

@ﬁ%iﬁ%%i%ﬁ#%ﬁﬁg

Dynamic Reordering Bloom Filter

Mogod kA4 Student : Da-Chung Chang

R IR B Advisor : Chien Chen

October 2013

Hsinchu, Taiwan, Republic of China
PEAR-F R &L

b
=5

G

SIE L TX LI STY

- |

GEERE R hERE R i@

Y £

e
W
&

FHEREL- BRI PO ES R RERGFETEE [
FEERENF Gy o T 15 B g BARAE ® 3027 § g 38 o Dldo b 2 Gtk suentp s o IR R
BEARFIR LSNP FRLEAALI I E YRR AR o1 K R S (B
PIRER 5 6] e REPIREZ F § R p w B R 3 T 1L E
BB LI F R AR PIRET - LA TR L
R RIF D B3 F B E R VSRR BL G T & T RE e H AT R R
gt & VUG & it f B E o HRR BT Y 000 B L EREY R f A
PR Z FRAR Y A IOR R e A e 5 R W I Eia k0 A 3 R AR VAR
FREAAT R TR GRCEAPAROF REREF RRRRF Phia & -
A EHFPFEORERD T - AR E A A E o Gd SR, T T
pren ATAR MR IR EIRE LA B A AR CH AR R DT ER R E
%iﬁ’%Hﬁ*ﬂﬁiﬁﬁ%@ﬁﬁéﬁ$ﬁﬁmﬁ$i°%*ﬂﬁﬁ%%ﬁ€’i

A 2R P g g A0%endEE & Ao Fd A R AR B NP SRRk E T o
R R G R e BRI A R RE AT

Wats @ FREEH T B F A E S RGBT AT IR E A

=

Dynamic Reordering Bloom Filter

Student: Da-Chung Chang Advisor: Dr. Chien Chen

Institute of Network Engineering
National Chiao Tung University

Abstract

Bloom Filter is a space-efficient data structure for representing static data set and
supporting membership check of the set. Bloom Filter is widely applied to many fields such
as distributed systems. Bloom Filter can be used for saving the network bandwidth when
interchanging information with peers in a distributed system. For example in cooperative web
proxy design, web proxies periodically index their.cache data to Bloom Filters and exchange
them with each other. A web proxy can check Bloom Filters to find out which proxy cache
the web document and send a query directly to that proxy. It can avoid broadcasting
requests to all the peers which may not have cached data. To check a membership in multiple
set of bloom filters in a dynamic bloom filter, a sequential search order is usually used. Since
distribution of web queries usually has temporal locality feature which means there is a very
high probability that the recent web query will be queried again in a short future. Therefore to
save search cost, we propose a scheme that can dynamically reorder the searching sequence of
multiple bloom filters in a dynamic bloom filter. Simulation results show that our scheme on
average has 40% better in searching performance comparing with the sequential methods,

which is verified via three different trace log files.

keywords: bloom filter; dynamic bloom filter; compact data structure; web proxy; temporal

locality

=

A s AR R BHEE P F LS E“T%E‘:—fritﬁ’wﬁﬂA o AR RSN i i
P ML RRBGERD B F ¥ B IHAT R Ay B R
FA BT TR P2k 2 > BB E R IE 0% o AR Y oA] i feY
R BT F S AR OREIoMA CEAEY T F LTy 2 g A E R nR

SR e S REA T EER > T N I R RS AReE L, Ar R

#

234 %
tofe R
iz ¥ 6l R
P >0 ¢ 18
> R iE A
7

{6 RE 2
B gL W s PR

*~ P&

PR BB e ii
ADSTFACT ...t ii
5t SOOI \Y
p T v
BB B B e B B R Rttt vii
EA I R W B e, 0 A viii
Chapter 1 @ INTrOGUCTION ...ciii. ittt e ab ettt sttt 1
Chapter 2 : Related WOTKSo.oi e i bt enbn e sabsabt nad ettt 4
2.1 One Memory Access BIoom FIITErS. ittt 4
2.2 The Dynamic BIOOM Filter itttk s R 4
2.3 Time-Dependent BIOOM FIITErcciiiiiiiiii i 5
2.4 Temporal LOCAITY FEALUIE........ccuaiueieeeciieitee s eaiteasaesuaaseasaesseensessasaseeseeaneesnassasssseseeeseenns 5
Chapter 3 : Dynamic Reordering BIOom FIILersS........ccccceivviiiiiciicc i s 7
3.1 MOUMELIAN............ ... "7 o Ornorror oo cooce O eceneeee e 7
3.2 Policy of Changing QUENY PIIOIILYcc.uverue ittt i it ianae et shaesansns i e avaeeeas 7
3.3 Promotion of System Performance ...ttt 8
B4 QUETY INOBX ..cuviiu ittt ettt e e te e e te e An e e s aRaahr e e s annneenteansesreenneenne e 10
Chapter 4 : System Performance ANAIYSIS. ... oot ittt 12
4.1 MarkoV Chain @nalySiS ... oo ittt 12
Chapter 5 : SIMUIAtion RESUITSooiiiiiii s 15
5.1 Performance of the Most Popular BIOCK...........cccoiiiiiiiiiiiie e 15
5.2 ArtITICIAl DALA SELS........civiiiiiiiiietieie e bbbt 17
5.3 NASA Web Server Trace LOg File........coooiiiiiiiiiiieiese s 18
5.4 eDonkey tracker trace 10g Flle........cccooiiiiiiiii e 19
5.5 Web ProXies LOQ FIlES.........oooiiiiiiic ettt 20

5.6 Changing of False Positive Ratio of Bloom-g Filterccccocoiiviiniiniiieiniece e,

Chapter 6 : Conclusions

WP &

Figure 1-1 Architecture of BIOOM FIlter........ccooiiiiiiie e 1
Figure 2-1 Architecture of BIOOM-1 FIltercooiiiiiie i 6
Figure 2-2 Architecture of Dynamic Bloom Filter ..o 6
Figure 2-3 An example of distribution of temporal locality [18]cccoviiiiiiiiniiiie 6
Figure 3-2-1 Query order changing of multiple BFS..........cccooiiiiiiiiiiecee e 8
Figure 3-3-1 Competition between multiple BFS.........cccooiiiiiiiieeee e 9
Figure 3-3-2 Architecture of replacing BFS With OMABFES ..o 9
Figure 3-4-1 Architecture of adding QUery INAeX........ici et 10
Figure 3-4-2 Architecture of Dynamic Reordering Bloom Filter............coooooiiiiiiiiiiinns 11
Figure 4-1 Initial transition Probabilities.cooiiiiiiii i st 14
Figure 4-2 States and their transition probabilitieS: i .ot s 13
Figure 4-3 EXpression of IMarkOV CHaINc..oit i et s ant e 14
Figure 4-4 Evaluation of memory access times for a specific Bloom Filter.......ccccoooovnn. 14
Figure 5-1-1 Performance evaluated by simulation and Markov Chainccccciiennnnne. 16
Figure 5-2-1 Performance TOI VAITOUS 0. uesesuessussesastnennenseauessessessesssssseseansesnessassessessessens 18
Figure 5-3-1 Performance verification using trace log from NASA web server.........cc........... 19
Figure 5-4-1 The performance of dynamic bloom filters verified by eDonkey tracker log.....20
Figure 5-5-1 Performance of dynamic bloom filter verified by web proxy trace log 21

vii

file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686301
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686302
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686303
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686304
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686305
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686306
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686307
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686308
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686309
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686310
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686311
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686312
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686313
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686314
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686315
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686316
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686317
file:///C:/Users/Player/Desktop/學位論文版_20131021_初稿_sp3.docx%23_Toc374686318

ENEES

Table 5-1-1 EXPEriment PAraMELEISccueieirerierierieriesieeeei ettt e 15
Table 5-2-1 Parameters for simulation test data.............ccooeieieniiiiinii e 17
Table 5-3-1 Profile of NASA web server trace 10g........cooeveieieiiiiiiieeeec e 18
Table 5-4-1 Profile of eDonkey trace 10g file...........cooiiiiiiiii e 19
Table 5-5-1 Profile of web proxies trace 10g files ... 20
Table 5-6-1 False Positive Ratio of N-MABF for Different Number of Block 21

Table 5-6-2 False positive ratio o A us AFOUS N ..o 22

viii

Chapter 1: Introduction

Bloom filters (BF) were proposed by Burton Bloom in 1970 [1] consists of two
components: (1) Bit array (B) with m-bits. (2) A group of hash functions (H). Its architecture
is shown in Figure 1-1. The k represents the number of H. The B is initialized with zero.
Hash function H; (0 < i < k) maps the data to each of k positions of B for setting B[H1(X)] =1,
B[H2(X)] = 1...., and B[Hk(X)] = 1 when inserting data X. Bits of B[H1(Y)] , B[H2(Y)],
B[Hs3(Y)], and B[Hk(Y)] are checked when checking membership of data Y. If any of
them is zero, the data does not belong to the set represented by the Bloom Filter. Otherwise,
the data could have a high probability belong to that set. Even all positions are one; the
queried datum could be misidentified as a member. This is because the summary of a queried

datum could be created by other exist data in the Bloom filter.

[I, H,] Hash tunctions
[ofol..Jolol Jol folol [o] Byy
: : (B)
\ J

|

M bits
Figure 1-1 Architecture of Bloom Filter

False positive ratio is used to describe the probability that the data which are not the
members of the set are identified as the members. The false positive ratio can be formulated

as

fp:(l_ekn/m)k (1)

where variable n is number of elements in the set; and m is memory size. For the specific ratio

of m/n, the optimal number of hash functions k can be expressed as

k="n2 @)
N

Bloom Filter has the benefit in saving memory space and checking membership in
constant time. It helps applications to increase their performance with fewer extra resources
consumption. Many variants of Bloom Filter are proposed for applying to different research
fields. Counting Bloom Filter [2, 3 and 4] replaces one bit with several bits for measuring
number of members set in the same location in the Bloom Filter and for accurately deleting a
bit form a particular location. Compressed Bloom Filter [5] is proposed to reduce Bloom
Filter size for saving bandwidth when exchanging Bloom Filter between peers. Packet
classification [6, 7] uses multiple Bloom Filters to rapidly identify which interface can be
used to forward a packet. Hierarchical Bloom Filter [8] helps to deeply inspect the payload of
a packet for security issues. LIPSIN [9] inserts routing information of a multicast group into
Bloom Filter and replaces the packet header with the Bloom Filter such that it can support
large-scale multicast since the number of multicast group is too large to be maintain by the
routers on the routing paths. Besides, Bloom Filter is introduced to distribution system such as
cooperative web proxy. The proxies set their own cache information to Bloom Filter and
exchange them with each other to reduce network traffic consumption. In decades ago, the
loading of web server substantially increased with the number of clients. For this reason, the
idea of web proxy was proposed by [10] for mitigating network-traffic through the Internet.
Web proxy locates in the network edge and caches partial content of web servers. Once a
client sends a web document request, web proxy sends related document back if the document
is cached locally. In order to gain more benefits from web proxy, the idea of cooperative web
proxy which applies to Bloom Filter was proposed by [11]. Each proxy stores a caching data
summary represented by a group of Bloom Filters. The summary includes a directory of
cached web documents in others proxies. When a client request misses in the local cache, web
proxy checks the summaries to infer which proxy has the required document. Then the web
proxy redirects the request to the corresponding proxy and fetches the document back.
Otherwise, the proxy directly sends request to the web server for retrieving the document. To
check a membership in multiple bloom filters, a sequential search order is usually used.
However, a larger searching cost may be incurred if frequently-required documents are stored

in the Bloom Filters which are located in the lower search priority. Since distribution of web

2

queries usually has temporal locality feature which means there is a very high probability that
the recent web query will be queried again in a short future. Therefore to save search cost, we
propose a scheme that can dynamically reorder the searching sequence of multiple bloom
filters in a dynamic bloom filter.

The remaining sections are organized as follows: Section Il summarizes the related
articles realted with Bloom Filter. Section Ill introduces the stucture of our proposaed

dynamic reordering bloom fiter. Sectio analyses the performance of our design using

Markov Chain. Section V discuss : 3 s from three real trace logs. Section

VI gives the conclusio

Chapter 2: Related Works

2.1 One Memory Access Bloom Filters

Performance of Bloom Filter is dominated by two factors: (1) memory size (2) the
number of hash functions. The growth of memory size is rapider than that of memory access
speed. The memory access speed may become a bottleneck when much lower false positive
ratio is required by some applications. To achieve lower false positive ratio with slowly
increasing memory access times, One Memory Access Bloom Filter (OMABF) is proposed
[12]. The basic idea is to replace mapping a datum to k bits randomly selected from the bit
array by mapping a datum to k bits in a block. A block is defined as continuous ‘w’ bits and
can be fetched from memory to the processor in one memory access. Bloom-1 Filter is alias of
OMABEF. Architecture of Bloom-1 Filter is shown in Figure 2-1. A block array is used for
saving data. Block hash function-is firstly used to choose a specific block from the block array
when accessing a datum. Then, Hash functions are used to set or get the bits to and from the

block for the datum.

2.2 The Dynamic Bloom Filter

Applications of dynamic data set are more common than static one in the real world,
such as distributed hash table of peer-to-peer, network traffic measurements, etc. Dynamic
Bloom Filter (DBF) is therefore proposed [13]. DBF can be applied to manage dynamic data
set and distributed systems. It consists of three components: (1) A Bloom Filter Counter for
recording the number of Bloom Filters included by DBF (2) Many Bloom Filters for
managing dynamic data sets (3) One capacity counter for each Bloom Filter. For applications
in a distributed system, one Bloom Filter is mapped to one peer. Once information of any peer
needs to be modified, the corresponding Bloom Filter is rebuilt. Sequentially searching Bloom
Filters is used to perform membership check in DBF. The searching order starts from number
BF1. Architecture of Dynamic Bloom Filter is shown in Figure 2-2. Squares drawn with
solider line represent items which already exist in DBF; squares drawn with dash line

represent items which will be created if there is no space for saving more data. Bloom Filter

Counter is used to indicate which Bloom Filter is used to store a new datum or is the last one
needed to be checked. The capacity counter associates with the Bloom Filter indicated by
Bloom Filter Counter is checked when a new datum is needed to be inserted. The datum is
inserted into the Bloom Filter if the value of the capacity counter is not zero. Otherwise,
Bloom Filter Counter is increased by one. In the same time, new Bloom Filter and
corresponding capacity counter are created. The datum is therefore inserted into the new

Bloom Filter. The new capacity counter is then decreased by one.

2.3 Time-Dependent Bloom Filter
Time-Dependent Bloom Filter (TMBF) [14] considers the issue of temporal locality.
TMBF queries data in the-order-which is opposite to DBF. Emulation of the literature

indicates that TMBF can save up-to 20% of extra query cost than DBF.

2.4 Temporal Locality Feature

There are many literatures [15, 16, and 17] accounting for temporal locality appearing in
the request stream of web proxy. Temporal locality consists of two distinct phenomena: (1)
Long-term: Web document is really popular. (2) Short-term: Massive references of
correlations appear in short time interval. Web documents which repeatedly appear such as
logo image are the main factor to form the long-term temporal locality. Distribution of
long-term temporal locality is similar to Zipf-like one. Short-term temporal locality may be
caused by different caching policy between web browser and proxy or by temporal correlation
of multiple documents. An example of distribution of temporal locality is shown in Figure 2-3.
It shows the probability of a document is queried again as a function of the time since the last
access to this document. The probability is lower and lower with elapsed time. The literature
[18] found that the probability is roughly proportional to 1/t if the document is queried at time
t after it has been last queried. However, the probability rises again in some points in time. It

may be caused if a user tends to query recently-read documents again on daily basis.

Datum X

Block

X) Hash functions
hash functions

Block 1 Block 7 Block M

: :

Block array

Figure 2-1 Architecture of Bloom-1 Filter

— Bloom Filter Counter

m (:- ________ 1
=2 BF, BFy |1+ BFy,
Q L 1 1 -3 ™ 5 .
1 1 1
1 1 1
1 | 1
Capacity Capacity |: Capacity |
Counter Counter || Counter !

Figure 2-2 Architecture of Dynamic Bloom Filter

le+0O1
1c4+00 4
1e-01

le-02

le-03

probability of reference

le-0O4

1e-05 —trrvy Ty r—r—r—r pe— T
10 100 1000 10000

time since last access (minm)

Figure 2-3 An example of distribution of temporal locality [18]

Chapter 3: Dynamic Reordering Bloom Filters

In this section, we introduce how to achieve lower cost for checking and maintaining
membership in multiple bloom filters. Two factors are considered: (1) Policy of changing the
query order of Bloom Filters (2) Reducing the overhead caused by changing the order. Our

scheme improves the effect of search based on TMBF.

3.1 Motivation

Distribution of queried web documents is unpredictable due to the feature of temporal
locality. Popularity of the same web document may have significant difference in different
time slots. Recent researches for membership check in multiple Bloom Filters uses sequential
search because of the lack of relationship between any two data stored in the different Bloom
Filters. Cost of membership check'is increased substantially if many frequently queried web
documents are stored in the Bloom Filters which have lower query order. For mitigating the
cost, this thesis proposes a concise scheme to immediately modify the query order of each
Bloom Filter by referencing distribution of temporal locality. Higher query orders are
assigned to the Bloom Filters which include frequently queried web documents. These Bloom
Filters are called Popular Bloom Filters in later paragraph. Similarly, Bloom Filters which

mostly include infrequently queried web documents gain lower query orders.

3.2 Policy of Changing Query Priority

There is no information that can be used to build relations between data which are set in
different Bloom Filters because incoming data are unpredictable. Therefore, an optimal
searching scheme does not exist. Fortunately, queried data has feature of temporal locality.
The feature of the data can help to filter out which data are more frequently queried. For this
reason, query order of the data can be sorted by their popularities. Our policy is considered
that the query order of a Bloom Filter can be promoted one level up once the Bloom Filter
contains a queried datum for really reflecting the popularity of the datum. A Bloom Filter
which contains a large number of queried data must be assigned with higher query order after
a time interval. Then, the searching cost is reduced because frequently queried Bloom Filter

7

has a higher query order. Figure 3-2-1 shows our idea to promote query order of a BF. We
take a red color BF as an example. In the beginning, the red BF located in third query order.
Then, the BF is promoted one query order when a queried datum C coming. Although other
queried data are continuously coming and help to promote they own BF, but the query order
just switch between two adjacent BFs. The major factor to promote query order of a BF still
depends on the popularity of the BF. In the example, red BF is more popular than others.
Query order of red BF is more and more high with the datum C successively coming. Finally,

Red BF can own the highest query order.

High Datum E Datum B Datum B
“ . .
E _.B_
-
h Y
p—
B]
— — — e
> =
Y Y 0y

Figure 3-2-1 Query order changing of multiple BFs

1 @ |
e

l
ODhObho

’

H=iele

Query order of BF
s ’ [' m@ ¢ :[' n

Lo

However, switching any two Bloom Filters for changing their query order will incur too
much overhead to practice. Therefore, the idea of OMABF is then introduced for solving this

issue.

3.3 Promotion of System Performance

Multiple memory access times are required for membership check of Bloom Filter
because bits which are used to represent a datum are randomly distributed to multiple memory
blocks. The number of memory access can be reduced if the bits are rearranged to less
memory blocks. We replace original Bloom Filters with OMABFs in order to achieve this
goal. OMABEF takes one or more blocks for setting a datum. The bits are evenly shared by the
blocks. Therefore, memory access times can be significantly reduced. Besides, the blocks can

be regarded as a tiny Bloom Filter for measuring and managing purposes. Compared with

original Bloom Filter, more accurate result of popularity of data can be obtained by measuring
the block. In the same time, the blocks can be assigned with different query order respectively.
Therefore, the most popular blocks gain higher query order and create better performance.
Figure 3-3-1 figure out a phenomenon of competition once more than one BF are popular and
have approximate popularity to each other. Queried data keep promoting their own BF and

leading the query order of two BFs always exchange. Therefore, the more overhead is caused.

High Datum B Datum B Datum C Datum B

l .

—>

1w
!

Query order of BF
o L? |
L
Lok ? L
l
[

I i [
[

| | I
0

(Ml
’

o ,L?
L
i

i
T
W
)

Low

Figure 3-3-1 Competition between multiple BFs

Figure 3-3-2 shows architecture of replacing BFs with OMABFs. OMABF consists of
multiple homogeneous blocks. Each block only stores a few data of the OMABF. Therefore, a
really popular datum just help to promote its’ own block. Other blocks still have the same

query order and do not compete with each other.

High

b I Da Datum B Datum C

=) |

L — v v h 4

E == Hash Functions Hash Functions Hash Functions Hash Functions
T A - dlee ke

o | &= N (T
il B CT T Tel | CEITTel] CHT [T] O TTE]
g

=

S [TI 1] L

s | 1 I | 1
Low I NS § B I
Figure 3-3-2 Architecture of replacing BFs with OMABFs

However, the problem of updating Bloom Filter may be caused by switching blocks for

changing query order, because no information can be used to trace where a block is. Thus,

9

actually moving blocks is impractical. A concise data structure is introduced for solving this

problem with punishment of little extra memory space.

3.4 Query Index

Extra overhead is created when moving blocks to change their query order. Two costs
are considered: (1) Extra memory access times for exchanging blocks between two Bloom
Filters (2) Updating incorrect memory blocks. Based on these considerations, we propose an
idea of indirect query to avoid maving the block. Query order of each block is recorded in an
index. Therefore, querying order can be changed with the data recorded in the index. The
Concept of the index is referred to as Query Index (QI) in the later paragraphs. QI is an
integer array for recording the query order of specific blocks. In the beginning, the values of
the array are initialized with increasing number to map each Bloom Filter for purpose of
indirect query. When checking membership, Bloom Filters are verified according to order
saved in QIl. Once a Bloom Filter includes queried document, the order of the number
associated with the Bloom Filter is exchanged with the previous one in the QI. Then, the
Bloom Filter is checked early in next round. Figure 3-4-1 is the architecture after adding QI.
Since QI is much smaller than BFs, the QI can be stored in cache memory. Each QI manage

the query order of blocks which are located in the same position mapping by hash function.

Query order: /
BF3

Query Indexes

BF1
BF1 -
BF2 -
BF3 ---
BF5 BF4 -
BF5 -

Figure 3-4-1 Architecture of adding Query Index

The final architecture of Dynamic Reordering Bloom Filter is shown in Figure 3-4-2.

Block hash function is used to choose the blocks which are in the same position but across

10

many OMABFs when accessing a datum. Each position is represented by different numbers.
Query Index which has the same number as the blocks is used to manage the query order of
the blocks. The blocks are checked following the number reported by Query Index when

querying a datum. Query Index may be modified once a block includes the queried datum.

Hash functions

al7 Ql 23

BF1 Block 7 Block 23

BF2
BF3 Block 7 Block 23

Figure 3-4-2 Architecture of Dynamic Reordering Bloom Filter

Chapter 4. System Performance Analysis

Markov chain [19] is a common mathematical model for predicting the probability of a
specific serial of states. The model is suitable for predicting our scheme because the
probability of forming next query order is decided by a specific serial of states. The average
performance of accessing the most popular Bloom Filters in our scheme is predicted by
Markov chain and evaluated through simulations to understand the performance under

different distributions of bias.

4.1 Markov chain analysis

A Markov Chain is stochastic process with the Markov property on a finite state space.
Markov property is defined as that probability of next state occurring depends on the present
state and is independent of the past state. Markov property can be formulated as:

P(Xns1 = Xna | Xo = Xg-. Xy =Xp) = P(Xp 11 = %41 | X =Xp) (3)
The X, represents the present state. The X,.1 represents the future state. In our scheme, query
order recorded in QI dominates the cost of membership check in Bloom Filters. Therefore, the
evaluation of probabilities for each state of QI can indicate the system performance. Applying
Markov chain to evaluate the probabilities needs two input data: (1) an initial states matrix in
the QI which we defined as u (2) a transition matrix which we defined as p for recording the
probabilities of the transition between any two states. The former depends on which
probability of state we would like to predict; the later can be obtained from synthetic or
measurement. For calculating purpose, a mathematical model of Markov chain can be

formulated as:

p(0,0) p(0l) .. p(0d-2) p(0,d-1) T
p(,0) pt) .. pEd-2) p(0,d -1)
uP™ =u 4)
p(d—-20) p(d-21) .. p(d-2d-2) p(d-2d-1)

| p(d-10) p@d-11) .. pd-1,d-2) pd-1d-1)

In the formulation (4), u is one dimension vector which consists of Os and 1 suchas[0100

12

0 ... 0]. p(a, b) is the probability of state a transits to state b. The number d represents there
are d states which may be happen. We can predict our scheme performance through the
formulation (4). For example, QI maintains query order of three blocks which are from
different Bloom Filters. The probabilities to include a queried document for each block are
assumed to be 0.2, 0.3 and 0.5. The content of QI for the example is shown in Figure 4-1.
Tokens A, B and C are used to represent BF1, BF2 and BF3, respectively, for conciseness. It
is apparent to know the probability of transition between any two states depends on which
block is chosen. The probability of the transition 1s 0.3 if a state is transformed from “ABC”
to “BAC”. An initial transition matrix for the example is shown in Figure 4-2. Figure 4-3
shows an expression of Markov chain to compute the probability for querying a specific BF.
It consists of two matrices which are initial status matrix and transition matrix. The transition
matrix must converge by N involutions if the sum of the elements for each row or column is
unity. The probability to access a specific BF in N-th rounds can be determined by the matrix
operation. By the way, an expected value of memory access times for querying a specific BF

can be evaluated too. Figure 4-4 shows how to calculate the expected value of the BF C.

Initial Status: ABC

Figure 4-1 States and their transition probabilities

13

ABC ACB BAC BCA CAB CBA
ABC [02 05 03 0 0 0
ACB |03 02 0 0 05 0
BAC |02 0 03 05 0 0
BCA |0 0 02 03 0 05
0 JEBBEEA 0.5 03

Initial Status: ABC

Observe BF: C : |0.0909091 U@L 0.1818182

Expected value: \| ST I

- x3 - [

0.1636365
0.1818182

0.2454546 0.340909 x1

0.4090900

0.3409090 :

ozoisis [P ousoo|

0.2272730

Cosvars [oo

+ 0.3409090

[
Ul
(o))
(0]
-
(o]
-
w

[B

Figure 4-4 Evaluation of memory access times for a specific Bloom Filter

14

Chapter 5: Simulation Results

This section discusses the performance of our scheme. Firstly, the performance of our
scheme for querying the most popular block of ten blocks is discussed. The performance is
predicted by Markov Chain and evaluated by simulation. Secondly, four data sets which
consist of one artificial and three trace log files are used to evaluate the performance of our

scheme.

5.1 Performance of the Most Popular Block

Parameters Value
Distribution of queried data Zipf’s law
Skew (a) 0.9 ~ 0.1 (step by -0.1)
Data set 10,000 (from domain name set [20])
Capacity of an OMABF 1000, 2000
Average data per block 8
Memory access times per query 2

Table 5-1-1 Experiment parameters

Our scheme considering the policy of changing query order is evaluated by comparison
with Markov Chain. Experiment parameters are shown in Table 5-1-1. A special matrix used
to save popularity of each block. The block belongs to the block array of OMABF. The
popularity is defined as the number of queried documents included by a block of the
popularity of the blocks from different OMABFs in the same position pointed by block hash
function is calculated. Secondly, the ratios of these blocks are computed through dividing
original popularity of the blocks by the corresponding summation. Thirdly, the query order is
sorted in the decreasing order with the increasing ratio. Fourthly, the blocks in the same
position are regarded as a group for evaluation. Finally, the average expected value of the
blocks which are the most popular in each group is estimated by simulation and Markov
Chain. The result of the simulation by our scheme is compared with that predicted by Markov
Chain as shown in Figure 5-1-1. Obviously, both results show that query cost increase with

the decreasing parameter “skew”. The parameter means the degree of bias of popularities. The

15

bias of popularity is more significant if the value of skew is larger. Therefore, our scheme can

reduce the cost of membership check under the effect of the temporal locality.

> 10 2
7] E " e
% 8 .‘,_-~~.l*"'*'¢'
&D g 4 Bl e ol B e
g < 5 -+ Markov Chain
< - Simulation

0

09 08 07 06 05 04 03 02 0.1
Skew
(a) Capacity of OMABF is 1000

> &9 ol
285 I
w.g 4 ..l»'-*'“'“““ﬂ
223 me—me—ET
o o
82
g« 1 —e Markov Chain
< --m-- Simulation

0

0.9 0.8 0.7 0.6 0.5 04 03 0.2 0.1
Skew

(b) Capacity of OMABF is 500
Firstly, Eigure 5-1-1 Performance evaluaté€by simulation and Markov Chain Summation

The verification of Markov Chain and our scheme can save cost of membership check in
Bloom Filters if the distribution of queried documents has temporal locality. Next, the
performance is discussed with one artificial data set and three real trace logs. Two existing
schemes called Dynamic Bloom Filter and Time-Dependent Bloom Filter are taken into
account for comparison. In the following content, the noun “dynamic bloom filters” is used
for representing DBF, TMBF or DRBF. Each one of dynamic bloom filters uses Bloom-2
Filters to manage their data set. Artificial data shows the performance in dynamic bloom

filters under different skew. Threes real trace logs come from different application fields.

16

5.2 Artificial Data Sets

Parameters Value
Popularity distribution Zipf’s law
Skew (o) 0.9 ~ 0.5 (step by -0.1)
Data set 10,000 (From domain name set [20])
Queried data set 1,000,000 (According to Zipf’s law)
Capacity of BF 500, 1000
Memory size per datum 30 bits
Memory size of each Query Index 128 bits (5 bits for an OMABF)
Average data per block 8

: 300000 bits (DRBF ~ DBF and TMBF)
Memory Size :
16,000 bits (In cache for DRBF)

Memaory access times per-query 2
The number of hash functions 21

Table 5-2-1 Parameters for simulation test data

Table 5-2-1 shows parameters used to produce artificial data sets. The base of the data
set is downloaded from Open Directory Project [20] maintained by Netscape of American
OnLine. There are 3.6 million uniform resource locators (URL) in the set. Ten thousand tested
URLs are randomly extracted from the set. The tested URLs are randomly (not duplicate)
multiplied with the numbers produced by Zipf’s law under different skews (called a) for
creating queried URLSs. Each dynamic bloom filter is assigned with two kinds of Query Depth
for verification. Query Depth is defined as the maximum number can be checked for one
queried datum. Obviously, DRBF can reduce cost of membership check with increasing a in
Figure 5-2-1 (A). When o is 0.9, DRBF reduces at most 46% memory access times for
membership check. This is because significant bias distribution makes Popular Bloom Filters
in higher query priority occur in higher probability. For other dynamic bloom filters, they
have similar performance because the popular queried URLs in the data set are uniformly
distributed. At the same time, they execute membership check with sequential search and
have no opportunity to gain better performance under bias query distribution. In Figure 5-2-1
(B), DRBF gains more benefit when Query Depth is twenty. However, the improvement of
the average memory access times is limited even when Query Depth is set as 20, because

17

distribution of queried URLs dominates the performance. When 0=0.9, DRBF can reduce at

most 50% memory access times.

5 12 W TDBF
ey 101 m DBF

8 !
$: * DRBF
g 8 °] | | '
g8 4 — -
g®
2 2

0 |

0.9 08 07 06 05
Skew
(@) Query Depth isten

5 25 u TDBF
BE 20 . u DBF
2 £15 - = DRBF
v 4 0
] 5
Z

0

09 0.8 07 06 05
Skew

(b) Query Dépth is twénty

Figure 5-2-1 Performance for various o

5.3 NASA Web Server Trace Log File

Parameter Value
Log date July 1, 1995
During 30 days
URL set 15,350 URLs
Queried URL set 1,569,850 URLs

Table 5-3-1 Profile of NASA web server trace log

NASA web server trace log is downloaded from [21]. The profile of the log is shown in
Table 5-3-1. Fields of the log file are client ID, timestamp, request URL, etc. Data of the
request URL field are converted to two data sets called URL set and Queried URL set. The
former consists of distinct URLs extracted from log file and are set into dynamic bloom filters.

The later is used for querying dynamic bloom filters. Query Depth is set as thirty. Data of

18

URL set are evenly set into each Bloom Filter with ascending timestamp order. It is because
the number of new URLSs seldom appears every day. More than 95% queried URLS appear
during the first day. The main reason is that, there are some image files such as logo icon of
NASA which appears in most web pages. Others rarely-queried URLs are dynamically
created when users interact with web pages. In Figure 5-3-1, TMBF has worse performance
under this kind of distribution, because it checks membership from the most recent Bloom
Filter to the oldest one. The idea is not appropriate for the application in web servers. On the
contrary, DBF checks membership from the oldest Bloom Filter to the most recent one. The
idea perfectly matches the distribution and gains significant benefit. Our scheme also gains

large benefit because the distribution has extreme high degree of bias.

45
40
35
30
25
20
15 -
10

39.88

= TMBF
m DBF
DRBF

Memory Access Times

Figure 5-3-1 Performance verification using trace log from NASA web server

5.4 eDonkey tracker trace log file

Parameter Value
Log date November 1, 2006
During 27 day
URL set 2,307,512 file hash codes
Queried URL set 2,335,718 URLs

Table 5-4-1 Profile of eDonkey trace log file

Trace log file is downloaded from [22]. The log file records events of peers which
communicate with server. We sample 1% of the file hash codes from the log file to verify the

performance of dynamic bloom filters. File hash code is a MD5 hash code for representing the

19

signature of a file piece which is requested or shared by the peers. Two data sets are created
from the 1% file hash codes. The first data set stores file hash codes which are not repeated.
The second data set stores the full sample data. The profile of the sample data is shown in
Table 5-4-1. Query Depth is set as twenty-seven because date of the file hash codes which is
firstly discovered is uniformly distributed over every day. The distribution has a serious
appearance of bias. TMBF gains large benefit from the distribution because of its membership
check scheme. Similarly, our scheme also gains large benefit because our scheme uses the

same query priority as TMBF. Verification of the log file is shown in Figure 5-4-1.

38 30.87

30
25
20 = TMBF
™ DBF
DRBF

15
10

Memory Access Times

3.26 3.46

w0

Figure 5-4-1 The performance of dynamic bloom filters verified by eDonkey tracker log

5.5 Web Proxies Log Files

Parameter Value
Log date January 9, 2007
During 1 day
URL set 296,269 URLs
Queried URL set 1,415,075 URLs

Table 5-5-1 Profile of web proxies trace log files

Trace log files are downloaded from [23]. These log files are created by web proxies in
the United States. The format of these files follows Squid. Data is extracted for verifying the
performance of dynamic bloom filters if the result code [24, section 6.7] includes the key
word “HIT” but excludes a key word “TCP_NEGATIVE HIT”. The latter representing a

queried web document does not exist in the cache. Otherwise, web proxy has the

20

corresponding document in cache. The profile of these trace log files is shown in Table 5-5-1.
In this paragraph, eight trace log files are mixed and reallocated to eight Bloom Filters. Each
group is assigned 37,034 URLs for simulating the operation of cooperative web proxy. The
performance of the dynamic bloom filters is shown as Figure 5-5-1. In the experiment, the
order of queried URLSs is the same as trace log files. URLs set into dynamic bloom filters are
randomly distributed. Eight Bloom Filters at most need to be checked when executing
membership check for a queried URL. The performance is similar to the first experiment. Our
scheme has better performance than the other two. For the same reason, the distribution of
queried data has feature of temporal locality. At most 43% cost of membership check is

saved.

10 894 9.06

B TMBF
m DBF
DRBF

Memory Access Times

Figure 5-5-1 Performance of dynamic bloom filter verified by web proxy trace log

5.6 Changing of False Positive Ratio of Bloom-g Filter

Parameter Value
Popularity distribution Random
Data set 30,720 (From domain name set [20])
Queried data set 3,072,000 (exclude data set)
Capacity of a BF Randomly selecting from [20]
The number of blocks per datum 1024 ~ 1536 and 3072
The number of blocks 2~3and 4

Table 5-6-1 False Positive Ratio of N-MABF for Different Number of Block

Bloom-1 Filter is very effective for accessing Bloom Filters. However, the false positive
ratio is very large because data are non-uniformly set to each block. Therefore, Bloom-g Filter

is proposed to solve this problem. The false positive ratio decreases with the number of the

21

blocks dividing k independent hash functions. When the number is two, the false positive
ratio is significantly improved. The effect of the number of the blocks on the false positive
ratio declines once the number is larger than two. The improved performance is shown as

Table 5-6-2.

False Positive False positive False positive
Value of N . . .
ration of 10 N ratio of 20 N ratio of 30 N
2 65E-04 3.26E-04 5.02E-04
. -— =% . g

w
3 \\' 05 6.43E-05
4

E05 | 452605

-

arlous

22

Chapter 6: Conclusions

Bloom Filter provides the benefits of space-efficient and constant time to execute
membership check. The applications of Bloom Filter to filter incoming data improve system
performance by avoiding irrelevant data. However, using Bloom Filters to manage the
information of distributed system may suffer from membership check in many Bloom Filters.
The average searching cost of Bloom Filters increases with the number of cooperative peers.
This thesis focused on this issue and proposed a concise scheme for reducing the average cost
of membership check. With the temporal locality characteristic in web requests, popular
queried documents can be assigned with higher query priority in checking multiple Bloom
Filters. We use three real trace logs from NASA web server, edonkey tracker server and web
proxies to comparing the performance of our scheme with linear and reverse query order. Our
scheme always have better performance. That is because our scheme can immediately change
the query order of a BF once it is hit by a queried datum. Hence, search cost of popular data

can be rapid dropped down and save more memory access times.

23

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors,” presented at
the Communications of the ACM, 1970.

L. Li, et al., "A variable length counting Bloom filter,” in Computer Engineering and
Technology (ICCET), 2010 2nd International Conference on, 2010, pp. V3-504-V3-508.
F. Bonomi, et al.,, "An improved construction for counting bloom filters,” in
Algorithms—ESA 2006, ed: Springer, 2006, pp. 684-695.

D. Ficara, et al., "Multilayer compressed counting bloom filters,” in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, 2008, pp. 311-315.

M. Mitzenmacher, "Compressed bloom filters,” presented at the IEEE/ACM
Transactions on Networking (TON), 2002.

H. Song, et al., "Ipv6 lookups using distributed and load balanced bloom filters for
100gbps core router line cards," in INFOCOM 2009, IEEE, 2009, pp. 2518-2526.

S. Dharmapurikar, et al., "Longest prefix matching using bloom filters," in Proceedings
of the 2003 conference on Applications, technologies, architectures, and protocols for
computer communications, 2003, pp. 201-212.

K. Shanmugasundaram, et al., "Payload attribution via hierarchical bloom filters," in
Proceedings of the 11th ACM conference on. Computer and communications security,
2004, pp. 31-41.

P. Jokela, et al., "LIPSIN: line speed publish/subscribe inter-networking,” in ACM
SIGCOMM Computer Communication Review, 2009, pp. 195-206.

[10] P. B. Danzig, et al., "A case for caching file objects inside internetworks," 1993.

[11] L. Fan, et al., "Summary cache: a scalable wide-area web cache sharing protocol,"

presented at the IEEE/ACM Transactions on Networking (TON), 2000.

[12] Y. Qiao, et al., "One memory access bloom filters and their generalization," in

INFOCOM, 2011 Proceedings IEEE, 2011, pp. 1745-1753.

[13] D. Guo, et al., "The dynamic bloom filters,” presented at the Knowledge and Data

Engineering, IEEE Transactions on, 2010.

[14] M. Xiao, et al., "TMBF: Bloom filter algorithms of time-dependent multi bit-strings for

24

incremental set,” presented at the Ultra Modern Telecommunications & Workshops,
2009. ICUMT'09. International Conference on, 2009.

[15] S. Jin and A. Bestavros, "Sources and characteristics of Web temporal locality,” in
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000.
Proceedings. 8th International Symposium on, 2000, pp. 28-35.

[16] A. Mahanti, et al., "Temporal locality and its impact on Web proxy cache performance,"
presented at the Performance Evaluation, 2000.

[17] L. Breslau, et al., "Web caching and Zipf-like distributions: Evidence and implications,"
in INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, 1999, pp. 126-134.

[18] P. Cao and S. Irani, "Cost-Aware WWW Proxy Caching Algorithms,” in Usenix
symposium on internet technologies and systems, 1997, pp. 193-206.

[19] Hoel, P., Port, S., Stone, C., (Introduction to Stochastic Processes) , Houglition Mifflin,
1972.

[20] Open Directory Project. Available: http://rdf.dmoz.org/

[21] NASA web server trace log file. Available:
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

[22] eDonkey trace log file. Available: http://fabrice.lefessant.net/traces/edonkey?2/

[23] Web proxies trace log files. Available: ftp://ftp.ircache.net/Traces/DITL-2007-01-09/

[24] Squid. Available: http://iww.comfsm.fm/computing/squid/FAQ-6.html

25

http://rdf.dmoz.org/
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://fabrice.lefessant.net/traces/edonkey2/
ftp://ftp.ircache.net/Traces/DITL-2007-01-09/
http://www.comfsm.fm/computing/squid/FAQ-6.html

