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Abstract

Viscous fingering is an interfacial fluid flow instability that occurs when
less viscous fluid displaces another more viscous one in a Hele-Shaw cell
or porous media, leading to the formation of finger-like pattern at the
interface of both fluids. The interfacial evolution of multiphase flows will
severely impact on the quality of production and efficiency in a variety of
practical application of industrial process. Most frequent example of this
instability is that of oil recovery for which viscous fingering takes place
when an aqueous solution displaces- more viscous oil in underground
reservoirs, leading to the formation of nontrivial fingerlike structure and
reduce the efficiency of the displacement process. Another particularly
interesting variation- of the classic radial flow is the investigation of
fingering instabilities in Hele-Shaw cells presenting variable gap spacing.
This is also a very important issue in many industrial areas including
adhesion, lubrication, and colloidal hydrodynamics. In this dissertation, we
carried out the highly accurate simulation-to investigate the interfacial

evolution in two scenarios —radial injection-driven miscible flow and

lifting radial Hele-Shaw flow, both with the monotonic and nonmonotonic
viscosity profile. So, the thesis consists of two parts:

Part 1 focus on radial injection-driven miscible flow in a Hele-Shaw cell
and covers three major topics. To begin with, we perform numerical
experiments in a wide range to study the dispersion relation on both the
Péclet number and the parameters of the viscosity profile. A monotonic
viscosity-concentration relation of exponential type (concave) by other
scholars is assumed, and a linear and reverse (convex) monotonic viscosity
profiles and nonmonotonic one are also discussed. Results of this study

show that as the overall viscosity contrast held constant, nonmonotonic
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viscosity profile lead to a more stable flow than that of monotonic one, and
there are no significant differences in different viscosity profiles. However,
if the nonmonotonic viscosity profile crosses the convex monotonic
viscosity profile, the nonmonotonic feature enhances the prominence of
interfacial instability. Then, a great variety of morphological behaviors is
systematically introduced. In general, the nonmonotonic feature enhances
the prominence of interfacial instability. Formation of dual vortex pairs and
“reverse fingering”, where the fingers spread farther in the backward than
in the forward direction are observed, which are not present in monotonic
viscosity profile. Finally, we have carried out a parameter study to
understand the effects of nonmonotonicity on the stability of the injection
flow.

In part 2, discussions start-with the investigation of the influence of
lifting scenario and the perturbation set. Contrast to. the injection-driven
miscible flow in radial Hele-Shaw cells which leads to the formation of
morphing flow phenomenon of finger tip-splitting and side-branch events
are plentiful if the injection rate is constant with time. More complicated
flow are present for time-dependent gap flow which results in different
kinds of patterns, and leads to intricate morphologies if the cell’s gap width
grows exponentially with time. Recent studies show that the growing of
intricate patterns due to lifting can be controlled by properly adjusting the
time-dependent gap width. Moreover, we found the exponential lifting case
will cause the flow more unstable than the variant lifting situation. We also
deduce higher Péclet number and viscous contrast (4 in monotonic
viscosity profile and x, in nonmonotonic one) demonstrate more vigorous
fingering. The sensitivity of the system to changes in the initial conditions
and perturbation set is also discussed. Next, the effects of four viscosity
profiles as stated in part 1 have been investigated. Unlike injection flow,

the stability of three monotonic viscosity profiles are always in the series of
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concave, linear and convex. However, as injection flow, if the
nonmonotonic viscosity profile crosses the convex curve will enhances the
prominence of interfacial instability. Finally, we have carried out a
parameter study to understand the effects of nonmonotonicity viscosity

profile on the stability of the lifting flow.
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Chapter 1 Introduction

1.1 Literatures Review

Viscous fingering (VF) is a hydrodynamic instability occurring where a
higher viscous fluid is displaced by a less viscous one in porous media. It
can be observed the different viscous fingering instabilities in the interface
between the two fluids, and can be explained by Saffman-Tayler instability.
In most applications, viscous fingering instabilities are undesirable as the
displacing fluid fingers through and by pass the displaced one, reduces the
efficiency of this injection. Over. the years viscous fingering problem has
been extensively studied both experimentally and theoretically. The related
studied can be classified into two categories depending on whether the
viscosity profiles are monotonic or nonmonotonic. For convenience, Tan
and Homsy [1] defined a particular case in which viscosity varies
exponentially with-the concentration of injection: fluid, as well as
monotonic viscosity profiles. They also used Fourier spectral method and
found as time progresses, the nonlinear behavior of fingers cause a few
dominant fingers spread and ‘shield [2]. However, some driving fluid used
to petroleum secondary recovery techniques such as a mixture of alcohols
and water need not to be monotonic. Manickam and Homsy [3] defined a
nonmonotonic viscosity profile for the viscosity concentration data of
alcohols to approximate nature fluid behavior. They have carried out a
parameter study to understand the effects of nonmonotonicity on the
stability of the flow. Other last strategies aim to analysis viscous fingering
by non-Newtonian fluid interfaces [4].

Researchers studies have focused on simpler geometries, such as two
fluids in the narrow gap between closely-spaced parallel plates of a

Hele-Shaw cell, include rectilinear and radial flow, as well as quarter



five-spot configuration. Many theoretical and experimental studies have
been performed in both geometrics. Tan and Homsy [1] used the
quasi-steady-state approximation (QSSA) for a radial source flow in porous
media with monotonic viscosity profiles. They found that the unfavorable
viscosity gradient results the fluid more unstable in radial source flow.
They also did a critical Péclet number Pe. calculation, above which
displacement becomes unstable, and vice versa. Chen and Meiburg [5, 6]
focused on miscible quarter five-spot configuration and radial flows in
homogeneous and heterogeneous environment with monotonic viscosity
profiles, and described in detail as a function of the mobility ratio R and the
Péclet number Pe. Chen et al: [6-9] also investigate the stability of
time-dependent gap Hele-Shaw cell which is significant to adhesion related
problem. In addition; the results by Manickam and Homsy [10] used
Hartley transform_based 'spectral method for rectilinear flow with
nonmonotonic viscosity profiles show a new phenomenon of “reverse”
fingering and understand ‘the -effects of nonmonotonicity on the
stabilization of the flow. Ruith and Meiburg [11]added the effect of gravity
force in miscible displacement and investigate the influence of the Péclet
number, the viscosity and density contrasts, and the aspect ratio on the
dynamic evolution of the displacement. An up-to-date report write by Jha et
al. [12] take viscosity contrast into account to affects fluid mixing. Recent
extend the studies of the miscible flow in a rotating cell [13-17]
demonstrate fingering morphologies unlike in injection and lifting flow
[18].

The main difference between the radial and the rectilinear displacement
1s that for the rectilinear flow, the base state velocity is a constant, while for
the radial displacement, the velocity decreases spatially 1/r. Nonlinear
simulations of quarter five-spot configuration displacements have been

confirmed the linear stability results, which for small times correspond to



radial source flows. Pankiewitz and Meiburg [19] extend this analysis to
numerical simulation of quarter five-spot configuration with nonmonotonic
viscosity profiles, which have done a deliberative parameter study, and
derive that either favorable or unfavorable end point contrast will cause the
flow unstable only that the Péclet number is sufficiently high. They also
find there exist two concentric rings of vortex region and touch each other
exactly at the location of the viscosity maximum. Shariati and Yortsos [20]
explained the overall effect any two adjacent counter-rotating vortices may
further stabilize or destabilize the flow. As point out earlier, some late
researchers study the viscous fingering by chemical means. Chemical
reaction may change the density; surface tension or viscosity of the fluid.
Hejanctuzi et al. [21] used linear  stability analysis for a
reaction-diffusion-convection problem and found the effects of chemical
reaction on the stability of the flow are like nonmonotonicity.

To date, most of'the previous studies (e.g. Tan and Homsy [2]; Chen and
Meiburg [5]) on monotonic viscosity profile consider flow on the relation
to concentration and viscosity are an exponential function. There is a
noticeable absence of research projects dealing with different types of
monotonic viscosity profiles. Due to the practical and academic relevance
of the injecting problem, it is of interest to study and understand the
emerging interfacial under many different viscosity profiles. Additionally,
the effect of nonmonotonic viscosity profile on the stabilization of miscible
displacement has been considered in a limited number of studies. Chouke
[22] and Tan and Homsy [23] obtained stability criteria 4 can be
interpreted through the slopes in injection and displaced fluid sides. They
employed QSSA to analyze the stability characteristics. Loggia et al. [24]
make an exhaustive study of the parameter and explain the key for of
longitudinal dispersion in making conditionally unstable an initially stable

profile as sufficient time. Nevertheless, Manickam and Homsy [3] used the



QSSA and suggested the equation fails to hold at large times when the base
state has diffused out. Later Kim and Choi [25] tackled the problem of
without QSSA and believed the system is unconditionally stable for
long-wave disturbance regardless of viscosity profile.

Miscible displacements with nonmonotonic viscosity profiles are
characterized by negligible surface tension, so that the interplay of by the
Péclet number and the parameters of the viscosity profile dictate the pattern
formation behavior. Although researchers agreed the viscosity profiles
effects the stability of fluid. Not only little research has been done on the
final state of the nonmonotonic viscosity profile variation system, but has
never seen discussing different.monotonic viscosity profile stability of the
flow field. We are therefore interested ‘in developing a fundamental
understanding of misecible radial flow with monotenic and nonmonotonic
viscosity profile.

Much of the research of the traditional Saffman=Taylor problem has
examined the flow in flat, metionless, constant-gap spacing Hele-Shaw
cells, in which the fluids are relatively simple. Somewhat simpler radial
and rectangular geometry situation have been examined, where the upper
plate is lifted uniformly, i.e., the plates remain parallel to each other during
the lifting process. It is the so-called lifting radial Hele-Shaw flow and
result Saffman-Taylor situation in the formation of complex structures.

A particularly interesting variation of the classic radial flow is the
investigation of fingering instabilities in Hele-Shaw cells presenting
variable gap spacing. The study of compliant adhesive layers is highly
interdisciplinary involves a great variety of areas range from interfacial
science and rheology to pattern formation. It is worth noting that is not only
intrinsically interesting, but also of significant importance to related
problems. In such types of problems, to get the bond strength of adhesives

is to measure the force or the work required to separate two surfaces stuck
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by a thin adhesive film can be quite successfully evaluated through a
Hele-Shaw approach (Darcy’s law formulation). In other industrial areas
including lubrication, fracture mechanics, chemistry, biology [26], wetting
dynamics, colloidal hydrodynamics [27] and oil recovery [28], lifting radial
Hele-Shaw flow plays very important role.

Unlike the traditional Hele-Shaw cells of a constant gap, in such a lifting
version the upper plate of the cell is moved upwards uniformly at a lifting
velocity, i.e., the plates remain parallel to each other during the lifting
process, while the lower plate of the cell is held fixed. The morphology of
the emerging structures is characterized by the competition among inward
moving fingers. To create complex ~viscous finger in lifting radial
Hele-Shaw flow [19, 20,22, and 29] the more viscous fluid is placed at the
center of a Hele-Shaw cell, surrounded by a less viscous fluid, and the
upper cell plate is moved upwards. The pressure gradient within the more
viscous fluid is due-to the lifting of the upper plate, the fluid-fluid interface
moves inwards allowing the penetration of multiple fingers of the outer.
Interesting variation of the radial Saffman-Taylor problems Hele-Shaw
cells with variable gap spacing are presented which are different to with a
constant gap and need to be investigated.

As the lifting radial Hele-Shaw flow where the upper plate is lifted just
by one edge, making the gap both time and space dependent, where so that
the gap is a function of time, but not of space. This defines the so-called
time-dependent gap Hele-Shaw cell. Shelley et al. [29] have shown the
Saffman-Taylor instability for stretch flow in rectangular geometry
Hele-Shaw cells is valid both with and without surface tension, where the
pressure gradient within the fluid is due to the lifting of the upper plate at a
specified rate. Different kinds of pattern arise in the lifting Hele-Shaw flow
where the cell’s gap varies with time. Ben-Jacob ef al. [30] investigated the

stability of lifting Hele-Shaw cell with rectangular geometry by experiment
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obtain at low lifting rate finger formed, while the lifting velocity is
increased, fingers become dendrites; and the spacing of the dendrites
decreases as the lifting velocity is increased. Zhang et al. [31] performed a
linear stability analysis of the issue and derived the basic equations of the
directional solidification problem. Linder et al. [32] studied fingering
patterns and lifting forces of a thin layer of Newtonian liquid in both
numerical simulations and experiments. They have found the number of
fingers is sole determined by the surface tension and the extent of fingers
growth depends not only on control parameter but also on initial
conditions.

A somewhat simpler radial. geometry. situation has been extensively
studied, both experimentally and theoretically. Miranda and Oliveira [33]
replaced the thin film with conventional adhesive material to a high
viscosity ferrofluid between two narrowly spaced parallel flat plates a
subjected to an external magnetic field. The work by Dias and Miranda [34]
showed an example that finger competition is restrained as the gap width
scale with time with exponent -2/7 by linear stability analysis. For this
particular situation, it has been shown that finger competition is restrained
leading to a more ordered array of fingers. Chen et al. [9] studied have
noted that time-dependent gap miscible flow in lifting Hele-Shaw cells
leads to intricate morphologies if the cell’s gap width grows exponentially

with time can create more vigorous fingering process.

1.2 Objective and Organization of This Thesis

The literature reviewed above describes the viscous fingering in injection
and lifting Hele-Shaw cell through experimental and theoretical work.
Diftferent viscosity profiles may lead to a variety patterned structures at the
fluid-fluid interface. However, the effect related to finger shape selection in

radial geometry is not clear. In this study, therefore, we carried out the
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highly accurate pseudospectral method to investigate the interfacial
evolution assuming that the fluids involved are miscible. Performing a
systematic study of the unstable phenomenon obtained for different values
of the relevant control parameters.

The thesis is organized as follows:

Chapter 2 formulates our theoretical approach and presents the physical
problem governing equations of the radial injection flow and
time-dependent gap Hele-Shaw cell that the fluids involved are miscible
flow with monotonic and nonmonotonic viscosity profiles, respectively. A
highly accurate pseudospectral method is employed in this thesis to solve
those governing equations.

Chapter 3 investigates the vigorous fingering phenomena in
injection-driven miscible flow with monotonic and nonmonotonic viscosity
profiles, respectively. We focus on the-influence of four kinds of viscosity
profiles on the interface dynamics: vary-monotonic (include concave, linear
and convex) and nonmonotonic viscosity profile. Various parameters, such
as the convection to-dispersion ratio and the overall viscosity contrast of
both monotonic and nonmonetonic viscosity profile, and local maximum
viscosity contrast and position [of @ local maximum viscosity for
nonmonotonic viscosity profile, are also analyzed systematically. Result of
this study showed that as the overall viscosity contrast held constant,
nonmonotonic viscosity profile lead to a more stable flow than monotonic
one, and there are no significant differences in different monotonic
viscosity profiles. However, if the nonmonotonic viscosity profile crosses
the convex monotonic viscosity profile, the nonmonotonic feature enhances
the prominence of interfacial instability.

Chapter 4 focuses on study the morphologies in lifting Hele-Shaw cells.
We investigate the effectiveness of time-dependent gap width assuming

that the fluids involved are miscible. Splitting, merging and competition of



fingers are all inhibited. The sensitivity of the system to changes in the
initial conditions and Péclet numbers is also discussed. The influence of the
four viscosity profiles as discussed in Chapter 3 has been studied again on
the interface dynamics. Consistently, higher Péclet number Pe and viscosity
contrast (4 in monotonic viscosity profile and x, in nonmonotonic one,
respectively) demonstrate more vigorous fingering. The stability of three
monotonic viscosity profiles is always in the series of concave, linear and
convex. As the nonmonotonic viscosity profile across the convex
monotonic viscosity profile, demonstrates more vigorous fingering than
concave viscosity profile.

Chapter 5 concludes the major findings in this thesis and outlining the

recommendations for the future work.



Chapter 2 General Feature

2.1 Physical Problem

To investigate the phenomenon of viscous finger, we can simplify the
complex geometries such porous media to a narrow gap between
closed-spaced parallel plates. Consider a packed column of length L
initially filled with displaced fluid and injecting fluid, which is
schematically showed in Fig. 1. When the injecting fluid displaced fluid in
porous media, the difference between the viscosity and the density arise
flow instability. The pressure drop AP-is constant along the column, and &
is the permeability. Darcy’s equation for a porous medium is expressed as
[36]:
w2 poef (e ] 1)

Figure 1 schematically shows the interface between the two fluids along
the column. Section A is the main, unperturbed zone, and a small part
section B perturbs the interface ahead -of (or behind) the column
cross-section. Considering ‘the liquids' in sections A and B are
incompressible, the velocity of injecting flow is the same as that of
displaced flow, but the flow velocity u, is not equal to up. Flow instability
may arise from the viscosity difference, but also from the density
difference when the upper fluid is denser than the lower fluid. The
difference in velocity between u, and uz was down by Rousseaux et al. [37]

is expressed as:

k Uy oz
R e En e R R

The flow is unstable when ug > u, for 6z > 0. From Eq. (2), the

denominator of this equation is positive, then the stability criterion
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expressed as:

u_B(/'ll_lle) - 5g(pl—p2) >0

k — 3)
) : density effect
viscosity effect

It contains the viscosity effect and the density effect. To avoid gravity
effect, Hele-Shaw [38] suggested considering a flow between two parallel
horizontal plates with a narrow gap between them. Therefore, only the
viscosity effect is conceded. In general, if the injecting fluid is less viscous
than the displaced one, this unfavorable viscosity contrast makes viscous
fingers and causes the system unstable.

Consider the control volume which 'is across the interface shown in Fig.
'

2 to explain the stability criteria. For a fluid with positive perturbation u

and increasing concentration ¢’; which in turn leads to changes in the
¢ and = (7))
c=l1

initially stable while the pressure difference oP=-(u,;"+u,)Udx<0. This

¢', the fluid is

c=0

viscosity change u" are u =(d%c)

indicates with the requirement that for a stable flow, and we obtain the
criteria for (u;+u,")>0.

However, as a result of nonlinear interactions between the fingers, the
stability of the flow depends not only on the end-point viscosity contrast,
but also on the derivatives of the viscosity with respect to concentration. It
is difficult to predict the nonlinear behavior of the viscous finger. This may
represent an experimental challenge because the fluids may get mixed up
before the injecting and lifting start, or undesirable air bubbles can be
trapped between the plates. A general solution is needed to understand the

growth of different fluid system.
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2.2 Governing Equations

2.2.1 Viscosity Profile
The viscosity ¢ in the mixing zone is supposed to be a function of the

injecting fluid concentration expressed as Eq. (4):

p = ple). )

Following other researchers (e.g. Tan and Homsy [23] and Rogerson
Meiburg [39]), the viscosity dependence on the monotonic case,
concentration has the form (e.g. Tan and Homsy [2]; Chen and Meiburg [4])
as: (see Appendix 1 a.)

(@ =R~ LAARL A g, @ -] (5)
mono mono /Ll dC ‘Lll eR +1 .

To confirm the stability of various viscosity profiles as stated before,
scholars have defined and studied monotonic and nenmonotonic viscosity
profiles, respectively. While considerable attention has been paid in the past
to the effect of different viscosity profiles.with nonmonotonic to fluid
stability, the issue of wvariable monotonic viscosity: profile has never been
investigated. Follow the monotonic.sense, recreate two convex and linear
monotonic viscosity profiles expressions as equation (6) and (7), where the

subscripts vex and linear are indicated, respectively. We thus obtain

Hy
f (€)= 22 = +1 (6)
Hi exp(ln('uz) x(1- C)J
H
lulinear (C) =a-0Cc+C, (7)

The viscosity-related parameter in the stability equation takes the form

(8) and (9), respectively (see Appendix 1 b. and c.).
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1 ( —aR )
Rvex =
La - a . lj exp(Rx(1-c)) ) (8)
exp(

Rx(1-c))

1
Rlinear = ( j(l - a) . (9)
oa—aoac+c

The nonlinear evolution of viscous fingering instabilities in miscible
displacement flows with nonmonotonic viscosity-concentration profile of
the alcohol-water mixtures have been investigated first by Manickam and
Homsy [10]. The nonmonotonic viscosity profiles are characterized by the
interplay of the maximum viscosity u,, the location of the maximum
viscosity c¢,, and the end-point @ viscosities contrast «. Different
viscosity-concentration .. relationships may result in different fluid
configuration. In order to be able to compare results of previous studies on
nonmonotonic flows, we employ the same functional relationships between
viscosity and concentration which has investigated by Manickam and
Homsy [10]. It has-defined a simple sine function: modified through a

sequence of transformation by the expressions as Egs. (10)-(16).

Hoon (€)= 1, SIN(7) (10)
r=r,d=-B+np, (11)
p= % (12)
yo =sin" o/ ,,), (13)
n=n-sin"(u,), (14)
4o Sn =B

(B, 1) (15)
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1
~T=70

R —— (16)
Y1 =70

The viscosity u is supposed to be a function of the injecting fluid
concentration, which is a sine function modified and has the end-point
viscosities u(0)=a, w(l)=l, schematically show the shape of the class of
viscosity profile considered. When a <1, the flow has a favorable end-point
viscosities contrast, as a high viscosity fluid displaces a low viscosity fluid,
and o>1, the flow is said to have an unfavorable end-point viscosities
contrast to indicate the reverse scenario. It is given the maximum viscosity
value of u,, located at c=c,,. In ¢, > 0.5 case, the maximum viscosity is
located closer to the injecting fluid, and is closer to the displaced fluid

otherwise.
In the nonmonotonic case, the viscosity-related parameter R,,,(«) in the

stability equation takes the form as: (see Appendix 1 d.)

L du

l+a
Rnon - = L% S
(,U) p de (7/1 7/0)(1 )2 COt(j/) (17)

+ac

2.2.2 Injection-Driven Radial Hele-Shaw flow

Consider a Hele-Shaw cell of constant gap thickness / containing two
miscible, incompressible, viscous fluid (Fig. 3). Miscible displacements are
characterized by negligible surface tension, so the interplay of diffusive,
convective, and viscous effects dictate the pattern formation behavior.
Denote the injecting fluid of viscosity u; displaces the displaced fluid of
viscosity i, at a given injection rate 0, equal to the area cover per unit time.
Further, we assume two fluids mix in all proportions. The concentration of
the injecting fluid is represented by c. Assume the permeability and the

physical dispersion to be homogeneous and isotropic. Solve the unstable,
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steady, incompressible flow generated by a miscible displacement process

under Darcy's law expressed as:

Continuity equation:

_8u+8u_0 (18)

Vou=—-——+-2"2=
ox Oy

Hele-Shaw equation (see Appendix 2):

v _8_p2_12y

= u 19
P T T (19)
Convection/dispersion equations:
@+u-Vc=@+u@+v@:DV2c (20)
ot ot 0x oy

D is the constant isotropic diffusion coefficient. The governing equations
(18)—(20) are rendered dimensionless by taking the lateral extent L of one
unit of the flow field as the characteristic length scale. With the source
strength Q, choose the following parameters as characteristic scale to make

governing equation dimensionless:

o 27’
0
0

u*:—, 2].
27 D
61,0

* = .
P 7h?

The dimensionless equations (18)—(20), omitting the asterisks, can be
expressed in terms of the total velocity u, pressure p, and concentration c.
The dynamical evolutions of the system are the traditional gap average

Hele-Shaw flow equations expressed as:

V-u=0, (22)
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—+u-Vc:LV20. (24)
P

Here the Péclet number Pe can be interpreted as a dimensionless flow
rate,
Pe = Q2 , (25)

27D

which is a measure of the relative importance of advection to diffusion.

By employing such an approach, we rewrite the gap average velocity in
Eq. (23) as:
u=u, +u,, (26)
where u,,, 1s the rotational component of the veloeity, and u,,,, represents its
potential component, respectively. ‘The rotational part of the velocity is
smooth and can be obtained with highly accurate pseudospectral method,
while the potential part induced by injection is related.to a flow singularity
at a source located at the origin, making accurate computations more
difficult near these locations. To avoid numerical instabilities near =0, we
smooth out the point source by distributing its strength in a Gaussian way
over a small circular core region. Accomplishing this, we consider a
“Gaussian source” [40] which is characterized by a core size ¢=0.075. In
addition, the initial condition is assumed as an initial fluid core of radius of
r~0.1. Under the circumstances of constant injection rate, the dimensional
injected area at a given time can be written as A=Q¢. In this case, the
dimensionless potential radial velocity satisfying these requirements can be

expressed as:
1 2, 2]a
Uy :;[1—exp(—r /o ]r, 27)

where t denotes the unit vector along the radial direction.
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A fully explicit third order Runge-Kutta procedure on time and spatial
sixth order compact finite difference schemes are employed to solve the
concentration Eq. (24) and will be discussed in Section 2.3.

In order to solve the vorticity equations (24) numerically, we define the

total stream function [5] of the system as

¢ = ¢rot + pot (28)

where ¢,, and ¢,, denote the rotational and potential stream functions,

respectively. Since V*¢,,, =0, we end up with the equations of

9¢ o¢ 2
=7 =——" Viod=-w.
u, » , v, , @ (0] (29)

In the present simulations, we take cy(x) from the one-dimensional
similarity solutions provided by Tan & Homsy [1]-as well as Yortsos [44]
for radial source flow at initial time ¢, The starting time #; of the simulation
is taken to be non-zero, in order to avoid a singular initial concentration

profile. Suitable initial condition can be specified as

d(x, 1=1)=9,,(x), (30)

c(x, t=t)=cy(x). 31)
Furthermore, to break the unphysical fingering symmetry, an initial

condition such as a small magnitude of random perturbations which is

produced by Matlab is applied to the positions at ¢ = 0.5. The influence of

perturbation on the simulation results will be discussed in Section 4.2.

The symmetry boundary conditions at the sides now are

o
x=+1, ¢=0, a—;:o, (32)
oc
y:i1,¢=0,5:0, (33)

To reproduce the extremely fine structures of the fingers, a highly
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accurate pseudospectral method which will be discussed later is employed.
As a result, the actual boundary conditions applied in the numerical code
are 0¢/0y=0 aty = *I, where no concentration gradient is generated on
the boundary. The condition ¢ = 0 could be imposed at the boundary. To
ensure this condition, all the simulations are terminated when the inner
fluid reaches the boundary.

An alternative and more quantitative account of the role played by the
parameters in determining the behavior of the evolving mixing interface is
offered by the growth of a characteristic quantity related to the mixing
boundary region. The mixing region between two miscible fluids is not a
well-defined sharp interface, in the region of significant concentration
gradient. Chen and Meiburg [4] provides a good measure of the overall
length L(¢) of the interface between injecting and displaced fluid can be
represented as Eq. (34)

-85 g

Normalized mixing interfacial length L(7) scale as Eq. (35), which is the

initial circular pattern (base state).at a given time, expresses the ratio of the

length of the diffuse interface to the perimeter of base state L,(¢) as (36).

Ly(t)=27/2(¢+0.005), (35)

L( L(t)jj\/( j ( )zdxdy (36)

2.2.3 Time-dependent Gap Hele-Shaw Cell

Consider a Hele-Shaw cell of a time-depended gap width A(¢), containing
two miscible, incompressible, viscous fluid is sketched in Fig. 4.
Unlike the traditional Hele-Shaw cell illustrated in Fig. 3 of a constant

gap thickness /4, in such a lifting version, the upper plate of the cell is
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moved upwards uniformly at a lifting velocity, while the lower plate of the
cell is held fixed. Denote the outer fluid of viscosity u; displaces the inner
fluid of viscosity u,, and the concentration of the outer fluid is represented
by c. Assume two fluids mixing in all proportions, and the permeability and
the physical dispersion to be homogeneous and isotropic. During the lifting
process the plate always parallels to each other. For the initial gap thickness
h—o=h,, the gap is a function of time, but not space. The initial fluid-fluid
diffusive interface is circular, having radius R—y=R,. Initially, a more
viscous fluid is placed at the center of a Hele-Shaw cell, surround by a less
viscous fluid.

The dynamical evolution in a time-dependent gap Hele-Shaw cell is
governed by the follow equations in Refs. [26, 31, 39, 41, and 42]:

Continuity equation;

h(t)
n) (37)
Hele-Shaw equation:
12u
VP:_h_Qu (38)

Convection/dispersion equations:

%+M-VC=DVZC (39)

Like the injection cases discussed in the chapter 2.2.1, the concentration
of the outer fluid is represented by c. In order to render the governing
equation (37)-(39) dimensionless in Refs. [5, 6], we assume an exponential

increasing gap width as:

By (1) = hoe™”, (40)
where y 1s a control parameter. Take the initial radius R, as the

characteristic length scale. Here the gap averaged Hele-Shaw
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dimensionless expressions are a bit different from these presented in the
injection-driven fluid [Egs. (18)-(20)]. Here the gap averaged Hele-Shaw

dimensionless expression to the time variation of the cell gap spacing is as:

Vou=-1, (41)

VP=—"u, (42)
e

ac 1 2

—+u-Ve=—V-c. 43

ot Pe (43)

Defines a Péclet number for the lifting flow situation as:

2
pe="% (44)
D

Further scale the viscosity with u; and time with //y, respectively. The

following parameters make governing equation dimensionless

2
hO
u=)R,. (46)

The velocity is splitinto-a divergence free component u, which is the
rotational velocity of the constant gap spacing case, and an axisymmetric

divergent radial, potential velocity u,~u,(r) caused by the gap variation, so

that

u=u,+u,, (47)
_0p __0¢

Veu, =—1. (49)

The divergent radial velocity is obtained directly from Eq. (49) as
u~-r/2, which is a potential field. Similar to the injection-driven case, the
divergence free component ucan be obtained by solving Egs. (29) where u

and v are the components of the velocity vector u along the x and y
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directions. Notice that the velocities refer to the x-y components of the
rotational velocity (u,, v,). The numerical scheme is similar to injection
which will be discussed in the Section 2.3, we will not discuss again.

Following Ref. [34] for the variant dimensional lifting situation we

consider that
hy
h(ﬂ—ﬂ_éﬂ/ (50)

where ¢ is a control parameter with an inverse dimension of time. We
utilize the same set of characteristic scales used in the exponential lifting
situation to obtain the corresponding governing equations for the variant
lifting case. In this context, the dimensionless continuity equation takes the
form as

2a

0= a D

but Egs. (42) and (43) remain unchanged. Note the definition of an
additional dimensionless parameter, namely the lifting ratio a=d/y.
Likewise, in dealing with the variant lifting situation, Eqgs. (47) and (48) are
unaltered, but Eq. (49) isreplaced by

2a
Vouy=——.
‘T 7(1-at) (52)
The divergent radial velocity is obtained directly as
U= — ar 7 53
T T0-at) (33)

which is a potential field.
The mixing interfacial length be represented in [50] are moderated from

Eqs.(34)-(36),

=L {03 (50

L 1s the initial interfacial length.
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As to the boundary conditions, the non-vanishing divergence-free stream
function given by Eq. (28) is induced by concentration gradients.
Consequently, for regions located outside the droplet (where no
concentration gradient is presented), the stream function is zero. Therefore,
the choice of computational domain is arbitrary as long as the domain
contains the whole droplet. Of course, the divergent radial component is
still presented within the entire computational domain. In order to
reproduce the very fine structures of the fingers successfully, we choose the
boundaries to vary between +4/3 and —4/3 in both x and y directions. Under

such circumstances, the boundary conditions are prescribed as follows:

X:i§;¢zo,azoa (55)
4 oc
y:i§a¢209520. (56)

The simulations are terminated when the //hy = 4. This 1s done to the

definition to Hele-Shaw cell with a narrow gap.

2.3 Numerical Scheme

To address the issue in Section 2.2.2, the stream function (¢) and
vorticity (o) formulation by Josselin and Jong [46] is employed. In this way,
the continuity equation is satisfied identically, and the governing set of the

Eq. (24) takes the form

1

Fevzc (57)

c, +¢ycx —-¢g.c, =

A fully explicit third-order Runge-Kutta procedure on time is utilized, so

by writing the concentration equation as

- =) (58)
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so that

cfy =i+ AV F(ef )+, Fef )], (59)
where
8
VIZE’m:O’
5 17
Vy=—, ==, 60
2= 12" " 60 (60)
,o3 S
3 43773 12
with
gl<.
2

where N is the number of grid points in the longitudinal direction. The
simulations to be discussed below typically employ discretization of
513x513 grid points.

Recast Eq. (23) into the well-known vorticity formulation (see Appendix
1), yielding

w:__(u__v_j (- 5o)<R(V4-ve) (61)

The parameter R is chosen from Egs. (5), (8), (9), and (17) which is

correspond to different kind of viscosity profile. The streamfunction (¢)

and vorticity (w) are employed a Galerkin-type discretization expanded in a

cosine series in the x direction as Eq. (62)-(63).

$(x, 3,1 = D, (1) cos[2mgx] | (62)

o(x,,)= ) &, (y,1)cos[27gx], (63)

To solve the stream function Eq. (29) and (61), the elliptic Poisson

equation for the determination of the rotational component of the stream
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function from the vorticity distribution can be solved fast and efficiently on
the basis of fast Fourier-Galerkin scheme. In the y-direction, discretization
1s accomplished by sixth order compact finite differences. In the x-direction,
discretization is accomplished by pseudospectral method.

The spatial discretization of the governing equation is based on the
compact finite difference schemes in the form given by Lele [45]. When the
first derivatives contained in the convection terms that appear explicitly, the

sixth-order formulation is

=b, Jia = Jics +a, Jin—Jia

SIS+ =b e o, (64
with

1 14 1

=—, :—’b = — 65
S 3 a 9’79 (65)

Here, /\ indicates the mesh size, which is identical in the x and y

direction. We apply.the second derivatives of the diffusion terms is

" " " s —2f +f » 1 =0  £4f3
Sfintfi v 0n =, Ju 4112 Juo +a, Ju Ajzi Jis s (66)
with
2 12 3
=T = b = 67
: TERCEETRRCIT' (67)
2.4 Validation

Rigorous validation represents an important step in establishing the
accuracy and convergence properties of a novel numerical approach.
However, not only the viscosity profiles we studied are very complicated,
but an experimental challenge because the fluids may get mixed up before
the injecting and lifting start or undesirable air bubbles can be trapped

between the plates. We cannot compare with experiment data.
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Our numerical code is largely similar to the one used for earlier
investigations on planar fronts with monotonic viscosity profile [7], is
validated by comparing the growth rate of small perturbations with the
respective values obtained from linear stability theory by Tan and Homsy
[1]. In other words, in contrast to other investigation of the Hele-Shaw
problem for immiscible with rotation where a more physical correlation
would be desired [47], which have been validated by comparing the
numbers of finger obtained in Ref. [48]. These simulated morphological in
suction flow [49] also attributes very well with existing experiment
[51]-[54] and other numerical simulation, as well as with other numerical

simulations [55], have gotten excellent agreement.
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Figure 1: Schematic illustration of a perturbation of the interface between
two fluids in Hele-Shaw cell, the injecting flow; pushes the displaced

flow,.
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Figure 2: A physical interpretation of the stability criteria.
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d*

Figure 3: Schematic setup for an injection-driven miscible radial flow in
Hele-Shaw cell with cell gap 4. The fluid 1 is injected at the center with a
flux Q. Viscosities of the injected fluid 1 and the displaced fluid 2 are

denoted as u; and u,, respectively.

A

T.h(dr)
Figure 4: Schematic setup of the time-dependent gap radial Hele-Shaw
flow with miscible fluids. The upper plate of the cell is lifted, so that the

gap of the cell is variable. The inner fluid is more viscous («; > u;).
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Chapter 3 Fingering Instability of Miscible Injection Hele-Shaw

Flows

3.1 Monotonic Viscosity Profile

To begin with our numerical investigation, we perform a systematic study
of the concentration images obtained from different viscosity profiles. Chen
et al. [6] and most of recent studies in the outward radial flow, in which
one of the fluids is injected into the Hele-Shaw cell with monotonic
viscosity profile, have demonstrated that more vigorous finger is observed
at higher Pe and larger. 4. Other types-of monotonic viscosity profiles
redefined by us will be discussed later!

To study the effect of different viscosity profiles, a nonmonotonic
viscosity profile is provided to compare with the monotonic viscosity
profiles, concave, linear, and convex are depicted in Fig. 5 for comparison.
In order to minimize the impact of u,, let the u,, equal of o + 0.001, and ¢,
set to 0.03 so as to ensure that. nonmonotonic viscosity profile is not across
the aforementioned three monotonic viscosity profiles. To compare with the
monotonic viscosity profiles as stated before, we rename monotonic and
nonmonotonic viscosity profile to concave and quasi-monotonic one,
respectively. A picture of the four viscosity profiles are depicted in Fig. 5.
The concentration images of four viscosity profiles shown as Fig. 5 at
=0.30 are depicted in Fig. 6 and time evolution of the interfacial length
shows in Fig. 7 with Pe=800, respectively.

It can be observed that although a linear and convex viscosity profile
tends to widen the finger tip, but the morphology of three monotonic

viscosity profiles are very similar. However, we simulated over a broad
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region in parameter space before our numerical code become unstable and
found that the differences in concentration images and time evolution of the
interfacial length between three types of monotonic viscosity profiles are
quite small. Result of this study showed that as the overall viscosity
contrast held constant, nonmonotonic viscosity profile led to a more stable
flow than monotonic one. Likewise appear in the study of monotonic
viscosity profiles, although we modified as A varies from O to 1, there were
no significant differences in different viscosity profiles. However, if the
nonmonotonic viscosity profile was across the convex monotonic viscosity
profile, the nonmonotonic feature enhanced the prominence of interfacial

instability.

3.2 Nonmonotonic Viscosity Profile

We now turn our attention to the influence of physical parameters to the
nonmonotonic viscosity profile for miscible radial Hele-Shaw flow. The
original definition of this profile given by Manickam and Homsy [10]
divided it into an unstable zone (from injection fluid to the viscosity
maximum) and a stable zone (from-the viscosity maximum to displaced
fluid) illustrated in Fig. 8, respectively. Both of zones affect the fluid. In
particular, Pankiewitz and Meiburg [19] suggested the unstable zone has
the ability to trigger an overall instability, and the stable zone of the
viscosity profile acts as a barrier for the forward growth of fingers.
However, detailed discussions of the viscosity profile and stabilization in a
radial Hele-Shaw cell have not been found. Therefore we focus our effort in
the effect of the relation. The stability of the flow is investigated and a
criterion for instability is formulated in favorable and unfavorable viscosity
contrast, respectively. We simulated miscible displacement over a broad

region in parameter space before our numerical code became unstable and

28



discussed the results to the stability problem.

3.2.1 Influence of the Péclet number Pe

The value of Pe is directly proportional to the flow rate. Small flow rate
provides diffusion with enough time to smear out the concentration field,
whereas, for larger flow rate, steeper concentration gradient can be
maintained. Its influence can be analyzed by discussing a series of
simulations employing different values of Pe for which ¢,, a and y,, are
held constant. The increase in the value of the Péclet number provides
stronger concentration gradients that enhance finger penetration and lead to
more fingering. This finding is easily verified in Fig. 9, in term of both with
unfavorable or favorable viscosity profile.

For Pe variation between 200 -and 800 with increments of 200, meaning
weaker diffusive effects or faster injection rate, the width of viscous fingers
tends to get thinner-and the number of finger become more with increasing
Pe-value. The unfavorable end-point viscosity contrast («=2) in the top of
Fig. 10 is the inverse of the bottom one with fayorable end-point viscosity
contrast (a=1/0=0.5), depicting that the lengths of fingers in unfavorable
viscosity profile are longer than favorable ones. The particular phenomenon
of “reverse” fingering where the fingers spread farther in the backward
direction than the forward are observed. We can also find comparing the
interfacial length illustrated in Fig. 11, that higher Pe will get higher L, if
other parameters held constant. It means that larger Pe-value gives a rise in
a fingering instability.

Tan and Homsy [1] had found that each viscosity profile in
nonmonotonic case has a critical value Pe., can identify, above which the
flow is unstable. Below the Pe., viscous finger is not obvious and the
concentrate image is a circle before breakthrough. It is also found that L,

almost equals to 1 as time progresses. The phenomenon indicates that a
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nonmonotonic viscosity profile can be stable, no matter whether the

end-point viscosity is unfavorable or favorable end-point viscosity contrast.

3.2.2 Influence of the maximum viscosity u,,

The maximum value of the viscosity is given by u,, and the maximum
occurs at c=c,,. Higher value of the maximum viscosity u,, means that the
injecting fluid would push a lower mobility displaced fluid. It has an
intuition that the fluid will flow slower because higher u,, will decrease the
tip velocity and the front become thicker, but higher u, also increases the
derivate between the injecting fluid and u,,, causing the fluid more unstable.
Pankiewitz and Meiburg [19] idiscovered that for a given end-point
viscosities contrast, an increase in the maximum viscosity generally leads
to a more unstable flow, regardless of whether the overall viscosity ratio is
favorable or unfavorable. However, contrasting to Manickam and Homsy
[10] numerically showed that in rectilinear  displacement, a higher
maximum viscosity generally stabilizes flow with an unfavorable end-point
viscosity contrast.

It is to be kept in mind that all of the above investigations dealt with
rectilinear and quarter five-spot displacements, whereas our present study
focuses on the nonlinear flow characteristic of radial flow. We use the
largest value p,, for which our numerical code remains stable for u,=14
with an unfavorable viscosity profile (o= 3 and ¢,=0.1) and x,=9 with a
favorable viscosity profile (o= 0.2 and ¢,=0.2). The viscosity profiles are
illustrated in Fig. 8, respectively. By analyzing Fig. 12 which depicts the
concentration images at =0.30, we obtained for increasingly larger values
of the maximum viscosity w4, the occurrence of fingerlike structures which
split at their tips. The length of fingers will increase with the maximum
value of the viscosity, respectively.

Figure 13 illustrates the vorticity images of Fig. 12. The result suggested
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that higher u,, tend to be stronger in the recirculating fluid region. It is
corresponding to the finding by Pankiewitz and Meiburg [19]. But it is in
marked contrast to the above, in which usually only the inner recirculating
fluid region exists for unfavorable scenario. Reduced u,, to 3, the outer ones
never becomes visible in the perturbation streamfunction plot. However, we
have observed that with favorable end-point viscosities contrast (0=0.2)
take the u,=2, both of the inner and outer recirculating fluid regions are
obvious and dual vortex appear. In contrast with unfavorable end-point
viscosities contrast (a=3), take the p,=3.001 slightly higher than end-point
viscosities contrast, the outer recirculating fluid regions are obscure, but
exactly exist.

Manickam and Homsy [3] suggested that the flow will be unstable if the
destabilizing vortices are stronger than the stabilizing ones, but otherwise
stable. However, inspecting the vorticity images of Figure 13 and other
cases we have done-over a broad region parameters space, the destabilizing
vortices are always stronger than-the stabilizing ones without exception,
corresponding to the findings for the radial source flow displacement by
Pankiewitz and Meiburg [19].. We also notice that the pair of vortices is
more violent for larger w,,.

Both of inner and outer vortices comprise many two units of adjacent
counter-rotating vortices. For this, we borrow arguments similar to Shariati
and Yortsos [20]. The vortices in the outer rings of decreasing viscosity in
the direction of displacement, any two adjacent counter-rotating vortices
bring low viscosity fluid from the downstream to the upstream direction
and high viscosity fluid from the upstream to the downstream direction.
The first action lowers the resistance to flow in a direction that opposes the
instability, while the second one increases the resistance to flow in a
direction that enhances the instability. Both of the vortices in the outer rings

act to stabilize the flow. Conversely, in the inner rings which are increasing
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viscosity in the direction of displacement, act to destabilize the flow.
Higher u,, will cause the vortices both in inner and outer rings more violent.
The dimensionless interfacial lengths L, as a function of time for different
W, are illustrated in Fig. 14 which depicts the time evolution of the
normalized mixing interfacial length L, for Pe=400, with the four sets of
viscosity profiles in Fig. 8, both in unfavorable end-point viscosities
contrast a=3 and ¢,=0.1 [related to Fig. 12 (a) and (b)]; and in favorable
end-point viscosities contrast o=0.2 and c¢,=0.2 [related to Fig. 12 (¢) and
(d)], and three increasing values of the maximum viscosity value u,,.

The growth of normalized interfacial length serves as a good indicator
for the intensity of fingering at the mixing interface. From Fig. 14, it is
evident that the presences of increasingly larger maximum viscosity value
Wy, tend to destabilize the diffuse interface. For the u,, with mature fingers,
we observe a very steep growth of L, at earlier time, followed by its
“saturation” for longer time, and we also notice that the slopes of the
curves are increased for larger w,,.

In addition, for all-times, the curves for lower y,, are always below the
ones of higher u,. Again, thisis in accordance with the maximum viscosity
value u,,, which tends to destabilize the mixing interface.

By contrasting these normalized interfacial lengths, we notice that the
most noteworthy effect in Fig. 14 the collapse of the curve as a=0.2 and
=9 shows a damping effect in favorable end-point viscosity contrast at
beginning (during =0.0343 to 0.0729). A time series of the contours on the
concentration to the parameters sets are illustrated in Fig. 15. The time
interval between contours is 0.02 and the first contour is at #=0.03. It can be
observed without fingers merge and shield, numbers of fingers do not
change, and the length of finger is almost constant but becomes wider after
t=0.0343. Compare with the length of fingering between #=0.0343 and
t=0.0729 illustrated in Fig. 16 (a) and (b) and it shows no significant
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variations. It means that the finger length does not increase as fast as the
injection flow. As time longer than /=0.0729, as in Fig. 16 (c) at /=0.11, it
i1s apparent that the length of fingers are longer than (a) and (b). The
phenomenon can interpret damping effect in Fig. 14. We also find that the
viscosity contrast and fluid stability do not show any significantly relation

with nonmonotonic favorable viscosity profile.

3.2.3 Influence of the location of the maximum viscosity c,,

In the nonmonotonic viscosity profile, the position of the maximum
viscosity ¢,, denotes the place with the lowest mobility. With an increase in
Cm, the maximum viscosity u,, of the viscosity profile will move to injection
fluid, vice versa. It 1s difficult to find the nonlinear effect of the c,, to the
stability of fluid. The work of Manickam and Homsy [3] has extended a
straight forward parameter 4 which is-a quantity for the relation between

the slope of injecting fluid (e=l) and displaced fluid (¢=0) is expressed as:

du| , du
A:_a’cczo dcc=1, » \ e o (68)
o+1 Y7

In the monotonic viscosity profile, (du/dc) | .-y and (du/dc) | .-; are of

the same sign, the unfavorable viscosity contrast (u; < u;) leads to

instability (4 > 0), and vice versa. In non-monotonic case, (du/dc) | . and
(du/dc) | .- are of opposite signs, 4 > 0 means the slope of the viscosity

profile at the point c=l is steeper than at ¢=0. In other words, the slope in
unstable zone is steeper than stable zone.

A number of studies depict viscosity profile by 4 and attempt to identify
and quantify the stability of fluid. Therefore, Loggia et al. [24] make an
exhaustive study of the parameter and explains the key for longitudinal

dispersion in making conditionally unstable an initially stable profile at a
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critical time. Yortsos and Zeybek [47] showed that Eq. (68) with 4=1 can
be obtained for the monotonic profile. Manickam and Homsy [3] used the
QSSA and suggested that when the parameter A is positive, the flow is
always unstable, and when A is negative, the initially stable flow becomes
unstable as the base flow diffusion; but they also suggested the equation
fail to hold at large times when the base state has diffused out. With
nonmonotonic viscosity profile, Kim and Choi [25] showed that A is

expressed as:

A= W[@ +a)cos(y,) +(1+a)™ cos(yl)]. (69)

We begin analyzing the favorable (¢=0.7) and unfavorable (0=3)
end-point viscosity contrast viscosity profiles set shown in Fig. 17,
respectively. Because higher ¢, is easy to cause our numerical code become
unstable, in order to assess the magnitude of this effect, we carried out a
relevant parameter set in which Pe=400 and p,,=4 were kept constant, and
fingering was generated by different sets of c,,.

Figure 18 plots the end-point derivatives of the viscosity profile, 4 as a
function of the maximum of the viscosity profile, c,, for the unfavorable
(blue curve) and favorable (red curve) end-point viscosity contrast. It
presents a simple tendency toward more unstable of fluid for higher c,,
which is consistent with Manickam and Homsy [3]. The time evolution of
the interfacial length is illustrated in Fig. 19. A general trend is observed, in
which a higher c,, leads to a more unstable interface at the early time, but
turns more stable at a later stage. However, concentration images in Fig. 20
illustrated that at the final stage (+=0.30), as c,, increase, fingers become
more obscure.

It should be noted as the Péclet number decreases closely to the critical
number Pe. demonstrated by Tan and Homsy [1], the approach sketched

out here fails to predict the stability of fluid. Fortunately, in that scenario,
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the fingering is not mature, and render parameters vary ineffectively. It is

acceptable to neglect the error in predicts.

3.2.4 Influence of the end-point viscosity contrast a

Now we turn to the investigation of the role played by the end-point
viscosity contrast a. The influence of this parameter is quite intuitive. As a
general point, for large end-point viscosity contrasts and Péclet number,
strong nonlinear interactions between the finger, such as merging, partial
merging, and shielding, are observed [4] with monotonic viscosity profile.
Interestingly, investigations of the injection-driven Hele-Shaw cell with
nonmonotonic viscosity profiles have been performed so far focusing
solely on quarter five-spot configuration and rectilinear flow. Therefore, the
beautiful interfacial patterns for radial injection flows involving miscible
fluids are still largely unexplored in the present literature.

We begin our numerical investigation performing a systematic study of
the concentration images obtained for different wvalues of the relevant
control parameters. Basing on the above discussions, we expect large
end-point viscosity contrasts-leading to.a strong nonlinear interaction.
However, it is also interesting to notice the fundamental differences
regarding the enhanced fingering processes induced by Péclet number Pe
and end-point viscosity contrast a. Comparing the concentration images in
Fig. 21 and descriptions in more qualitative terms in Fig. 22 highlight
differences the two parameters, we found that higher difference between
end-point viscosity contrast a and the maximum viscosity u,, caused richer
phenomenology, such as tip splitting was observed in Fig. 21 (a). Look at
the interfacial behavior in another way, comparing Fig. 21 (a) with (c), it is
interesting to find that lower end-point viscosity contrast o for constant
maximum viscosity u,, leads to enhanced fingering around internal regions.

An important interfacial behavior that can be studied more quantitatively
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is the one related to different morphological interfacial features induced by
higher Péclet number or higher end-point viscosity contrast a. Compare Fig.
21, and will find that higher Pe leads to more fingering (recheck Fig. 9 also
agree this point), while higher a for constant maximum viscosity g, leads
to longer viscous fingers.

Another scenario is favorable end-point viscosity. The set of simulations
we have chosen are with nonmonotonic viscosity profiles for the end-point
viscosity contrast a=0.2, 0.5, and 1, respectively. Other parameters set are
fixed at the Péclet number Pe=400, the maximum viscosity u,=4 and the
location of the maximum viscosity ¢,=0.1. A schematic of these profiles
with the parameters set are shown in Fig. 23 and almost overlap between
three lines. The concentration and vorticity images (Fig. 24) and the time
evolution of the interfacial length (Fig. 25) indicates that there are no
statistically interaction effects of favorable end-point contrast was found.

Moreover, recheck Fig. 10, although the end-point viscosity contrast of
unfavorable scenario is the inverse of the favorable case, fingering for
unfavorable contrast are  always longer  than favorable one. This
phenomenon indicates that unfavorable end-point viscosity contrast leads
to fluid more unstable than the favorable one if other parameters set is held

fix.
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Figure 5: Various types of monotonic viscosity profiles with 4=0.5
(viscosity ration a=3). The quasi-monotonic profile is represented by

insignificant non-monotonicity of x,,=3.001 and ¢,,=0.03.
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Figure 6: Concentration images with Pe=800 at r=0.30 for various types of

viscosity profiles shown in Fig. 5, (a) concave; (b) linear; (c) convex and (d)
quasi-monotonic. In the present unstable conditions, i.e. u; > u,, fingering
instabilities are observed for all the profiles. The overall patterns show
great similarities, which indicate insignificant influences of the local

correlations between fluid concentration and the viscosity.
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Figure 7: Evolutions of the interfacial lengths, which can be used as a

global quantitative measurement of the prominence of fingering, for the
four conditions shown in Time evolution of the interfacial length under the
condition set as Fig. 5. The global characteristics of interfacial lengths
show no significant variations. Nevertheless, a general trend is observed, in
which a more convex profile leads to a more unstable interface at the early

time, and turns more stable at a later stage.
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Figure 8: Representative profiles of non-monotonic viscosity. The black
lines show unfavorable end-point viscosity contrasts of a=3, ¢,=0.1 for
=9 and 14. Favorable end-point viscosity contrasts are represented by the

red lines with a=0.2, ¢,=0.2 for w,=6 and 9.
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Unfavorable

Favorable

Figure 9: Concentration images for the case of unfavorable viscosity profile
(a=2, top row), and favorable viscosity profile (a=0.5, bottom row). These
simulation used for different Péclet number with parameters set for w,,=4

and ¢,,=0.2 at =0.35.
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Figure 10: The contour of concentration for-¢c=0.5 versus azimuth with the
same viscosity profile sets of Fig. 9. Both on unfavorable case (a=2, top fig)
and favorable end point contrast (¢=0.5, bottum fig) with Pe=800, at /=0.1,
0.2 and 0.35, respectively. The red line indicate the position of basestate as

a function of the time.
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Figure 11: Interfacial length ‘L, as a function of time for different Péclet
number with constant viscosity profile («,=4 and ¢,=0.2) in unfavorable
and favorable viscosity profile. In the inset the number label the Péclet
number and end-point viscosity contrast. An interesting phenomena
damping effect can be observed in Pe=800 and 0=0.5 set and will be

discussed later.
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(d)

Figure 12: Concentration images for the non-monotonic viscosity profiles
shown in Fig. 8 with Pe=400. Unfavorable viscosity contrast of o=3 and
c,=0.1 for w,=9 (a) and u,=14 (b). Favorable viscosity contrast of a=0.2
and ¢,=0.2 for u,=6 (c) and 9 (d). The non-monotonic viscosity profile
enhances fingering instability significantly. Even an original stable
interface in a monotonic profile appears significantly fingering if the
viscosity profile is non-monotonic, i.e. o < 1 shown in (c¢) and (d). In
addition, the prominences of fingering are enhanced by degree of the

monotony, i.e. higher .
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Figure 13: Correspondent images of vorticity for the cases shown in Fig. 8.
Besides the well-understood vorticity pairs inside the individual fingers,
additional pairs of detached vorticity caps right beyond the fingertips are

generated due to the non-monotony of viscosity profile.
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Figure 14: Evolutions of the normalized interfacial lengths for the four

cases shown in Fig. 8. Aftera short period of time with significant growths,
the interfacial lengths appear to level off. In line with the common
expectations, a more unfavorable end-point viscosity contrast, such as a=3,
results in a more prominent fingering instability. Also confirmed is that
significance of the viscosity non-monotony leads to a more unstable

interface, e.g. 1,=9.
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Figure 15: A time series of the contours on the concentration to the Fig. 13
(d) parameters sets as u,=9. Time is varied between 0.03 and 0.13 with
increments of 0.02 in blue lines. Times during damping effect are plot in

red lines.
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Figure 16: The contour of concentration for to the Fig. 13 (d) parameters

sets as w,=9 at t=(a)0.0343, (b) 0.0729, and (c)0.11. The green lines

indicate the position of basestate as a function of the time.
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Figure 18: Parameter for the end-point derivatives of the viscosity profile,
A as a function of .the maximum of the viscosity profile, c,, both for the

unfavorable and favorable end-point viscosity contrast in Fig. 17.
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Figure 19: Evolutions of the normalized interfacial lengths for Pe=400 with

the six viscosity profiles shown in Fig. 17. The most unstable interface at a
later time stage is always triggered by a smallest ¢,,=0.1, whose viscosity
profile appears more concave, for both unfavorable and favorable end-point

conditions. The trend agrees well with the findings presented in Fig. 18.
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Figure 20: Concentration images forthe non-monotonic viscosity profiles
shown in Fig. 17 with Pe=400 and u,=4 at t=0.30. Unfavorable viscosity
contrast of a=3 and¢,=0.1, 0.3, and 0.5. Favorable viscosity contrast of
a=0.2 and ¢,=0.1, 0.3, and 0.5. The lower ¢,, enhances fingering instability
significantly. Even an original unstable interface in higher c,, appears
significantly more unstable either favorable or unfavorable shown in Fig.

19.
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(a)Pe=400, a=2 (b)Pe=200, o=9 (c)Pe=400, =9

Concentration Image

Vorticity Image

Figure 21: Concentration images (top row) and vorticity images (bottom
row) for viscosity profile set with wx,=13 and ¢;=0.1 for (a) Pe=400 and
0=2. (b) Pe=200 and a=9. (c) Pe=400and o=9 at t=0.30. The outer fluid is

more viscous (u, >uy).
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Figure 23: Zoom in the nonmonotonic viscosity profiles for w,=4, ¢,=0.1,

and 2=0.2, 0.5, and 1.

0=0.2 o=0.5 o=1
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Figure 24: Concentration images (top row) and vorticity images (bottom
row) for Pe=400, u,=4, c,=0.1, 0=0.2, 0.5, and 1 at =0.30. The inner fluid
1s more viscous (u; > u) and the green lines in vorticity images indicate the

position of y,,.
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Figure 25: Time evolution of the interfacial length with u,=4, c,=0.1,
a=0.2, 0.5, and 1 for Pe=400. In the inset the detail viscosity profiles for
the three parameters sets. No significant main effect for favorable end-point

contrast was found.
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Chapter 4 Controlling Radial Fingering Patterns in Miscible
Lifting Hele-Shaw Flow

We begin our numerical investigating the effectiveness of adjusting the
time-dependent gap width and perturbation for these complex fingered
structures, then performing a systematic study of the concentration images
obtained for different viscosity profiles. The layout of the rest of this
chapter 1s as follows. Section 4.1 focuses on comparing the fingering in
conventional linear or exponential time-dependencies. In Section 4.2, we
analyze how the perturbation can influence the ultimate appearance of the
fluid-fluid diffusive interface. As pointed out in Chapter 3, Section 4.3
discusses the influence of four kinds of viscosity profiles on the interface
dynamics: concave, linear, and convex monotonic viscosity profiles, and
nonmonotonic viscosity profile are‘compared. Various parameters, such as
the overall viscosity contrast of both monotonic and nonmonotonic
viscosity profile, and local maximum viscosity: contrast and position of
local maximum viscosity for' nonmonotonic viscosity profile, are also

analyzed systematically in Section 4.4.

4.1 Influence of the Lifting Scenarios

Here we turn to the numerical results of comparing the resulting patterns
with variant lifting. Compare the fingering patterns under the same
dimensional lifting effectiveness, i.e., we contrast the situations in which
the patterns for exponential and variant lifting have reached an equal gap
width at equal times: A,,, =h,=h. In the following simulations, we consider
characteristic values for the lifting Péclet number Pe=3000, and viscosity

contrast A=0.925. In addition, we take the lifting ratio a=d/y=1/3. In order
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to ensure the appropriateness of the Hele-Shaw approach [6], only
situations of relatively small gap spacing, namely h=2h,, 3h, and 4h, are
considered.

Figure 26 illustrates the concentration images obtained for increasingly
larger values of the dimensionless gap width 4/h,=2, 3, and 4, both for the
exponential (top row) and variant (bottom row) lifting cases. This is done
for a given set initial random perturbations (perturbation set 1). During
exponential lifting with 4/h,=2, we see the development of a large number
of small fingers of the less viscous fluid penetrating the more viscous one.
At h/hy=3, fingering is considerably stronger where invading inward
moving fingers compete more intensively giving rise to a deformed
diffusive interface. Finally, for the dimensionless gap distances 4/hy=4, the
patterns are even more ramified, revealing plenty of finger competition
(length variability). among less viscous fingers, resulting in convoluted
structures presenting forms which resemble forks and tridents.

On the other hand, variant lLifting reveals a quite different set of
morphologies. When//h,=2, the boundary of the droplet is nearly circular,
so that fingers are absent. Very mild fingering formation is then observed
for h/hy=2. Finally, if h/h;=4 fingers emerge (about 40 or so) but in a more
orderly fashion, finger competition among inward moving fingers is
substantially suppressed. This points to the stabilizing nature of the variant
lifting process.

Concerning the specific role of Pe and 4, we have performed simulations

for several other values of the Péclet number in the interval 2000 = Pe =
4000 for several other values of the viscous contrast in the interval 0.762
= A4 = 0.925 in Fig. 27. The results identify the very similar stabilizing

behavior. Despite of this variation in the values of Pe, we found a relatively
small modification in the number of resulting fingers: for example, when

h/h=4, the number of fingers changes only from 38 to 42. This supports
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the suitability of the controlling mechanism provided by the variant lifting
in spite of sizable modifications in the Péclet number.

Examine the response of the patterns to modifications in the viscous
contrast. It can be observed as 4=0.762, even the Pe=4000, the boundary of
the droplet is nearly circular, so that fingers are absent. Figure 28 illustrates
that the behavior of the dimensionless interfacial length L in terms of 4/h
for three different Péclet number and Atwood number sets. For the
situations involving no significant fingering, i.e., 4=0.762 (solid curves),
the interfacial lengths behave quite similarly to the base state during the
whole lifting process, presenting a nearly exponential decay, decrease as
time progresses, and always locate far below the other ones. Represent the
strong stabilization role of the small viscosity contrast.

A dimensionless gap distances /h/h, series  of the contours on the
concentration to the parameters set Pe=3000, 4=0.925 for the exponential
lifting case are illustrated 1 Fig. 29. As shown in Fig. 28, there are two
critical points at 4/h=1.5, 2.7. Choose h/h,~1.5, 2, 2.5, and 4 for analysis.
At h/hy =1.5, the boundary of the droplet is nearly circular, and the fingers
are absent. For later times, the length of the fingers becomes longer. It is
worthwhile to note during 4/hy=2.5 and 4. Although the length of fingers
continues increase, some fingers merge and the number of fingers decrease.
The behaviors of the dimensionless interfacial length L in terms of 4/h, also
decrease during this period.

By contrasting these normalized interfacial lengths to the parameters set
as Fig. 29, the variant lifting situations are illustrated in Fig. 30. Choose
h/h=2, 3, and 4 for analysis. Like the exponential lifting case, before h/h
=3, the boundary of the droplet is nearly circular, and the fingers are absent.
However, for later times, the length of the fingers becomes longer. Without
fingers merge, the dimensionless interfacial length L, in terms of A/hy

increases (shown in Fig. 32 and to be discussed later). Figure 29 and 30
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highlights differences between the two strategies of time-dependent gap

width control the complex finger structure.

4.2 Influence of the Perturbation Set

We examine the response of the patterns to modifications in the initial
conditions. This issue is addressed in Fig. 31 which depicts patterns at
h/h=4 for both types of lifting, and two additional collections of initial
conditions: perturbation set 2 (first column) and perturbation set 3 (second
column). The perturbation sets are produced stochastic by Matlab. It is
clear that the structures obtained in Fig. 31 are not far different from those
obtained in Fig. 26. However, it is ‘worth pointing out that under variant
lifting the final number ‘of fingers does not practically change (it varies
only from 41 to 43)if initial conditions are altered. A more quantitative
account about this result is shown in Fig. 32 which describes the behavior
of the dimensionless interfacial length L; in terms of //h, for exponential
lifting EL (solid curves) and variant lifting VL (dashed curves). This is done
for the three sets of initial perturbations considered in Fig. 26 and Fig. 31.
Note the collapse of the dashed curves, ‘a fact that reinforces the
indifference of the variant lifting protocol with regards to changes in initial
conditions. The strong stabilization role of the variant lifting is also evident
(dashed curves located far below the solid ones).

To detail the effect of perturbation, we choose the most unstable
situation in Fig. 32 for exponential lifting case. Figure 33 illustrates the
concentration images obtained for increasing larger values of the amplitude
of initial random perturbation 5 and 10 times. It is clear that the structures
obtained in Fig. 33 are not far different from those in Fig. 26 for A/h series.
Although the number of fingers does not practically change, only the length

of finger increases with increasing amplitude of perturbation.
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4.3 Monotonic Viscosity Profile

As discussed in Chapter 3, the effect for four kinds of viscosity profiles
on the interface dynamics: vary-monotonic (including concave, linear and
convex) and nonmonotonic viscosity profiles are studied in this section. To
address this issue, four kinds of viscosity profiles are depicted in Fig. 35.
Because we have proved that exponential lifting situation leads to the fluid
more unstable than variant lifting case, we only discuss exponential lifting
situation after this section. To ensure the effect of different viscosity
profiles, the quasi-nonmonotonic viscosity profile is not across the
aforementioned three monotonic viscosity profiles and decreases the
impact of the u,, set u,, equal to.a+0.1, and set c,, at 0.1.

We begin our numerical investigation performing a systematic study of
the concentration images obtained from different viscosity profiles. Figure
36 depicts the sequential -images of the concentration obtained for
increasing larger values of the dimensionless gap width 4/h¢=2, 3, and 4,
for four viscosity profile cases <in Fig. 35 with the relevant control
parameters Pe=2000and A=0.925, which the cell’s gap width grows
exponentially. During the process of lifting with Ah/h¢=2, with only
monotonic (concave) viscosity profile, the development of the largest
number of small fingers of the less viscosity fluid penetrates the more
viscosity one. The boundary of the droplet with other types of viscosity
profiles is nearly circular, so that fingers are absent. At h/hy=3, fingering is
considerably stronger where invading inward moving fingers compete
more intensively giving rise to a deformed diffusive interface. Very mild
fingering formations are then observed for other types of viscosity profile
cases. Finally, for h/hj=4, we only observe fingers emerge with linear
viscosity profile, but in a more orderly fashion than concave viscosity
profile. For convex and quasi-monotonic viscosity profile cases, only

smoother shrinking interface which remains nearly circular can be
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observed.

A more quantitative account about this result is shown in Fig. 37 which
describes the behavior of the dimensionless interfacial length L, in terms of
h/hy for exponential lifting. This is done for the four viscosity profiles
illustrated in Fig. 35. Figure 37 gives correct trends regarding the
stabilizing effects for different viscosity profiles, and most importantly,
provides a quantitative verification of the interesting droplet
recircularization phenomenon as discussed previously, based on the
concept of interfacial lengths L. As the case of concave viscosity profile,
initially L, decreases at first, then increases sharply than other profiles.
Linear viscosity profile is the second increasing case, and shorter interfacial
length is observed. Convex viscosity profile is more stable than linear one.
For the quasi-monotonic situation does not involve significant fingering,
the interfacial length behave quite similarly to the base state during the
whole lifting process.

Moreover, similar to what we have done for injection flow, we examine
the response of the pattern to modifications at higher Pe as 4000 and lower
A as 0.85. Choose an appropriate c¢,, to let'the quasi-monotonic viscosity
profile to cross the convex one, and add a new nonmonotonic viscosity
profile to compare the effect of different viscosity profile. All of the five
viscosity profiles are illustrates in Fig. 38. Figure 39 plots the
dimensionless interfacial length L, as a function of the dimensionless gap
distance A/h, for monotonic (dashed curves) and nonmonotonic (solid curve)
viscosity profiles. That is just as what we expected that the concave
viscosity profile create the most unstable flow between the three monotonic
ones, however, nonmonotonic cases demonstrated uncharacteristic behavior.
We chose four concentration images of the five cases are illustrated in Fig.
40. Concave viscosity profile is the most unstable case of monotonic

scenario, but nonmonotonic viscosity profile reveals more vigorous

62



fingering than concave case. The unstable response of nonmonotonic

viscosity profiles attracted our notice and will be further discussed later.

4.4 Nonmonotonic viscosity profile

Investigating the stability of nonmonotonic viscosity profiles in lifting
flow, the influence of the parameter Pe is quite intuitive as expected that
demonstrate more vigorous fingering. Moreover, the influence of w,,, a, and

¢, need further discussed.

4.4.1 Influence of the maximum viscosity u,,

In order to elucidate the influence of the maximum viscosity u, on the
global and local features of the displacement process, we carried out a
series of simulations for which Pe, ¢,,, and a were held fixed at the values
of 3000, 0.1, and 3, respectively. In addition, the same random realization
of the permeability field was employed in all simulations. The fingering
instabilities at maximum _wviscosity u,, which provide stronger
concentration gradient in the unstable zone of viscosity profile, are mostly
produced by the inward ‘motion. of the less viscous fingers penetrating the
more viscous fluid. In this section, by comparing displacements at u,, are
varied between 8 and 32 with increments of 8.

Figure 41 demonstrates the concentration field at much later time /4/h,=4.
This motion occurs in such a way that the relative lengths of the less
viscous fingers longer, making the interface in their tips is much more
ramified, presenting outgoing fingers which develop a peculiar forklike or
trident like shape. But define an approximately circular internal region in
the more viscous. Compare with the result shown in Fig. 12 in injection
flow, higher maximum viscosity u, leads to not only longer finger length,
but more vigorous fingering in lifting flow. Indicate that higher maximum

viscosity u,, plays different role in lifting flow and injection flow. Figure 42
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describes the behavior of the dimensionless interfacial length L in term of
h/h, for four maximum viscosity u,. As expect, longer interfacial lengths

are mainly observed for larger u,,.

4.4.2 Influence of the end-point viscosity contrast a

Now we turn to the investigation of the role played by the end-point
viscosity contrast a with nonmonotonic viscosity profile and monotonic
one with equal end-point viscosity contrast (a,,,,c=t»). Figure 43 describes
the behavior of the dimensionless interfacial length L; in term of A/h, for
four sets of nonmonotonic viscosity profiles with constant u,=16.44 and
two sets of monotonic ones, one is With end-point contrast a,,y,,=,=16.44,
another is with higher @,,,,=20.08. For the sake of providing a visual
picture of the distinetion, dash lines present the result of monotonic
viscosity profile cases, and solid lines show the result of nonmonotonic
ones. Three pointsrare worth making about this figure. First, we noticed
that solid curves stand above the dashed one as a,,,,, €qual to x,,, indicating
more fingering and interfacial irregularities for the cases of nonmonotonic
viscosity profile than monotonic one while g, of nonmonotonic cases is
equal to a,,.,, of the monotonic one. Second, as expected, as the monotonic
one with higher a,,,,, than u,, of nonmonotonic scenarios contribute flow to
more unstable. Moreover, note that solid curves almost overlap, while the
dashed curves are not as close to each other. Figure 44 demonstrates the
concentration field at much later time A/hy=4 by different sets of a. Not
only the finger lengths of different cases are very close, but the morphology
in each set is quite similar. This indicates that lifting fluid with
nonmonotonic viscosity profile is quite insensitive to modifications in the
viscosity contrast a.

Manickam and Homsy [10] found that nonmonotonic viscosity profile

can be divided into an unstable zone (from injection fluid to the viscosity

64



maximum u,) and a stable zone (from viscosity maximum g, to displaced
fluid). Vorticity image of the four nonmonotonic viscosity profiles we
chosen are shown in Fig. 45. Like the dual vortex pair in injection fluid, the
inner vortexes become weak as the difference between a and u,, decrease.
However, the area of inner vortex ring in lifting flow are less than in
injection one. Because inner vortex ring means stable zone of the viscosity
profile, it takes a very faint influence in stability and indicate the stable
zone in lifting case play less effect than injection one. Compare the
dimensionless interfacial length L; in term of 4/h,which illustrated in Fig.
43 with Pe=3000, even now its relatively large variation between values of
3 and 15, a small difference in @ can dramatically influence the result in
time evolution of the interfacial length L,. This is far different from the role
of a which play in injection: flow:(discussed before in Section 3.2.2), which
implies the stable zone of nonmoneotonic viscosity profile plays less effect

in lifting flow thananjection scenario.

4.4.3 Influence of the location of the maximum viscosity c,,

In order to study the influence of c¢,, we present a series of numerical
simulations under equivalent ‘conditions. The viscosity profiles are
illustrated in Fig. 46. Because higher ¢,, would easy to cause our numerical
code become unstable, in order to assess the magnitude of this effect, we
carried out a relevant parameter set in which Pe, a and u, were kept
constant, which fingering generated by different sets of ¢,. A comparison
shows that approximately the same number of fingers develops in Fig. 47
(a) and (b), and the formation where tip-splitting and side-branch events
can be observed. Viscous fingers in Fig. 47 (a) are more plentiful than (b).
The behavior of the dimensionless interfacial length L, in term of 4/h, for
four sets of nonmonotonic viscosity profiles are depicted in Fig. 48 also

illustrated that as c, decrease, lead to intricate morphologies, the fluid
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demonstrate more vigorous fingering. Although as the Péclet number
decrease to close to critical number Pe. demonstrated by Tan and Homsy
[1], stability of the scenario did not follow the rule we found. However, in
this scenario the fingering is not mature, render parameters vary ineffective.
It acceptable to neglect the error in predicts.

Another 1important interfacial behavior need be studied more
quantitatively is the one related to different morphological interfacial
features induced by end-point viscosity contrast o and the location of the
maximum viscosity c,. Because higher c,, leads the u,, closer to the outer
fluid in lifting flow. Especially with favorable end-point viscosity contrast
case, it cause steeper slope in unstable zone, may lead to more violent
phenomenon. To find the interaction between the two parameters, we
choose a favorable end-point viscosity contrast (a=0.25) equal the inverse
of unfavorable scenario (a =1/a=4) for other parameters Pe=3000 and 1,=8
are held constant. -Figure 49 illustrates the concentration images of the
simulation. The overall patterns show great similarities in favorable and
unfavorable case (top law and bottom law), however, far different from
(first column and second celumn) with various c,. The phenomenon
indicates insignificant influences of the local correlations between fluid a

and c,,.
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h/h, =2 h/h, =3 h/h =4

Exponential lifting

Variant lifting

Figure 26: Concentration images for the dimensionless gap distances
h/hy=2, 3, and 4, for the cases of exponential lifting (top row), and variant
lifting (bottom row) to the parameter set as Pe=3000, 4=0.925. The

domain of x and y axis are -0.8 to 0.8.
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Pe=2000 Pe=3000 Pe=4000

A=0.762

A=0.905

A=0.925

Figure 27: Concentration images-for.Pe=2000 (first column), 3000 (second
column), 4000(third column), and 4=0.762 (top row), 0.905 (mid row),
0.925 (bottom row) at dimensionless gap distances 4/h;=4, for the cases of

exponential lifting. The domain of x and y axis are -0.5 to 0.5.
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Figure 28: Interfacial lengths L; as a function of the dimensionless gap

distance h/h, for the exponential lifting case. These simulations used the

same physical parameters as in Fig. 27. In the inset the numbers label the

distinct Pe and A4 sets.
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Figure 30: A dimensionless gap distances h/h, series of the contours on the

concentration to the parameters sets as Pe=3000, 4=0.925 for the variant

lifting situation. For the dimensionless gap distance #/hy= (a) 1.5, (b) 2, (¢)

2.5, and (d) 4.



Perturbation set 2 Perturbation set 3

Exponential lifting

WVariant lifting

Figure 31: Concentration images for the dimensionless gap distance A/hy=4
for the cases of exponential lifting (top row), and variant lifting (bottom
row). These simulations used the same physical parameters as in Fig. 26,
but utilized two distinct set of initial random conditions: perturbation set 2

(first column), and perturbation set 3 (second column).
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Figure 32: Interfacial length L, as a function of the dimensionless gap
distance A/hofor the exponential lifting (EL)case, and three different sets of
initial perturbations (solid curves).The dashed curves represent similar sets
of data for the variant lifting (VL) situation. In the inset the numbers label

the distinct perturbation sets.
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Figure 33: Concentration images for the dimensionless gap distance h/h;=2,
3, and 4 for the cases of exponential lifting. These simulations used the
same physical parameters as in' Fig. 29, but utilized two distinct set of
initial random conditions: amplitude=0.05 (top row), and amplitude=0.1

(bottom row).
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Figure 34: Interfacial lengths L; as a function of the dimensionless gap
distance h/hy for the exponential lifting case. These simulations used the
same physical parameters as in Fig. 27. In the inset the numbers label the

amplitude sets.
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Figure 35: Four kinds of viscosity profiles with 4=0.925 (a=25.67). The
parameters set of the Quasi-monotonic viscosity profile is ¢,=0.1 and

1 =25.77.

75



h/h0=2 h/h,=3 h/h =4

Concave

Linear

Convex

Quasi—-mono.

Figure 36: Concentration images for the dimensionless gap distance h/h;=2,
3, and 4, for the cases in Fig. 35 with Pe=2000 and A4=0.925 for (a)
Concave (b) Linear (c) Convex (d) Quasi-monotonic. The inner fluid is

more viscous (u; >u;).
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Figure 37: Interfacial length L, as a function of the dimensionless gap
distance A/hy for the exponential lifting case and four kinds of different
viscosity profiles for Fig. 35 with Pe=2000. In the inset the numbers label

the distinct viscosity profiles.
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Figure 38: Five kinds of viscosity profiles with'4=0.848 (u,=¢" =12.18).
The parameters set of the nonmonotonic viscosity profile is ¢,=0.1 and

o=10.
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Figure 39: Interfacial length L, as a function of the dimensionless gap
distance A/h, for the exponential lifting case and five viscosity profiles in
Fig. 38 with Pe=4000. In the inset the numbers label the distinct viscosity

profiles.
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Figure 40: Concentration images for the dimensionless gap distance 4/h=4
with Pe=4000, for the viscosity profile depicted in Fig. 38 for (a) Concave
(b) Linear (c) Convex (d) Nonmonotonic, a=10. The inner fluid is more

viscous (i, >uy).
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Figure 41: Concentration images of parameters set o=3 and c¢,=0.1 with
Pe=3000 for the exponential lifting case (a) u,,=8, (b) u,=16, (c) u,=24
and (d) u,,=32 for the dimensionless gap distance 4/hy=4,
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Figure 42: Interfacial length L, as a function of the dimensionless gap
distance A/h, for the four cases shown in Fig. 41. In the inset the numbers

label the distinct maximum viscosity .
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Figure 43: Time evolution of the interfacial length L, for two monotonic
viscosity profiles with 0=20.08 and 16.44 and four nonmonotonic viscosity
profiles with yu,, =16.44, ¢,=0.1, =3, 9, 12, and 15 for Pe=3000. In the

inset the detail viscosity profiles for the seven parameters sets.
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Figure 44: Concentration images of parameters set u,,=16.44 and c,=0.1
with Pe=3000 for the exponential lifting case (a) a=3, (b) a=9, (¢) 0=12
and (d) a=15 for the dimensionless gap distance /4/h,=4. Despite the finger
lengths of different cases are very close; the morphology in each set is quite

similar.
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Figure 45: Correspondent images of vorticity for the cases shown in Figure
43 for the dimensionless gap distance 4/hy=4, (a) 0=3; (b) a=9; (c) a=12
and (d) a=15 for Pe=3000. Unlike the inner fingers in injection flow, it may

become disappear, as the difference between a and u,, decrease.
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Figure 46: Representative profiles of non-monotonic viscosity profiles

show end-point viscosity contrasts with a=3, w,=24 for ¢,=0.1, 0.3, 0.5 and

0.7.
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Figure 47: Concentration images for the dimensionless gap distance 4/h=4
with the non-monotonic viscosity profiles shown in Fig. 46 with Pe=2000

for series of (a) ¢,,=0.1, (b) ¢,=0.3, (¢) ¢,=0.5 and (d) ¢,=0.7.
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Figure 48: Time evolution of the interfacial length with viscosity profile

1.5

0=3, w,=24 with Pe=2000 for ¢,=0.1, 0.3, 0.5 and 0.7.
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Figure 49: Concentration images for the dimensionless gap distance /4/hy=4
for the favorable end-point contrast cases of a=0.25 (top row), and the
unfavorable end-point contrast cases of a=4. Utilized two distinct set of the
location of the maximum viscosity: ¢,=0.1 (first column), and ¢,=0.9

(second column).Other parameters set are Pe=3000 and y,,=8.
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Chapter 5 Conclusions and Recommendations of Future Work

5.1 Conclusions

This study analyzes both of the injection flow and the lifting flow by
highly accurate simulation with different viscosity profiles. In this chapter,
the major findings of the thesis are summarized as follows in turn as: 1)
injection flow; 2) lifting flow in Hele-Shaw Cell, with the monotonic and

nonmonotonic viscosity profile, respectively.

5.1.1 Fingering Instability of Miscible Injection Hele-Shaw Flows

Usual miscible flows:n radial Hele-Shaw geometry lead to the formation
of complex morphological structures. In this work, we have presented
highly accurate numerical simulations for an ' injection-driven radial
Hele-Shaw flow with miscible fluids. The present investigation explores
the influence of these parameters up to values of R=2 (4=0.762, a=7.34)
and Pe=800 with both-moenotonic and nonmonotonic viscosity profiles to
study the effect of different viscosity profiles, then higher to the values of
o=14 and u,=14.1 to investigate the nonmonotonic viscosity profiles.

The interfacial instabilities have been analyzed systematically both
qualitatively and quantitatively. The results of this study have indicated that
the differences in different viscosity profiles might not be significant, but it
reveals interesting nonlinear behaviors when nonmonotonic viscosity
profiles 1s cross the convex viscosity profile. Our analysis with
nonmonotonic viscosity profiles explicitly indicates how the relevant
parameters of the system influence the morphology of the interfacial
patterns.

First, we studied the stability problem: as the Péclet number is higher

than the critical Péclet number Pe,, the convection dominate the flow. The
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disturbances grow with increase in the Péclet number Pe and the maximum
viscosity u,,, vice versa. It is an interesting phenomenon that the interfacial
lengths will reveal a damping effect when the favorable end-point viscosity
contrasts a with high maximum viscosity .

In contrast, the effect of the end-point viscosity contrast a and the
location of the maximum viscosity ¢, to the stability of fluid are
complicated. Both the variable in the location of the maximum viscosity ¢,
and the end-point viscosity contrast a is in good agreement with the

prediction as state in our previous analysis.

5.1.2 Controlling Radial Fingering Patterns in Miscible Lifting

Hele-Shaw Flow

Time-dependent gap flows 1 radial Hele-Shaw geometry lead to the
formation of complex morphological structures if the cell’s gap width
grows exponentially with time. The parameters Pe and viscosity contrast 4
or u, are quite intuitive as expected and that demonstrate more vigorous
fingering. Nevertheless, the difference of different viscosity profile to
lifting Hele-Shaw cell still remains-an-open question.

In this work, we have presented highly accurate numerical simulations to
prove exponentially varying time dependent gap width leading to the
formation of more complex morphological structures than variant lifting in
the beginning. Then we investigate the influence of different viscosity
profile in a lifting Hele-Shaw cell. We find that in monotonic viscosity
profiles, the instability of fluid is always follows the series of concave,
linear and convex. However, nonmonotonic viscosity is not unconditionally
more unstable than monotonic ones, unless the curve of nonmonotonic case
crosses the convex curve. Moreover, we have verified that the viscosity

profile changes quite sensitively in higher Péclet number and the inner
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vortices in lifting flow are weaker than the injection flow.

5.2 Recommendations of Future Work
Based on these achievements, the directions of research recommended
for further study are summarized as follows:

(1) In conclusion, we hope experimentalist will feel motivated to check, and
hopefully validate the ideas put forward in this work.

(2) To study the effect of chemistry both in injection and lifting flow. Most
of the details of chemistry remain unclear due to the difficulties in
detailed measurements. Using the developed tool to simulate the effect
in Hele-Shaw cell is useful to reveal the underlying complex physics.

(3) To extend the code from 2D to 3D for simulating the discharges with

unsymmetrical behaviors.
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Appendix 1 Vorticity

Following Darcy’s (1856) investigations into the hydrology of the water
supply, proportionality between flow rate and the applied pressure

difference is expressed as:

o __H
ox k (1.1)
o __H,
a k (1.2)
ov oOu
As we know, @ = ————— given a differential equation of the form
ox Oy
2(or) Tr__ ol
oy\ ox ) Oxoy oy \ k (1.3)
o(or) 2]
ox\ 0y ) Ox0y wox\k (1.4)

Where eq. (1.3) is equal to eq. (1.4)

_Q(ﬁu]+£(ﬁvj:0
oy\ k ox\ k (1.5)

The viscosity u is supposed to be a function of the injecting fluid
concentration and the permeability is a spatial distribution with the

expression

p=ple) k=k(x,y), (1.6)

where

(#e0u unle | mok +(ﬁ@+za_ﬂ@_vﬁ%):0
koy kocoy k™ oy

kox kocox k*ox
Afou_ov) lowf ce G\ uf ok ok
k\oy ox) koc\ o ox) k°\ oy ox) (1.7)
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From streamfunction

_op __ 0 __(au avj

- s V= > W = ~ T~
oy ox oy Ox

u
(1.8)
It appears that one can do is to replace Eq. (1.7) by

1 1
0=V 4-5c)-(V$-V),

U dc k (1.9)
Here £ is a fix parameter in Hele-Shaw cell, which is permeability of the
media. Applying the concept to Eq. (5), the result is:

1d
w=—"EVg-vc)

U dc (1.10)
Following other researchers (e.g. Tan and Homsy [23] and Rogerson
Meiburg [39]), we define

po_ladu

U dc
a. Mobility ratio of the monotonic viscosity profile is:

ulc)=explR(1=e)],

where
1 du =1
Ry ==—"1= -exp[R(I=c)]- R-(-1)=R.
U dc exp[R(l—c)] (1.11)
b. Mobility ratio of Convex monotonic viscosity profile is:
Hy
(€)= 22 = +1
# exp[ln('uz) x (1— C)J
H
— exp[ln(’uz) x(1— c)) — ln(&)
d_,u __ M H A —aR
dc 2 ’
M exp(ln('uz)x(l—c)j exp(ln(‘“)x(l—c)j
A, a
where
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C.

R —_ 1 du,.| -1 —aR
vex d -
Hrr 4 L “ exp| In(“2)x(1-¢)
Hy H +1 H
# exp(ln('uz) x(1- c)j
Hy
-1 a
= (1.12)
o a Ly lexp(Rx(-0))]
exp(Rx(1-c))
Mobility ratio of Linear monotonic viscosity profile is:
d
e I
dC dir
where
1 1-
Rlinear - (_ o+ 1) e (—aj %
/ulinear A—Qc+c (113)

Mobility ratio of Non-monotonic viscosity profile is:

| i (1 + a)c
p(c) = w,sin(7), 7 = 7,(0= B)+ 1, 1% ac
7/0=Sin_1(0£/lum), 71:72-_Sin_1(1/’um)’
DN
an=bu 5 _ITTIE
¢,(8,-1) h=7o
where
ldy -1 dsin(y) -1 dy
. _ ldu_ _ “r
non (lu) ,Ll de /um Sln(}/) Fo dc Sln(j/) COS(y) dc
B d(l dy, ap . ,dy
_COU/)[?/O 1-4) dc o dc+ﬁ dc}
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Appendix 2 Hele-Shaw cell

The Navier-Stokes equation, which neglecting gravity, become
V-V =L(-vP+mav)

a p 2.1)
Assume the injection of fluid is slow enough for the flow to be

approximately steady, parallel, and incompressible.

a—Vzo,Vz =0,V-V =0
ot (2.2)

Simplifying, we get

Jou  ou_ 10P ,u(@ V. u @ n OV,

—+v - Shlet L &

ox>"0y 0z (2.3)

v v 1oP ﬂ[an oW, %,
—+v +

8x 8y 0 Ox

" ox &y pov p

2 + 2
=K 0z 2.4)

If A is sufficiently small and the flow 1s slow, the first and second derivative

of u and v with respect to x and y are negligible and prescribed as follows:

ou ov _ 0’u B 0y

_____2__2:(),
a o o oy (2.5)
u_ov_du_dv_,
ox ox ox* ox’ ' (2.6)
The derivate of pressure are specified as
o _ o
o et

2.7
o _ o -7
oy oz’ . (2.8)
oP o
0z (2.9

The equation means that in the system, P does not depend on z.
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(2.10)
ou 1 (8]3)
—=—|—[z+(
Oz p\ox @.11)
u(z) = LKG—P)ZZ +Ciz+C,
2u\ ox (2.12)
with boundary conditions and viscous force
ou ov
z=0,h z=0,h > Ox z:ﬁ @y h
2 =
—1( 0P
u(©0)=u(h)=0 > C,=0 » G, :E(ajh
u(z) = L(&_P)( 2 —hz)
2u\ ox
The integral means i and vV of u and v-across the gap are
h
ﬁzL op J.(Z2 —hz)z’z
2uh\ Ox ),
h
1 (ep z_3_hzzj e (ap)
12\ oy (2.14)
So the integral mean V of V satisfies
2
=" vp

12,4 ' (2.15)
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