider the following one-dimensional problem to verify the proof

in section 3.1. The equation is

d*u d
o (e — 1. 4
70 cdxé(:)s a) + g, 0<z< (45)

Here, the interface is set at the point a = 7/6. The exact solution is given as

23+ 2a2? ifr<a
u(x) = (46)
Ix*-1) ifz>a

where the jump of solution u at the interface ¢ is equal to —(2a® + 7)/3. The regular

source term g can be computed by the analytic_solution, which is written as

6x +4a fao<a
g(x) = - (47)
14x if x> o

Table 4.1 shows the order of accuracy for our test with using 9;°* which confirms our one-
dimensional analysis‘in previous section. In Table 4.2 we use 5,{ to verify the conclusion
we mention. We could observe the same behavior of the errors even if we change the
discrete delta function. Figure 4.1 shows the maximum error always occurs across the
interface. Even if we refine the mesh, there still exists an/O(1) error, which matches our

derivations of proof in previous section.

mesh | ||u — Uplloe ratio | |[u—=Uylls ratio | |lu— Ul ratio

32 | 8.8827E-01 - 1.7057E-01 - 4.2479E-02 -

64 | 6.1709E-01 0.5255 | 1.0736E-01 0.6678 | 1.9004E-02 1.1604
128 | 1.1847E-00 -.9409 | 1.0708E-01 0.0038 | 1.2980E-02 0.5500
256 | 1.1579E-00 0.0329 | 7.4120E-02 0.5307 | 6.3791E-03 1.0248

512 | 1.1030E-00 0.0700 | 5.0171E-02 0.5630 | 3.0741E-03 1.0531

Table 4.1: Order of accuracy for one-dimensional test with 0;,>.
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1D case comparison

exact sol

— — — numer sol, N=32
— - — numer sol, N=128

-15f ! -

exact sol
— — — numer sol, N=512

0.53 0.54 0.55

Figure 4.1: Comparison between numerical and analytic solutions for 1D case
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mesh | ||u — Uplloe ratio | ||u—Uylls ratio | |lu— Ul  ratio

32 | 9.1311E-01 - 1.7356E-01 - 4.2955E-02 -
64 | 6.1970E-01 0.5592 | 1.0738E-01 0.6927 | 1.9005E-02 1.1764
128 | 1.1875E-00 -.9382 | 1.0731E-01 0.0008 | 1.3001E-02 0.5477

256 | 1.1634E-00 0.0295 | 7.4446E-02 0.5275 | 6.3993E-03 1.0226

512 | 1.1138E-00 0.0628 | 5.0603E-02 0.5569 | 3.0926E-03 1.0490

Table 4.2: Order of accuracy for one-dimensional test with 5;(.

4.1.2 Two-dimensional problems 1

For two-dimensional problem, we generally. write the equation in the form :
Au = V-/F(s) 6 (z — X(8)) ds+ g (48)
)

in a rectangular domain €= [a,b] x [e, d] with given Dirichlet boundary conditions. We
use an M x N uniform grid with-mesh width Az = Ay = h to divide the domain 2. The
notation U; ; represents the discrete solution at (x;,y;), where ;= ih,h = 0,..., M and
y; = jh,j = 0,..., N.xWe also use a group of marker points X (sy) = (X, Y)) along the
interface ¥ with the mesh points sy = kAs. In this case, the mesh width As is about a

half of h. Then we use regular. centered difference scheme to discrete Eq. (48) as

Uin1§ 72U +li=ayy - Uigsr =2Ui; + Uij

h? h?
_ B —Fiapy N Fijri2 — Fij-1y + o (49)
h h
where
Firiag = 32 Flow) 01+ /2 — X(s))n(ys — Y (s1) As, (50)
!
Fiovjpg =Y Fse) onlwi — h/2 = X (s1))0n(y; — Y (1)) As, (51)
k
Fijpaz =Y Fse) 0n(w: — X (s1))0n(y; + 1/2 = Y(s1)) As, (52)
k
and
Fij1)2 = Z F(sg)on(x; — X (sk))on(y; — 1/2 =Y (s)) As. (53)
k

18



The resultant matrix equation can be solved efficiently by the fast direct solver in Fishpack
(3]

Example 4.1.2.1: In the first example, we test the accuracy of the indicator function
which is described in Eq. (8). For completeness, we test three different interface ¥ in the

domain [—1,1] x [-1, 1] as follows.
1. ¥ is a circle with the radius 0.3, which is centered at (0,0).

2. Y is an ellipse with the major radius 0.9 and minor radius 0.1, which is centered at

(0,0).
3. X is a simple closed curve written in polar coordinates : r = 0.5 + 0.25 cos(50).

Table 4.3-4.5 show the convergence tests for those three different cases with using 6;°,
while Table 4.6-4.8 are the correspondent results with using 5}{. The convergent results
of the indicator function calculation-are strongly supporting our conclusion, which shows
first-order convergence in L; norm and half-order convergence in Ly norm, although there
is an O(1) error in_maximum norm. The results are consistent with one-dimensional
analysis. Figure 4.5 shows the cross section of the numerical and analytic solutions along
the line y = 0. It implies that there exists an O(1) error at the transition area of the

indicator function.

M Xx N | [ —Ip|le <ratiow| || I —1Iulls ratio | ||[I — 14|y ratio

32x32 | 3.6463E-01 - 1.3162E-01 - 6.3848E-02 -

64x64 | 4.5555E-01 -.3212 | 9.5529E-02 0.4622 | 3.2182E-02 0.9883
128x128 | 4.8736E-01 -.0974 | 7.2764E-02 0.3926 | 1.6837E-02 0.9345
256x256 | 4.8610E-01 0.0037 | 4.9738E-02 0.5488 | 8.2361E-03 1.0316

012x512 | 4.9805E-01 -.0620 | 3.4744E-02 0.5175 | 4.0955E-03 1.0078

Table 4.3: Convergent test using 6;°° for indicator function case 1 : a circle.
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M x N

11 = Inll

ratio

11 = Inll2

ratio

11 = Inllx

ratio

32x32

64x64
128128
256x256

0912x512

6.7302E-01
5.0021E-01
4.9922E-01
4.9834E-01

4.9617E-01

0.4280
0.0027
0.0024

0.0061

1.9248E-01
1.4391E-01
9.7919E-02
6.8903E-02

4.8685E-02

0.4194
0.5555
0.5070

0.5010

1.2276E-01
6.5139E-02
3.1954E-02
1.5951E-02
7.9510E-03

0.9141
1.0275
1.0023

1.0043

Table 4.4: Convergent test using 0;°° for indicator function case 2 : an ellipse.

M x N

11 = Inljoc

ratio

11 = Inl2

ratio

11 = Inl2

ratio

32x32

64x 64
128 x128
256x256
912x512

5.9986E-01
2.5492E-01
5.3029E-01
5.1669E-01
5.1194E-01

0.1123
0.0654
0.0374
0.0132

2.5162E-01
1.8259E-01
1.2910E-01
9.0547E-02
6.4251E-02

0.4625
0.5000
0.5116
04948

2.0860E-01
1.0827E-01
5.4431E-02
2.7064E-02
1:3547E-02

0.9460
0.9211
1.0079
0.9983

Table 4.5: Convergent test using 0;°° for indicator function case 3.: a simple closed curve.

M x N | || =Ll  ratio | |[[—=1I,]]a -~ratio |/ L — 1|y ratio
32x32 | 3.6989E-01 v 1.3208E-01 # 6.3755E-02 -
64x64 | 4.5684E-01 -.3047.| 9.5640E-02 0.4657 | 3.2222E-02 0.9844
128x128 | 4.8714E-01 -.0926"| 7.2906E-02" 0.3915 | 1.6858E-02 0.9346
256x256 | 4.8617E-01 0.0028 | 4.9854E-02 0.5483 | 8.2307E-03 1.0342
512x512 | 4.9809E-01 -.0350 | 3.4826E-02 0.5175 | 4.0799E-03 1.0124

Table 4.6: Convergent test using 5,{ for indicator function case 1 : a circle.

Example 4.1.2.2: In this example, we solve a pressure equation from Stokes flow
problem in [14]. Since the analytic solutions to this problem are available, Lai et el. [23]
had use a simplified version of this example to test immersed interface method. The

pressure equation to be solved is described in Eq. (5). The computational domain is
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2D case 4.1.2.1 - simple closed curve

0.9

0.8
10.7
10.6
10.6
10.4

10.3
0.2
01

Figure 4.2: Numerical solution for indicator function case 3 : a simple closed curve.

M x N | |[[ =1yl ratio | |[I =Tl ~ratio | ||l —I,||y ratio

32x32 | 6.7492E-01 - 1.9304E-01 - 1.2199E-01 -

64x64 | 5.0036E-01 (0.4316 | '1.4485E-01 0.4142 | 6.4800E-02 0.9126
128 %128 | 4.9957E-01 0.0021 | 9.8565E-02 + 0.5554 | 3.1684E-02 1.0322
256x256 | 4.9850E-01 . 0.0030 | 6.9379E-02 _0.5065 | 1.5807E-02 1.0031
512x512 | 4.9660E-01 0.0054 [4.8969E-02 * 0.5025 | 7.8913E-03 1.0022

Table 4.7: Convergent test using 5,‘{ for indicator function case 2 : an ellipse.

Q = [—2,2] x [-2,2], and the interface is a unit circle centered at (0,0), i.e. X(0) =

(cosd,sin ). The exact solution is written in polar coordinates as

—r3sin(30) ifr <1
p(r,0) = (54)
r~3sin(30) ifr>1

and the boundary force F(0) = 2 sin(360) X (0).
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2D case comparison

» exact sol
| ‘o — — — numer sol, N=32
08k I N — - — - numer sol, N=128

0.4r b

0.2} ! N ]

exact sol |
— — — numer sol, N=512

0.6

0.4

0.25 0.3 0.35

Figure 4.3: Comparison between numerical and analytic solutions for indicator function

case 1 : a circle.

22



M x N | I =14l ratio | |[[ — 1|l ratio | ||[[ —In|ly  ratio

32x32 | 5.9802E-01 - 2.5211E-01 - 2.0901E-01 -
64x64 | 5.5251E-01 0.1141 | 1.8301E-01 0.4620 | 1.0829E-01 0.9486
128x128 | 5.2782E-01 0.0658 | 1.2940E-01 0.5000 | 5.4356E-02 0.9942

256x256 | 5.1434E-01 0.0371 | 9.0733E-02 0.5120 | 2.7025E-02 1.0081

512x512 | 5.1359E-01 0.0020 | 6.4375E-02 0.4950 | 1.3529E-02 0.9982

Table 4.8: Convergent test using 5,{ for indicator function case 3 : a simple closed curve.

Table 4.9 shows the convergence tests for this case with using 6;°°, and table 4.10
presents the computation results with using 5}{, respectively. Figure 4.6 shows the com-
parison of numerical and analytic solution along the eross section = 0. One can see

that the maximum error of pressure occurs at the interface:

Mx N | |[p=Pillo ratio| |p—Lulls rtatio | |lp— Pulli ratio

32x32 | 1.5643E-00 = 9.5960E-01 = 2.0421E-00 -

64x64 | 1.7182E-00 -.1354 | 6.9177E-01 0.4720 | 1.1867E-00 0.7831
128 %128 | 1.8342E-00 (-.0943 | 4.9447E-01 0.4843 |/6.4868E-01 0.8712
256x256 | 1.9086E-00 -.0573 | 3.4999E-01 - 0.4985 | 3.4044E-01 0.9300
512x512 | 1.9284E-00 -.0149 | 2.4775E-01 _0:4983 | 1.7495E-01 0.9604

Table 4.9: Convergent test using 05°° for Example 4.1.2.2.
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2D case comparison

exact sol
— — — numer sol, N=32
— - — numer sol, N=128

1f exact sol
— — — numer sol, N=512
0.8 -

0.4
0.2

_0_2 -

-0.6
_0_8 -

0.95 1 1.05

Figure 4.4: Comparison between numerical and analytic solutions for Example 4.1.2.2.
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M x N | |[p— Pullee ratio | ||p— Bu|l2 ratio | |[p— Pully  ratio

32x32 | 1.5054E-00 - 8.4134E-01 - 1.5983E-00 -
64x64 | 1.6069E-00 -.1676 | 6.4567E-01 0.3818 | 9.4537E-01 0.7576
128x128 | 1.8046E-00 -.0938 | 4.7711E-01 0.4364 | 5.2107E-01 0.8594

256x256 | 1.8913E-00 -.0676 | 3.4350E-01 0.4740 | 2.7398E-01 0.9274

512x512 | 1.9219E-00 -.0231 | 2.4531E-01 0.4857 | 1.4085E-01 0.9599

Table 4.10: Convergent test using 5;( for Example 4.1.2.2.

Example 4.1.2.3: As a last example, we consider Eq. (48) in the square domain
Q = [-1,1] x [-1,1] with analytic solutions. The interface ¥ dividing 2 into inner
part ¢ and outer part 2;, which is a simple closed curve written in polar coordinates
r = 0.5+ 0.25 cos(50). The solution u is given by

(=1 (% - 1)+1 if (r;y) € W
'[ A : (55)

(x2 = 1)(y* - 1) if (z,y) € O
thus the boundary force F is simply the normal vector n along the interface . The
external source g can_be easily computed from the solution u as.g = 2(2? + y? — 2).

The convergence tests based on 6;> are shown in table 4.11, while table 4.12 lists
the corresponding order of ‘accuracy with using (5,‘1[. Figure 4.7 shows the numerical and
analytic solution along the line y = 0. It indicates that refining mesh could not improve
the maximum error.

One can observe that the convergent results from example 2 and 3 are consistent with
our conclusion, i.e. first-order accurate in L; norm, half-order accurate in L, norm, but

have O(1) errors in L., norm.
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2D case comparison

181

16

14¢

1.2

0.8

0.6

0.4

0.2

exact sol
— — — numer sol, N=32
— - — numer sol, N=128

-0.5 0

0.5 1

exact sol 7
— — —numer sol, N=512 r

0.8

-0.3

Figure 4.5: Comparison between

-0.28 -0.26 -0.24

26

numerical and analytic

-0.22 -0.2

solutions for Example 4.1.2.3.



M x N | ||lu—Upllse ratio | |[u—Uylls ratio | |lu— Ul ratio

32x32 | 9.7976E-01 - 4.6428E-01 - 3.6083E-01 -
64x64 | 9.8231E-01 -.0037 | 3.4142E-01 0.4434 | 1.9150E-01 0.9140
128x128 | 9.8129E-01 0.0015 | 2.4376E-01 0.4860 | 9.7187E-02 0.9784

256x256 | 9.8105E-01 0.0003 | 1.7146E-01 0.5075 | 4.8266E-02 1.0097

512x512 | 9.8169E-01 -.0009 | 1.2165E-01 0.4951 | 2.4217E-02  0.9950

Table 4.11: Convergent test using 6;°° for Example 4.1.2.3.

M xN | |lu—=Ulleo ratio | |lu—"Uglla ratio | |[u—Ul1 ratio

32x32 | 9.8024E-01 - 4.6421E-01 - 3.6094E-01 -

64x64 | 9.8190E-01 -.0024 | 3.4141E-01 £ 0.4432 | 1.9136E-01 0.9155
128x128 | 9.8141E-01 - 0:0007 | 2.4374E-01 0.4861. 9.7017E-02 0.9799
256x256 | 9.8090E-01 0.0007 | 1.7145E-01 0.5075 | 4.8187E-02 1.0095
512x512 | 9.8160E-01 -.0008 | 1.2164E-01 = 04952 | 24179E-02 0.9948

Table4.12: Convergent test using (5,\1[ for Example4.1.2.3.

4.2 Convergent test for source terms:as delta func-
tions

In this section, we will show the convergent results of solving Poisson problems with
source terms as delta functions. Since the conclusion we obtained depends on the moment
condition of discrete delta functions, we pick up 6;°° and 6}( from [4, 44] for comparison.
The ratio in all tables of this section is the same as previous section, which means the

orders of accuracy.
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4.2.1 One-dimensional problem 2

In this subsection, we consider the following one-dimensional problem to verify the proof

in section 3.2. The equation is

d*u

wzc&(x—a)j{q, 0<xz<l. (56)

Here, the interface is fixed at the point o = 7/4 — 0.15. The exact solution is given as

(x —a)3 ifr <a
u(r) = (57)

(r—a)P+cx+d ifz>a
where the jump of derivative of solution u at the interface c is set as ¢ = —1 and the
constant d for keeping the continuity of u is d = —ca The regular source term g can be

derived from the analytic solution, which-is'represented by g(z) = 6(z — «).

By using 6;%, table 4.13 'shows the order_of accuracy for our test. Since this type of
discrete delta function.does not have-the moment condition, the convergent rate is nearly
of first order. In Table 4.14 we use 5,‘{ to verify the conclusion we mention. In this case,
the discrete delta fumction holds the moment condition, thus we can obtain the same
result as we proved in previous.subsection. Figure 4.8 shows that the maximum error is

improving as the mesh is refining.

mesh | [[u — Uyl ratio | |[u—Usl|l2 ratio | ||lu—U,lly  ratio

32 | 3.5924E-03 - 6.8746E-04 - 2.7290E-04 -

64 | 1.8555E-03 0.9531 | 2.5911E-04 1.4077 | 1.0378E-04 1.3948
128 | 9.0120E-04 1.0419 | 9.3268E-05 1.4740 | 4.3089E-05 1.2681
256 | 4.5930E-04 0.9724 | 3.6476E-05 1.3544 | 1.8986E-05 1.1823
512 | 2.2936E-04 1.0018 | 1.4989E-05 1.2830 | 9.4484E-06 1.0068

Table 4.13: Order of accuracy for one-dimensional test with 6;°.
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1D case comparison
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exact sol
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Figure 4.6: Comparison between numerical and analytic solutions for 1D case
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mesh | ||u — Uplloe ratio | ||u—Uylls ratio | |lu— Ul  ratio

32 | 3.7517E-03 - 6.9307E-04 - 1.5281E-04 -
64 | 1.8672E-03 1.0066 | 2.4420E-04 1.5049 | 3.8151E-05 2.0019
128 | 9.4225E-04 0.9867 | 8.6932E-05 1.4900 | 9.5640E-06 1.9960

256 | 4.6251E-04 1.0266 | 3.0318E-05 1.5197 | 2.3780E-06 2.0078

512 | 2.3990E-04 0.9470 | 1.1019E-05 1.4602 | 6.0116E-07 1.9838

Table 4.14: Order of accuracy for one-dimensional test with 5,\(.

4.2.2 Two-dimensional problems 2

In this subsection, the problems we need to-solve can be written generally in the following

formulation :
Au = / f(8)0%*(z.—X(8)) ds + g (58)
R
in the computational domain Q-="[a,b] X [¢,d] with an interface ¥ inside, while the

boundary conditions are still Dirichlet type. We use the same mesh structure as it was

stated in previous section. Here, we use regular centered difference scheme to discrete

Eq. (58) as
Usy1; 20N, < SRSt 144
+1,j h2] 1,7 + J+1 h2] Jj=1 :fi,j“‘gi,j (59)
where
fii= Z F(sk) On(zi — X (s1))0n(y; — Y (s1)) As. (60)
k

Example 4.2.2.1: The first example is coming from LeVeque and Li’s work [22]. The
computational domain is = [—1,1] x [—1, 1], and the interface ¥ inside €2 is a circle
centered at (0,0) with radius 0.5. The analytic solution u is written in polar coordinates

as

1 if r <0.5
u(r) = , (61)
1+log(Cr) ifr>0.5
where the jump on the interface f = C. Here, C' is set to be 2, and the external source

term g is zero, which can be verified easily.
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The convergence tests based on ;*° are shown in table 4.15, while table 4.16 lists the
corresponding order of accuracy with using 5,{. Figure 4.9 shows the difference between

numerical and analytic solutions near the interface. The maximum error is decreasing

after the mesh refined.

M x N

[t = Unlloo

ratio

[ = Unll2

ratio

[ = Unlls

ratio

32x32

64x64
128x128
256x256

5912x512

5.6933E-02
2.8740E-02
1.4463E-02
7.2452E-03
3.6247E-03

0.9862
0.9907
0.9972

0.9991

2.7227E-02
1.3437E-02
6.7304E-03
3.3629E-03

1.6816E-03

1.0187
0.9974
1.0009

0.9998

3.8063E-02
1.8874E-02
9.4448E-03
4.7169E-03

2.3582E-03

1.0120
0.9987
1.0016

1.0001

Table 4.15: Convergent test using 6;> for Example 4.2.2.1.

M x N

[ Ul

ratio

[P

ratio

[t~ Unllx

ratio

32x32

64x64
128x128
256 x256

012x512

3.2541E-02
1.6039E-02
8.0821E-03
4.0789E-03

2.0854E-03

1.0206
0.9887
0.9865
0.9678

1.0381E-02
3.4241E-03
1.2542F-03
4.3528E-04
1.5457E-04

1.6000
1.4489
1.5267

1.4936

5.6095E-03
1.3934E-03
3.6329E-04
9.1119E-05

2.3011E-05

2.0092
1.9393
1.9952
1.9854

Table 4.16: Convergent test using 5}1/_ for Example 4.2.2.1.
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2D case comparison
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Figure 4.7: Comparison between numerical and analytic solutions for 2D case 4.2.2.1
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Example 4.2.2.2: The next example is a modification from Zhou and his collabo-
rators” work [47]. The domain € of the problem is [—1,1] x [—1,1], which contains an
circular interface ¥ centered at (0,0) with radius 0.5. For convenience, the problem is

described in the polar coordinates. The exact solution u is written as

r? ifr<0.5
u(r) = . (62)
7/64+rt/4+1r2/2 ifr>0.5

The right hand side f is given by

4 if r<0.5
g(r) = , (63)
472+ 2 if r > 0.5

with the source term on the interface f = =0.375.
The table 4.17 provides the convergence results:based on 6;°°, while the corresponding
order of accuracy with using (5,{ is listed in table4.18. Figure 4.10 shows the maximum

error at the interface improves as-the mesh number [V increases.

M x N | ||lu=U|e ratio | |lu—U,llss ratio | |[u— Uyl; ratio

32x32 | 1.0692E-02 = 6.8852E-03 - 9.8518E-03 -

64x64 | 5.3116E-03 1.0092 | 2.9823E-03 1.2070 /| 4.3218E-03 1.1887
128x128 | 2.6178E-03. 1.0207 | 1.3325E-03 1.1622 | 1.9038E-03 1.1827
256x256 | 1.3075E-03< 1.0015. [ 6.5268E-04" 1.0297 | 9.2571E-04 1.0402

512x512 | 6.7053E-04 0.9634"| 3.2934E-04 0.9867 | 4.6689E-04 0.9874

Table 4.17: Convergent test using 0;°° for Example 4.2.2.2.
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2D case comparison
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Figure 4.8: Comparison between numerical and analytic solutions for 2D case 4.2.2.2
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M x N | ||lu—Upllse ratio | |[u—Uylls ratio | |lu— Ul ratio

32x32 | 5.2739E-03 - 5.2757E-03 - 8.4898E-03 -
64x64 | 1.8829E-03 1.4858 | 1.7842E-03 1.5641 | 2.8787E-03 1.5603
128x128 | 1.1681E-03 0.6887 | 5.0356E-04 1.8250 | 7.9509E-04 1.8562

256x256 | 6.2013E-04 0.9135 | 1.9113E-04 1.3976 | 2.9956E-04 1.4082

512x512 | 3.1040E-04 0.9984 | 1.0044E-04 0.9282 | 1.5913E-04 0.9126

Table 4.18: Convergent test using 5;( for Example 4.2.2.2.

Example 4.2.2.3: The computational domain © of the final example is [—1,1] X
[—1,1]. There is an interface ¥ inside the domain €, which is a circle centered at (0, 0)

with radius 0.5. The analytic solution of u is given in the polar coordinates as

exp(—r?) if 7< 0.5
u(r)p= : (64)
1/(er?)y— 4/e+exp(=1/4). if r >0.5

The source term on the interface f = —16/e +exp(—1/4), while the right hand side g

could be derived as

4(r* —1)exp(—r?) ifr <0.5
S\ K 1896 /S (65)
4/(er") if r>0.5

The convergence tests based on 65°.are shown intable 4.19, while table 4.20 lists the
corresponding order of accuracy with using 5,{. Figure 4.11 shows the numerical solution

converges to the analytic solution as we refine the grid.
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2D case comparison
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Figure 4.9: Comparison between numerical and analytic solutions for 2D case 4.2.2.3
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M x N

[t = Unlloo

ratio

[ = Unll2

ratio

[ = Unlls

ratio

32x32

64x64
128128
256x256

0912x512

3.7152E-01
1.7040E-01
7.7697E-02
3.7131E-02

1.8568E-02

1.1245
1.1330
1.0652
0.9997

1.9625E-01
8.1905E-02
3.6186E-02
1.7712E-02

8.9366E-03

1.2606
1.1785
1.0306

0.9869

2.8326E-01
1.1891E-01
5.1663E-02
2.5111E-02

1.2662E-02

1.2522
1.2026
1.0408

0.9878

Table 4.19: Convergent test using 6;°° for Example 4.2.2.3.

M x N

[ = Uhlloo

ratio

[ — Uhll2

ratio

lu = Unllx

ratio

32x32

64x 64
128 x128
256x256

912x512

2.1936E-01
9.0241E-02
3.6605E-02
1.6330E-02
8.1021E-03

1.2815
1:3017
1.1645
1.0111

1.3733E-01
4.5147E-02
1.2348E-02
4.6871E-03
2.5386E-03

1.6049
1.8703
1.3974
0.8846

2.0976E-01
6.9359E-02
1.8486E-02
7.1454E-03
3:9730E-03

1.5965
1.9076
1.3713
0.8467

Table 4.20: Convergent test using 5,\1[ for Example4.2.2.3.

4.3 Applications to indicator functions and pressure

The indicator function is not only.providing a method to determine whether the position
is in the inside region or the outside part of the closed interface, but also a useful tool
to solve other kinds of partial differential equations. For example, this function can be

applied when solving the following second-order variable-coefficient elliptic equation:

Here b is a piecewise constant coefficient matrix, i.e. b = by inside 3 (in ), and b = b,

V-(bV\I!):f+/zg<52(x—X(s))ds.

outside ¥ (in Q7). We may use the indicator function to represent b by

b = by + I(x)(bo — by).
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The source term on the surface g can be computed by
g = (b1VV¥; —boV¥y) - n, (68)

which is the jump of the normal derivative of the solution across the interface.
By using the indicator function, one can solve this type of equations without deal-
ing with complex domain or complicated conditions on the boundary (interface). For

convenience, we only use 5,‘( in the following computation.

4.3.1 One-dimensional problem 3

The equation (66) in one dimension could be rewrite as

d (. d¥
o <bﬂ) = f+gd(v—1,) , (69)

where I, is the point that the interface lies in the domain.

To calculate the solution of equation (69), we adapt the simple discretization

7 Yiti=Y _ p- Y=V,
J+1/27 Az J=1/27 Az

Az

= fij + i (70)

Here b1/ = (bj11+05)/2, bj—1/2 = (bj4b;<1)/2. Let b be a piecewise constant coefficient
in the compuational domain, where b = by, if the position x </I,, and b = by for the case

x > I,. By using the indicator funetion I(x) under the definition

Lifz >,
I(z) = ; (71)
0 ifz<I,

which can be calculated by solving the following equation

d*1 d
S = S Se—1). 2

We can write the coefficient b; as b; = by, + I(x;)(bg — by,).
Example 4.3.1: In the first example, we consider the equation (69) in the domain

[0, 4] with the exact solution

(x4 1)*+cx+d)/bp ifz>1I,
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Here the interface point I, = 27/3, the right hand side function f = 2, and the jump
condition g = ¢ = 1. The coefficients by, = 1 and bg = 10000, while the constant d in the
exact solution can be derived as

d=(I,+1)* (Z—f - 1) —cl, (74)

Table 4.21 shows the accuracy analysis of our scheme. One can find about first-order
convergence obviously. Figure 4.12 provides the comparison between analytic and numer-
ical solutions. The maximum error of numerical solution comes from the neighborhood

of the interface point, but it will be improved after we refine the mesh.

mesh | |V — Uyl ratio | ||¥ — Wyl ratio | |¥ — Wyl|;  ratio

32 | 1.3088E-00 4 1.1052E-00 ~ 1.3808E-00 -

64 | 5.7502E-01" 1.1865 | 4.8300E-01 1.1942 | 6.0531E-01 1.1897
128 | 3.8643E-01" 0.5733- 3.2351E-01 0.5781 | 4.0480E-01 0.5804
256 | 1.9618E-01 0.9780-{ 1.6407E-01 0.9795 | 2.0549E-01 0.9781
512 | 1.0032E-01" 0.9676 | 8.3856E<020.9683 | 1.0508E-01 0.9676

Table 4.21: Order of accuracy for one-dimensional test with 5;{.
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1D case comparison
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Figure 4.10: Comparison between numerical-and analytic solutions for 1D case

4.3.2 Two-dimensional problems. 3

In order to solve equation (66) in two-dimensional demain, we extend previous discretiza-

tion in one-dimensional case as

bz‘+1/2,j%++;qj” ~ bi_l/Q,j‘I’i,j—Ai‘I:fu
Az
bi,j+1/2w — bi,j%ﬂ%
y ~ y = f” + 9i,j, (75)
where
9ij = ZQ(Sk) On(i — X (sx))0n(y; — Y(sr)) As. (76)
k

Here we approximate the coefficients without integer index by taking averages of nearby

values on the grid

bivij2; = (big1;+bij)/2
bi—1/2,j = (bi,j + bi—l,j)/Q
bijrie = (bijr1+bij)/2

bij—12 = (bij+bij-1)/2 (77)
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Example 4.3.2.1: The following example can be found in Beale and Layton’s work
[4]. The computational domain is [-1.3,1.3] x [~1.31.3]. There is an interface I', which
is an ellipse, inside the domain with major radius r, = 0.9 and minor radius r, = 0.7.
The whole problem is written in elliptic coordinates, which could defined by a conformal
mapping = + iy = agcosh(p + i0), i.e. x = agcosh pcos© and y = agsinh psin ©. Here
ap = /12 —r? ~ 0.565685 is the focus length of the ellipse. The interface I' can be
represented by I' = {p = py ~ 1.039721,0 < © < 27} in elliptic coordinates, which

divides the domain into inner region )y and outer part §2;. The exact solution ¥ is

a(cosh? psinh pcos? O sin © + sinh® psin® O©) if p <
¥(p.0) = o psinh p p ) if p < po )
cexp(—3p) sin(30) + dexp(—p) sin © if p > po

where ¢ ~ 1.267135 and d ~ 1.128542 are given to provide the continuity of solution
across interface. The constant coefficient inside the interface by is set as by = 0.2, while
the one of outer region by is equal'to-100. Thus, the piecewise constant coefficient b can

be defined as b = b; +I(x)(by —br):~The right hand side function f to this problem is

8boap sinh psin © if p'< poy

and the source term on'the interface g can be derived by g = (b3VV; —byVV)) - n, where
U, and ¥, are the limit of ¥ from outer region and that from inner area along normal
direction, respectively.

Figure 4.13 shows the comparison between analytic solution and numerical solution
on different grids, where we use the snapshot of the values along + = 0. One can see
the maximum error occurs inside the interface, and the scale of error is decreasing as the
mesh size is getting smaller. Table 4.22 lists the convergence rates of numerical solutions

in different norms, which is about first-order.
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M x N | ||lu—Upllse ratio | |[u—Uylls ratio | |lu— Ul ratio

32x32 | 2.1097E-01 - 1.6389E-01 - 2.0212E-01 -
64x64 | 1.2118E-01 0.7999 | 9.5354E-02 0.7813 | 1.1720E-01 0.7863
128x128 | 6.4839E-02 0.9021 | 5.1056E-02 0.9012 | 6.2913E-02 0.8974

256x256 | 3.3470E-02 0.9539 | 2.6293E-02 0.9574 | 3.2434E-02 0.9558

512x512 | 1.7063E-02 0.9719 | 1.3393E-02 0.9731 | 1.6537E-02 0.9718

Table 4.22: Convergent test for Example 4.3.2.1.

2D case comparison

0.4 T
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0.2

0.1

——exact sol I
-+ -numer sol, N=32
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-1 -0.5 0 0.5 1

Figure 4.11: Comparison between numerical and analytic solutions for 2D case 4.3.2.1.

Example 4.3.2.2: The final example of this section is modified from Stokes problem
in [14] and [23]. By using the pressure we have solved in example 4.1.2.2; we try to solve
the velocity field by Eq. (1). The domain to the problem is Q = [—2,2] x [—2,2] with

an interface inside, which is a unit circle centered at (0,0), i.e. X(0) = (cos#,sin6). For
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convenience, the exact solution is written in polar coordinates as

;

3r?sin(20)/8 + r*sin(40) /16 — r* sin(26) /4 ifr <1
u(r,0) = ) (80)
r~2sin(26)/8 — 3r~*sin(460)/16 + r?sin(46)/4 if r > 1

312 cos(20) /8 — r* cos(40) /16 — rt cos(20) /4 ifr<i
v(r,0) = (81)

r=2cos(260)/8 + 3r~*cos(40) /16 — r~2cos(40)/4 if r > 1

\

where u, v are the velocity in x direction and in y direction, respectively. The right hand

side function is Vp, which can be computed in component-wise direction by

@ _ Pit1j — Pi-1j
oz ), ; 2Ax ’

@ ) | Dij+1 = Pij—1 (82)
Y )i 2Ax ’

where p; ; is obtained in example 4.1.2.2. Again, the boundary forceis F'(§) = 2 sin(360) X ().
Table 4.23-4.24 presents the computation results of veloecity field in x-direction u and
that in y-direction vjyrespectively. One can see first-order convergence in each component.
Figure 4.14 shows the cross section of numerical solution of u along = = y, where we use
x as horizontal index rather than exact distance from the origin.” The interface and the
line z = y meets at (£1/y/2,£1/4/2) ~ (£0.7071, +0.7071), otie can observe that the
maximum error occurs at-the neighborhood of the interface.. Figure 4.15 plots the cross
section of numerical solution of ¥ along x=axis."We can find similar behavior as that of w.
Moreover, we have to check if our numerical solutions satisfy Eq. (2) since we use it
to derive our scheme. Table 4.25 shows the calculations of divergence of velocity field.
The behavior of convergence is similar to numerical solution of pressure with first-order
convergence in Ly norm and half-order convergence in Ly norm, but there is an O(1) error
in maximum norm. Figure 4.16 shows the divergence of velocity field of our numerical

solutions. One can see most of the error lies near the interface.
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2D case comparison
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Figure 4.12: Comparison between numerical and analytic solutions for u in case 4.3.2.2.
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2D case comparison
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Figure 4.13: Comparison between numerical and analytic solutions for v in case 4.3.2.2.
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Divergence of velocity field of nurmerical solutions
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Figure 4.14: Divergence of velocity field of numerical solution in case 4.3.2.2.
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M x N

[ = Uhlloo

ratio

[ — Uhll2

ratio

lu = Unllx

ratio

32x32

64x64
128 x128
256x256

012512

1.5926E-02
8.1197E-03
4.7473E-03
2.5170E-03

1.3052E-03

0.9719
0.7743
0.9154
0.9473

1.9452E-02
9.2765E-03
4.5961E-03
2.2974E-03

1.1499E-03

1.0682
1.0131
1.0003

0.9985

5.2813E-02
2.5472E-02
1.2788E-02
6.4287E-03

3.2258E-03

1.0519
0.9941
0.9921

0.9948

Table 4.23: Convergent test of u for Example 4.3.2.2.

M x N

[v = Villoo

ratio

o =Vall2

ratio

[ = Vil

ratio

32x32

64x64
128128
256x256

012512

1.8223E-02
8.5764E-03
4.6931E-03
2:5314E-03

1.3107E-03

1.0873
0.8698
0.8906

0.9495

1.9585E-02
9.5074E-03
4.7328E-03
2.3682E-03

1.1855E-03

1.0426
1.0063
0.9989

0.9982

5.3126E-02
2.5785E-02
1.2865E-02
6.4465E-03

3.2308E-03

1.0429
1.0030
0.9968

0.9966

Table 4.24: Convergent test of v for Example 4.3.2.2.

M x N

IV - o

ratio

IV - |

ratio

IV - [y

ratio

32x32

64x 64
128 x128
256x256

012x512

6.2054E-02
6.7047E-02
6.9974E-02
7.2527E-02

7.3314E-02

-.1116
-.0616
-.0516

-.0155

5.4389E-02
3.9285E-02
2.7684E-02
1.9457E-02

1.3699E-02

0.4693
0.5049
0.5087
0.5062

1.2858E-01
7.0513E-02
3.5625E-02
1.7657E-02
8.7447E-03

0.8667
0.9849
1.0126

1.0137

Table 4.25: Convergent test of V - u,, for Example 4.3.2.2.
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Computational methods on
interfacial flows with soluble

surfactant
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Chapter 5

Introduction 2

There are many problems in physical, biological and material sciences needing to solve
partial differential equations in complex domains or deformable interfaces. Especially,
the material quantities which we interest on the interface may interact with the one in
the bulk domain through desorption and adsorption processes. At the same time, the
concentration of quantities on the surface may.change the interfacial forces, which lead to
the modification of the physical behavior of the interface. For instance, The structure of
the surfactant molecules typically consists of a hydrophilic head, which tends to lie in the
water, and a hydrophobic tail, which likes to stay.in the oil or/other liquid rather than in
the water.

The interaction such as adsorption.and desorption‘between the interface and the bulk
fluids would change the concentration of surfactant on the surface, thus the surface tension
could be reduced. Meanwhile, the dynamics is also affected by the Marangoni force along
the tangential direction of the surface, which is produced by the non-uniform distribution
of surfactant molecules. In practice, the surfactant might be soluble into only some
portion of the bulk domain. This region is enclosed by the interface, where the soluble
area and the interface are evolving at the same time. In order to simulate this problem, the
following two surfactant concentrations are introduced in this system: one is the volume
concentration in the bulk domain, and the other is the surface concentration along the

interface. Thus, we need to solve a coupled system of surface-bulk convection-diffusion
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",.‘Hydrophilic head

. .
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Aqueous
solution

. ‘ "Hydrophobic tail

Figure 5.1: Schematic diagram of surfactant partieles with hydrophilic heads and hy-

drophobic tails, cited from "http://en.wikipedia.org/wiki/Surfactant”.

equations [28, 46, 40].

In cell biology applications [30], some kinds of mobile proteins.exists both in the cy-
tosol and cell membrane. They could diffuse both inside the cell.and on the membrane.
The process that theproteins bind to the membrane correlates with initiation of down-
stream signaling. To simulate this type of problems, we have to solve a coupled system
of interface-volume reaction-diffusion-equations: There are many examples in material
science, physics, or biologies that have the similar mechanisms such as absorption or
desorption in the dynamics, one can found those in the reference [40].

It is a well-known challenging problem to solve differential equations in complex do-
mains or deformable interface in numerical methods, especially when the surface, or the
interior boundary of domains is moving. To deal with a coupled system of surface-bulk
equations is more complicated. Even in the case of solving surface quantities only, i.e.
without coupling those in the bulk region, it is still a major issue in scientific computing
community that to develop better numerical methods for convection-diffusion equations

on an evolving interface.
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It is known that solving a coupled system of surface-bulk equations in complex domains
or deformable interfaces numerically is quite challenging especially when the interface (or
the interior boundary of domains) is moving. Even in the case of only surface material
(without bulk coupling), developing numerical methods for convection-diffusion equations
on an evolving interface is still of major interest in scientific computing community. These
methods include phase field method [35, 40, 17], level set method [2, 9, 43, 36, 27], surface
element method [7, 8, 15, 16], and much more to follow. In one-dimensional case, front
tracking method is typically more accurate for interface problem, since it only deals with
a curve in 2D space. But the complexity for two-dimensional surface is more difficult to
use this type of methods, especially the implementation involves surface mesh distortion
or even topological changes.

In[24], we have successfully developed a mass conservative scheme for convection-
diffusion equation on meoving interface and applied to simulate the interfacial flows with
insoluble surfactant [24; 25, 26]. -A-recent work of Khatri and Tornberg [20] used segment
projection method to represent the interface and solve the surfactant equation. More
up-to-dated numerical methods for solving Navier-Stokes flows with insoluble surfactant
can be found in [20] as well.

In this part, we shall extend our previous work of inseluble surfactant to soluble
case. However, as a very first step, we need to develop-a numerical scheme for solving
coupled surface-bulk convection-diffusion. equations. From our point of view, there are
several major numerical issues to deal with. The first problem is how to handle the flux
between the interface and the bulk from the adsorption and desorption accurately? The
second question is how to maintain the mass conservation of total surfactant during the
evolution? The third issue is how to avoid the surfactant being present in other bulk
regions via either convection or diffusion mechanism if the surfactant might be soluble to
only one of buck fluid? Here, we formulate the coupled surface-bulk convection-diffusion
equations in the immersed boundary framework so that the adsorption and desorption
processes can be termed as a singular source in the bulk equation. Moreover, by using

the indicator function, we can embed the bulk equation into the whole computational
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domain so that regular Eulerian finite difference scheme can be applied without handling
the complicated moving irregular domain. We develop a new conservative scheme for
solving the coupled bulk-surface concentration equations which the total surfactant mass
can be conserved exactly in discrete sense. By introducing the indicator function and
solving the bulk equation in the regular computational domain, one can avoid evaluating
the surfactant flux across the interface due to adsorption and desorption processes.

The present formulation is similar to other front tracking approaches such as in [46, 28]
but differs from their numerical computations. For instance, in order to let the surfactant
be depleted from only one bulk phase, some one-sided discretized delta functions were used
in [46] which results the numerical integration of the discrete function does not yield the
exact value of unity. The authors have tried-different forms of one-sided delta function
and the mass error is within 1%: Here, we use-the traditional discrete delta function
for the spreading and interpolating operators.in-the immersed boundary method so that
the surfactant mass leaking error-is-much smaller compared with [46]. There are other
numerical methods in literature for interfacial flows with soluble surfactant dynamics such
as in [1, 6, 41, 45].

The rest of this part is organized as follows. In Chapter 6, we present a coupled
surface-bulk concentration model for surfactant and show their property about conser-
vation of mass. By applying the indicator function, we then embed the bulk equation
from irregular region into a regular Cartesian computational domain. Based on our im-
mersed boundary formulation, we develop a conservative scheme for solving the coupled
surface-bulk equations in Chapter 7. As an application, we apply the present scheme to
solve Navier-Stokes flow with soluble surfactant in Chapter 8. In Chapter 9, a detailed
numerical tests have been conducted to validate our present scheme and study the effect

of soluble surfactant on drop deformations in a quiescent and shear flow.
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Chapter 6

A coupled surface-bulk

concentration model

As in [40], we consider the same coupled bulk-surface.material (or surfactant) concen-
tration model in which the adsorption and desorption can be occurred on the moving
deformable interface. Consider a-domain § in-R? and there is an-interface 3, which is a
simple closed curve immersed in 2. The interior of the interface is {2y, and the exterior is
2, so that Q = QU £, see the illustration of these domains in-Eigure 1. The interface
is represented by a lLagrangian form X (a,t);0 < a-< L, where « is the Lagrangian
material coordinate attached to the interface which is not necessarily to be the arc-length

ﬁ/‘ﬁ.
Ja Ja

’

parameter. The unit tangent vector of .the interface can be written as 7 =
thus, the unit outward normal vector m pointing into €2; can be defined accordingly. In

addition, the interface ¥ is moving with a given velocity field u = (u,v) in €2; that is,

0X (a,t)

0 (o, = /Q (@, )0 (@ — X (o1)) da, (83)

where 0%(x) = §(z) d(y) is the two-dimensional Dirac delta function. We use the above
usual delta function formulation in the immersed boundary method [32] to represent the
interpolation of the velocity field into the interface. Here we assume the velocity field is
incompressible (V -« = 0) in © and no flow boundary condition (u - n; = 0) is imposed

on 0N) = 0€);. Notice that, in later section, the velocity field can be obtained by solving
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the Navier-Stokes equations.

Figure 6.1: Tlustration-of domains.

It is assumed that the surfactant-exists on the interface as amonolayer and is adsorbed
from or desorbed into the bulk fluid in €)y; thatis, the surfactant is soluble in the exterior
bulk €2; but not in the interior one 5. Therefore, we have to introduce two surfactant
concentrations in the system; namely, the surface concentration I'(c, t) along the interface
Y, and the bulk concentration C(z,9,t) in the region ;.

Assume the surfactant eoncentration I'(s,¢) on an interfacial segment L(t) is defined
as the mass of the surfactant per-unit.length. Since there is no absorption or desorption
between the surface and the surrounding bulk fluids, the surfactant would remain on the

surface element, i.e. the total mass is conserved.

d

— I'(s,t)ds =0, 84
i, T (34)

where s is arc-length parameter and ds is the arc-length element. In order to adapt our
parameterization mentioned before, we rewrite the above equation in terms of Lagrangian

material coordinate « as

d
— I'la,t
dt J () ( )'

0X
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By taking the time derivative inside the integral, we get

/ a0 (a, 1) ‘ax
L(0)

0 ‘8X

Note that we use Lagrangian structure to track the interface and the surfactant. Therefore,
the time derivative of the first term in Eq. (86) is exactly the material derivative of Stone’s
derivation [18]. The time derivative of the second term is due to interface stretching.
Let X (a,t) = (X(a,t),Y(a,t)), and U(a,t) = (U(X,t),V(X,t)) be the Lagrangian

representation of the position and the velocity of interface, respectively. Since

() () e

ox
Ooa

by using the fact that
0X (a,t)

=Ula,t 88
5 (v, t), (88)
We obtain
0X 0 0O oY 0 O 0X 0 oY O
0 |0X | W e B T vabt it Jak TGS Ja
ot | da 2 X X
Oa Oa
X X
- %(VU'%—&>+%(VV'%—@)_ U X
- (aal‘ ~\or 7 )| 6a
0X
- <vs-U>‘— (80)
Oa

Here, the notation V, - U means the surface divergence of velocity, which is widely used

in the literature. Since the interface segment is chosen arbitrary, we have

2—1; +(V, - U =0. (90)

By taking the adsorption and desorption of bulk surfactant into account, the dimen-

sionless surface concentration equation can be modified as

or Rl

o+ (Vo )T = o= V20 4 (S,/N)C,(1 = T) = ST (91)

ot

where V, = (I —n®n)V and V2 = V, -V, are the surface gradient and surface Laplacian

operators, respectively. The dimensionless number Pe, is the surface Peclet number, S,
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and S; are the absorption and desorption Stanton number, respectively, and A is the

dimensionless adsorption depth. Those parameters are defined as
Peys =UR/Ds, Sy =ky/Us, Sqi=kiR/Us, N=Ty/(CxR)

where R, Uy, 'y, C are the reference values for the length, flow velocity, the surface and
bulk concentration, and k,, kg are the absorption and desorption coefficients. Cj is the
bulk surfactant concentration adjacent to the interface which can be defined later. The
above non-dimensionalization process can be found in [46, 28, 24]. Notice that, as in [24],
the interface is tracked in Lagrangian manner and the surface concentration is defined
at the material point, so the time derivative in Eq. (91) has the meaning of the material
derivative naturally.

The dimensionless bulk congentration in the exterior region Q; [28, 40, 41, 46| can be

written as
oC _a.o,
——FuVC = - VEC (92)
1490 g
ma—n\z = (Sa/N)Cs(1 =Ty — 5" on, oy = 0, (93)

where Pe is the Peclet number, n is the unit normal vector on X pointing into §2; and n,
is the unit outward normal to the boundary 9€2; = 052.

Egs. (91)-(93) describe the present coupled surface-bulk concentration equations. Since
the fluid is incompressible and.no flow velocity boundary condition is imposed on 0€)y,
one can conclude that the total surfactant mass (the surfactant mass on the interface X
and the mass in the bulk region ;) must be conserved. The conservation property can
be proved easily as follows.

By first taking the integration of I' over the interface, then applying the time derivative

and using Eq. (91), the rate of change of surfactant mass in the interface > can be written

d or
E/ZFC” = /E<§+(VS~U)F)CZZ

_ /E (Ples V2T 4 (S, /\)Ca(1 —T) — SdF) dl

_ /((SG/A)CS(l _T) = Sl (94)

as
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where dl = ’%‘ da is the arc-length element. The last equality is obtained by using
the fact that X is a closed interface. Similarly, the rate of change of surfactant mass in
the bulk region §2; can be obtained by taking the integration of C' over the region {2,

applying the time derivative, and then using Eq. (92) as

d DC 1 1 oC 1 0C
— de = —dx = —V2Cdx = ——dl— [ ——dI
dt o C r 0 Dt r /Ql Pev C r /an Pe 0711 /E Pe 0’n
= — /(Sacs(l —T) = SzA)dl, (95)
b

where the last equality is obtained by using the boundary conditions of Eq. (93). One

can immediately lead to the total surfactant mass conservation by summing Eq. (94) and

%(/QIC’dzc-l—)\/del)zo. (96)

6.1 An embedding bulk concentration equation in a

Eq. (95) so we have

regular Cartesian domain

As mentioned before, solving the bulk concentration equation involves solving a convection-
diffusion equation in an evolving irregular domain.£2;.. In order to describe the solution in
a regular Cartesian domain Q. = @, U ()1, we introduce the indicator function H defined

as
1 if :13691

H(z,t)=1- / Sz —x)dx = (97)
o 0 if ey
In the previous part, we use the indicator function I to point out the inner subdomain
Q. Here, instead of using I, we use the opposite function H to indicate the outer region.
The above indicator function is nothing but the Heaviside function across the interface.
By taking the gradient and then divergence operators on both sides, we have

VH(x,t) :/n52(w—X)dl,

by

V2H(x,t) =V - / n&*(x — X)dl. (98)
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Thus, the indicator function can be obtained by solving Poisson equation with a singular
source term [42].

By introducing the indicator function, one can rewrite the bulk concentration equation
(92) in ©; with the absorption and desorption on the interface described in Eq. (93) into

one equation in the whole domain 2 as

0
ot

S(HO 4V (wH C) = 5V (HVC) - /Z (SuCa(1 = T) — SAAT)8(w — X)dl. (99)
Here, we rewrite the convection term in a divergence form since the velocity is incom-
pressible. Notice that, in the domain 2; where the indicator function H = 1 so the above
equation recovers to the original bulk surfactant equation (92). Moreover, since H = 0 in
the domain 2y, we have HC = 0 no matter what are the values of C' which restricts that
the surfactant is insoluble in €. One should mention that the above bulk concentration
equation (99) has the similar form as the diffuse-interfage approach proposed by Teigen

et. al. [40] except the expression-of last term.

By taking the integration of Eq.-(99) over the domain (2, we have

d 0

= /v uHC’dm—i—/ — V- (HVC)dx
— // (SuCs(L=T) =8 \D)0* (2 — X)dldx

2\ / (S,C.(1 — D)=S ALl
b
where the last equality is obtained by using the no flow velocity boundary condition
u - n; = 0, the zero surfactant flux aa—glbgl = 0, and the integral identity of the Dirac
delta function
/ (@ — X)dz — 1. (100)
Q
One can immediately see that the above rate of change of bulk surfactant mass in the
domain €2 is exactly the same as the one in the domain §2; as shown in Eq. (95). Based on
our new formulation, the bulk surfactant adjacent to the interface can be simply evaluated

as

Oyla,t) = /QH052<:I; ~ X(a,t))dz. (101)
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Chapter 7

A conservative scheme for solving
the coupled surface-bulk

concentration equations

In this chapter, we give the details-of our numerical scheme to solve the coupled surface-
bulk concentration equations (91) and (99): For simplicity, assume our computational
domain to be a rectangular domain @ =[a,b] X [¢,d]. Within:this domain, we use a
uniform lattice grid with mesh width A and “adapt:the usual staggered grid structure
[19] where the given velocity components v and v are defined at usual at (z;_1/2,;) =
(a+ (i —1)h,c+ (j — 1/2)h) and (@, Yjere)-=(a+(i = 1/2)h,c+ (j — 1)h), respectively.

However, the bulk surfactant concentration C;; and the discrete indicator function
H, ;, are both defined at the cell center labelled as @ = (z;,y;) = (a + (1 —1/2)h, c+ (j —
1/2)h). For the immersed interface, we use a collection of discrete points oy = kAa, k =
0,1,... M such that the Lagrangian markers are denoted by X, = X (ax) = (Xk, Yx)-
The unit tangent vector 74 and the discrete stretching factor |D,X| are defined at the

“half-integer” points o112 = (k+1/2)Ac, where the unit tangent can be approximated

by
Xk_,_l—Xk/ Xk+1_Xk
yANS yANS

Tr = Do X/ |DoXi| = . (102)

Once we have defined the unit tangent vector on the interface, the unit outward normal
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Figure 7.1: The computational domain (2 using staggered grid with mesh size h.

Figure 7.2: Illustration of Lagrangian markers.
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vector my, can be calculated straightforwardly, i.e. ny, = (ng,,nk,) = (Tky, —Tk,) Where
T = (Tk,, Thy) The surface concentration I'y is also defined at the “half-integer” points.
Let At be the time step size, and n be the superscript time step index. At the
beginning of each time step, e.g., step n, the variables X", ' and C™ are all given.
Step 1: Compute the new interface position. Since the velocity field w is given
through the computation, the first step is to get the velocity on the marker points and to
move the marker points to new positions. The velocity on the Lagrangian markers can
be interpolated from the new velocity at the fluid lattice points surrounding the marker

points, 1.e.

Ut = Zu"“ah (@; — X )b

X = X;;+AtU;;+1, (103)

where 07 is a two-dimensional discrete’ delta function used in the immersed boundary
method such as the one we use in-previous part, which ecan be found in [32, 44].

Step 2: Compute the indicator function. Based on the new interface position
X ZH calculated in previous step, we can compute the corresponding indicator function

H™* by numerically.solving Eq. (98) as
ViH!! = (Z npton (i — X ) [DaX | Aa) : (104)

where Xt = (X P+ X /20 We use the general five-point stencil discretization

to approximate the Laplacian, i.e.

H?H-l‘ +Hn+l _4Hn+l +Hn+l +Hn+1
viHZJ—H — i+1,5 1,7+1 h2 i—1,5 i,j—1 (105)

Fast direct solvers to the Poisson problems can be found in the popular software package
FISHPACK [3], We just use the subroutines in FISHPACK to solve the above discrete
Poisson equation efficiently. The detailed accuracy issue about solving Eq. (104) can be
found in previous part.

Step 3: Compute the surface concentration. As the same procedures written

n [24], by multiply the interface stretching factor to Eq. (91), we rewrite the equation in
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terms of the material coordinate explicitly to obtain

=77 (! | )+

where g5 = (S,/A\)Cs(1 —I') — S,I" represents the flux between surface and bulk concen-

0X

o |ox
ot | Oa

2]

tration. Using the identity of % aa—)a( = (Vs u) ’%—{f’, the above equation becomes
al' |0X 0 |0X 1 0X
— ||+ = | = — 106
at’aa +6t’0a P658a< /‘ ) ’ (106)
We then discretize the above equation by the following Crank-Nicholson scheme.
Fn+1 1" DaXn+1 + DaXn D XTL—H _ D X" Fn+1 Fn
k P P + | |- k! + (107)
At 2 At 2
11 T =T/ Aa Ty =T/ Aa
"~ 2Pe, Ao \ (DX + [ DuXT)/2 (DX + [Da X)) /2

I 1 (Me, —4%)/Aa (Mg~ T5_1)/Aa

2 Pe, Ao \ (| Do X | # 1D X, N2 (|DaX + |D. X ])/2
+((Sa/A)Ci:(l — TP =St | DaX it 4 ((So /A)CE(L — T) — Sal'y) | Do X 1|
5 .

The adjacent bulk concentration Cj-and C} in last term can be obtained through Eq. (101)

as

C; = ZH"“C” Op(@ig = X1 p)h?

cr = ZH;go;;ah i — Xydg)he, (108)
where Xt o = = (X1 + X1 /2 since the surface concentration is defined at the

“half integer” material coordinate aj41/2. Since the new interface marker location X Z“
and the corresponding indicator function H"*! are both obtained in previous steps, the
above discretization results in a symmetric tri-diagonal linear system which can be solved
easily. For instance, we can use the tri-diagonal matrix algorithm, also known as the
Thomas algorithm. One should notice that if the Lagrangian markers are required to
be equally distributed for some applications, the above surface concentration equation
(106) and its numerical scheme (107) can be modified accordingly. The detail of an
equi-distributed technique for Lagrangian markers, which is related to adding an artificial

tangential velocity, can be found in our recent work [25].
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Step 4: Compute the bulk concentration. The last step is to update the bulk
concentration C'. We discretize the bulk concentration equation (99) by the following
Crank-Nicholson scheme

(HC)H — (HCO), (uHC)! T + (uHC)Y,

e R N ' ) (109)
1 V- (thC)Z;H + V- (thC)Z]
= 5l 5 ) — Qi

where @); ; is the discrete version of the singular integral in Eq. (99) as

1 . . " . .
QM = 5 Z(Sack(l - Fk+1> - Sd)\rk+1) ‘Daxk—H} 52(-’131'7]' - X +1 )AO(
k

k41/2
1 n n n n 2 n
T3 Z(Sack (1 =T%) = SaAL}) [DaX| 0, (2i; — Xiha)0) A (110)
k
The difference operator V,, = (Df,.Dj) is the regular/centered difference approximation
on the staggered grid to the gradient operator.

ui+1/2,jHi+1/2,jCi+l/2,j - Ui—l/2,jHi—l/2,jCz‘—l/2,j

Dﬁ(uHC)m = h y
D%(UHC)M a Ui,j+1/2Hi,j+1/20i,j+1/2 ; Ui,j—l/QHi,j—1/2Ci,j—1/27
H; (Cir1 —Ci )/ h — Hi_y0.:(Cii — Ci_15) /D
Di(HDﬁC)Z’] - +1/2:J( +1,5 ,])/ - 1/27J( o) 17J)/ :
H;; Ciigi=Ci)yh=H, ,_1(C;; —Cii_1)/h
Dz(HDzC)z,j AN 7]+1/2( J+1 7.7)/ 3 »J 1/2( )] 2] 1)/ : (111)

where the approximate values defined at the cell edges are evaluated as the average of

two neighboring values. For instance,

Hi+1/2,j = (Hz‘+1,j + Hi,j)/2
Hi_ypp; = (Hij+ Hi_15)/2
Hijrip = (Hijer+ Hij)/2

Hij 1o = (Hij+ H;j 1)/2. (112)

The same manner can be applied to the bulk concentration terms, such as Cij1/2 ;.
One should notice that, since H = 0 in ()4, to avoid the division by zero in above

scheme causing singularities in the linear systems, we regularize the indicator function H
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by using v H? + €2 instead of H itself where € is chosen about 10-%. This regularization
is commonly adopted in literature such as in [40].

Furthermore, we need to check if our proposed method is preserving the mass conser-
vation of surfactant. First we take the summation of Eq. (107) over the interface. The
periodicity of the quantities are provided due to the fact that the interface is a simple

closed curve. It leads to the following discrete rate of change of surface concentration

Ait (Z T Do X Aa =) T} | DX} Aa>
k k

(SuCE(L = Tp) = SaATE) | DXy | + (SuCp(1 = Tp) = SATY) |Da X

:Z 5 A«

k

Similarly, we take the summation of Eq. (109) over the whole computational domain,
then apply the no-outgoing flow boundary conditions for velocity and no-flux boundary

conditions for bulk concentration, i.e. (u-n; =0,V,C m= 0 on Jf2). Thus we obtain

1

~ <Z(HC);;.+1h2 y Z(HC);;}#)
i i

-y (SaCr (L= T HY) = SGALEHY) | D X | 4 (SoCR(1 = Ey) — SgAT'}) [ Do X7 Aa

B 2

k

where we use the discrete analogue of the delta function integral identity (zero moment

condition)

ij

By combining the above two summations, we have proved the following discrete conser-

vation for the total surfactant mass as

S HCOETR A Ty Do X Aa =Y (HO)ER* XY Ty [DoX7| Aa. (114)
k k

iJ i
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Chapter 8

Navier-Stokes flow with soluble

surfactant

Consider an incompressible flow problem consisting of twe-phase fluids in a fixed two-
dimensional square domain 2 = Qg U )y where an interface ¥ separates €y from §2; as
illustrated in Figure 1. As in previous section; it is assumed that the surfactant exists
on the interface as a monolayer and is adsorbed from or desorbed to the bulk fluid in
Qq; that is, the surfactant is soluble in the exterior bulk but not in the interior one.
The interface is contaminated by the surfactant so that the distribution of the surfactant
changes the surface tension accordingly. In order to fermulate the problem using the
immersed boundary approach, we simply treat-the interface as an immersed boundary
that exerts force to the fluids and moves with local fluid velocity. For simplicity, we
assume equal viscosity and density for both fluids, and neglect the gravity. Certainly,
the present Navier-Stokes solver can be replaced by the one with different density and
viscosity ratios.

As in [24], the non-dimensional Navier-Stokes flow in the usual immersed boundary
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formulation can be written as

88_1; +(u-Vu+Vp = % Viu + Rean’ (115)
V-u = 0, (116)

flx,t) = /ZF(oz, t)o(x — X(a,t))da, (117)

W =U(a,t) = /Qu(:v, t)o(x — X(a,t))de, (118)
F(a,t) = g(a(a,t)‘r(a, t)), (119)

[oJe!
where u is the fluid velocity and p is the pressure. The dimensionless numbers are the
Reynolds number (Re = pU,, R/u) describing the ratio between the inertial force and the
viscous force, and the Capillary number (Ca = pUy/0+) describing the strength of the
surface tension. The presence of surfactant will reduce the surface tension of the interface

by the Langmuir equation of state [34]
o= 1+Ell(l =T), (120)

where o is the surface tension, and El is the elasticity number measuring the sensitivity
of the surface tension to the surfactant concentration. Since the surfactant is soluble in
1, we need to solve.the coupled surface-bulk concentration equations (91)-(93) to close

the system.

8.1 Fluid solver for Navier-Stokes equations

In this section, we introduce our fluid solver which used in previous work [24]. Let
u(x,t) = (u(x,t),v(x, t)), f(x,t) = (f(x,1t),g9(x,t)), and p(x,t) be the fluid velocity, ex-
ternal forces and fluid pressure, respectively, where & = (z,y) is the Eulerian coordinates.

We can write down the Navier-Stokes Equations (115) and (116) in explicit form

ou Ou® Ouv Op 1 [(0%u O%u f
ot Yy Tar T E(axﬁayz)ﬂaeca (121)
v  Ouww v Op 1 [(0*v % g
ot ey tay T ﬁ(@+a_y2)+1%eca (122)
ou Ov
% 0 (123)
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Note that we use the continuity equation (123) to express the convection term as a con-

servative form. That is,

ou ou
U% + 'Ua—y

u-Vu=
u% —+ vg—z
In x-direction we rewrite
ou_ o
“or Uay
= u%%—v@jtu(@jt@)
- ox oy or 0Oy
ou?  Ouv
= 4 7 124
ox + dy (124)

Then similar procedure is applied in y-direction

b o
T U@y

— u@+v@+v(@+@)

Oz oy ox . Oy
ouwv  Ov?

= %‘i‘@ (125)

In order to discretize (121) to (123), the following second-order accurate finite-difference

expressions for derivatives with.respect to space for (i, j)-cell are used [11]

<8_”2> 4 (ui+1,j)2_(ui,j)2
Oz i+1/2.5 Az 7

(M) N\ (uv)i+1/2,j+1/2 > (Uv)i+1/2,j—1/2
dy i+1/2,5 Ay ’
<@) O Uitsj2 — 2Uit1j25 T Ui-1)25
2 i+1/2,5 Aa? 7
(@) Uiz — Uiy + Uitz
OY? ) 125 B Ay? ’
(@ ) _ ()i — (W0)iciyzg412
Ox i+1/2 Az ’
(8_v2> _ (i) — (viy)?
dy i,j+1/2 Ay ’
(@) o Uiigt1/2 — 2054072 F Vic1 112
2 L2 Ax? ’
(@) _ Vige/e — Wigrye + Vi1 (126)
y? i,j+1/2 Ay? .
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In the above expression, terms like w; j, v; j, Uit1/2,j4+1/2, Vit1/2,j4+1/2 appear, which are not

defined in Figure 7. To evaluate such terms, linear interpolation is employed, that is,

Uit1/2,j T Ui-1/2,j

U5 = 9 )
Uit1/2,5+1 + Wit1/2,j
Uit+1/2,j4+1/2 = 9 )
_ Vigt12 +HUiio1ye
Uiy = 2 )
Uik gg1/2 T Uig2 127
Vit1/2,4+1/2 = 5 : (127)

We adapt Crank-Nicholson scheme to the projection method proposed by Chorin [10],
which is a modification to the Marker and Cell (MAC) method proposed by Amsden and
Harlow [19] where the method is characterized by the use of a staggered grid. The general
procedure for a projection method is a prediction-correction approach. In the first step
we use the momentum equations to compute an intermediate velocity field denoted by
u*. This velocity does:mnot satisfy the continuity equation. In the second step we solve a
Poisson equation for/the pressure which is‘derived from the continuity equation. Finally,
we project the solution u* to the real divergence-free velocity field by the computed
pressure.

We write down the semi-discretization of momentum equations (121)

+1 1/2 +1/2 +1/2
“?+1/2,j — Uity 5 N (8u2)"+ / . (8uv>”+1/2 p?+1,§ _ij /

— +
At 0 ) 10 W /vy Az
n n n+1/2
1 02\ "2 o2\ " fz'++1/évj
= me\\a2) ., T \Gp " ReCa (128)
i+1/2,5 Y77 iv1/2,5
Vidhe ~ Ui | (Qu " o\ i =i
+ + (5 +
At 9T ) ;i1 W /i1y Ay

_ i (@) +1/2 N (@) +1/2 . 91'7;_-1,-{/2 |
Re 02 ) i1y 0Y* )i iv1y2 ReCa

In order to reduce the complexity of computation, we use Adams-Bashforth scheme to
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approximate the convection terms

<au2>n+l/2 N <8uv)n+1/2 B
Ox i+1/2,j dy i+1/2,5

N o
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+

<8uv)"+1/2 . <av2>”“/2 _
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The external forcing terms f and g are substituted by f

computed from the data in previous time step.

i+1/2,5

i,j+1/2

n .
172, and 9iit12 which are

The first step is to find prediction solutions w* by using the pressure of previous time

step

Uiz, 0 (8%)* i (@)*
At 2Re O ) i 13 Y i),

uisiy | PR S LR\ o\
At Ax 0z /, 1/ dy

1 Pu\" Pu\ " 1/2
- H L e
2Re Ox i1/2, Oy i1/2.j ReCa

Viggge, 1 (32?1)* " (@)*
At 2Re 02/, i1 9Y? ) il ape

n n—1/2 n—1/2 n n
Uiv1/2,5 _pi,j—i-{ —Dij / B <8uv> "/« > (8_@2) 172
At Ay ox b2 Ay

+ 1 (@)” -+ (@)” + ggjj-i-l/?.
2Re Ox? i1/ Oy? P12 ReCa

i+1/2,5

i,j+1/2

(130)

These system of equations lead to solving two Helmholtz equations. one can use fast

direct solvers such as FISHPACK to compute uv* and v*.

Compare with original semi-discretization (128), we have to solve

ut — _ _Vh(pn+1/2 _ pn—1/2) + 1 vi(un+1 o ’U,*) (131)
At 2Re
Assume u""! is the final solution satisfying divergence-free condition. By using the Hodge

decomposition, there exists a potential function ¢ such that

un—i—l —ur

N = Vo
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We take divergence on Eq. (132) and obtain

—Vh -u”

A= Vie (133)

which is a Poisson equation with zero Neumann boundary conditions.
By solving the Poisson equation for potential function ¢, we can get the velocity field

satisying the continuity equation by
u"t = ut + AtV . (134)

At the same time, the pressure is updated by

Vh-u*

n+1/2 _ n—1/2 .
p p + ¢ 5 Te

(135)

8.2 Algorithm for Navier-Stokes flow with soluble
surfactant

In the following, we describe how to march one time step for the solutions. At the
beginning of each time step, the interface position, the fluid velocity, the surface and bulk
concentrations must be given. The numerical algorithm is as follows.

Step 1: Compute the surface tension and unit ‘tangent on the interface.

o) =i+ Eln(1—17), (136)

Tr = DoXi/|DaXkl (137)

Note that both surface tension and unit tangent are defined on half integer points a4 1/2.

Then the tension force is given by
F; = D,(op71}) (138)

Step 2: Distribute the interfacial force from the Lagrangian markers into
the fluid.

f'(@) =Y Fpoi(x—X}) [DaX | Ac. (139)
k
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Step 3: Solve the Navier-Stokes equations by the projection method.
By using the procedures stated in previous section, one need to solve the following

system

3 1
(U, . vh)un+1/2 _ 5(11," . vh)un _ §(un—1 . vh)un—l

u% +(u- Vy)urtV2 = —v,pn?
1 2 * n fn
+2—Revh(u )+ ReCa
ut = wy, on 0Of)
Vh -u* 8¢
2 n+1 e
V5,0 = AL on 0, on 0N
u"t = ut— AtV,e"H,
Vh -u*

n+1/2 n—1/2 n+l )
p Pt 5 Tre

Basically, two Helmholtz ‘equations and_one Poisson equation are solved by FISHPACK
at each time step.

Step 4: Compute the new-interface position.

i?j

Uz—i-l _ ZU"+15;2,,(CUi,j _ XZ)h2
‘7.]'

Xt = X+ AU, (140)

Step 5: Compute the indicator function.

Step 6: Compute the surface concentration.

Step 7: Compute the bulk concentration.

The first four steps are the standard implementation in immersed boundary method.

The last four steps are exactly the same four steps shown in previous chapter.
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Chapter 9

Numerical results 2

In this chapter, in order to validate the numerical methods we proposed for solving surface-
bulk coupled surfactant system; we try to do a series of tests to check if our solver is
correct. Since the algorithms in our previous work [24] provided the conservation of surface
concentration in numerical sense, -here the numerical solution of bulk concentration is our
main focus, and we also concern about the conservation of concentration when bulk part
is coupling with the surface part. Throughout this chapter, the dimensionless adsorption
depth A is chosen to be 1, which refers approximately to a drop of micron in glycerol /water
solutions of the polyethoxylate surfactant CoEs [33]. We set the computational domain

Q as [—1,1] x [—1, 1]; unless stated otherwise.

9.1 Bulk diffusion with a fixed interface

For the first example, we test the diffusion of bulk surfactant in the exterior phase €2;.
We fix the inner boundary of €y, or the interface, and choose it as a circle centered at
(z0,%0) = (0,0) with radius 7o = 0.3. In order to consider the diffusion of the bulk
concentration only, the velocity is set to be zero, and the bulk-surface coupling is turned
off, that is, we solve Eqs. (92)-(93) with v = 0 and S, = Sq = 0. The Peclet number is

set as Pe = 100.
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The initial bulk concentration is set as

0.5 + 0.4 cos(mx) cos(my) if r > 2.5r
C(z,y,0) =9 C + (0.4 cos(mx) cos(my) + 0.5 — Cw(r) if ry <7 < 2.5r¢ (141)
0 otherwise

where the function

w(r) = % (1 ~ cos (%)) (142)

with r = \/(x — 20)% + (y — y0)2, and C'is the concentration value at the interface. Here,

C is set as the average value of the function 0.5 + 0.4 cos(wz) cos(my) along the interface
r = ro. Note that, by the choice of w(r), one can immediately check that this initial
condition satisfies the boundary condition Eq. (93) since w(ry) = w'(rg) = 0.

We first present the convergence study of the proposed scheme. Here, the grid numbers
N x N which we perform‘the computations vary from N =64, 128, 256,512 to N = 1024
in the domain 2 = [—1,1] X [—1,1] sothe spatial mesh width is h = 2/N. The Lagrangian
marker width is chosen as Aa &~ h/2 and the time step size is At = h/8. The solutions
are computed at time T = 0.5. Due to no-analytic solutions in these simulations, we
compute the error between two suceessive grids denoted by |[(HC)ony — (HC)n||, so the

rate of convergence can be computed as

[(HC)n — (HC)ypoll
[|(HC)on= (HC) |

rate = log, (143)

Table 9.1 shows the mesh refinement analysis of the bulk concentration in L, and L
norms. The rate convergence is about first-order, which is a typical accuracy behavior
using the immersed boundary method [32].

Figure 9.1 shows the bulk concentration along the horizontal line y = 0 at different
times using the grid number N = 256. For )y, the inner part of the domain, the bulk
concentration is almost zero which reflects the insolubility of the inner region. Meanwhile,
the surfactant in the outer region diffuses gradually as time evolves in these plots. To
verify whether the total surfactant mass is conserved in the domain, we plot the relative

My—Mq

error defined by o where M, is the initial total surfactant mass while M, is the total
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NXN | |[(HC)y — (HO)x|ls  rate | |(HC)oy — (HO)n|:  rate
64 x64 2.0344E-02 — 1.0424E-02 —
128 x 128 1.6218E-02 0.3270 4.7816E-03 1.1243
256 %256 1.0940E-02 0.5679 2.4963E-03 0.9376
512x512 3.8809E-03 1.4951 2.9607E-04 3.0757

Table 9.1: The L, and Ly errors and their convergent rates for the bulk diffusion with a

fixed interface at T = 0.5.

mass computed at time t. The upper panel of Figure 9.2 shows the time evolutionary plot
of the total mass relative error. The relative error is in the magnitude of 107!3, which
indicates that the present scheme-has excellent conservation property.

Although in the plots of Figure 9.1, the bulk cencentration is indistinct zero inside
the interface; however, there is still.an-O(€) amount of mass leaking into the region .
In the lower panel of Figure 9.2, we show the time evolutionary plot of the relative error
for the leaking mass-inside the interface. This relative error is defined as ]]\é—g, where the

leaking mass M, isieomputed by
M, =Y (HC);h® when H;; < 001, (144)
ij
Note that, the present relative error.is within 10~>.-which is only about 0.001%.

This mass leaking is caused by the regularization of the indicator function. In order
to further understand the dependence of the regularization parameter e on the effect of
numerical leakage error, we test three different choice of ¢ = 107%,0.1h, and 0.1h? as
shown in Table 9.2. The errors are all computed up to time 7" = 0.5. One can see that
all three cases show similar first-order convergence as the mesh is refined. Meanwhile, the
errors of € = 1075 and € = 0.1h? are both comparable, and are better than the choice of

€ = 0.1h. Throughout the rest of computations, we therefore simply use € = 107°.
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bulk concentration along y = 0
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0.9} T=1
T=2

Figure 9.1: The bulk concentration along the horizontal line.y = 0 at different times.
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Figure 9.2: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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N x N e=10"6 rate e=0.1h rate e =0.1h% rate

64x64 | 1.7175E-05 - 1.4376E-04 - 2.1261E-05 -
128x128 | 1.2707E-05 0.4346 | 8.1861E-05 0.8124 | 1.3810E-05 0.6225

256x256 | 7.0408E-06 0.8518 | 4.3141E-05 0.9241 | 7.3280E-06 0.9142

012x512 | 3.3182E-06 1.0853 | 2.1641E-05 0.9953 | 3.3904E-06 1.1119

Table 9.2: The convergent study of numerical leakage relative error ]]\é—g at T' = 0.5 for

three different regularization parameter €.

9.2 Bulk convection-diffusion with a moving inter-
face

In the following test, we the same initial setup as the previous test but the convection
effect is added into the equation.The flow and the interface are now moving with a

prescribed incompressible velocity-field uw = (u,v) as

o —%(1 7 et (145)

v (= %(1 + cos(my)) sin(nz).

The center of the circular interface is shifted to the point of (%, vo) = (0.1,0) initially so
that the asymmetric flow can be developed.

Table 9.3 shows the convergent rate amalysis of the bulk concentration in € as we
refine the mesh. Again, one can see that the rate of convergence is first-order even with
a moving interface.

Figure 9.4 shows the snapshots of the the bulk concentration at different times. The
plots at left hand side are the contour plots of the concentration of bulk surfactant and
the position of the interface in the same time. The figures at right hand side are the cross
section of the concentration along the horizontal line y = 0. The asymmetric flow could
be found among the plots, and the effects of both convection and diffusion are shown

obviously on the distribution of bulk concentration. Figure 9.3 shows the relative errors
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NXxN | ||(HC)yy — (HC)n|l2 rate | [[(HC)any — (HC)n|l1  rate
64 x 64 2.3101E-02 - 1.1570E-02 -
128x128 1.5788E-02 0.5491 5.3424E-03 1.1149
256256 1.1002E-02 0.5210 2.7364E-03 0.9652
512x512 3.9145E-03 1.4909 3.2451E-04 3.0759

Table 9.3: The Ly, and L; errors and their convergent rates for the bulk convection-

diffusion with a moving interface at 7' = 0.5.

for total mass in Q and leaking mass into €2y. Again, the total surfactant mass (upper
panel) is conserved almost as well as the first test and the leaking mass error is still
controlled within 0.002%. Note that, the oscillatory /behavior of the latter error is due to

the convection of the flow.

error
I
N o
/
I I

0 0.5 1 1.5 2
time

25

error
=

05

05 . . .
0 0.5 1 15 2
time

Figure 9.3: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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1 1y == 1
) I S
08, .| e
€05 = N
N \ /
06 A \ el
0 3\ - 0.5 gl
0.4 \ \ / |
- ) /
02%°| AN = p |
o 10w it B ‘
-1 1 -1 -05 0
T=1.0 T=1.0
0.5 i
b0 .
-0.5
1 % 0
= 0 1 -1 -05 0 05 1
T=15 T=15
1 — 1
0.5 S
{
Of - _@, RPN 0.5
\
-0.5F
)
1 1 0
= 0 1 -1 -05 0 05 1
T=20 T=20
1 1
05 §
> O~O~ 0.5
—osp
-1 — 0
=] 0 1 -1 -05 0 05 1
X X

Figure 9.4: The bulk concentration at different times. Left column: The bulk concen-
tration contour plots and the interface positions. Right column: The bulk concentration
plots along the horizontal line y = 0. The dashed line in the first right plot denotes the

initial bulk concentration along y = 0.
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9.3 Surface-bulk coupling with a moving interface

In the third test, we take the surface-bulk coupling of the system with a moving interface
into consideration; that is, we need to solve the coupling equations (91)-(93) with the
prescribed velocity w defined in Eq. (146). The bulk Peclet number Pe and the surface
Peclet number Pe, are chosen as Pe = Pe, = 100, and we set the adsorption and
desorption Stanton numbers as S, = S; = 1.0. As previously, the initial interface is a
circle with the center located at (zo,v9) = (0.1,0) and the radius ro = 0.3. The initial

bulk concentration is defined as

0.5(1 — 2%)? if r > 2.5r
C(r,y,0) = q 0.5(1 —2?)2w(r) if ro <7 < 2.5r
0 otherwise

where the function w(r)ds defined as same as Eq. (142).+We also set the initial sur-
face concentration to be identically-zero (i.e. I'(e;,0) = 0) so that one can observe the
significant surface absorption near the interface:

As before, by the choice of w(r), the initial bulk and surface concentrations satisfy the
boundary condition Eq. (93). Table 9.4 shows the mesh refinement analysis of the bulk
and surface concentrations in L, norm. One can see that the rate of convergence is roughly

first-order for the bulk while it is ‘better than first-order for the surface concentration.

N x N | |(HOYony —(HC)¥llarate | ||Pony —I'y]l2 rate
64 x64 1.9479E-03 - 1.9494E-04 -
128 %128 8.5982E-04 1.1798 | 5.2554E-05  1.8911
256 %256 4.3928E-04 0.9689 | 1.5999E-05  1.7158
512x512 1.2794E-04 1.7796 | 5.2204E-06  1.6157

Table 9.4: The L errors and their convergent rates for the bulk and surface concentrations

at T'= 0.5.

Figure 9.6 shows the bulk concentration at different times. The upper panel shows the

contour plots of bulk concentration and the instantaneous interface positions. The lower
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left column of the figure shows the plots of cross section of the bulk concentration along
the horizontal line y = 0, while the lower right column shows the surface concentration
along the interface. Since the total mass is conserved, the surface concentration increases
while the bulk concentration decreases significantly due to the surface adsorption process.
The relative errors for total mass in € and leaking mass into €}y are shown in Figure 9.5.
Again, the total surfactant mass is conserved as well as before and the leaking mass error

is controlled within 0.0005%.
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Figure 9.5: Upper panel: Time evolutionary plot of total mass relative error. Lower panel:

Time evolutionary plot of leaking mass relative error inside the interface.
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Figure 9.6: Upper panel: the bulk concentration contour plots and the interface positions.
Lower left: the bulk concentration plots along the horizontal line y = 0. The dashed line in
the first plot denotes the initial bulk concentration. Lower right: the surface concentration

along the interface in counter-clockwise way starting from the point marked by ”0”
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9.4 A freely oscillating drop

In the following section, we consider a freely oscillating drop immersed in a quiescent flow
as our first numerical test for Navier-Stokes flow with soluble surfactant. The initial drop
interface is an ellipse centered at the origin with major and minor radius 0.6 and 0.15,

respectively. That is, the initial interface configuration is defined as
X (a,0) = (0.6 cos,0.15sin),0 < av < 27 (146)

. Unlike the previous tests, we now set the initial bulk concentration in €; (outside of
the ellipse) to be a constant Cs, i.e. C(x,y,0) = C, in ;. The bulk surfactant adjacent

to the interface Cs(a) is naturally equal to Cs which leads to zero Neumann condition

oC
r— 147
on (147)
along the interface. We then choose the initial surface concentration I'(a, 0) to be another

constant I" such that

%05(1 _ < it (148)

Based on the above-choices of the initial ‘bulk and surface coneentrations, one can im-
mediately see those initial conditions satisfy the boundary conditions in Eq (93). Since
the flow is quiescent initially, the initial velocity of Navier-Stokes is zero everywhere and
the no-slip boundary conditions are imposed. onthe computational boundary. The other
parameters are set to be fixed as the bulk ‘and surface Peclet numbers Pe = Pe, = 100,
the adsorption and desorption Stanton numbers S, = S; = 1.0, the Reynolds number
Re = 10, the Capillary number C'a = 2, and the surfactant elasticity number El = 0.5,
respectively.

As before, we first provides a convergence analysis of the present numerical scheme
described in Chapter 8. Here, we perform four different computations with varying grid
numbers N = 64,128,256,512. The Lagrangian marker width is chosen as Aa ~ h/2
and the time step size is At = h/8. The solutions are computed at time 7' = 0.5.

Again, since the analytic solutions to these simulations are not available, we compute
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the Ly error between two successive grids and the rate of convergence is computed as in
previous examples. Table 9.5 shows the mesh refinement analysis of the bulk and surface
concentration, and the velocity field at T = 0.5. One can see that the rate of convergence
still behaves like first-order. The time evolutionary plots of relative errors for the total

mass and the leaking mass inside the interface are similar to those in previous tests so we

omit here.
N XN | ||(HC)oany — (HC)y|l2  rate | ||Toy —I'y|l2  rate
64 x64 1.9723E-02 - 1.4433E-03 -
128%x128 1.2555E-02 0.6516 | 4.7029E-04 1.6178
256256 9.2176E-03 0.4457 | 1.9054E-04 1.3034
N xX N | |luey = unllo . rate | |jvoy —vnlla  rate
64 %64 4.3642F-03 - 4.0541E-03 -

128 x 128 | 71.26656E-03  1.7848 | 1.2908E-03+ 1.6511

256x256 | 4.0467E-04 1.6460 | 4.3488E-04 +1.5695

Table 9.5: The L, errors and their convergent rates for the bulk and surface surfactant

concentrations, and the fluid velocity field at T" = 0.5.

We then make the comparison of a freely oscillating drop in a quiescent flow with
a soluble or an insoluble surfactant. “Note that; for the insoluble surfactant case, there
is no surface-bulk coupling thus no need to solve the bulk concentration equation (92).
Figure 9.8 shows the comparison between insoluble (denoted by dash-dotted line) and
soluble (denoted by solid line) cases for a freely oscillating drop. The upper panel shows
the interface positions at different times, while the lower left and right show the bulk
concentration along y = 0 (soluble case only) and surface concentrations, respectively.

Due to the surface tension force, the drop tends to oscillate until it reaches to a sta-
tionary circular shape. For the soluble case, since the surface surfactant will be desorbed
into the neighboring bulk region (see the lower left panel), the surface concentration is

less than the one of the insoluble case (see the lower right panel). Therefore, the surface
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tension will not be reduced as much as in the insoluble case so the drop with soluble
surfactant tends to oscillate faster than the insoluble case. Our numerical simulation

confirms the above drop behaviors qualitatively.
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Figure 9.8: The comparison of insoluble (denoted by ”-.”) and soluble (denoted by ”-”)

interfacial flows for a freely oscillating drop.
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9.5 A drop under shear flow

In the last test, we consider a circular drop centered at the origin with radius ro = 0.3
is put initially in the domain ©Q = [—1, 1] x [—1, 1] under the shear flow. The initial and
boundary conditions for the velocity used in this simulations are based on the setup of

Tornberg et al. in [39]. That is, the velocity boundary conditions are

u=1 v=0 at y =1 (149)

u=-—1, v=0 at y = —1,

respectively and w,v are both periodic at x = +1. As also suggested in [39], we set
the initial velocity as the quiescent flow to avoid unrealistic flow interior to the drop
during the transition caused by using the linear veloecity initially. That is, the flow is
set to motion simply by<the boundary shear. The boundary conditions for the bulk

concentration equation are chosen-as

aC
5. =0aty ==l (150)

and are periodic at £ = &1 to be consistent with the flow conditions. Therefore, the total

surfactant mass is still-.conserved in this case. The initial bulk concentration is defined as

sin?(mz) if r >2:5rg
C(z,y,0) = S sin?(ma)w(r) if ro < r < 2.5r
0 otherwise

where the function w(r) is defined as same as Eq. (142). We also set the initial surface
concentration to be identically zero (i.e. I'(a, 0) = 0) so that significant surface absorption
can be expected naer the interface. As before, by the choice of w(r), the initial bulk and
surface concentrations satisfy the boundary condition Eq. (93) at the interface r = rg
because of w(rg) = w'(rg) = 0. Other dimensionless numbers are A = 1,5, = 3,5; =
1, Pe = 10, Pe; = 100, Re = 10,Ca = 4/3, and El = 0.5.

As in previous test, we first perform four different computations by varying grid num-

ber N = 64, 128,256,512 with the associated mesh width h = 2/N. The Lagrangian
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interface position at T = 1.5 T=3.0
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Figure 9.9: The comparison of clean (denoted by ”-.”) and soluble (denoted by ”-")

interfacial flows for a drop under shear flow.
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Figure 9.10: Left: the bulk concentration plots along the horizontal line y = 0. The
dashed line in the first plot denotes the initial bulk concentration. Right: the surface
concentration along the interface in counter-clockwise way starting from the point marked

by 70”.
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Figure 9.11: The comparison of aspect ratio between clean (denoted by ”-.”) and soluble
(denoted by ”-") cases.
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Figure 9.12: Upper panel: Time evolutionary plot of total mass relative error. Lower

panel: Time evolutionary plot of leaking mass relative error inside the interface.
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N XN | ||(HC)eny — (HC)y|l2  rate | ||Toy —T'yll2  rate
64 x64 6.2645E-03 - 1.1654E-03 -
128 %128 3.8501E-03 0.7022 | 3.9683E-04  1.5542
256 %256 2.3775E-03 0.6954 | 1.2670E-04 1.6471
N X N | ||uexy —un|l2 rate | |[vay —on|l2  rate
64 x64 5.8396E-04 - 3.7335E-04 -

128x128 | 2.7426E-04 1.0903 | 1.8524E-04 1.0111
256x256 | 1.4308E-04  0.9386 | 9.1926E-05 1.0109

Table 9.6: The L, errors and their convergent rates for the bulk and surface surfactant

concentrations, and the fluid velocity field at T' = 0.5.

marker width is chosen as Aa ~Hh/2 and the time step size is dt = h/8. Table 9.6 shows
the mesh refinement analysis of the-bulk and surface concentrations, and the velocity field
at T'= 0.5. One camsee that again the rate of convergence behaves like first-order in
general.

Figure 9.9 shows the evolutionary interface positions of clean (denoted by dash-dotted
line) and soluble surfactant (denoted by solid line)-cases for a drop under shear flow based
on the results of grid number N .= 256. The clean drop bears no surfactant along the
interface throughout the evolution'so no bulk and surface surfactant equations are needed
to be solved and the surface tension remains to be a constant ¢ = 1. (Note that, we
use the clean drop as a comparison simply because of zero initial surface concentration is
chosen in present setting.)

Due to shear stresses, both drops will be elongated and gradually aligned with the flow
directions. For the soluble case, the interface will start to absorb the bulk surfactant so the
bulk concentration decreases while the surface concentration increases in the beginning,
see Fig. 9.10 in detail. Later, both absorption and desorption processes become more
balanced so the bulk and surface concentrations become quite steady. As expected, the

largest surface concentration appears to occur at the drop tips after the drop aligned with
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the flow. The drop with soluble surfactant has smaller surface tension than the clean
drop so the deformation tends to be larger. One can see from Fig. 9.9 that the clean
drop approaches to a steady state shape after 7" = 9.0 while the soluble surfactant drop
continues to deform slightly afterwards.

By using the aspect ratio, we can verify if the deformation of drops attends to a steady
state more seriously. Figure 9.11 shows the aspect ratio comparison between the soluble

case and the clean one, where the ratio is defined as

Ly — L,

g 151
Ly+ L, (151)

which Ly, is the major radius (about the furthest distance of the interface to the origin),
and L,, is the minor radius (about the shortest. distance of the interface to the origin).
One can see the aspect ratio of the clean drop isralmost fixed as time large enough, while
that in the soluble case dis still deforming:

Figure 9.12 shows the total mass error and the mass leaking of the soluble case un-
der the shear flow. “The conservation of the mass of the surfactant is good, while the
mass leaking is less than 0.001%. Our numerical results are physically reasonable and

qualitatively consistent with those obtained in other literature such as in [41].
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Chapter 10

Conclusion and future work

In the first part of this thesis, we discuss the convergence of Poisson equations with source
terms defined on embedded interface in the computational domain. We provide one-
dimensional proof and two=dimensional numerical tests to judge the results. For the source
terms as derivatives of delta functions, such as pressure problem in Stokes equations, or
indicator function in front tracking methods, the overall accuracy is first-order accurate in
L! norm, half-order accurate in L* norm, but has O(1) error in L°° norm. For the singular
source as delta functions, the overall convergent rate is second-order accurate in L' norm,
one and half-order aceurate in L? norm, and first-order accurate in L™ norm. We also
give some applications o solve second-order elliptic equations with piecewise-constant
coefficients or Stokes problems by using the solution of Poisson equations we obtained.
In the second part of this thesis, we consider the surfactant, an amphiphilic molecular,
in the multi-phase fluids. Due to the particle structure, it usually favor the presence
in the fluid interface. We take solubility of the surfactant in one subdivision of the
domain into account, and discuss the interactions between bulk domain and interface
such as adsorption and desorption. These form a coupled surface-bulk interaction system
of convection-diffusion equations. In order to reduce difficulties in the calculations, we
rewrite the bulk concentration equation into a regular domain by using the indicator
function introduced in first part. The concentration flux across the interface is treated

as a singular source term in the equation. Based on immersed boundary formulation, we
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propose a numerical scheme to solve this coupled surface-bulk concentration equations
with providing the conservation of total surfactant mass. We use a series of examples
to validate the proposed scheme, and combine with Navier-Stokes solver to extend our
previous works.

In the present thesis, all studies are done in one-dimension or two-dimension, we will
try to expand our work into three-dimensional cases in the future. The challenges are
much harder, for instance, how to set a good grid on the complex surface? how to modify
the grid when it has large deformation, especially under the flow? how to solve convection-
diffusion equations on this grid? and how to maintain the mass conservation property in

the computation? Such problems are the major issues that we need to conquer.
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