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中文摘要 

黏滯度指狀物是指於平行薄板或多孔性材料間，以低黏滯度流體

驅動高黏度流體時，兩流體間介面形成代表流場不穩定的指狀物型

態，在多種工業製程中，多相流流場界面的不穩定性，嚴重影響產品

品質及生產效率，常見案例為原油開採時以水性溶劑為驅動流體注入

多孔性岩層推動更為黏稠原油時，卻因指狀物型態出現，而使水性溶

劑穿透原油，降低開採效率。另平行薄板間高度改變形成的徑向拉升

流場，也因可運用於黏著與潤滑分析，成為另一重要研究議題，本論

文中運用高精確模擬(highly accurate simulation)之數值方法，分別以

一致形(monotonic)與非一致形(nonmonotonic)黏滯度剖面之可互溶流

體，探討徑向注入微小間隙的兩平行板間(即 Hele-Shaw Cell)與間隙隨

時間增大之 Hele-Shaw Cell 徑向流場之界面演變，論文內容包含兩大

部分： 

第一部份於注入流場進行大量系統化的數值模擬，針對不同對流

／擴散比(Peclet 值)與黏滯度剖面參數討論，首先除以過去學者慣用

之指數型(下凹曲線) 一致形黏滯度剖面進行研究外，另外定義線性及

反指數型(上凸曲線)一致性黏滯度剖面與非一致形黏滯度剖面進行比

較，結果顯示黏滯度對比固定時，各種黏滯度剖面對注入流場之穩定

性無顯著影響，但如非一致性黏滯度剖面與上凸黏滯度剖面交錯，將

激化流體介面間的不穩定性。另經由系統化改變非一致形黏滯度分布

各參數值，觀察其對界面指狀化圖形之影響，除觀察到多種有趣之介

面型態，諸如產生於一致形黏滯度分布所無法觀察到的成對雙渦旋流

場及逆指狀物結構等現象，最後對非一致性黏滯度剖面各參數對整體

注入流場穩定性影響進行討論。 
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第二部分首先探討不同拉升函數與初始擾動對流場穩定性之影

響，相對於定量注入可互溶流體於徑向 Hele-Shaw Cell 流場會產生指狀

物尾端開叉與分枝等多變流場現象，平行板間隙隨時間成指數化關係

變化的拉升流場形成更錯綜複雜的流場現象，近期研究指出經由調整

平板間隙與時間函數關係可控制流場指狀物的形態，本研究除得到指

數拉升方式可較線性拉升方式獲得更不穩定之流場，亦歸納出高 Péclet

值與高黏滯度對比會增加指狀物長度，另對初始條件與擾動設定對流

場穩定度影響於指數函數拉升時影響較大，線性函數拉升則幾乎沒有

影響。進而討論不同黏滯度剖面之可互溶流體於指數拉升流場之界面

型態，影響情況較注入流場顯著。接著採與第一部份相同作法，探討

不同黏滯度剖面之可互溶流體於拉升流場之影響，發現黏滯度剖面對

流場穩定性影響程度於拉升流場較注入流場大，且不穩定性均遵循下

凹曲線>直線>上凸曲線順序，最後對非一致性黏滯度剖面各參數對拉

升流場穩定性影響進行討論。 



 

 iii

Abstract  

Viscous fingering is an interfacial fluid flow instability that occurs when 

less viscous fluid displaces another more viscous one in a Hele-Shaw cell 

or porous media, leading to the formation of finger-like pattern at the 

interface of both fluids. The interfacial evolution of multiphase flows will 

severely impact on the quality of production and efficiency in a variety of 

practical application of industrial process. Most frequent example of this 

instability is that of oil recovery for which viscous fingering takes place 

when an aqueous solution displaces more viscous oil in underground 

reservoirs, leading to the formation of nontrivial fingerlike structure and 

reduce the efficiency of the displacement process. Another particularly 

interesting variation of the classic radial flow is the investigation of 

fingering instabilities in Hele-Shaw cells presenting variable gap spacing. 

This is also a very important issue in many industrial areas including 

adhesion, lubrication, and colloidal hydrodynamics. In this dissertation, we 

carried out the highly accurate simulation to investigate the interfacial 

evolution in two scenarios－radial injection-driven miscible flow and 

lifting radial Hele-Shaw flow, both with the monotonic and nonmonotonic 

viscosity profile. So, the thesis consists of two parts: 

Part 1 focus on radial injection-driven miscible flow in a Hele-Shaw cell 

and covers three major topics. To begin with, we perform numerical 

experiments in a wide range to study the dispersion relation on both the 

Péclet number and the parameters of the viscosity profile. A monotonic 

viscosity-concentration relation of exponential type (concave) by other 

scholars is assumed, and a linear and reverse (convex) monotonic viscosity 

profiles and nonmonotonic one are also discussed. Results of this study 

show that as the overall viscosity contrast held constant, nonmonotonic 
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viscosity profile lead to a more stable flow than that of monotonic one, and 

there are no significant differences in different viscosity profiles. However, 

if the nonmonotonic viscosity profile crosses the convex monotonic 

viscosity profile, the nonmonotonic feature enhances the prominence of 

interfacial instability. Then, a great variety of morphological behaviors is 

systematically introduced. In general, the nonmonotonic feature enhances 

the prominence of interfacial instability. Formation of dual vortex pairs and 

“reverse fingering”, where the fingers spread farther in the backward than 

in the forward direction are observed, which are not present in monotonic 

viscosity profile. Finally, we have carried out a parameter study to 

understand the effects of nonmonotonicity on the stability of the injection 

flow. 

In part 2, discussions start with the investigation of the influence of 

lifting scenario and the perturbation set. Contrast to the injection-driven 

miscible flow in radial Hele-Shaw cells which leads to the formation of 

morphing flow phenomenon of finger tip-splitting and side-branch events 

are plentiful if the injection rate is constant with time. More complicated 

flow are present for time-dependent gap flow which results in different 

kinds of patterns, and leads to intricate morphologies if the cell’s gap width 

grows exponentially with time. Recent studies show that the growing of 

intricate patterns due to lifting can be controlled by properly adjusting the 

time-dependent gap width. Moreover, we found the exponential lifting case 

will cause the flow more unstable than the variant lifting situation. We also 

deduce higher Péclet number and viscous contrast (A in monotonic 

viscosity profile and μm in nonmonotonic one) demonstrate more vigorous 

fingering. The sensitivity of the system to changes in the initial conditions 

and perturbation set is also discussed. Next, the effects of four viscosity 

profiles as stated in part 1 have been investigated. Unlike injection flow, 

the stability of three monotonic viscosity profiles are always in the series of 
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concave, linear and convex. However, as injection flow, if the 

nonmonotonic viscosity profile crosses the convex curve will enhances the 

prominence of interfacial instability. Finally, we have carried out a 

parameter study to understand the effects of nonmonotonicity viscosity 

profile on the stability of the lifting flow. 
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Chapter 1 Introduction 

1.1 Literatures Review 

Viscous fingering (VF) is a hydrodynamic instability occurring where a 

higher viscous fluid is displaced by a less viscous one in porous media. It 

can be observed the different viscous fingering instabilities in the interface 

between the two fluids, and can be explained by Saffman-Tayler instability. 

In most applications, viscous fingering instabilities are undesirable as the 

displacing fluid fingers through and by pass the displaced one, reduces the 

efficiency of this injection. Over the years viscous fingering problem has 

been extensively studied both experimentally and theoretically. The related 

studied can be classified into two categories depending on whether the 

viscosity profiles are monotonic or nonmonotonic. For convenience, Tan 

and Homsy [1] defined a particular case in which viscosity varies 

exponentially with the concentration of injection fluid, as well as 

monotonic viscosity profiles. They also used Fourier spectral method and 

found as time progresses, the nonlinear behavior of fingers cause a few 

dominant fingers spread and shield [2]. However, some driving fluid used 

to petroleum secondary recovery techniques such as a mixture of alcohols 

and water need not to be monotonic. Manickam and Homsy [3] defined a 

nonmonotonic viscosity profile for the viscosity concentration data of 

alcohols to approximate nature fluid behavior. They have carried out a 

parameter study to understand the effects of nonmonotonicity on the 

stability of the flow. Other last strategies aim to analysis viscous fingering 

by non-Newtonian fluid interfaces [4]. 

Researchers studies have focused on simpler geometries, such as two 

fluids in the narrow gap between closely-spaced parallel plates of a 

Hele-Shaw cell, include rectilinear and radial flow, as well as quarter 
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five-spot configuration. Many theoretical and experimental studies have 

been performed in both geometrics. Tan and Homsy [1] used the 

quasi-steady-state approximation (QSSA) for a radial source flow in porous 

media with monotonic viscosity profiles. They found that the unfavorable 

viscosity gradient results the fluid more unstable in radial source flow. 

They also did a critical Péclet number Pec calculation, above which 

displacement becomes unstable, and vice versa. Chen and Meiburg [5, 6] 

focused on miscible quarter five-spot configuration and radial flows in 

homogeneous and heterogeneous environment with monotonic viscosity 

profiles, and described in detail as a function of the mobility ratio R and the 

Péclet number Pe. Chen et al. [6-9] also investigate the stability of 

time-dependent gap Hele-Shaw cell which is significant to adhesion related 

problem. In addition, the results by Manickam and Homsy [10] used 

Hartley transform based spectral method for rectilinear flow with 

nonmonotonic viscosity profiles show a new phenomenon of “reverse” 

fingering and understand the effects of nonmonotonicity on the 

stabilization of the flow. Ruith and Meiburg [11] added the effect of gravity 

force in miscible displacement and investigate the influence of the Péclet 

number, the viscosity and density contrasts, and the aspect ratio on the 

dynamic evolution of the displacement. An up-to-date report write by Jha et 

al. [12] take viscosity contrast into account to affects fluid mixing. Recent 

extend the studies of the miscible flow in a rotating cell [13-17] 

demonstrate fingering morphologies unlike in injection and lifting flow 

[18]. 

The main difference between the radial and the rectilinear displacement 

is that for the rectilinear flow, the base state velocity is a constant, while for 

the radial displacement, the velocity decreases spatially 1/r. Nonlinear 

simulations of quarter five-spot configuration displacements have been 

confirmed the linear stability results, which for small times correspond to 
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radial source flows. Pankiewitz and Meiburg [19] extend this analysis to 

numerical simulation of quarter five-spot configuration with nonmonotonic 

viscosity profiles, which have done a deliberative parameter study, and 

derive that either favorable or unfavorable end point contrast will cause the 

flow unstable only that the Péclet number is sufficiently high. They also 

find there exist two concentric rings of vortex region and touch each other 

exactly at the location of the viscosity maximum. Shariati and Yortsos [20] 

explained the overall effect any two adjacent counter-rotating vortices may 

further stabilize or destabilize the flow. As point out earlier, some late 

researchers study the viscous fingering by chemical means. Chemical 

reaction may change the density, surface tension or viscosity of the fluid. 

Hejanctuzi et al. [21] used linear stability analysis for a 

reaction-diffusion-convection problem and found the effects of chemical 

reaction on the stability of the flow are like nonmonotonicity.  

To date, most of the previous studies (e.g. Tan and Homsy [2]; Chen and 

Meiburg [5]) on monotonic viscosity profile consider flow on the relation 

to concentration and viscosity are an exponential function. There is a 

noticeable absence of research projects dealing with different types of 

monotonic viscosity profiles. Due to the practical and academic relevance 

of the injecting problem, it is of interest to study and understand the 

emerging interfacial under many different viscosity profiles. Additionally, 

the effect of nonmonotonic viscosity profile on the stabilization of miscible 

displacement has been considered in a limited number of studies. Chouke 

[22] and Tan and Homsy [23] obtained stability criteria Λ can be 

interpreted through the slopes in injection and displaced fluid sides. They 

employed QSSA to analyze the stability characteristics. Loggia et al. [24] 

make an exhaustive study of the parameter and explain the key for of 

longitudinal dispersion in making conditionally unstable an initially stable 

profile as sufficient time. Nevertheless, Manickam and Homsy [3] used the 
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QSSA and suggested the equation fails to hold at large times when the base 

state has diffused out. Later Kim and Choi [25] tackled the problem of 

without QSSA and believed the system is unconditionally stable for 

long-wave disturbance regardless of viscosity profile. 

Miscible displacements with nonmonotonic viscosity profiles are 

characterized by negligible surface tension, so that the interplay of by the 

Péclet number and the parameters of the viscosity profile dictate the pattern 

formation behavior. Although researchers agreed the viscosity profiles 

effects the stability of fluid. Not only little research has been done on the 

final state of the nonmonotonic viscosity profile variation system, but has 

never seen discussing different monotonic viscosity profile stability of the 

flow field. We are therefore interested in developing a fundamental 

understanding of miscible radial flow with monotonic and nonmonotonic 

viscosity profile. 

Much of the research of the traditional Saffman-Taylor problem has 

examined the flow in flat, motionless, constant-gap spacing Hele-Shaw 

cells, in which the fluids are relatively simple. Somewhat simpler radial 

and rectangular geometry situation have been examined, where the upper 

plate is lifted uniformly, i.e., the plates remain parallel to each other during 

the lifting process. It is the so-called lifting radial Hele-Shaw flow and 

result Saffman-Taylor situation in the formation of complex structures. 

A particularly interesting variation of the classic radial flow is the 

investigation of fingering instabilities in Hele-Shaw cells presenting 

variable gap spacing. The study of compliant adhesive layers is highly 

interdisciplinary involves a great variety of areas range from interfacial 

science and rheology to pattern formation. It is worth noting that is not only 

intrinsically interesting, but also of significant importance to related 

problems. In such types of problems, to get the bond strength of adhesives 

is to measure the force or the work required to separate two surfaces stuck 
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by a thin adhesive film can be quite successfully evaluated through a 

Hele-Shaw approach (Darcy’s law formulation). In other industrial areas 

including lubrication, fracture mechanics, chemistry, biology [26], wetting 

dynamics, colloidal hydrodynamics [27] and oil recovery [28], lifting radial 

Hele-Shaw flow plays very important role. 

Unlike the traditional Hele-Shaw cells of a constant gap, in such a lifting 

version the upper plate of the cell is moved upwards uniformly at a lifting 

velocity, i.e., the plates remain parallel to each other during the lifting 

process, while the lower plate of the cell is held fixed. The morphology of 

the emerging structures is characterized by the competition among inward 

moving fingers. To create complex viscous finger in lifting radial 

Hele-Shaw flow [19, 20, 22, and 29] the more viscous fluid is placed at the 

center of a Hele-Shaw cell, surrounded by a less viscous fluid, and the 

upper cell plate is moved upwards. The pressure gradient within the more 

viscous fluid is due to the lifting of the upper plate, the fluid-fluid interface 

moves inwards allowing the penetration of multiple fingers of the outer. 

Interesting variation of the radial Saffman-Taylor problems Hele-Shaw 

cells with variable gap spacing are presented which are different to with a 

constant gap and need to be investigated. 

As the lifting radial Hele-Shaw flow where the upper plate is lifted just 

by one edge, making the gap both time and space dependent, where so that 

the gap is a function of time, but not of space. This defines the so-called 

time-dependent gap Hele-Shaw cell. Shelley et al. [29] have shown the 

Saffman-Taylor instability for stretch flow in rectangular geometry 

Hele-Shaw cells is valid both with and without surface tension, where the 

pressure gradient within the fluid is due to the lifting of the upper plate at a 

specified rate. Different kinds of pattern arise in the lifting Hele-Shaw flow 

where the cell’s gap varies with time. Ben-Jacob et al. [30] investigated the 

stability of lifting Hele-Shaw cell with rectangular geometry by experiment 
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obtain at low lifting rate finger formed, while the lifting velocity is 

increased, fingers become dendrites; and the spacing of the dendrites 

decreases as the lifting velocity is increased. Zhang et al. [31] performed a 

linear stability analysis of the issue and derived the basic equations of the 

directional solidification problem. Linder et al. [32] studied fingering 

patterns and lifting forces of a thin layer of Newtonian liquid in both 

numerical simulations and experiments. They have found the number of 

fingers is sole determined by the surface tension and the extent of fingers 

growth depends not only on control parameter but also on initial 

conditions. 

A somewhat simpler radial geometry situation has been extensively 

studied, both experimentally and theoretically. Miranda and Oliveira [33] 

replaced the thin film with conventional adhesive material to a high 

viscosity ferrofluid between two narrowly spaced parallel flat plates a 

subjected to an external magnetic field. The work by Dias and Miranda [34] 

showed an example that finger competition is restrained as the gap width 

scale with time with exponent -2/7 by linear stability analysis. For this 

particular situation, it has been shown that finger competition is restrained 

leading to a more ordered array of fingers. Chen et al. [9] studied have 

noted that time-dependent gap miscible flow in lifting Hele-Shaw cells 

leads to intricate morphologies if the cell’s gap width grows exponentially 

with time can create more vigorous fingering process.  

1.2 Objective and Organization of This Thesis 

The literature reviewed above describes the viscous fingering in injection 

and lifting Hele-Shaw cell through experimental and theoretical work. 

Different viscosity profiles may lead to a variety patterned structures at the 

fluid-fluid interface. However, the effect related to finger shape selection in 

radial geometry is not clear. In this study, therefore, we carried out the 
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highly accurate pseudospectral method to investigate the interfacial 

evolution assuming that the fluids involved are miscible. Performing a 

systematic study of the unstable phenomenon obtained for different values 

of the relevant control parameters. 

The thesis is organized as follows: 

Chapter 2 formulates our theoretical approach and presents the physical 

problem governing equations of the radial injection flow and 

time-dependent gap Hele-Shaw cell that the fluids involved are miscible 

flow with monotonic and nonmonotonic viscosity profiles, respectively. A 

highly accurate pseudospectral method is employed in this thesis to solve 

those governing equations.  

Chapter 3 investigates the vigorous fingering phenomena in 

injection-driven miscible flow with monotonic and nonmonotonic viscosity 

profiles, respectively. We focus on the influence of four kinds of viscosity 

profiles on the interface dynamics: vary-monotonic (include concave, linear 

and convex) and nonmonotonic viscosity profile. Various parameters, such 

as the convection to dispersion ratio and the overall viscosity contrast of 

both monotonic and nonmonotonic viscosity profile, and local maximum 

viscosity contrast and position of local maximum viscosity for 

nonmonotonic viscosity profile, are also analyzed systematically. Result of 

this study showed that as the overall viscosity contrast held constant, 

nonmonotonic viscosity profile lead to a more stable flow than monotonic 

one, and there are no significant differences in different monotonic 

viscosity profiles. However, if the nonmonotonic viscosity profile crosses 

the convex monotonic viscosity profile, the nonmonotonic feature enhances 

the prominence of interfacial instability.  

Chapter 4 focuses on study the morphologies in lifting Hele-Shaw cells. 

We investigate the effectiveness of time-dependent gap width assuming 

that the fluids involved are miscible. Splitting, merging and competition of 



 

 8

fingers are all inhibited. The sensitivity of the system to changes in the 

initial conditions and Péclet numbers is also discussed. The influence of the 

four viscosity profiles as discussed in Chapter 3 has been studied again on 

the interface dynamics. Consistently, higher Péclet number Pe and viscosity 

contrast (A in monotonic viscosity profile and μm in nonmonotonic one, 

respectively) demonstrate more vigorous fingering. The stability of three 

monotonic viscosity profiles is always in the series of concave, linear and 

convex. As the nonmonotonic viscosity profile across the convex 

monotonic viscosity profile, demonstrates more vigorous fingering than 

concave viscosity profile. 

Chapter 5 concludes the major findings in this thesis and outlining the 

recommendations for the future work. 
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Chapter 2 General Feature 

2.1 Physical Problem 

To investigate the phenomenon of viscous finger, we can simplify the 

complex geometries such porous media to a narrow gap between 

closed-spaced parallel plates. Consider a packed column of length L 

initially filled with displaced fluid and injecting fluid, which is 

schematically showed in Fig. 1. When the injecting fluid displaced fluid in 

porous media, the difference between the viscosity and the density arise 

flow instability. The pressure drop ∆P is constant along the column, and k 

is the permeability. Darcy’s equation for a porous medium is expressed as 

[36]: 







 









 




 g
L

PPk
g

x

Pk
u outin 





. (1) 

Figure 1 schematically shows the interface between the two fluids along 

the column. Section A is the main, unperturbed zone, and a small part 

section B perturbs the interface ahead of (or behind) the column 

cross-section. Considering the liquids in sections A and B are 

incompressible, the velocity of injecting flow is the same as that of 

displaced flow, but the flow velocity uA is not equal to uB. Flow instability 

may arise from the viscosity difference, but also from the density 

difference when the upper fluid is denser than the lower fluid. The 

difference in velocity between uA and uB was down by Rousseaux et al. [37] 

is expressed as: 
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 
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
 


 2121

21 /1/
 (2) 

The flow is unstable when uB > uA for δz > 0. From Eq. (2), the 

denominator of this equation is positive, then the stability criterion 
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expressed as: 

    0

effectdensity effectviscosity 

2121 



 g

k

uB  
(3) 

It contains the viscosity effect and the density effect. To avoid gravity 

effect, Hele-Shaw [38] suggested considering a flow between two parallel 

horizontal plates with a narrow gap between them. Therefore, only the 

viscosity effect is conceded. In general, if the injecting fluid is less viscous 

than the displaced one, this unfavorable viscosity contrast makes viscous 

fingers and causes the system unstable.  

Consider the control volume which is across the interface shown in Fig. 

2 to explain the stability criteria. For a fluid with positive perturbation u' 

and increasing concentration c', which in turn leads to changes in the 

viscosity change μ' are ')(
1

'
1 cdc

d
c

   and ')(
0

'
2 cdc

d
c

  , the fluid is 

initially stable while the pressure difference δP=-(μ1'+μ2')Udx<0. This 

indicates with the requirement that for a stable flow, and we obtain the 

criteria for (μ1'+μ2')>0. 

However, as a result of nonlinear interactions between the fingers, the 

stability of the flow depends not only on the end-point viscosity contrast, 

but also on the derivatives of the viscosity with respect to concentration. It 

is difficult to predict the nonlinear behavior of the viscous finger. This may 

represent an experimental challenge because the fluids may get mixed up 

before the injecting and lifting start, or undesirable air bubbles can be 

trapped between the plates. A general solution is needed to understand the 

growth of different fluid system. 
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2.2 Governing Equations 

2.2.1 Viscosity Profile 

The viscosity μ in the mixing zone is supposed to be a function of the 

injecting fluid concentration expressed as Eq. (4): 

 c  .   (4) 

Following other researchers (e.g. Tan and Homsy [23] and Rogerson 

Meiburg [39]), the viscosity dependence on the monotonic case, 

concentration has the form (e.g. Tan and Homsy [2]; Chen and Meiburg [4]) 

as: (see Appendix 1 a.) 

 
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
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 To confirm the stability of various viscosity profiles as stated before, 

scholars have defined and studied monotonic and nonmonotonic viscosity 

profiles, respectively. While considerable attention has been paid in the past 

to the effect of different viscosity profiles with nonmonotonic to fluid 

stability, the issue of variable monotonic viscosity profile has never been 

investigated. Follow the monotonic sense, recreate two convex and linear 

monotonic viscosity profiles expressions as equation (6) and (7), where the 

subscripts vex and linear are indicated, respectively. We thus obtain 

1
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
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cc-)c(  linear . (7) 

The viscosity-related parameter in the stability equation takes the form 

(8) and (9), respectively (see Appendix 1 b. and c.). 
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The nonlinear evolution of viscous fingering instabilities in miscible 

displacement flows with nonmonotonic viscosity-concentration profile of 

the alcohol-water mixtures have been investigated first by Manickam and 

Homsy [10]. The nonmonotonic viscosity profiles are characterized by the 

interplay of the maximum viscosity μm, the location of the maximum 

viscosity cm, and the end-point viscosities contrast α. Different 

viscosity-concentration relationships may result in different fluid 

configuration. In order to be able to compare results of previous studies on 

nonmonotonic flows, we employ the same functional relationships between 

viscosity and concentration which has investigated by Manickam and 

Homsy [10]. It has defined a simple sine function modified through a 

sequence of transformation by the expressions as Eqs. (10)-(16). 
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m . (16)

The viscosity μ is supposed to be a function of the injecting fluid 

concentration, which is a sine function modified and has the end-point 

viscosities μ(0)=α, μ(l)=l, schematically show the shape of the class of 

viscosity profile considered. When α < l, the flow has a favorable end-point 

viscosities contrast, as a high viscosity fluid displaces a low viscosity fluid, 

and α>l, the flow is said to have an unfavorable end-point viscosities 

contrast to indicate the reverse scenario. It is given the maximum viscosity 

value of μm located at c=cm. In cm > 0.5 case, the maximum viscosity is 

located closer to the injecting fluid, and is closer to the displaced fluid 

otherwise. 

In the nonmonotonic case, the viscosity-related parameter Rnon(μ) in the 

stability equation takes the form as: (see Appendix 1 d.) 

   
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  (17)

2.2.2 Injection-Driven Radial Hele-Shaw flow 

Consider a Hele-Shaw cell of constant gap thickness h containing two 

miscible, incompressible, viscous fluid (Fig. 3). Miscible displacements are 

characterized by negligible surface tension, so the interplay of diffusive, 

convective, and viscous effects dictate the pattern formation behavior. 

Denote the injecting fluid of viscosity μ1 displaces the displaced fluid of 

viscosity μ2 at a given injection rate Q, equal to the area cover per unit time. 

Further, we assume two fluids mix in all proportions. The concentration of 

the injecting fluid is represented by c. Assume the permeability and the 

physical dispersion to be homogeneous and isotropic. Solve the unstable, 
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steady, incompressible flow generated by a miscible displacement process 

under Darcy's law expressed as:  

Continuity equation: 
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
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u      (18)

Hele-Shaw equation (see Appendix 2): 
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Convection/dispersion equations: 
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   (20)

D is the constant isotropic diffusion coefficient. The governing equations 

(18)–(20) are rendered dimensionless by taking the lateral extent L of one 

unit of the flow field as the characteristic length scale. With the source 

strength Q, choose the following parameters as characteristic scale to make 

governing equation dimensionless: 

Q
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(21)

The dimensionless equations (18)–(20), omitting the asterisks, can be 

expressed in terms of the total velocity u, pressure p, and concentration c. 

The dynamical evolutions of the system are the traditional gap average 

Hele-Shaw flow equations expressed as: 

0 u ,     (22)
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up  ,     (23)

c
Pe

cu
t

c 21





 .  (24)

Here the Péclet number Pe can be interpreted as a dimensionless flow 

rate,  

D

Q
Pe

2
 , (25)

which is a measure of the relative importance of advection to diffusion.  

By employing such an approach, we rewrite the gap average velocity in 

Eq. (23) as: 

potrot uuu  , (26)

where urot is the rotational component of the velocity, and upot represents its 

potential component, respectively. The rotational part of the velocity is 

smooth and can be obtained with highly accurate pseudospectral method, 

while the potential part induced by injection is related to a flow singularity 

at a source located at the origin, making accurate computations more 

difficult near these locations. To avoid numerical instabilities near r=0, we 

smooth out the point source by distributing its strength in a Gaussian way 

over a small circular core region. Accomplishing this, we consider a 

“Gaussian source” [40] which is characterized by a core size σ=0.075. In 

addition, the initial condition is assumed as an initial fluid core of radius of 

ri=0.1. Under the circumstances of constant injection rate, the dimensional 

injected area at a given time can be written as A=Qt. In this case, the 

dimensionless potential radial velocity satisfying these requirements can be 

expressed as: 

  ,r̂ /exp(1
1 22 r
r

u pot   (27)

where r̂  denotes the unit vector along the radial direction. 
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A fully explicit third order Runge-Kutta procedure on time and spatial 

sixth order compact finite difference schemes are employed to solve the 

concentration Eq. (24) and will be discussed in Section 2.3. 

In order to solve the vorticity equations (24) numerically, we define the 

total stream function [5] of the system as  

potrot    (28)

where rot  and pot  denote the rotational and potential stream functions, 

respectively. Since pot2 =0, we end up with the equations of 

y
ur 





, 

x
vr 





,  2 . (29)

In the present simulations, we take c0(x) from the one-dimensional 

similarity solutions provided by Tan & Homsy [1] as well as Yortsos [44] 

for radial source flow at initial time ti. The starting time ti of the simulation 

is taken to be non-zero, in order to avoid a singular initial concentration 

profile. Suitable initial condition can be specified as 

)()( xtx, t poti   , (30)

)()( 0 xctx, tc i  . (31)

Furthermore, to break the unphysical fingering symmetry, an initial 

condition such as a small magnitude of random perturbations which is 

produced by Matlab is applied to the positions at c = 0.5. The influence of 

perturbation on the simulation results will be discussed in Section 4.2. 

The symmetry boundary conditions at the sides now are 

001 




x

c
, , x  , (32)

00 1 




y

c
, ,y  . (33)

To reproduce the extremely fine structures of the fingers, a highly 
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accurate pseudospectral method which will be discussed later is employed. 

As a result, the actual boundary conditions applied in the numerical code 

are 0 y  at y = ±1, where no concentration gradient is generated on 

the boundary. The condition   = 0 could be imposed at the boundary. To 

ensure this condition, all the simulations are terminated when the inner 

fluid reaches the boundary. 

An alternative and more quantitative account of the role played by the 

parameters in determining the behavior of the evolving mixing interface is 

offered by the growth of a characteristic quantity related to the mixing 

boundary region. The mixing region between two miscible fluids is not a 

well-defined sharp interface, in the region of significant concentration 

gradient. Chen and Meiburg [4] provides a good measure of the overall 

length L(t) of the interface between injecting and displaced fluid can be 

represented as Eq. (34) 

  dxdy
y

c

x

c
tL   






















1

0

1

0

22

. (34)

Normalized mixing interfacial length LB(t) scale as Eq. (35), which is the 

initial circular pattern (base state) at a given time, expresses the ratio of the 

length of the diffuse interface to the perimeter of base state Ln(t) as (36). 

   005.022  ttLB  , (35)

  dxdy
y

c

x

c

tL
tL

B
n   






















1

0

1

0

22

)(

1
. (36)

2.2.3 Time-dependent Gap Hele-Shaw Cell 

Consider a Hele-Shaw cell of a time-depended gap width h(t), containing 

two miscible, incompressible, viscous fluid is sketched in Fig. 4. 

Unlike the traditional Hele-Shaw cell illustrated in Fig. 3 of a constant 

gap thickness h, in such a lifting version, the upper plate of the cell is 
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moved upwards uniformly at a lifting velocity, while the lower plate of the 

cell is held fixed. Denote the outer fluid of viscosity μ1 displaces the inner 

fluid of viscosity μ2, and the concentration of the outer fluid is represented 

by c. Assume two fluids mixing in all proportions, and the permeability and 

the physical dispersion to be homogeneous and isotropic. During the lifting 

process the plate always parallels to each other. For the initial gap thickness 

ht=0=ho, the gap is a function of time, but not space. The initial fluid-fluid 

diffusive interface is circular, having radius Rt=0=R0. Initially, a more 

viscous fluid is placed at the center of a Hele-Shaw cell, surround by a less 

viscous fluid. 

The dynamical evolution in a time-dependent gap Hele-Shaw cell is 

governed by the follow equations in Refs. [26, 31, 39, 41, and 42]: 

Continuity equation: 

)(

)(

th

th
u


  (37)

Hele-Shaw equation: 

u
h

P
2

12
  (38)

Convection/dispersion equations: 

cDcu
t

c 2



 (39)

Like the injection cases discussed in the chapter 2.2.1, the concentration 

of the outer fluid is represented by c. In order to render the governing 

equation (37)-(39) dimensionless in Refs. [5, 6], we assume an exponential 

increasing gap width as: 

)(
0exp )( tehth  , (40)

where γ is a control parameter. Take the initial radius R0 as the 

characteristic length scale. Here the gap averaged Hele-Shaw 
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dimensionless expressions are a bit different from these presented in the 

injection-driven fluid [Eqs. (18)-(20)]. Here the gap averaged Hele-Shaw 

dimensionless expression to the time variation of the cell gap spacing is as: 

1 u , (41)

u
e

P t2


 , (42)

c
Pe

cu
t

c 21





. (43)

Defines a Péclet number for the lifting flow situation as: 

D

R
Pe

2
0

 . (44)

Further scale the viscosity with μ1 and time with 1/γ, respectively. The 

following parameters make governing equation dimensionless 

2
0

2
0112

h

R
P


 , (45)

0Ru  . (46)

The velocity is split into a divergence free component uf which is the 

rotational velocity of the constant gap spacing case, and an axisymmetric 

divergent radial, potential velocity ud=ud(r) caused by the gap variation, so 

that 

df uuu  , (47)

0 fu , 
x

v
y

u ff 









 ,  (48)

1 du . (49)

The divergent radial velocity is obtained directly from Eq. (49) as 

ud=-r/2, which is a potential field. Similar to the injection-driven case, the 

divergence free component uf can be obtained by solving Eqs. (29) where u 

and v are the components of the velocity vector u along the x and y 
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directions. Notice that the velocities refer to the x-y components of the 

rotational velocity (ur, vr). The numerical scheme is similar to injection 

which will be discussed in the Section 2.3, we will not discuss again. 

Following Ref. [34] for the variant dimensional lifting situation we 

consider that 

7
2

0

) 1(
)(

t

h
thv


 , (50)

where δ is a control parameter with an inverse dimension of time. We 

utilize the same set of characteristic scales used in the exponential lifting 

situation to obtain the corresponding governing equations for the variant 

lifting case. In this context, the dimensionless continuity equation takes the 

form as 

) 1(7

2

ta

a
u


 , (51)

but Eqs. (42) and (43) remain unchanged. Note the definition of an 

additional dimensionless parameter, namely the lifting ratio a=δ/γ. 

Likewise, in dealing with the variant lifting situation, Eqs. (47) and (48) are 

unaltered, but Eq. (49) is replaced by 

) 1(7

2

ta

a
ud 

 . (52)

The divergent radial velocity is obtained directly as  

r
ta

ar
ud ˆ

) 1(7 
 , (53)

which is a potential field. 

The mixing interfacial length be represented in [50] are moderated from 

Eqs.(34)-(36), 

  dxdy
y

c
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L
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
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
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22

0

1
, (54)

L0 is the initial interfacial length.  
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As to the boundary conditions, the non-vanishing divergence-free stream 

function given by Eq. (28) is induced by concentration gradients. 

Consequently, for regions located outside the droplet (where no 

concentration gradient is presented), the stream function is zero. Therefore, 

the choice of computational domain is arbitrary as long as the domain 

contains the whole droplet. Of course, the divergent radial component is 

still presented within the entire computational domain. In order to 

reproduce the very fine structures of the fingers successfully, we choose the 

boundaries to vary between +4/3 and −4/3 in both x and y directions. Under 

such circumstances, the boundary conditions are prescribed as follows: 

,0 ,0 ;
3

4






x

c
x   (55)

0 ,0 ;
3

4






y

c
y  . (56)

The simulations are terminated when the h/h0 = 4. This is done to the 

definition to Hele-Shaw cell with a narrow gap. 

2.3 Numerical Scheme 

To address the issue in Section 2.2.2, the stream function ( ) and 

vorticity (ω) formulation by Josselin and Jong [46] is employed. In this way, 

the continuity equation is satisfied identically, and the governing set of the 

Eq. (24) takes the form 

c
Pe

ccc yxxyt
21

   (57)

A fully explicit third-order Runge-Kutta procedure on time is utilized, so 

by writing the concentration equation as 

)(cF
t

c





, 
(58)
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so that 
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1
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 (60)

with 

2

N
g  , 

where N is the number of grid points in the longitudinal direction. The 

simulations to be discussed below typically employ discretization of 

513×513 grid points. 

Recast Eq. (23) into the well-known vorticity formulation (see Appendix 

1), yielding 

   cRc
dc

d

x

c
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y
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 1
  

1
. (61)

The parameter R is chosen from Eqs. (5), (8), (9), and (17) which is 

correspond to different kind of viscosity profile. The streamfunction ( ) 

and vorticity (ω) are employed a Galerkin-type discretization expanded in a 

cosine series in the x direction as Eq. (62)-(63). 


g

g gxtytyx ]2cos[),(ˆ),,(  , (62)


g

g gxtytyx ]2cos[),(ˆ),,(  , (63)

To solve the stream function Eq. (29) and (61), the elliptic Poisson 

equation for the determination of the rotational component of the stream 
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function from the vorticity distribution can be solved fast and efficiently on 

the basis of fast Fourier-Galerkin scheme. In the y-direction, discretization 

is accomplished by sixth order compact finite differences. In the x-direction, 

discretization is accomplished by pseudospectral method. 

The spatial discretization of the governing equation is based on the 

compact finite difference schemes in the form given by Lele [45]. When the 

first derivatives contained in the convection terms that appear explicitly, the 

sixth-order formulation is 
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1
111  , b, a . (65)

Here, △ indicates the mesh size, which is identical in the x and y 

direction. We apply the second derivatives of the diffusion terms is 
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with 

11

3
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2
222  , b, a . (67)

2.4 Validation 

Rigorous validation represents an important step in establishing the 

accuracy and convergence properties of a novel numerical approach. 

However, not only the viscosity profiles we studied are very complicated, 

but an experimental challenge because the fluids may get mixed up before 

the injecting and lifting start or undesirable air bubbles can be trapped 

between the plates. We cannot compare with experiment data.  
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Our numerical code is largely similar to the one used for earlier 

investigations on planar fronts with monotonic viscosity profile [7], is 

validated by comparing the growth rate of small perturbations with the 

respective values obtained from linear stability theory by Tan and Homsy 

[1]. In other words, in contrast to other investigation of the Hele-Shaw 

problem for immiscible with rotation where a more physical correlation 

would be desired [47], which have been validated by comparing the 

numbers of finger obtained in Ref. [48]. These simulated morphological in 

suction flow [49] also attributes very well with existing experiment 

[51]-[54] and other numerical simulation, as well as with other numerical 

simulations [55], have gotten excellent agreement. 
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Figure 1: Schematic illustration of a perturbation of the interface between 

two fluids in Hele-Shaw cell, the injecting flow1 pushes the displaced 

flow2. 

 

 

 

 

 
Figure 2: A physical interpretation of the stability criteria. 



 

 26

 

 

 

 

 

Figure 3: Schematic setup for an injection-driven miscible radial flow in 

Hele-Shaw cell with cell gap h. The fluid 1 is injected at the center with a 

flux Q. Viscosities of the injected fluid 1 and the displaced fluid 2 are 

denoted as μ1 and μ2, respectively. 

 

 

 

 

 

Figure 4: Schematic setup of the time-dependent gap radial Hele-Shaw 

flow with miscible fluids. The upper plate of the cell is lifted, so that the 

gap of the cell is variable. The inner fluid is more viscous (μ2 > μ1). 
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Chapter 3 Fingering Instability of Miscible Injection Hele-Shaw 

Flows 

3.1  Monotonic Viscosity Profile 

To begin with our numerical investigation, we perform a systematic study 

of the concentration images obtained from different viscosity profiles. Chen 

et al. [6] and most of recent studies in the outward radial flow, in which 

one of the fluids is injected into the Hele-Shaw cell with monotonic 

viscosity profile, have demonstrated that more vigorous finger is observed 

at higher Pe and larger A. Other types of monotonic viscosity profiles 

redefined by us will be discussed later.  

To study the effect of different viscosity profiles, a nonmonotonic 

viscosity profile is provided to compare with the monotonic viscosity 

profiles, concave, linear, and convex are depicted in Fig. 5 for comparison. 

In order to minimize the impact of μm, let the μm equal of α + 0.001, and cm 

set to 0.03 so as to ensure that nonmonotonic viscosity profile is not across 

the aforementioned three monotonic viscosity profiles. To compare with the 

monotonic viscosity profiles as stated before, we rename monotonic and 

nonmonotonic viscosity profile to concave and quasi-monotonic one, 

respectively. A picture of the four viscosity profiles are depicted in Fig. 5. 

The concentration images of four viscosity profiles shown as Fig. 5 at 

t=0.30 are depicted in Fig. 6 and time evolution of the interfacial length 

shows in Fig. 7 with Pe=800, respectively. 

It can be observed that although a linear and convex viscosity profile 

tends to widen the finger tip, but the morphology of three monotonic 

viscosity profiles are very similar. However, we simulated over a broad 
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region in parameter space before our numerical code become unstable and 

found that the differences in concentration images and time evolution of the 

interfacial length between three types of monotonic viscosity profiles are 

quite small. Result of this study showed that as the overall viscosity 

contrast held constant, nonmonotonic viscosity profile led to a more stable 

flow than monotonic one. Likewise appear in the study of monotonic 

viscosity profiles, although we modified as A varies from 0 to 1, there were 

no significant differences in different viscosity profiles. However, if the 

nonmonotonic viscosity profile was across the convex monotonic viscosity 

profile, the nonmonotonic feature enhanced the prominence of interfacial 

instability. 

3.2 Nonmonotonic Viscosity Profile 

We now turn our attention to the influence of physical parameters to the 

nonmonotonic viscosity profile for miscible radial Hele-Shaw flow. The 

original definition of this profile given by Manickam and Homsy [10] 

divided it into an unstable zone (from injection fluid to the viscosity 

maximum) and a stable zone (from the viscosity maximum to displaced 

fluid) illustrated in Fig. 8, respectively. Both of zones affect the fluid. In 

particular, Pankiewitz and Meiburg [19] suggested the unstable zone has 

the ability to trigger an overall instability, and the stable zone of the 

viscosity profile acts as a barrier for the forward growth of fingers. 

However, detailed discussions of the viscosity profile and stabilization in a 

radial Hele-Shaw cell have not been found. Therefore we focus our effort in 

the effect of the relation. The stability of the flow is investigated and a 

criterion for instability is formulated in favorable and unfavorable viscosity 

contrast, respectively. We simulated miscible displacement over a broad 

region in parameter space before our numerical code became unstable and 
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discussed the results to the stability problem. 

3.2.1 Influence of the Péclet number Pe  

The value of Pe is directly proportional to the flow rate. Small flow rate 

provides diffusion with enough time to smear out the concentration field, 

whereas, for larger flow rate, steeper concentration gradient can be 

maintained. Its influence can be analyzed by discussing a series of 

simulations employing different values of Pe for which cm, α and μm are 

held constant. The increase in the value of the Péclet number provides 

stronger concentration gradients that enhance finger penetration and lead to 

more fingering. This finding is easily verified in Fig. 9, in term of both with 

unfavorable or favorable viscosity profile. 

For Pe variation between 200 and 800 with increments of 200, meaning 

weaker diffusive effects or faster injection rate, the width of viscous fingers 

tends to get thinner and the number of finger become more with increasing 

Pe-value. The unfavorable end-point viscosity contrast (α=2) in the top of 

Fig. 10 is the inverse of the bottom one with favorable end-point viscosity 

contrast (α’=1/α=0.5), depicting that the lengths of fingers in unfavorable 

viscosity profile are longer than favorable ones. The particular phenomenon 

of “reverse” fingering where the fingers spread farther in the backward 

direction than the forward are observed. We can also find comparing the 

interfacial length illustrated in Fig. 11, that higher Pe will get higher Ln if 

other parameters held constant. It means that larger Pe-value gives a rise in 

a fingering instability. 

Tan and Homsy [1] had found that each viscosity profile in 

nonmonotonic case has a critical value Pec, can identify, above which the 

flow is unstable. Below the Pec, viscous finger is not obvious and the 

concentrate image is a circle before breakthrough. It is also found that Ln 

almost equals to 1 as time progresses. The phenomenon indicates that a 
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nonmonotonic viscosity profile can be stable, no matter whether the 

end-point viscosity is unfavorable or favorable end-point viscosity contrast. 

3.2.2 Influence of the maximum viscosity μm 

The maximum value of the viscosity is given by μm and the maximum 

occurs at c=cm. Higher value of the maximum viscosity μm means that the 

injecting fluid would push a lower mobility displaced fluid. It has an 

intuition that the fluid will flow slower because higher μm will decrease the 

tip velocity and the front become thicker, but higher μm also increases the 

derivate between the injecting fluid and μm, causing the fluid more unstable. 

Pankiewitz and Meiburg [19] discovered that for a given end-point 

viscosities contrast, an increase in the maximum viscosity generally leads 

to a more unstable flow, regardless of whether the overall viscosity ratio is 

favorable or unfavorable. However, contrasting to Manickam and Homsy 

[10] numerically showed that in rectilinear displacement, a higher 

maximum viscosity generally stabilizes flow with an unfavorable end-point 

viscosity contrast. 

It is to be kept in mind that all of the above investigations dealt with 

rectilinear and quarter five-spot displacements, whereas our present study 

focuses on the nonlinear flow characteristic of radial flow. We use the 

largest value μm for which our numerical code remains stable for μm=14 

with an unfavorable viscosity profile (α= 3 and cm=0.1) and μm=9 with a 

favorable viscosity profile (α= 0.2 and cm=0.2). The viscosity profiles are 

illustrated in Fig. 8, respectively. By analyzing Fig. 12 which depicts the 

concentration images at t=0.30, we obtained for increasingly larger values 

of the maximum viscosity μm, the occurrence of fingerlike structures which 

split at their tips. The length of fingers will increase with the maximum 

value of the viscosity, respectively. 

Figure 13 illustrates the vorticity images of Fig. 12. The result suggested 
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that higher μm tend to be stronger in the recirculating fluid region. It is 

corresponding to the finding by Pankiewitz and Meiburg [19]. But it is in 

marked contrast to the above, in which usually only the inner recirculating 

fluid region exists for unfavorable scenario. Reduced μm to 3, the outer ones 

never becomes visible in the perturbation streamfunction plot. However, we 

have observed that with favorable end-point viscosities contrast (α=0.2) 

take the μm=2, both of the inner and outer recirculating fluid regions are 

obvious and dual vortex appear. In contrast with unfavorable end-point 

viscosities contrast (α=3), take the μm=3.001 slightly higher than end-point 

viscosities contrast, the outer recirculating fluid regions are obscure, but 

exactly exist. 

Manickam and Homsy [3] suggested that the flow will be unstable if the 

destabilizing vortices are stronger than the stabilizing ones, but otherwise 

stable. However, inspecting the vorticity images of Figure 13 and other 

cases we have done over a broad region parameters space, the destabilizing 

vortices are always stronger than the stabilizing ones without exception, 

corresponding to the findings for the radial source flow displacement by 

Pankiewitz and Meiburg [19]. We also notice that the pair of vortices is 

more violent for larger μm. 

Both of inner and outer vortices comprise many two units of adjacent 

counter-rotating vortices. For this, we borrow arguments similar to Shariati 

and Yortsos [20]. The vortices in the outer rings of decreasing viscosity in 

the direction of displacement, any two adjacent counter-rotating vortices 

bring low viscosity fluid from the downstream to the upstream direction 

and high viscosity fluid from the upstream to the downstream direction. 

The first action lowers the resistance to flow in a direction that opposes the 

instability, while the second one increases the resistance to flow in a 

direction that enhances the instability. Both of the vortices in the outer rings 

act to stabilize the flow. Conversely, in the inner rings which are increasing 
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viscosity in the direction of displacement, act to destabilize the flow. 

Higher μm will cause the vortices both in inner and outer rings more violent. 

The dimensionless interfacial lengths Ln as a function of time for different 

μm are illustrated in Fig. 14 which depicts the time evolution of the 

normalized mixing interfacial length Ln for Pe=400, with the four sets of 

viscosity profiles in Fig. 8, both in unfavorable end-point viscosities 

contrast α=3 and cm=0.1 [related to Fig. 12 (a) and (b)]; and in favorable 

end-point viscosities contrast α=0.2 and cm=0.2 [related to Fig. 12 (c) and 

(d)], and three increasing values of the maximum viscosity value μm. 

The growth of normalized interfacial length serves as a good indicator 

for the intensity of fingering at the mixing interface. From Fig. 14, it is 

evident that the presences of increasingly larger maximum viscosity value 

μm tend to destabilize the diffuse interface. For the μm with mature fingers, 

we observe a very steep growth of Ln at earlier time, followed by its 

“saturation” for longer time, and we also notice that the slopes of the 

curves are increased for larger μm. 

In addition, for all times, the curves for lower μm are always below the 

ones of higher μm. Again, this is in accordance with the maximum viscosity 

value μm, which tends to destabilize the mixing interface.  

By contrasting these normalized interfacial lengths, we notice that the 

most noteworthy effect in Fig. 14 the collapse of the curve as α=0.2 and 

μm=9 shows a damping effect in favorable end-point viscosity contrast at 

beginning (during t=0.0343 to 0.0729). A time series of the contours on the 

concentration to the parameters sets are illustrated in Fig. 15. The time 

interval between contours is 0.02 and the first contour is at t=0.03. It can be 

observed without fingers merge and shield, numbers of fingers do not 

change, and the length of finger is almost constant but becomes wider after 

t=0.0343. Compare with the length of fingering between t=0.0343 and 

t=0.0729 illustrated in Fig. 16 (a) and (b) and it shows no significant 
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variations. It means that the finger length does not increase as fast as the 

injection flow. As time longer than t=0.0729, as in Fig. 16 (c) at t=0.11, it 

is apparent that the length of fingers are longer than (a) and (b). The 

phenomenon can interpret damping effect in Fig. 14. We also find that the 

viscosity contrast and fluid stability do not show any significantly relation 

with nonmonotonic favorable viscosity profile.  

3.2.3 Influence of the location of the maximum viscosity cm 

In the nonmonotonic viscosity profile, the position of the maximum 

viscosity cm denotes the place with the lowest mobility. With an increase in 

cm, the maximum viscosity μm of the viscosity profile will move to injection 

fluid, vice versa. It is difficult to find the nonlinear effect of the cm to the 

stability of fluid. The work of Manickam and Homsy [3] has extended a 

straight forward parameter Λ which is a quantity for the relation between 

the slope of injecting fluid (c=l) and displaced fluid (c=0) is expressed as: 
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In the monotonic viscosity profile, (dμ/dc)｜c=0 and (dμ/dc)｜c=1 are of 

the same sign, the unfavorable viscosity contrast (μ1 < μ2) leads to 

instability (Λ > 0), and vice versa. In non-monotonic case, (dμ/dc)｜c=0 and 

(dμ/dc)｜c=1 are of opposite signs, Λ > 0 means the slope of the viscosity 

profile at the point c=l is steeper than at c=0. In other words, the slope in 

unstable zone is steeper than stable zone.  

A number of studies depict viscosity profile by Λ and attempt to identify 

and quantify the stability of fluid. Therefore, Loggia et al. [24] make an 

exhaustive study of the parameter and explains the key for longitudinal 

dispersion in making conditionally unstable an initially stable profile at a 
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critical time. Yortsos and Zeybek [47] showed that Eq. (68) with Λ=1 can 

be obtained for the monotonic profile. Manickam and Homsy [3] used the 

QSSA and suggested that when the parameter Λ is positive, the flow is 

always unstable, and when Λ is negative, the initially stable flow becomes 

unstable as the base flow diffusion; but they also suggested the equation 

fail to hold at large times when the base state has diffused out. With 

nonmonotonic viscosity profile, Kim and Choi [25] showed that Λ is 

expressed as: 
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We begin analyzing the favorable (α=0.7) and unfavorable (α=3) 

end-point viscosity contrast viscosity profiles set shown in Fig. 17, 

respectively. Because higher cm is easy to cause our numerical code become 

unstable, in order to assess the magnitude of this effect, we carried out a 

relevant parameter set in which Pe=400 and μm=4 were kept constant, and 

fingering was generated by different sets of cm. 

Figure 18 plots the end-point derivatives of the viscosity profile, Λ as a 

function of the maximum of the viscosity profile, cm, for the unfavorable 

(blue curve) and favorable (red curve) end-point viscosity contrast. It 

presents a simple tendency toward more unstable of fluid for higher cm, 

which is consistent with Manickam and Homsy [3]. The time evolution of 

the interfacial length is illustrated in Fig. 19. A general trend is observed, in 

which a higher cm leads to a more unstable interface at the early time, but 

turns more stable at a later stage. However, concentration images in Fig. 20 

illustrated that at the final stage (t=0.30), as cm increase, fingers become 

more obscure. 

It should be noted as the Péclet number decreases closely to the critical 

number Pec demonstrated by Tan and Homsy [1], the approach sketched 

out here fails to predict the stability of fluid. Fortunately, in that scenario, 
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the fingering is not mature, and render parameters vary ineffectively. It is 

acceptable to neglect the error in predicts. 

3.2.4  Influence of the end-point viscosity contrast α 

Now we turn to the investigation of the role played by the end-point 

viscosity contrast α. The influence of this parameter is quite intuitive. As a 

general point, for large end-point viscosity contrasts and Péclet number, 

strong nonlinear interactions between the finger, such as merging, partial 

merging, and shielding, are observed [4] with monotonic viscosity profile. 

Interestingly, investigations of the injection-driven Hele-Shaw cell with 

nonmonotonic viscosity profiles have been performed so far focusing 

solely on quarter five-spot configuration and rectilinear flow. Therefore, the 

beautiful interfacial patterns for radial injection flows involving miscible 

fluids are still largely unexplored in the present literature. 

We begin our numerical investigation performing a systematic study of 

the concentration images obtained for different values of the relevant 

control parameters. Basing on the above discussions, we expect large 

end-point viscosity contrasts leading to a strong nonlinear interaction. 

However, it is also interesting to notice the fundamental differences 

regarding the enhanced fingering processes induced by Péclet number Pe 

and end-point viscosity contrast α. Comparing the concentration images in 

Fig. 21 and descriptions in more qualitative terms in Fig. 22 highlight 

differences the two parameters, we found that higher difference between 

end-point viscosity contrast α and the maximum viscosity μm caused richer 

phenomenology, such as tip splitting was observed in Fig. 21 (a). Look at 

the interfacial behavior in another way, comparing Fig. 21 (a) with (c), it is 

interesting to find that lower end-point viscosity contrast α for constant 

maximum viscosity μm leads to enhanced fingering around internal regions. 

An important interfacial behavior that can be studied more quantitatively 
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is the one related to different morphological interfacial features induced by 

higher Péclet number or higher end-point viscosity contrast α. Compare Fig. 

21, and will find that higher Pe leads to more fingering (recheck Fig. 9 also 

agree this point), while higher α for constant maximum viscosity μm leads 

to longer viscous fingers.  

Another scenario is favorable end-point viscosity. The set of simulations 

we have chosen are with nonmonotonic viscosity profiles for the end-point 

viscosity contrast α=0.2, 0.5, and 1, respectively. Other parameters set are 

fixed at the Péclet number Pe=400, the maximum viscosity μm=4 and the 

location of the maximum viscosity cm=0.1. A schematic of these profiles 

with the parameters set are shown in Fig. 23 and almost overlap between 

three lines. The concentration and vorticity images (Fig. 24) and the time 

evolution of the interfacial length (Fig. 25) indicates that there are no 

statistically interaction effects of favorable end-point contrast was found. 

Moreover, recheck Fig. 10, although the end-point viscosity contrast of 

unfavorable scenario is the inverse of the favorable case, fingering for 

unfavorable contrast are always longer than favorable one. This 

phenomenon indicates that unfavorable end-point viscosity contrast leads 

to fluid more unstable than the favorable one if other parameters set is held 

fix. 
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Figure 5: Various types of monotonic viscosity profiles with A=0.5 

(viscosity ration α=3). The quasi-monotonic profile is represented by 

insignificant non-monotonicity of μm=3.001 and cm=0.03. 
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Figure 6: Concentration images with Pe=800 at t=0.30 for various types of 

viscosity profiles shown in Fig. 5, (a) concave; (b) linear; (c) convex and (d) 

quasi-monotonic. In the present unstable conditions, i.e. μ1 > μ2, fingering 

instabilities are observed for all the profiles. The overall patterns show 

great similarities, which indicate insignificant influences of the local 

correlations between fluid concentration and the viscosity. 
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Figure 7: Evolutions of the interfacial lengths, which can be used as a 

global quantitative measurement of the prominence of fingering, for the 

four conditions shown in Time evolution of the interfacial length under the 

condition set as Fig. 5. The global characteristics of interfacial lengths 

show no significant variations. Nevertheless, a general trend is observed, in 

which a more convex profile leads to a more unstable interface at the early 

time, and turns more stable at a later stage. 
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Figure 8: Representative profiles of non-monotonic viscosity. The black 

lines show unfavorable end-point viscosity contrasts of α=3, cm=0.1 for 

μm=9 and 14. Favorable end-point viscosity contrasts are represented by the 

red lines with α=0.2, cm=0.2 for μm=6 and 9. 
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Figure 9: Concentration images for the case of unfavorable viscosity profile 

(α=2, top row), and favorable viscosity profile (α=0.5, bottom row). These 

simulation used for different Péclet number with parameters set for μm=4 

and cm=0.2 at t=0.35. 
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Figure 10: The contour of concentration for c=0.5 versus azimuth with the 

same viscosity profile sets of Fig. 9. Both on unfavorable case (α=2, top fig) 

and favorable end point contrast (α=0.5, bottum fig) with Pe=800, at t=0.1, 

0.2 and 0.35, respectively. The red line indicate the position of basestate as 

a function of the time. 
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Figure 11: Interfacial length Ln as a function of time for different Péclet 

number with constant viscosity profile (μm=4 and cm=0.2) in unfavorable 

and favorable viscosity profile. In the inset the number label the Péclet 

number and end-point viscosity contrast. An interesting phenomena 

damping effect can be observed in Pe=800 and α=0.5 set and will be 

discussed later. 
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Figure 12: Concentration images for the non-monotonic viscosity profiles 

shown in Fig. 8 with Pe=400. Unfavorable viscosity contrast of α=3 and 

cm=0.1 for μm=9 (a) and μm=14 (b). Favorable viscosity contrast of α=0.2 

and cm=0.2 for μm=6 (c) and 9 (d). The non-monotonic viscosity profile 

enhances fingering instability significantly. Even an original stable 

interface in a monotonic profile appears significantly fingering if the 

viscosity profile is non-monotonic, i.e. α < 1 shown in (c) and (d). In 

addition, the prominences of fingering are enhanced by degree of the 

monotony, i.e. higher μm.  
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Figure 13: Correspondent images of vorticity for the cases shown in Fig. 8. 

Besides the well-understood vorticity pairs inside the individual fingers, 

additional pairs of detached vorticity caps right beyond the fingertips are 

generated due to the non-monotony of viscosity profile. 
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Figure 14: Evolutions of the normalized interfacial lengths for the four 

cases shown in Fig. 8. After a short period of time with significant growths, 

the interfacial lengths appear to level off. In line with the common 

expectations, a more unfavorable end-point viscosity contrast, such as α=3, 

results in a more prominent fingering instability. Also confirmed is that 

significance of the viscosity non-monotony leads to a more unstable 

interface, e.g. μm=9. 

 



 

 47

 
Figure 15: A time series of the contours on the concentration to the Fig. 13 

(d) parameters sets as μm=9. Time is varied between 0.03 and 0.13 with 

increments of 0.02 in blue lines. Times during damping effect are plot in 

red lines. 
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Figure 16: The contour of concentration for to the Fig. 13 (d) parameters 

sets as μm=9 at t=(a)0.0343, (b) 0.0729, and (c)0.11. The green lines 

indicate the position of basestate as a function of the time. 
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Figure 17: Representative profiles of non-monotonic viscosity for the cases 

with unfavorable and favorable end-point contrasts of α=3 and 0.7, 

respectively. The local maximum viscosity contrast is μm=4, whose position 

is at cm=0.1, 0.3, and 0.5. 
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Figure 18: Parameter for the end-point derivatives of the viscosity profile, 

Λ as a function of the maximum of the viscosity profile, cm, both for the 

unfavorable and favorable end-point viscosity contrast in Fig. 17. 
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Figure 19: Evolutions of the normalized interfacial lengths for Pe=400 with 

the six viscosity profiles shown in Fig. 17. The most unstable interface at a 

later time stage is always triggered by a smallest cm=0.1, whose viscosity 

profile appears more concave, for both unfavorable and favorable end-point 

conditions. The trend agrees well with the findings presented in Fig. 18. 
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Figure 20: Concentration images for the non-monotonic viscosity profiles 

shown in Fig. 17 with Pe=400 and μm=4 at t=0.30. Unfavorable viscosity 

contrast of α=3 and cm=0.1, 0.3, and 0.5. Favorable viscosity contrast of 

α=0.2 and cm=0.1, 0.3, and 0.5. The lower cm enhances fingering instability 

significantly. Even an original unstable interface in higher cm appears 

significantly more unstable either favorable or unfavorable shown in Fig. 

19. 
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Figure 21: Concentration images (top row) and vorticity images (bottom 

row) for viscosity profile set with μm=13 and cm=0.1 for (a) Pe=400 and 

α=2. (b) Pe=200 and α=9. (c) Pe=400 and α=9 at t=0.30. The outer fluid is 

more viscous (μ2 >μ1). 
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Figure 22: Evolutions of the normalized interfacial lengths for Fig. 21. 
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Figure 23: Zoom in the nonmonotonic viscosity profiles for μm=4, cm=0.1, 

and α=0.2, 0.5, and 1. 

 

Figure 24: Concentration images (top row) and vorticity images (bottom 

row) for Pe=400, μm=4, cm=0.1, α=0.2, 0.5, and 1 at t=0.30. The inner fluid 

is more viscous (μ1 > μ2) and the green lines in vorticity images indicate the 

position of μm. 
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Figure 25: Time evolution of the interfacial length with μm=4, cm=0.1, 

α=0.2, 0.5, and 1 for Pe=400. In the inset the detail viscosity profiles for 

the three parameters sets. No significant main effect for favorable end-point 

contrast was found. 
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Chapter 4 Controlling Radial Fingering Patterns in Miscible 

Lifting Hele-Shaw Flow 

We begin our numerical investigating the effectiveness of adjusting the 

time-dependent gap width and perturbation for these complex fingered 

structures, then performing a systematic study of the concentration images 

obtained for different viscosity profiles. The layout of the rest of this 

chapter is as follows. Section 4.1 focuses on comparing the fingering in 

conventional linear or exponential time dependencies. In Section 4.2, we 

analyze how the perturbation can influence the ultimate appearance of the 

fluid-fluid diffusive interface. As pointed out in Chapter 3, Section 4.3 

discusses the influence of four kinds of viscosity profiles on the interface 

dynamics: concave, linear, and convex monotonic viscosity profiles, and 

nonmonotonic viscosity profile are compared. Various parameters, such as 

the overall viscosity contrast of both monotonic and nonmonotonic 

viscosity profile, and local maximum viscosity contrast and position of 

local maximum viscosity for nonmonotonic viscosity profile, are also 

analyzed systematically in Section 4.4. 

4.1 Influence of the Lifting Scenarios 

Here we turn to the numerical results of comparing the resulting patterns 

with variant lifting. Compare the fingering patterns under the same 

dimensional lifting effectiveness, i.e., we contrast the situations in which 

the patterns for exponential and variant lifting have reached an equal gap 

width at equal times: hexp =hv=h. In the following simulations, we consider 

characteristic values for the lifting Péclet number Pe=3000, and viscosity 

contrast A=0.925. In addition, we take the lifting ratio a=δ/γ=1/3. In order 
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to ensure the appropriateness of the Hele-Shaw approach [6], only 

situations of relatively small gap spacing, namely h=2h0, 3h0 and 4h0 are 

considered. 

Figure 26 illustrates the concentration images obtained for increasingly 

larger values of the dimensionless gap width h/h0=2, 3, and 4, both for the 

exponential (top row) and variant (bottom row) lifting cases. This is done 

for a given set initial random perturbations (perturbation set 1). During 

exponential lifting with h/h0=2, we see the development of a large number 

of small fingers of the less viscous fluid penetrating the more viscous one. 

At h/h0=3, fingering is considerably stronger where invading inward 

moving fingers compete more intensively giving rise to a deformed 

diffusive interface. Finally, for the dimensionless gap distances h/h0=4, the 

patterns are even more ramified, revealing plenty of finger competition 

(length variability) among less viscous fingers, resulting in convoluted 

structures presenting forms which resemble forks and tridents. 

On the other hand, variant lifting reveals a quite different set of 

morphologies. When h/h0=2, the boundary of the droplet is nearly circular, 

so that fingers are absent. Very mild fingering formation is then observed 

for h/h0=2. Finally, if h/h0=4 fingers emerge (about 40 or so) but in a more 

orderly fashion, finger competition among inward moving fingers is 

substantially suppressed. This points to the stabilizing nature of the variant 

lifting process.  

Concerning the specific role of Pe and A, we have performed simulations 

for several other values of the Péclet number in the interval 2000 ≦ Pe ≦ 

4000 for several other values of the viscous contrast in the interval 0.762 

≦ A ≦ 0.925 in Fig. 27. The results identify the very similar stabilizing 

behavior. Despite of this variation in the values of Pe, we found a relatively 

small modification in the number of resulting fingers: for example, when 

h/h0=4, the number of fingers changes only from 38 to 42. This supports 
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the suitability of the controlling mechanism provided by the variant lifting 

in spite of sizable modifications in the Péclet number. 

Examine the response of the patterns to modifications in the viscous 

contrast. It can be observed as A=0.762, even the Pe=4000, the boundary of 

the droplet is nearly circular, so that fingers are absent. Figure 28 illustrates 

that the behavior of the dimensionless interfacial length L in terms of h/h0 

for three different Péclet number and Atwood number sets. For the 

situations involving no significant fingering, i.e., A=0.762 (solid curves), 

the interfacial lengths behave quite similarly to the base state during the 

whole lifting process, presenting a nearly exponential decay, decrease as 

time progresses, and always locate far below the other ones. Represent the 

strong stabilization role of the small viscosity contrast. 

A dimensionless gap distances h/h0 series of the contours on the 

concentration to the parameters set Pe=3000, A=0.925 for the exponential 

lifting case are illustrated in Fig. 29. As shown in Fig. 28, there are two 

critical points at h/h0=1.5, 2.7. Choose h/h0=1.5, 2, 2.5, and 4 for analysis. 

At h/h0 =1.5, the boundary of the droplet is nearly circular, and the fingers 

are absent. For later times, the length of the fingers becomes longer. It is 

worthwhile to note during h/h0=2.5 and 4. Although the length of fingers 

continues increase, some fingers merge and the number of fingers decrease. 

The behaviors of the dimensionless interfacial length L in terms of h/h0 also 

decrease during this period. 

By contrasting these normalized interfacial lengths to the parameters set 

as Fig. 29, the variant lifting situations are illustrated in Fig. 30. Choose 

h/h0=2, 3, and 4 for analysis. Like the exponential lifting case, before h/h0 

=3, the boundary of the droplet is nearly circular, and the fingers are absent. 

However, for later times, the length of the fingers becomes longer. Without 

fingers merge, the dimensionless interfacial length Ls in terms of h/h0 

increases (shown in Fig. 32 and to be discussed later). Figure 29 and 30 
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highlights differences between the two strategies of time-dependent gap 

width control the complex finger structure. 

4.2 Influence of the Perturbation Set 

We examine the response of the patterns to modifications in the initial 

conditions. This issue is addressed in Fig. 31 which depicts patterns at 

h/h0=4 for both types of lifting, and two additional collections of initial 

conditions: perturbation set 2 (first column) and perturbation set 3 (second 

column). The perturbation sets are produced stochastic by Matlab. It is 

clear that the structures obtained in Fig. 31 are not far different from those 

obtained in Fig. 26. However, it is worth pointing out that under variant 

lifting the final number of fingers does not practically change (it varies 

only from 41 to 43) if initial conditions are altered. A more quantitative 

account about this result is shown in Fig. 32 which describes the behavior 

of the dimensionless interfacial length Ls in terms of h/h0 for exponential 

lifting EL (solid curves) and variant lifting VL (dashed curves). This is done 

for the three sets of initial perturbations considered in Fig. 26 and Fig. 31. 

Note the collapse of the dashed curves, a fact that reinforces the 

indifference of the variant lifting protocol with regards to changes in initial 

conditions. The strong stabilization role of the variant lifting is also evident 

(dashed curves located far below the solid ones). 

To detail the effect of perturbation, we choose the most unstable 

situation in Fig. 32 for exponential lifting case. Figure 33 illustrates the 

concentration images obtained for increasing larger values of the amplitude 

of initial random perturbation 5 and 10 times. It is clear that the structures 

obtained in Fig. 33 are not far different from those in Fig. 26 for h/h0 series. 

Although the number of fingers does not practically change, only the length 

of finger increases with increasing amplitude of perturbation. 
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4.3 Monotonic Viscosity Profile 

As discussed in Chapter 3, the effect for four kinds of viscosity profiles 

on the interface dynamics: vary-monotonic (including concave, linear and 

convex) and nonmonotonic viscosity profiles are studied in this section. To 

address this issue, four kinds of viscosity profiles are depicted in Fig. 35. 

Because we have proved that exponential lifting situation leads to the fluid 

more unstable than variant lifting case, we only discuss exponential lifting 

situation after this section. To ensure the effect of different viscosity 

profiles, the quasi-nonmonotonic viscosity profile is not across the 

aforementioned three monotonic viscosity profiles and decreases the 

impact of the μm, set μm equal to α+0.1, and set cm at 0.1. 

We begin our numerical investigation performing a systematic study of 

the concentration images obtained from different viscosity profiles. Figure 

36 depicts the sequential images of the concentration obtained for 

increasing larger values of the dimensionless gap width h/h0=2, 3, and 4, 

for four viscosity profile cases in Fig. 35 with the relevant control 

parameters Pe=2000 and A=0.925, which the cell’s gap width grows 

exponentially. During the process of lifting with h/h0=2, with only 

monotonic (concave) viscosity profile, the development of the largest 

number of small fingers of the less viscosity fluid penetrates the more 

viscosity one. The boundary of the droplet with other types of viscosity 

profiles is nearly circular, so that fingers are absent. At h/h0=3, fingering is 

considerably stronger where invading inward moving fingers compete 

more intensively giving rise to a deformed diffusive interface. Very mild 

fingering formations are then observed for other types of viscosity profile 

cases. Finally, for h/h0=4, we only observe fingers emerge with linear 

viscosity profile, but in a more orderly fashion than concave viscosity 

profile. For convex and quasi-monotonic viscosity profile cases, only 

smoother shrinking interface which remains nearly circular can be 
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observed. 

A more quantitative account about this result is shown in Fig. 37 which 

describes the behavior of the dimensionless interfacial length Ls in terms of 

h/h0 for exponential lifting. This is done for the four viscosity profiles 

illustrated in Fig. 35. Figure 37 gives correct trends regarding the 

stabilizing effects for different viscosity profiles, and most importantly, 

provides a quantitative verification of the interesting droplet 

recircularization phenomenon as discussed previously, based on the 

concept of interfacial lengths Ls. As the case of concave viscosity profile, 

initially Ls decreases at first, then increases sharply than other profiles. 

Linear viscosity profile is the second increasing case, and shorter interfacial 

length is observed. Convex viscosity profile is more stable than linear one. 

For the quasi-monotonic situation does not involve significant fingering, 

the interfacial length behave quite similarly to the base state during the 

whole lifting process. 

Moreover, similar to what we have done for injection flow, we examine 

the response of the pattern to modifications at higher Pe as 4000 and lower 

A as 0.85. Choose an appropriate cm to let the quasi-monotonic viscosity 

profile to cross the convex one, and add a new nonmonotonic viscosity 

profile to compare the effect of different viscosity profile. All of the five 

viscosity profiles are illustrates in Fig. 38. Figure 39 plots the 

dimensionless interfacial length Ls as a function of the dimensionless gap 

distance h/h0 for monotonic (dashed curves) and nonmonotonic (solid curve) 

viscosity profiles. That is just as what we expected that the concave 

viscosity profile create the most unstable flow between the three monotonic 

ones, however, nonmonotonic cases demonstrated uncharacteristic behavior. 

We chose four concentration images of the five cases are illustrated in Fig. 

40. Concave viscosity profile is the most unstable case of monotonic 

scenario, but nonmonotonic viscosity profile reveals more vigorous 
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fingering than concave case. The unstable response of nonmonotonic 

viscosity profiles attracted our notice and will be further discussed later. 

4.4 Nonmonotonic viscosity profile 

Investigating the stability of nonmonotonic viscosity profiles in lifting 

flow, the influence of the parameter Pe is quite intuitive as expected that 

demonstrate more vigorous fingering. Moreover, the influence of μm, α, and 

cm need further discussed. 

4.4.1 Influence of the maximum viscosity μm 

In order to elucidate the influence of the maximum viscosity μm on the 

global and local features of the displacement process, we carried out a 

series of simulations for which Pe, cm, and α were held fixed at the values 

of 3000, 0.1, and 3, respectively. In addition, the same random realization 

of the permeability field was employed in all simulations. The fingering 

instabilities at maximum viscosity μm, which provide stronger 

concentration gradient in the unstable zone of viscosity profile, are mostly 

produced by the inward motion of the less viscous fingers penetrating the 

more viscous fluid. In this section, by comparing displacements at μm are 

varied between 8 and 32 with increments of 8. 

Figure 41 demonstrates the concentration field at much later time h/h0=4. 

This motion occurs in such a way that the relative lengths of the less 

viscous fingers longer, making the interface in their tips is much more 

ramified, presenting outgoing fingers which develop a peculiar forklike or 

trident like shape. But define an approximately circular internal region in 

the more viscous. Compare with the result shown in Fig. 12 in injection 

flow, higher maximum viscosity μm leads to not only longer finger length, 

but more vigorous fingering in lifting flow. Indicate that higher maximum 

viscosity μm plays different role in lifting flow and injection flow. Figure 42 
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describes the behavior of the dimensionless interfacial length Ls in term of 

h/h0 for four maximum viscosity μm. As expect, longer interfacial lengths 

are mainly observed for larger μm. 

4.4.2 Influence of the end-point viscosity contrast α 

Now we turn to the investigation of the role played by the end-point 

viscosity contrast α with nonmonotonic viscosity profile and monotonic 

one with equal end-point viscosity contrast (αmono=μm). Figure 43 describes 

the behavior of the dimensionless interfacial length Ls in term of h/h0 for 

four sets of nonmonotonic viscosity profiles with constant μm=16.44 and 

two sets of monotonic ones, one is with end-point contrast αmono=μm=16.44, 

another is with higher αmono=20.08. For the sake of providing a visual 

picture of the distinction, dash lines present the result of monotonic 

viscosity profile cases, and solid lines show the result of nonmonotonic 

ones. Three points are worth making about this figure. First, we noticed 

that solid curves stand above the dashed one as αmono equal to μm, indicating 

more fingering and interfacial irregularities for the cases of nonmonotonic 

viscosity profile than monotonic one while μm of nonmonotonic cases is 

equal to αmono of the monotonic one. Second, as expected, as the monotonic 

one with higher αmono than μm of nonmonotonic scenarios contribute flow to 

more unstable. Moreover, note that solid curves almost overlap, while the 

dashed curves are not as close to each other. Figure 44 demonstrates the 

concentration field at much later time h/h0=4 by different sets of α. Not 

only the finger lengths of different cases are very close, but the morphology 

in each set is quite similar. This indicates that lifting fluid with 

nonmonotonic viscosity profile is quite insensitive to modifications in the 

viscosity contrast α. 

Manickam and Homsy [10] found that nonmonotonic viscosity profile 

can be divided into an unstable zone (from injection fluid to the viscosity 
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maximum μm) and a stable zone (from viscosity maximum μm to displaced 

fluid). Vorticity image of the four nonmonotonic viscosity profiles we 

chosen are shown in Fig. 45. Like the dual vortex pair in injection fluid, the 

inner vortexes become weak as the difference between α and μm decrease. 

However, the area of inner vortex ring in lifting flow are less than in 

injection one. Because inner vortex ring means stable zone of the viscosity 

profile, it takes a very faint influence in stability and indicate the stable 

zone in lifting case play less effect than injection one. Compare the 

dimensionless interfacial length Ls in term of h/h0 which illustrated in Fig. 

43 with Pe=3000, even now its relatively large variation between values of 

3 and 15, a small difference in α can dramatically influence the result in 

time evolution of the interfacial length Ls. This is far different from the role 

of α which play in injection flow (discussed before in Section 3.2.2), which 

implies the stable zone of nonmonotonic viscosity profile plays less effect 

in lifting flow than injection scenario. 

4.4.3 Influence of the location of the maximum viscosity cm  

In order to study the influence of cm, we present a series of numerical 

simulations under equivalent conditions. The viscosity profiles are 

illustrated in Fig. 46. Because higher cm would easy to cause our numerical 

code become unstable, in order to assess the magnitude of this effect, we 

carried out a relevant parameter set in which Pe, α and μm were kept 

constant, which fingering generated by different sets of cm. A comparison 

shows that approximately the same number of fingers develops in Fig. 47 

(a) and (b), and the formation where tip-splitting and side-branch events 

can be observed. Viscous fingers in Fig. 47 (a) are more plentiful than (b). 

The behavior of the dimensionless interfacial length Ls in term of h/h0 for 

four sets of nonmonotonic viscosity profiles are depicted in Fig. 48 also 

illustrated that as cm decrease, lead to intricate morphologies, the fluid 
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demonstrate more vigorous fingering. Although as the Péclet number 

decrease to close to critical number Pec demonstrated by Tan and Homsy 

[1], stability of the scenario did not follow the rule we found. However, in 

this scenario the fingering is not mature, render parameters vary ineffective. 

It acceptable to neglect the error in predicts. 

Another important interfacial behavior need be studied more 

quantitatively is the one related to different morphological interfacial 

features induced by end-point viscosity contrast α and the location of the 

maximum viscosity cm. Because higher cm leads the μm closer to the outer 

fluid in lifting flow. Especially with favorable end-point viscosity contrast 

case, it cause steeper slope in unstable zone, may lead to more violent 

phenomenon. To find the interaction between the two parameters, we 

choose a favorable end-point viscosity contrast (α=0.25) equal the inverse 

of unfavorable scenario (α’=1/α=4) for other parameters Pe=3000 and μm=8 

are held constant. Figure 49 illustrates the concentration images of the 

simulation. The overall patterns show great similarities in favorable and 

unfavorable case (top law and bottom law), however, far different from 

(first column and second column) with various cm. The phenomenon 

indicates insignificant influences of the local correlations between fluid α 

and cm.  
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Figure 26: Concentration images for the dimensionless gap distances 

h/h0=2, 3, and 4, for the cases of exponential lifting (top row), and variant 

lifting (bottom row) to the parameter set as Pe=3000, A=0.925. The 

domain of x and y axis are -0.8 to 0.8. 
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Figure 27: Concentration images for Pe=2000 (first column), 3000 (second 

column), 4000(third column), and A=0.762 (top row), 0.905 (mid row), 

0.925 (bottom row) at dimensionless gap distances h/h0=4, for the cases of 

exponential lifting. The domain of x and y axis are -0.5 to 0.5. 
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Figure 28: Interfacial lengths Ls as a function of the dimensionless gap 

distance h/h0 for the exponential lifting case. These simulations used the 

same physical parameters as in Fig. 27. In the inset the numbers label the 

distinct Pe and A sets. 
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Figure 29: A dimensionless gap distances h/h0 series of the contours on the 

concentration to the parameters sets as Pe=3000, A=0.925 for the 

exponential lifting case. For the dimensionless gap distance h/h0= (a) 1.5, 

(b) 2, (c) 2.5, and (d) 4. 

 

Figure 30: A dimensionless gap distances h/h0 series of the contours on the 

concentration to the parameters sets as Pe=3000, A=0.925 for the variant 

lifting situation. For the dimensionless gap distance h/h0= (a) 1.5, (b) 2, (c) 

2.5, and (d) 4.  
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Figure 31: Concentration images for the dimensionless gap distance h/h0=4 

for the cases of exponential lifting (top row), and variant lifting (bottom 

row). These simulations used the same physical parameters as in Fig. 26, 

but utilized two distinct set of initial random conditions: perturbation set 2 

(first column), and perturbation set 3 (second column). 
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Figure 32: Interfacial length Ls as a function of the dimensionless gap 

distance h/h0 for the exponential lifting (EL)case, and three different sets of 

initial perturbations (solid curves).The dashed curves represent similar sets 

of data for the variant lifting (VL) situation. In the inset the numbers label 

the distinct perturbation sets. 
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Figure 33: Concentration images for the dimensionless gap distance h/h0=2, 

3, and 4 for the cases of exponential lifting. These simulations used the 

same physical parameters as in Fig. 29, but utilized two distinct set of 

initial random conditions: amplitude=0.05 (top row), and amplitude=0.1 

(bottom row). 
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Figure 34: Interfacial lengths Ls as a function of the dimensionless gap 

distance h/h0 for the exponential lifting case. These simulations used the 

same physical parameters as in Fig. 27. In the inset the numbers label the 

amplitude sets. 
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Figure 35: Four kinds of viscosity profiles with A=0.925 (α=25.67). The 

parameters set of the Quasi-monotonic viscosity profile is cm=0.1 and 

μm=25.77. 
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Figure 36: Concentration images for the dimensionless gap distance h/h0=2, 

3, and 4, for the cases in Fig. 35 with Pe=2000 and A=0.925 for (a) 

Concave (b) Linear (c) Convex (d) Quasi-monotonic. The inner fluid is 

more viscous (μ2 >μ1). 
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Figure 37: Interfacial length Ls as a function of the dimensionless gap 

distance h/h0 for the exponential lifting case and four kinds of different 

viscosity profiles for Fig. 35 with Pe=2000. In the inset the numbers label 

the distinct viscosity profiles. 
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Figure 38: Five kinds of viscosity profiles with A=0.848 (μm=eA =12.18). 

The parameters set of the nonmonotonic viscosity profile is cm=0.1 and 

α=10. 
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Figure 39: Interfacial length Ls as a function of the dimensionless gap 

distance h/h0 for the exponential lifting case and five viscosity profiles in 

Fig. 38 with Pe=4000. In the inset the numbers label the distinct viscosity 

profiles. 
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Figure 40: Concentration images for the dimensionless gap distance h/h0=4 

with Pe=4000, for the viscosity profile depicted in Fig. 38 for (a) Concave 

(b) Linear (c) Convex (d) Nonmonotonic, α=10. The inner fluid is more 

viscous (μ2 >μ1). 
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Figure 41: Concentration images of parameters set α=3 and cm=0.1 with 

Pe=3000 for the exponential lifting case (a) μm=8, (b) μm=16, (c) μm=24 

and (d) μm=32 for the dimensionless gap distance h/h0=4, 
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Figure 42: Interfacial length Ls as a function of the dimensionless gap 

distance h/h0 for the four cases shown in Fig. 41. In the inset the numbers 

label the distinct maximum viscosity μm. 
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Figure 43: Time evolution of the interfacial length Ls for two monotonic 

viscosity profiles with α=20.08 and 16.44 and four nonmonotonic viscosity 

profiles with μm =16.44, cm=0.1, α=3, 9, 12, and 15 for Pe=3000. In the 

inset the detail viscosity profiles for the seven parameters sets. 



 

 84

 

Figure 44: Concentration images of parameters set μm=16.44 and cm=0.1 

with Pe=3000 for the exponential lifting case (a) α=3, (b) α=9, (c) α=12 

and (d) α=15 for the dimensionless gap distance h/h0=4. Despite the finger 

lengths of different cases are very close; the morphology in each set is quite 

similar. 
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Figure 45: Correspondent images of vorticity for the cases shown in Figure 

43 for the dimensionless gap distance h/h0=4, (a) α=3; (b) α=9; (c) α=12 

and (d) α=15 for Pe=3000. Unlike the inner fingers in injection flow, it may 

become disappear, as the difference between α and μm decrease. 
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Figure 46: Representative profiles of non-monotonic viscosity profiles 

show end-point viscosity contrasts with α=3, μm=24 for cm=0.1, 0.3, 0.5 and 

0.7. 
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Figure 47: Concentration images for the dimensionless gap distance h/h0=4 

with the non-monotonic viscosity profiles shown in Fig. 46 with Pe=2000 

for series of (a) cm=0.1, (b) cm=0.3, (c) cm=0.5 and (d) cm=0.7.  
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Figure 48: Time evolution of the interfacial length with viscosity profile 

α=3, μm=24 with Pe=2000 for cm=0.1, 0.3, 0.5 and 0.7. 
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Figure 49: Concentration images for the dimensionless gap distance h/h0=4 

for the favorable end-point contrast cases of α=0.25 (top row), and the 

unfavorable end-point contrast cases of α=4. Utilized two distinct set of the 

location of the maximum viscosity: cm=0.1 (first column), and cm=0.9 

(second column).Other parameters set are Pe=3000 and μm=8. 
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Chapter 5  Conclusions and Recommendations of Future Work 

5.1 Conclusions 

This study analyzes both of the injection flow and the lifting flow by 

highly accurate simulation with different viscosity profiles. In this chapter, 

the major findings of the thesis are summarized as follows in turn as: 1) 

injection flow; 2) lifting flow in Hele-Shaw Cell, with the monotonic and 

nonmonotonic viscosity profile, respectively. 

5.1.1 Fingering Instability of Miscible Injection Hele-Shaw Flows 

Usual miscible flows in radial Hele-Shaw geometry lead to the formation 

of complex morphological structures. In this work, we have presented 

highly accurate numerical simulations for an injection-driven radial 

Hele-Shaw flow with miscible fluids. The present investigation explores 

the influence of these parameters up to values of R=2 (A=0.762, α=7.34) 

and Pe=800 with both monotonic and nonmonotonic viscosity profiles to 

study the effect of different viscosity profiles, then higher to the values of 

α=14 and μm=14.1 to investigate the nonmonotonic viscosity profiles. 

The interfacial instabilities have been analyzed systematically both 

qualitatively and quantitatively. The results of this study have indicated that 

the differences in different viscosity profiles might not be significant, but it 

reveals interesting nonlinear behaviors when nonmonotonic viscosity 

profiles is cross the convex viscosity profile. Our analysis with 

nonmonotonic viscosity profiles explicitly indicates how the relevant 

parameters of the system influence the morphology of the interfacial 

patterns. 

First, we studied the stability problem: as the Péclet number is higher 

than the critical Péclet number Pec, the convection dominate the flow. The 
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disturbances grow with increase in the Péclet number Pe and the maximum 

viscosity μm, vice versa. It is an interesting phenomenon that the interfacial 

lengths will reveal a damping effect when the favorable end-point viscosity 

contrasts α with high maximum viscosity μm. 

In contrast, the effect of the end-point viscosity contrast α and the 

location of the maximum viscosity cm to the stability of fluid are 

complicated. Both the variable in the location of the maximum viscosity cm 

and the end-point viscosity contrast α is in good agreement with the 

prediction as state in our previous analysis. 

5.1.2 Controlling Radial Fingering Patterns in Miscible Lifting 

Hele-Shaw Flow 

Time-dependent gap flows in radial Hele-Shaw geometry lead to the 

formation of complex morphological structures if the cell’s gap width 

grows exponentially with time. The parameters Pe and viscosity contrast A 

or μm are quite intuitive as expected and that demonstrate more vigorous 

fingering. Nevertheless, the difference of different viscosity profile to 

lifting Hele-Shaw cell still remains an open question. 

In this work, we have presented highly accurate numerical simulations to 

prove exponentially varying time dependent gap width leading to the 

formation of more complex morphological structures than variant lifting in 

the beginning. Then we investigate the influence of different viscosity 

profile in a lifting Hele-Shaw cell. We find that in monotonic viscosity 

profiles, the instability of fluid is always follows the series of concave, 

linear and convex. However, nonmonotonic viscosity is not unconditionally 

more unstable than monotonic ones, unless the curve of nonmonotonic case 

crosses the convex curve. Moreover, we have verified that the viscosity 

profile changes quite sensitively in higher Péclet number and the inner 
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vortices in lifting flow are weaker than the injection flow. 

5.2 Recommendations of Future Work 

Based on these achievements, the directions of research recommended 

for further study are summarized as follows: 

(1) In conclusion, we hope experimentalist will feel motivated to check, and 

hopefully validate the ideas put forward in this work. 

(2) To study the effect of chemistry both in injection and lifting flow. Most 

of the details of chemistry remain unclear due to the difficulties in 

detailed measurements. Using the developed tool to simulate the effect 

in Hele-Shaw cell is useful to reveal the underlying complex physics. 

(3) To extend the code from 2D to 3D for simulating the discharges with 

unsymmetrical behaviors. 
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Appendix 1 Vorticity 

Following Darcy’s (1856) investigations into the hydrology of the water 

supply, proportionality between flow rate and the applied pressure 

difference is expressed as: 
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Where eq. (1.3) is equal to eq. (1.4) 
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The viscosity μ is supposed to be a function of the injecting fluid 

concentration and the permeability is a spatial distribution with the 

expression 
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From streamfunction 
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It appears that one can do is to replace Eq. (1.7) by 
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Here k is a fix parameter in Hele-Shaw cell, which is permeability of the 

media. Applying the concept to Eq. (5), the result is: 
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Following other researchers (e.g. Tan and Homsy [23] and Rogerson 
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b. Mobility ratio of Convex monotonic viscosity profile is: 
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d. Mobility ratio of Non-monotonic viscosity profile is: 

)sin()(  mc  ,  10 )1(  , 
 

ac

ca





1

1  

 m 1
0 sin  ,  m 1sin 1

1
 , 

 1



mm

mm

c

c
a




, 
01

02

1









m , 

where 

   
 

   

    

      



 













dc

d

dc

d

dc

d

dc

d
dc

d

dc

d

dc

d

dc

d
R m

m
non

1
1

0
0

10

1
1

cot

1
cot

cos
sin

1sin

sin

11
















 

 

 



 

 96

 
   

       
 

   
 

 





cot
1

1

1

111
cot

1
1

1
1

cot

201

201

10

ac

a

ac

caaaac

dc
ac

ca
d

dc
ac

ca
d

















































. 

(1.14)



 

 97

Appendix 2 Hele-Shaw cell 

The Navier-Stokes equation, which neglecting gravity, become 
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Assume the injection of fluid is slow enough for the flow to be 

approximately steady, parallel, and incompressible. 
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Simplifying, we get 
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If h is sufficiently small and the flow is slow, the first and second derivative 

of u and v with respect to x and y are negligible and prescribed as follows: 
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The derivate of pressure are specified as 
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The equation means that in the system, P does not depend on z. 
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with boundary conditions and viscous force 
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So the integral mean V
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