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Student: Guo Yuan-Zhu Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering
National Chiao Tung University

Abstract

In this thesis, the channel capacity of a general noncoherent regular single-input
multiple-output fading channel with memory and with feedback is investigated. The
fading process is assumed to be a general stationary and ergodic random process
of finite energy and finite differential entropy rate. The feedback is assumed to be
noisefree (i.e., it is of infinite capacity), but causal.

We show that the asymptotic capacity grows double-logarithmically in the power
and that the second term in the asymptotic expansion, the fading number, is un-
changed with respect to the same channel without feedback.
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Chapter 1

Introduction

Noncoherent multiple-antenna fading channel models have attracted a lot of attention
for quite some years because they realistically describe the omnipresent mobile wireless
communication channels. Here, noncoherent refers to the fundamental assumption that
transmitter and receiver only have knowledge about the distribution of the fading process,
but have no direct access to the current realization. Hence, the communication system
needs to provide some means of measuring the current channel state, thereby using part of
the available bandwidth, power, and computational efforts for the channel state estimation.

This is in stark contrast to the coherent fading models where it is assumed that the
receiver has free and noiseless access to the current fading realization [1]. It is partic-
ularly the latter assumption of perfect knowledge of the fading realization that leads to
overly optimistic capacity results for coherent channel models with respect to what can
be expected to be seen in practice.

The noncoherent channel models can be split into different families. For so-called
underspread fading channels, it is assumed that the fading process is wide-sense stationary
and uncorrelated in the delay, where the product of the delay and Doppler spread is small
(for more details, see [2] and references therein). The block-fading models assume that
for a certain time, the fading realization remains unchanged before a new (potentially
dependent) value is taken on [3], [4], [5]. In nonregular fading, the fading process is
assumed to be stationary with strong memory that permits a quite precise prediction of
the present fading values from the past [6], [7]. It might be even the case that one can
perfectly compute the current values from the infinite past with a zero prediction error.
Note, however, that due to the noncoherence assumption and due to the additive noise, the
receiver never has access to the exact past fading values, but only to a noisy observation
of them.

In this thesis we investigate the family of noncoherent regular fading channels. In
contrast to nonregular fading, here it is assumed that the stationary fading process has
a finite differential entropy rate. In [8] it has been shown that the capacity of multiple-
antenna regular fading channels only grows double-logarithmically in the available power
at high signal-to-noise ratios (SNR). This is much slower than the common logarithmic
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growth, e.g., of coherent fading channels, and it persists independently of the number of
antennas used at transmitter and receiver and independently of the memory in the fading
process.

For a more precise description of this phenomena, [8] defined the fading number x as
the second term in the high-SNR, asymptotic expansion of the channel capacity:

X({Hi}) £ T {C(€) ~ loglog £}, (L1)

An analytic expression for its value for general multiple-input multiple-output fading chan-
nels with memory has been derived in [8], [9].

While the assumption of a noncoherent communication system is realistic, we also
should take into account that many practical communication systems are bidirectional
allowing to send feedback from the receiver back to the transmitter. Such a feedback link
will help to simplify the necessary coding scheme and it even has the potential to increase
the channel capacity. In this thesis, we investigate the impact of feedback in the situation
of a general regular single-input multiple-output (SIMO) fading channel with memory. We
do not restrict the exact distribution of the fading process, apart from it being stationary
and ergodic. Concerning the feedback, we assume the rather unrealistic situation of a
feedback link that has infinite capacity. This will lead to an upper bound on the capacity
in the presence of any practical type of feedback. The only constraint we make is causality,
i.e., the feedback will arrive at the transmitter delayed by one time-step.

The structure of this thesis is as follows: In the remainder of this chapter we will
shortly describe our notation. In Chapter 2 we will specify the channel model in detail.
In Chapter 3, we will show some mathematical tools that are related to our analysis. In
Chapter 4 summarizes the results for the channel model without feedback including some
required definitions and some explanations about the meaning of the fading number. The
main result, i.e., the exact asymptotic capacity of SIMO fading channels with noiseless
feedback, is then presented in Chapter 5. In Chapter 6 we give the detailed derivation of
our result, and Chapter 7 contains some concluding remarks.

In order to make this thesis easier to read, we attempt to use a consistent and precise
notation. For random quantities, we use upper-case letters such as X to denote scalar
random variables, and their realizations are written in lower-case, e.g., . For random
vectors we use bold-face capitals, e.g., X and bold lower-case for their realization.

Some exceptions that are widely used in literature and therefore kept in their customary
shape are as follows:

e h(-) denotes the differential entropy of a continuous random variable.

e I(-;-) denotes the mutual information.

The letter C denotes the channel capacity. The energy per symbol is denoted by &.
Also note that we use log(:) to denote the natural logarithmic function and all rates are
specified in nats.



Chapter 2

Channel Model

We consider a communication system as shown in Figure 2.1. A message M is transmitted
over a SIMO fading channel with memory where the transmitter has one antenna and the
receiver has ng antennas. The channel output vector Y € C™® at time k is given by

Yy = Hywy, + Zg, (2.1)

where x; € C denotes the time-k channel input; the random vector Hy € C"® denotes
the time-k fading vector with ng components corresponding to the ng antennas at the
receiver; and the random vector Zj; € C"® models additive noise.

We assume that the additive noise process {Zy} is spatially and temporally indepen-
dent and identically distributed (IID), circularly-symmetric, and complex Gaussian with
zero mean and with variance o2 > 0:

{Z);} IID ~ Nc(0,0°l,,) . (2.2)

Here, l,,; denotes the nr x ngr identity matrix.
The fading process {Hy} is statistically independent of {Zy} and is assumed to be
stationary, ergodic, of finite energy E[||Hy||?] < oo, and of finite differential entropy rate

h({H}) > —oco. (2.3)

A random process satisfying this later condition (2.3) is usually called regular. Note that we
do not make any further assumptions about {Hy}, i.e., we do not assume a particular law
(like, e.g., a Gaussian distribution). In particular we do allow for arbitrary dependences
between the different components {H ,Ej )} corresponding to the different antennas (spatial
memory) and over time (temporal memory).

We assume noncoherent communication, i.e., neither transmitter nor receiver know the
realization of {Hy}, they only know its law.

From the receiver to the transmitter we have a noiseless feedback link (i.e., the link
has infinite capacity and allows the receiver to send everything it knows back to the
transmitter). However, to preserve causality of the system, we require the feedback to
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H(l)
Y(l)

M Xk M
o Tx Rx — =
Fk,1 H(”R) Yk(nR)

F

Figure 2.1: Regular SIMO fading channel with ng antennas and with noiseless causal
feedback.

be delayed by one discrete time-step. So the feedback vector Fy that is available at the
transmitter at time k consists of all past channel output vectors:

Fj = Yi L (2.4)

The channel input zj at time k therefore is a deterministic function of the message M
and the feedback Y]ffl. Note that we assume M to be uniformly distributed.

We consider two types of power constraints: an average-power constraint and a peak-
power constraint. Under the former we require that for every message m

72 [}Xk ,Y’f—l)ﬂgs, (2.5)

where n denotes the blocklength. Under the peak-power constraint we replace (2.5) with
the almost-sure constraint that for every message m

‘Xk(m,Ylf_l)‘2 <&, as,k=1,...,n. (2.6)

To clarify notation we will use a subscript “FB” whenever feedback is available, while
the subscript “IID” refers to a situation without memory or feedback. RHS stands for
‘right-hand side’.
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Mathematical Preliminaries

In this chapter, we show some mathematical tools that will be used in our proof.

3.1 Differential Entropy

3.1.1 ht(X)

The differntial entropy h(X) of an n-dimensional real random vector X is defined if the
density px(x) (with respect to the Lebesque measure on R") is defined and if at least one
of the integrals

+ 3 x) lo : x
g (X) B /{xER":O<px(x)<l}pX( )1 gpx(x) ¢ (31)
h™(X) £ Px(x) log px (x) dx (3:2)

{xER™:px(x)>1}
is finite. In this case, h(X) is defined as the difference between the two nonnegative
integrals,

h(X) £ hT(X) — h™ (X) (3.3)
where we use the rules +00 —a = +00 and @ — oo = —o0 for all @ € R. This is written as

h(X) = /n px(x) log

() dx. (3.4)

The differential entropy of an n-dimensional complex random variable is defined as the
differential entropy of the 2n-dimensional real vector comprising of the real and imaginary
parts of each of its components. Finally, the differential entropy h(H) of a random matrix
H is the differential entropy of the vector comprising of its entries.

3.1.2  hy()

Let Xk denote the unit vector
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Because the unit vectors X, only take value on the unit sphere in C"® and since the
surface of this unit sphere has zero measure over C"® we define a differential entropy-like
quantity hy(-) that only lives on the surface of the unit sphere in C"®r: for V. € C"® and

7 & V
V= v We define

m(V) £ E[~log (V)] =~ [ py() o) (9)av. (3.6)

if the expectation exists. Here piil (v) denotes the PDF of the random unit-vector V with
respect to the C"R-surface measure A. Note that pii/_({f) is implicitly defined by the PDF
of V, py(v). For more details we refer to [9, Sec. II].

Lemma 3.1 Let V be a complex random vector taking value in C™ and of differntial
entropy h(V). Then

h(V) = h(IV]) + A (VI[IV]]) + (2m — DE[log | V] (3.7)

whenever all the quantities in (3.7) are defined. Here the first term on the right is the
differential entropy of |V|| when viewed as a real (scalar) random variable.

Note that it is a conditional version of h).

3.1.3 Differential Entropy and Expectation of Logarithms

Lemma 3.2 Let X be an n-dimensional complex random vector of density px(x). Then
the following relationship between differential entropy and the expected log-norm hold: If
h=(X) < oo, then for any 0 < o < n there exists some finite number A(n,«a) (not
depending on the law of X) such that

Ellog X > —h~(X) ~ A(n,0) (3.8)

Proof: See [10, Appendix. A.4.4]. O

3.2 Markov’s Inequality
Lemma 3.3 (Markov’s Inequality) For any non-negative random variable V and any
constant § > 0,

Pr[V >46] < E[(SV] (3.9)

Proof: See for example [11]. O
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3.3 Causal Interpretation

Massey [12], [13] shows a way of graphically determining independence of random variables
based on causal interpretations. A causal interpretation is an ordered list of random
variables. The idea behind a specific choice of order lies in the causality of the system.
Loosely speaking in an engineering way of thinking, we would like to think of some random
variables being generated "first” and some ”later based on” the generation of the others.
Note that a priori every ordered list is a valid causal interpretation, but some choices will
be more useful keeping the engineering idea in mind.
As an example consider the vector

V = (M, X7, Y1, HY, Z§, FY), (3.10)

where all components are random variables defined in Chapter 2.
For simplicity assume for the moment that all components take value in discrete al-
phabets'. We choose the following causal interpretation:

(Mv Hy, ... Hg,Zy, ..., 2, F1, X1, Y1, Fo, X0, Yo, .. Fy, X, Yk) (311)
If we consider now the entropy of V and write it as a sum using the chain rule

H(V)=Y HVOWvW,  vi-b), (3.12)
j

then we see that our choice of a causal interpretation for V simplifies the expression for
the entropy significantly:

H(V) = H(M) + H(H;) + H(Hy[H,) + - - - + H(H|[HY)
+H(Zy) + -+ H(Zg) + H(Fy)
+ H(X1|F1, M)+ H(Y1|X1,H,,Z,) + H(F3|Y,)
+ H(X|F}, M) + H(Y2| X2, Ho, Zo) + - - - + H(Fi|YF ™)
+ H(X|F}, M) + H(Y | Xy, Hy, Zp) (3.13)

Massey calls this a causal-order expansion of H(V). It can easily be depicted graphically
in a causality graph, which is a directed graph with an edge from vertex VU1 to V(02) if
and only if VUV is in the conditioning expression for H (V(jQ)‘V(l), ey V(jrl)). We shall
say that a vertex VUV is causally prior to vertex V(2) if there is a directed path from
V1) o V0U2),

In our case the corresponding graph of (3.11) is shown in Figure 3.2.

Note that once we have established the graph, we do not consider the entropy anymore.
We only used the entropy in order to be able to invoke the chain rule in establishing the
”dependencies” between the different components.

"We will drop this assumption soon again, however, here it simplifies notation considerably because we
need not worry about differential entropy. In the end, we are not interested in the entropy at all, but in
the ”dependencies” between the components.
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M
7 Zo 3 Zy Zy
Fi Xi F: Xo X3 Fr1 Xp %Fk Xk \ch
i — ey
H; H, H; Hy_, Hy,

Figure 3.2: The causality graph of our model.

A causality graph is very useful when determining the statistical dependence between
two groups of random variables possibly conditioned on a third group.

To state this property in more clarity let A, B,C C {1,...,length(V)} be three index
sets. Let V(A) denote a vector containing as components of all components of V whose
indices are in A, similarly, define VB and V(©),

Any causality graph of V can now be used in order to investigate the independence of
V) and V®B) when conditioned on V©. To that goal consider the following procedure:

e from the specify causality graph take the subgraph causally relevant? to V(AUBUC).
e delete all edges leaving any component of V(©);
e drop all directions of the remaining edges;

e if now all components of V) are unconnected to the components of V(B) then
VA s statistically independent of V®) when conditioned on V().

Note that using this procedure we only make statements about the independence, but not
about possible dependences, i.e., if the components of V) and V(8 are not disconnected,
then they might be statistically dependent or independent.

2A subgraph causally relevant to some V consists of all those vertices that are either components of v
or causally prior to V in the given causal interpretation, together with the edges connecting these vertices.
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Capacity and Fading Number
without Feedback

It has been shown in [8] that the capacity of general regular SIMO fading channels under
either an average-power constraint or a peak-power constraint is

C(&) = log(1 +log(1 +&)) + x({Hx}) + o(1), (4.1)
where o(1) denotes terms that tend to zero as £ tends to infinity, and
%{C(é’) —loglog £} < 0. (4.2)
Therefore, we can define

X({H}) & [m{C(€) - loglog €} (4.3)

= h,\ (I:IO eieo

{ﬂge‘@f};:l_oo) —log 2 + ngE [log [Ho[?] — h (He[HZL) (4.4)

where the second equality is given by [8] and hy(-) is defined in 3.1.2. Here, {©} is IID
~ U((—m,n]) and independent of {Hy}.

From (4.1) it is obvious that the capacity of the fading channel (2.1) grows extremely
slowly at large power. Indeed, log(1 + log(1 + £)) grows so slowly that, for the smallest
values of £ for which o(1) =~ 0, the (constant!) fading number x usually is much larger
than log(1 + log(1 + £)). Hence, the threshold between the low-power regime and the
capacity-inefficient high-power regime is strongly related to the fading number: the larger
the fading number is, the higher the rate can be chosen without operating the system in
the inefficient double-logarithmic regime.

Also note that even though the double-logarithmic term on the RHS of (4.1) does not
depend on {Hy} or, particularly, on the number of antennas ng, it is still beneficial to
have multiple antennas because the fading number y does depend strongly on the fading
process and the number of antennas.
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From (4.4) one also sees that in the case of a memoryless SIMO fading channel, the

fading number is given by
xip (H) = hy (He'®) —log 2 + ngE[log [[H||?] — h(H), (4.5)
and that therefore the fading number in (4.4) also can be written as
X({H}) = xup(Ho) + I (Hos HL) — 1 (Foe®; {He® )t ). (46)

In [8], it has also been shown that for an arbitrary value of the power &, the channel

capacity can be bounded as follows:
C(€) < Cup(&) + I(Hp; HIL), £>0. (4.7)

From (4.6) we see that this upper bound may not be tight. In particular, asymptotically
for £ — oo it is strictly loose.

10
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Capacity and Fading Number with
Feedback

While it is well-known that feedback has no effect on the capacity of a memoryless channel,
in general feedback does increase capacity for channels with memory. The reason for this
is that the combination of feedback and memory allows the transmitter to predict the
current channel state and thereby adapt to it. Unfortunately, for regular fading channels
this increase in capacity due to the feedback turns out to be very limited.

Theorem 5.1 (Capacity Increase by Feedback is Bounded by a Constant) Let a
general SIMO fading channel with memory be defined as in (2.1) and consider a noiseless
causal feedback link as described in (2.4) (see Figure 2.1). Then the channel capacity under
either an average-power constraint (2.5) or a peak-power constraint (2.6) is upper-bounded
as follows:

Cre(€) < Cup(€) + I(Ho;HZL), £>0. (5.1)

Proof: When we defined channel capacity, we relied on a result by Dobrusin [14]
which shows that for information stable channels the capacity is given by

C= lim ! sup I(X1;5 Y], (5.2)
O Qep(an)
where P(X") is the set of all probability measures @ over X™ satisfying the given input
constraints.

Here, however, we have feedback and can therefore not rely on the above result, but
have to derive a new converse to the coding theorem for the new situation.

Note that since the channel capacity under a peak-power constraint £ cannot be larger
than the capacity under an average-power constraint £, all upper bounds that are based on
an average-power constraint are also valid for the situation with a peak-power constraint.
We will therefore in the following only consider an average-power constraint.

Hence, assume that there is a sequence of code schemes with |¢"®¥B| codewords of
blocklength n—i.e., for each n the rate of the code is not larger that Rpg—such that the

11
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probability of error
P™ 2 Pr[N + M]
tends to zero as n tends to infinity. Then
H(M) = log|e"™®B | > log(e"®FB — 1) = nRpp — €,
where €, — 0 as n — oo. Therefore,

1 n

n
1 1 €
= SI(M; YY) + —H(M[YT) + =
n( ; 1)+n (M] 1)+n

1 log2 + P log|e"®ee | e,
= Lran vy o g2 e logle ] e
n n n
1 log2 = PnR n
= SI(M;YP)+ e = TR g
n n n n
1 log 2
= ~I(M;Y}) + =2~ + PR +
n

(5.5)

(5.6)
(5.7)

(5.8)

(5.9)

Here (5.6) follows from that definition of mutual 1nformat10n, and the subsequent inequal-

ity from Fano’s inequality.
Therefore, for n — oo we must have

1
Rep < lim —I(M;YD).
n—oo n

(5.10)

Hence, any upper bound on the RHS of (5.10) will yield an upper bound on channel

capacity in presence of feedback. We will therefore continue with bounding I(M;Y7):

1 1 ¢
—I(M;Y7) = =Y I(M; YY"
n(al)n_(ak|1)

_ Tllzn: (11, YE ) = 1Y Y)
k=1

1 n
= ZI(M, YY)
n

IN

\ /\

—ZIMY’“ LHAL YY)
kl

=— Z I(M, YR =Y X Y
n
k=1

1< _ _ _
:EZ(I(H’f X Y + (M, YLy HE 1,Xk)>
=1
1 n
=~ > IHET X Y)
k=1

:*Z( (Xp; Yi) 4+ I(HN? Yk!Xk)>

12

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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Here the first two equalities follow from the chain rule; the subsequent inequality from the
non-negativity of mutual information; the following inequality from adding more terms;
the subsequent equality follows since X is a deterministic function of M and Y'f_l (and

hypothetically also HY~!); then we have used the chain rule again; (5.17) follows since®

I(M, YLy B X)) =0 (5.19)

and finally we have used the chain rule once more.
We have to take into account that X depends on past outputs via the feedback in the

next step.
T(H{™Y Yi| X5) < T(HEY Y, He| X)) (5.20)
= T(H Y Hy | X)) + THF Y] X, Hy,) (5.21)
= I(H} ' Hy | Xy,) (5.22)
= h(Hy| X)) — h(HyH}™', X)) (5.23)
< h(Hy) — h(H,[HY ™', X)) (5.24)
= h(Hy) — h(H[H} ™) (5.25)
= I(H; H ) (5.26)

Here the first inequality follows from adding one more term; the subsequent equality
follows from the chain rule; (5.22) follows since

I(HF Y| X, Hy) = 0 (5.27)

which can be seen similarly to (5.19); (5.24) is due to conditioning that reduces entropy;
and the subsequent equality holds since conditional on H]f_l, X and Hy, are independent.
Together with (5.18) this yields

%I(M;Y?) < *Z( (Xp: Y5 + T(Hy; HE 1)) (5.28)
gfz( (Xps Y) + I(H HED)) (5.29)
< EZCHD(ek) + I(Ho; HZL) (5.30)

k=1

where in the last inequality we have used the stationarity of {H} and used Cpp(&) to
denote the capacity without feedback or memory for a given power &. Note that the

3To see this keep in mind that Y}, is fully determined by Zy, Hy, and Xi. The noise Zy, is independent
of everything else and can therefore not be estimated from any other random variable; Xy is given; only
Hj, is not known. However, it can be approximated using the past H’ff1 which again are given. Therefore,
conditional on H]f_l and Xg, M and Y]f_l are independent of Y. This statement can also be proven
graphically using a technique based on causal interpretations, see Section 3.3.

13



Chapter 5 Capacity and Fading Number with Feedback

power allocation depends on the feedback. However, due to (2.5) & must satisfy

1 n
=Y &< (5.31)
n

k=1

Using this together with Jensen’s inequality relying on the concavity of channel capacity
in the power, we get

1 1 «
SI(M; YY) < Cup (n Z&) +I(Hop;H™L) (5.32)
k=1
< Cup(€) + I(Hop; HZ,,) (5.33)

where in the second inequality we used the fact that Cyp(-) is nondecreasing.
Therefore,

Rrp(€) < lim 1I(M;Y;L) < Crip(€) + I(Hp; HTL) (5.34)
n—oo N
which proves (5.1).
]
We note that the RHS of (5.1) is identical to the RHS of (4.7). Hence the same (alas
potentially loose) bound holds both for the channel capacity with and without feedback.
Moreover, also note that C(&) trivially is a lower bound to Cpg(€) since the transmitter
can simply ignore the feedback and achieve the same results as without feedback.
An immediate consequence of Theorem 5.1 is that Cpg(€) only grows double-logarith-
mically in the power at high power and therefore there exists a fading number xpp({Hx})
with a definition as follows:

Corollary 5.2 Because

éiTTn{CFB(c‘:) —loglog&} < 0, (5.35)

we define
xre({H}) £ %{CFB(S) — loglog £} (5.36)
(5.37)

Theorem 5.1 can then be applied to xr({H}).

Corollary 5.3 Using the same result as in Theorem 5.1, we learn
xre({Hg}) < xup({Hg}) + I(Ho; HZL). (5.38)

Next, we state a stronger statement.

14



Chapter 5

Theorem 5.4 (SIMO Fading Number with Feedback) Let a general SIMO
fading channel with memory be defined as in (2.1) and consider a noiseless causal
feedback link as described in (2.4) (see Figure 2.1). Then the asymptotic channel
capacity under either an average-power constraint (2.5) or a peak-power constraint
(2.6) is identical to the asymptotic channel capacity for the channel without feedback:

Crp(€) = log(1 +log(1 + £)) + xre({Hx}) + o(1) (5.39)

where the fading number is
xre({Hr}) = x({Hk})
= h, <ﬂoei90 {I;Ige@‘}e_:l_oo) —log 2
+ nrE [log ||[Ho||*] — h (Ho|HZL,). (5.40)

We would like to point out that this result even holds in the (hypothetical) case when
the feedback is improved in the sense that in addition to the past channel outputs the
transmitter also is informed about the past fading realizations Hlffl. Note further that
since we have assumed the most optimistic form of causal feedback, any type of realistic
feedback will yield the same result.

We would like to give a hand-waving explanation of this behavior. Since the fading
process is assumed to be regular with a finite differential entropy rate, it is not possible
to perfectly predict the future realizations of the process even if one is presented with the
exact realizations of the infinite past. Nevertheless, the feedback allows the transmitter
to make an estimate of future realizations. Based on these estimates, the transmitter
can then perform elaborate schemes of optimal power allocation over time: if the channel
state is likely to be poor, it saves power and uses it once the channel state is likely to
be good again. Unfortunately, due to the double-logarithmic behavior of capacity, such
power allocation has no effect at all as can be seen as follows: for any constant 5 > 0 (3
can be chosen arbitrarily large!),

%iTTn{log log BE — loglog £} = gﬁ{log(logﬁ +log&) —loglog £} (5.41)
= lim {log(log £) — loglog £} (5.42)

EToo
= 0. (5.43)

So not only the double-logarithmic growth is left untouched, but also the second term,
i.e., the fading number, remains unchanged.
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Chapter 6

Proof of Theorem 5.4

6.1 Main Line Through the Proof

Since the channel capacity of the system without feedback trivially is a lower bound on the
channel capacity with feedback, and since the capacity under a peak-power constraint is a
lower bound on the capacity with an average-power constraint, it is sufficient to derive an
upper bound on xrp({H}) under the assumption of the average-power constraint (2.5)
and to show that it is identical to the fading number without feedback and under the
assumption of a peak-power constraint.

The proof is very lengthy and we therefore outline the main ideas in the beginning. The
basic structure follows the proof of the general fading number of MIMO fading channels
with memory given in [9]. However, there are many details that need to be adapted and
taken care of. Particularly, we have to consider the following challenges:

e Due to the feedback, the channel input, the fading, and the additive noise become
dependent.

e We cannot rely on the important auxiliary result given in [9, Th. 3] that shows that
the optimal input is stationary.

e We cannot rely on the important auxiliary result given in [15, Th. 8] that shows that
the capacity-achieving input distribution escapes to infinity.

To handle the first challenge, we often rely on the concept of causal interpretations, which
is introduced in Chapter 3.3, [12], [13]. This is a tool that allows to graphically proof the
independence of random variables when conditioned on certain other random variables.

The missing auxiliary result concerning the capacity-achieving input distribution es-
caping to infinity can be proven indirectly inside of the derivation.

The biggest difficulty is caused by the nonstationarity of the channel input that is
inherent to the given context because the transmitter continuously learns more about the
fading process through the feedback and thereby changes the optimal distribution of the
input.

16



6.1 Main Line Through the Proof Chapter 6

The proof starts with Fano’s inequality (see (5.9)), which states that any given sequence
of communication systems with rate Rpg and power £ must satisfy

1 log 2 0
Ren(€) < —I(M;Y}) + = + PR (€) + = (6.1)
— LS v ) 4 952 R + (6.2)
n 1 n n
1 < _ n—rl — _
=D TG YR[Yi) +— I(M; YY)
k=1 k=r+1
L1082 pougeg(e) + (6.3)
n n
1 — _ n—kx 1 " _
< EZ(CHD(gk)‘FI(HOQH_})O)) L— Z (MY, Y
k=1 k=r+1
L1082 prgeg(e) + & (6.4)
n n

In (6.3), we separate the sum into two parts. The first part, 1 < k < k, can be considered
as transient state. Since k is a constant, it is bounded anyway and in (6.4) we bound the
mutual information term in the sum as in (5.30). Using Jensen’s inequality relying on the
concavity of channel capacity in the power, we get

K 1 & K o n—k 1 - _
Rpp(€) < - Cip <H;5k) + EI(Ho;Hf}m) + > I(M;Y[YP

log 2 0
4 982 pIRLa(E) + . (6.5)
n n

Next we focus on kK +1 < k < n and bound as follows:
I(M;YR|[YF) < T(M; Yy, Ge YT (6.6)
= I(M; G| YT ) + I(M; Y| Y], G)
= H(Gp|Y]™) — H(Gp| M, YF™) + 0l (M; Y, |[YF G =1)

>0
+ (1= ) (M; Y, [Y, G =0). (6.8)

Here in (6.6), we add the indicator random variable G}, that is defined as

1 if |Hg|? > ¢,
0 otherwise,
for some given ¢t > 0. We will choose t large such that
E[||Hol/?
ElIlHo )} <05 (6.10)
Moreover, we define
Ve 2 Pr[Gy = 1] = Pr[||Hg|?* > ¢], (6.11)
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Chapter 6 Proof of Theorem 5.4

and note that by the Markov inequality (Lemma 3.3),

E [Fel?]

e = Pr{|[Hy[* > t] < =

(6.12)

Because

H(Gr[YY™") < H(Gy) = Hy(w) < Hy, (W) (6.13)

where Hy,(+) denoting the binary entropy function, with ¢ large enough and by using (5.30)
again with conditioning on G = 1, we further bound (6.8) as follows:

I(M; Y, Y]™)
< Hyp () + %Cup (& |Gr = 1) + vl (Ho; HZL |Go = 1)

+ (1 =) I(M; Y [YF, Gy = 0) (6.14)
<1
< Hy, (E“Ij‘)"z}) - E[”}:O”Q] Cu (t&x) + E[”I;IO” ] I(Ho;H-L |Gy = 1)
+I(M; Y| YF G =0). (6.15)

Here in (6.15), Crp(-) is the capacity of a channel

- Y, H 7
Y, = Tk = Tkx + 252 Hyxy + Zy, (6.16)

where we condition on the event that Gy, = 1, i.e., |[H||?> > t. This is a different regular
fading channel, for which we know

~lim {CHD(EN) — log log g} < 0. (6.17)

E—o0
Hence,

- Z Crp(t - &) < ZCIIDt &) < (t Z&)

k K+1
where the last inequality follows by Jensen’s inequality relying on the concavity of channel
capacity in the power again. Putting everything back into (6.5), we get

K 1 & K _
Rrp(€) < ;CHD (K ;&) + EI(Ho;H_Cl,O)

n—rk 1 < ‘ b1 n—rk E[|[Ho|?]
+— n_ﬁk%;lI(M,kaYl .G, =0) + - Hb< p

4 Bl ( Zs) o R B gy 6 - 1)

t t
log 2
+ 2=

+ PMRpp () + 2. 6.18
¢ n

18



6.1 Main Line Through the Proof Chapter 6

The third term in (6.18) is then bounded as follows:

I(M; Y, |[YF ™, G = 0)
=I(M, Y Y| Gr =0) — I(Yi 1 Y|Gy = 0) (6.19)
< I(M,YF ' X, BY LY, |G = 0) — T(Y Y| G = 0) (6.20)
= I( X3, Hy 5 Y4 |G = 0) + (M, YT Yk | X3, HY 1, Gi = 0)

=0, see Appendix D

— (YT 5 Yi|Gr = 0) (6.21)
< I(Ep, X, HY 1 Y4 |Gr = 0) — I(YF T Y,|GL = 0) (6.22)
= I(Ey; Yi|Gr = 0) + I(Xy; Yi| B, G, = 0)

+ I(H} Y| Xy, Be, G = 0) — I(YT 5 Yk |G = 0) (6.23)

< Hy(Br) + Brl (Xp; Yi|Ep = 1,Gf, = 0)
+ Bl (HY Y| Xi, B = 1,Gr, = 0) — I(Y} 'Y, G, = 0)
+ (1= B (X, HY Y Y4 | By = 0,Gy = 0). (6.24)

Here in (6.20) the current input X, and the past fading values H¥ ! are added. In (6.22)
we add the indicator random variable E), that is defined as

13 |Xe| > Eim, VO=1,..., k,
Eké{ i 1% > ¢ (6.25)

0 otherwise,

for some given &nin > 0. Moreover, B = Pr[Ej = 1|Gy = 0]. Finally, (6.24) follows
because we bound

I(Ew; Y1 |Gy = 0) = H(E}|Gy, = 0) — H(Ey| Yy, Gr = 0) < H(Ey) = Hy(Br).  (6.26)

>0

Note that the three middle terms on the RHS of (6.24) correspond to a memoryless
term, a term with memory, and a correction term, respectively. We will show in Section 6.2
that the second term on the RHS of (6.24) can be bounded as follows:

I (Xp; Yi|Ey = 1,G = 0)
— Iy (f{ke‘@k Ep=1,Gf = o) — h(Hg| Xy, B = 1,G, = 0) — log 2
+ ngrE [log |Hy||*| Ex = 1, Gy, = 0]
+u(log17 — Eflog |Hy|?|Ex = 1, G, = 0] — E[log | X¢|*|Ey = 1,Gj = 0] )

1
+logT (u, n) + e+ BB B = 1,Gie= 0] + (6.27)
the third term on the right hand side of (6.24) as

IH Y| Xy, By = 1,6 = 0)
< h(Hy| Xy, By = 1,Gy = 0) — h(Hy[H} !, Gy, = 0), (6.28)
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Chapter 6 Proof of Theorem 5.4

and the fourth term on the right hand side of (6.24) as
1YY Y,|GL=0)
> 5kh,\ (I:Ikeiek|Ek = 1,Gk = 0) — h)\ <I:I]g€i®’C

oy k—1
{Hlelgl} ,Gk = 0>
l=k—k
A Ly k-1
+ (1 — Br)ha <er'@k {Hle'@l}k B, =0,Gp = 0)
— 3Hp(Bk) — 61(K, &min) — 62(K, min)- (6.29)

Plugging (6.27), (6.28), and (6.29) back to (6.24), we get

I(M; Y, |[YV Gy =0)
< Hy(Br) + Brha (Hre®* | Ey = 1,Gy = 0) — Bph(Hy| Xg, B = 1,Gy = 0) — B log 2
+ BnrE [log |[Hy||*|Ex = 1, Gy = 0]
+ Bt (1og 1 — E [log [k [2[ By = 1, Gy = 0] — E [log | Xy[*| B = 1,Gx = 0] )

v 1 v
+ B log T’ (M 77> + Brevk "‘»Bk;E[HH%kamEk =1,G, =0] +6k5

+ Beh(Hy| Xk, By, = 1,Gy, = 0) — Buh(Hy[HY !, Gy = 0)

(e )
- A k—1

+ 3Hy,(Br) + 61(K, &min) + 02(k, Emin)
+ (1= B (X, HY 75 Y, | B, = 0,Gr = 0). (6.30)

— Brh (I:Ikeiek|Ek =1,G, = 0) + hy <I:Ik€i®k

Note that the four underlining terms in (6.30) cancel each other, and that
BrnrE [log |Hy||?|Ex = 1,Gi = 0]
= nrE [log |Hy||*|G), = 0] — (1 — Br)ngrE [log | Hy||?*| Ex = 0, G, = 0],
—BE [log |Hy||*|Ex = 1, Gy, = 0]
= —pE [log ||Hy|[*|Gr = 0] + p(1 — By)E [log |Hy || Ex, = 0, Gy, = 0] .
Moreover,
E[log| X5 |*|Bx = 1, Gk = 0] > log &,
and by (B.10) and (B.11)

Brevi = sup { BiE log([Hiy? +v)| By = 1, G = 0]

72£min
~ BeE [log(IH,|*2) [ B = 1,G = 0] } (6.31)
< sup {ﬁkE log(|[Hk |72 + v)| By, = 1, Gy = 0]

— BrE [log(||Hg||*v%)| B = 1,Gr, = 0]
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6.1 Main Line Through the Proof Chapter 6

+ (1 = B)E [log([Hy[*+? + v)| By = 0,G), = 0]
— (1= B)E [log (I1Hk|1*?) | B, = 0, Gy = 0] }
= sup {E[log(|Ho|*y* + v)|Gx = 0] — E[log(||Ho||*+*)|Gx = 0]} (6.32)

YZ8min

=6 (6.33)

where (6.32) follows because we add something positive (v > 0, chosen freely). Therefore,
(6.30) becomes

I(M; YY1, G =0)
< Hy,(Bx) — Brlog 2 + nrE [log ||[Hy||*| Gy, = 0]
— (1= Bg) nrE[log [|Hy || Ex = 0, G), = 0] + Byulogn — pE [log [|[Hy||*| G = 0]
+ (1 — By)E[log [|Hg||*| B = 0, Gy = 0] — Beplog &

v 1 v
# dutogT (i 2) + ¢+ B E (BRI B = 1,6 = 0] + 5.7

~ Q k—1
{Hle'@l} .Gy = 0>
l=k—k
A you | k—1
— (1= Br)hx (er'G’“ {Hze'gl}lik JE,=0,G = 0>
+ 3Hb(5k) + 51('%7 fmin) + 52('%7 fmin)
+ (1= B (X, HY 1 Yi | By = 0,Gf, = 0) (6.34)
= 4Hb(ﬁk> + 51 (K,, gmin) + 62("17 gmin) 1€y
~ . ~ k—1
+ h)\ <H}€€'e'C {Hlelel} ,Gk = 0> 1 Bkh(Hk‘Hlf_l, Gk = 0)

— Bkh(Hk|Hlf_1, G = 0) + hy (I:Ikeiek

+ ngrE [log ||Hk||2}Gk = O]
+ (B logn — E [log [ He[2|G = 0]
+ (1= BY)E [log ||| B, = 0, Gy, = 0] — By log €,

14 14
+ By logT <M, 77> + %E[||Hk||2|Xk‘2|Ek =1,G, =0] +ﬁk5 — B log 2
+ (1= B) (I(XkaH’f1§Yk‘Ek =0,Gr =0)

A A k—1
— h)\ (erlek {Hlelel} ,Ek = 0, Gk = O>
K

— nrE[log || Hy||*| B, = 0,Gy = 0] ) (6.35)

Here, in (6.35) we arithmetically rearrange the terms. We further bound the last term in
(6.35) as follows:
(1 — Br)E [log [[Hy||*| B, = 0, G, = 0]
< (1= By) log E[||Hy||*| Ex = 0, Gy, = 0] (6.36)
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Chapter 6 Proof of Theorem 5.4

[IIHkIIQ\Gk = 0]
< (1= B log = 28 (6.37)
= (1 — Bg)log E[||Ho||?|Go = 0] — (1 — Bx) log(1 — B) (6.38)
< (1 - By log E[JEo|*|Go = 0] — e ' loge™ (6.39)
= (1~ 64 log E[[| Holl?|Go = 0] + . (6.40)

where (6.36) follows from Jensen’s inequality; (6.37) follows because
E[|IHy||?|Gx = 0] = BLE[|Hy|]*| Ex = 1, Gy, = 0]

+ (1 = BR)E[|IHk|[*|Ex = 0,G), = 0] (6.41)
> (1 — BR)E[|[H|*|Ex = 0,G), = 0] ; (6.42)

(6.38) follows because {Hy} is a stationary process; and (6.39) follows because the function
x — zlogz has its minimum when x = e. Putting (6.40) back into (6.35) and using the
stationarity property of {Hy} again, we get
I(M; Y, |[YF, Gy = 0)
S 4Hb(/8k) + 51("437 fmin) ol 52("47 fmin) + €y

+ h)\ (I:I()eieo }{I:Ileiel}li:lﬂ{, Go = 0) ﬁkh(Ho}H k+10 Go = 0)

+ nrE [log [|[Hol[*|Go = 0]

+ u(ﬁk log 1) — E[log [ Ho||*|Go = 0]

1
+ (1= B) log E[| Ho 2| Go = 0] + — — By log €24

+ B logT (:U’v :) Prg E[|IHL|*| Xk|*|Ex = 1,G = 0] +5ir — B log2
+(1—ﬁk)< (X, Hf ™ Y| Br = 0,G = 0)

— hy <flkei@’“

A k—1
{Hle'@l }HH B, =0,Gy = 0>

— ngE[log |Hy| | B, = 0, Gy, = 0] > (6.43)

Next note that

L [ X0 P = 1,Gi = 0]
1 _
= EE[||Hk||2|Xk|2}Gk =0] - nﬂkE [IHE [ Xk|*| By = 0,Gx = 0] (6.44)
—E[||Hy|I*| Xk *|Gr = 0] . (6.45)

n
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6.1 Main Line Through the Proof Chapter 6

Moreover in Appendix A, we further bound the last part of (6.43) as follows:

STy k—1 B -
H®p L Ep=0,Gy=0

=K—K

I(Xe, B Y| By = 0,G = 0) — hy <I:Ikei@k

—ngE [log |[Hy|?| By, = 0, Gj, = 0]
< Ciip (§min|Gr = 0) — (nr — DA(Ho|HZL,, Go = 0)

— ha(Hoe® [HZL, Gy = 0) — h(Ho|[HZ, , |, Go = 0)
.\ nR(nl;{ D 4 2 10gt (:; E[\\Hi!f!gj = 0}> + A, 1), (6.46)
where
log™ (x) £ max{0,log(z)} (6.47)

and A(ng, 1) is some finite number. Therefore, we get
I(M; Y| YT, G =0)
< 4Hy(Br) + 01(K, Emin) + S2(K, Emin) + €
+ hy (Hoe® |{H;e9'} 1, Go = 0) — Bph(Ho|H 4, ,,Go = 0)
+ nrE[log |[Ho||*|Go = 0]
+ N(,Bk log 1) — E[log | Ho||*|Go = 0]

1
+ (1 - B) log E[|[Ho||Go = 0] + = — B log €%, )

v 1 v
+ B logDl (,u, 77) + EE[HHkHQ]Xk\Q‘Gk = 0] + Bkﬁ — Brlog 2

+ (1= Br) <CHD(§min|Gk =0) — (np — DA(Ho|HZ,, Gy = 0)

— hy(Hoe®°|HZL,, G, = 0) — h(Ho|H },,,Go = 0)

—00 — k1)
1 E[||Hop|[?|Go =0
+7nR(nR+ )+n%{10g+ me E[[Hol["1Go =) + nrA(nR, 1)
e nR 1— B

(6.48)

S 4Hb(ﬁk) + 51 (/{, ‘Smin) + (52(/{7 ‘Smin) + €y
+ ha (Hoe® |[{H,e®1} 1 Gy = 0) — h(Ho|HZL,, Gy = 0)

l=—~K> —o0)

+TLRE [logHHoH2|G0 = 0]
+ u(ﬁk logn — E [log |[Ho||*|Go = 0]

1
+ (1= B) log E[[ o[ Go = 0] + = — B log €%,

v 1 v
+ B logl (/J, 7}) + EE[HH;C”Q’XMQ‘G]C = 0] +5k6 — Brlog?2

+ (1= Bk) <CHD(§min|Gk =0) — (nr — Dh(Ho[HZL,Go = 0)
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Chapter 6 Proof of Theorem 5.4

— ha(Hoe® [HZL, G}, = 0)

—0o)

1 E[||Hol|?|Go = 0
+”R(”R+ )+n2Rlog+ me E[[[Ho|[*|Go = 0] CnAGR1) |,
e nR 1— B

(6.49)

where (6.49) follows because two underlining terms in (6.48) combine to

h(Ho|HZ, ;,Go=0).

Defining

1 n
A
BE—— > B (6.50)
k=rk+1
using Jensen’s inequality for the binary entropy function, adding the sum from (6.18) in

front of (6.49), we get

Z I(M; Y, |[YY Gy =0)
k=r+1
< 4H(8) + 61(, &min) + 02, Emin) + € + hy (Hoe' @ [{H,e©1} L Go = 0)
— h(Ho[HZL,,Go = 0) + ngE[log [[Ho||?, Go = 0]

+ n(Blogn — E [log |[Ho|*|Go = 0] + (1 — B8) log E [log | Ho||*|Go = 0]
1
+ ; - Blog €12nin)

1 1
nn—K

1

n—kK

n

3 E[HMPIXI| G = 0] + 8% — Blog?2
k=k+1 n

v
+ Blog’ (u, 77) &

+(1-8) (CIID(fmin’GO =0) — (nr — 1)h(Ho|H-},,Go =0)

. V. 1
— h)\(H()e'@O‘H:éo, Gy = 0) + nR(mZH + TLRA(RR, 1))

n 2 _
- 3" (1- Br)nd log* (Z:;E[”HOH [Go = O]> . (6.51)

n—r L= 1— B

e E[IIHo|12|Go=0]

2 —
w, (1 — By)log*t (1—&) is concave in [y,

Because for g, > 1 — o

nR

the last term in (6.51) can be further bounded as

Y me E 2|Gn =
: Z (1 — By)nf log™ (nR [IHo*|Gg 0])

n—k, 1—pr

2 —
< (1—p)ni log* <;r§ E[HH()lH_\io = 0}) : (6.52)

Moreover, in order to get rid of the dependence on the input, { X} (note that § depends
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Chapter 6

on {X}), we add a supremum over 3:

! > I(M;Y|Y,Ge=0)
k=r+1
< h,\ (I:I[)eigo‘{ﬂlei@l}l—:l_ﬁ, Gg = 0) (Ho‘H G() = 0)
— log 2 + nrE[log ||H0||2}G0 =0]

+ sup {4Hb(ﬁ) + 51(“7 fmin) + 52(“) fmin) + €
0<8<1

p1(Blogn — E [log |Ho|[*|Go = 0] + (1 — ) log E[log | Ho ||| G = 0]

+e ' = Blog &)

v 1 1
stogr (w2 )40 - > e[| = 0] + 52

n
n k+1

+(1-p5) (CIID(fmin|G0 =0)—(ng—1) (HO‘H_ , G = O) + log 2

_ hA(Hoe'GO‘H,OO, Go=0)+

E[|H Gop=0
+ (1= B)ndlog" (77;6{ [ Hol[?|Go ]) }

1-p

Because

1 t
—E[|IH|I*| Xx[*|Gx = 0] < HE[t- | Xe|?|Gr = 0] < Hgk

and
n

Z E7ﬂ‘l§n:5<tn£
nn—=k nk_lk* ’

nn—k nn—k
——

<&
(6.53) becomes

! > I(M;Y|YF L, Gr=0)
A

< by (Foe'® [{H;e®1}, ! Go = 0) — h(Ho[HZL,,Go = 0)
— log 2 + nrE[log |[Ho||*|Go = 0]

+ sup {4Hb(6) + 61(“77 gmin) + 52('“'77 gmin) + €y
0<p<1

TLR(TLR + 1)
e

+ nrA(ng, 1))

(6.53)

(6.54)

(6.55)

p1(Blogn — E [log |Ho|*|Go = 0] + (1 — 8) log E[log |[Ho|[*|Go = 0]

+e - Blogéﬁm)
t
+ﬁlog1“<,u,y>+ 5+,37
n nn-—~kK

+(1- 5)(CHD(§min|Go =0) — (ng — 1)h(Ho|HZL, Gy, = 0) + log 2

1
_ h)\(H()eI@O‘H ,Go = 0) nR(nl:—’_)
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E[||Ho||?|Go =0
+ (1 — B)nd log* (;r; I 01”_‘,30 ]>}

Let n — oo and choose

14

r= log &£
_ Elogé&
v

t=log€.

Then the bound on the capacity with feedback in (6.18) becomes
Rrp(€) < hy(Hoe | {H,e®1}, ! Go=0) — h(Ho|HZL,, Gy =0)
— log 2 + ngrE [log [|[Ho||*|Go = 0]

+ sup {4Hb(ﬁ) + 51(/{7 gmin) + 52(/{7 gmin) + €y
0<B<1

£l 5
<ﬁ1 %82 _ E[log [Ho|1?|Go = 0]

+(1-5) 1ogE[1og [Ho||*|Go =0] + e

v v? B2
logl' | ——, ———
+ Slog <log5’5log5>+y+510g5

(6.56)

— Blog &%nn)

+ (1 — ﬂ) <CIID(§min‘GO = 0) — (nR — 1 (HO|H_OO7GO = 0)

- h)\(Hoeleo |H Go = 0)

+ npA(ng, 1))

+(1 - B log* (mE[IIHoll2>Go - 0}) }
nR

1-p

E[||H,l2 H
Hy, ( [|1|Og(:€|| ]> + [ng(jS,H ]CIID(E log &)

E[IIHo||?] ~
+ og € ———I(Hop; HZL |Go = 1)

= I (Hoe @ [{F,e '}, Go =0) — h(Ho|HZL, Go = 0)
— log2 + nrE[log HHOHQ‘GO =0

+ sup {4Hb(6) + 51("@ gmin) + 52(/’?7 gmin) + €y
0<B8<1

nr(nr + 1)

(6.60)

v VE [log | Eo || Go = 0]
+ g & (log € + loglog & —logv) — log €
N (1 - B)rlogE[log HH0||2’G0 =0] LY Rz log &2
log & elogé’ log &£
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v v? B2
logl’' | ——, ——
+ Slog <1og5’5log5)+”+glog5
+(1_,8)<CHD(§min‘GO:O)_(nR—l (Ho|HZL,,Go = 0) + log2

nr(nr + 1)
(&

— hy(Hoe® [HZL,Go = 0) +

—o)

+ nrA(ng, 1))

2 —
(1 By log* (;Z;E[HHOH Gy — 0]> }

1-p
E[IHo[*] | ElIFo[*] -
+ Hy, ( log € + log € Cup(€logé)
E [|I¥o] ] .
+ W.r(HO; H-L |G =1). (6.61)

Note that this bound holds for any system, hence also for a capacity-achieving system.
Therefore we can use (6.61) to upper-bound Crp(&):

xre({Hy}) = ?go{CFB(S) —loglog &} (6.62)
< fm {hA (Foe™[{Fie'® )2, Go = 0) — h(Ho[HZL,, Go = 0)
— log2 + ngE [log HHOHQ‘GO = O]

\C sup {4Hb(/6) + 61 (K'; gmin) + 62('“5; gmin) + €y

0<p<1
v vE [log |[Ho||?|Go = 0]
—— (1 log 1 -1 —
+log€(0g€+ oglog& —logv) log &
» (1-— ﬁ)l/logE[log ||H0H2‘G0 = O] N v Vﬁ logﬁmm
log £ elogé’ log &

v v? Bl/
ﬁlogr( gE’ 5log5>+ Elog€
+(1_,8)<CIID (£min|Go = 0) — (ng — 1)h(Ho[H=L,, Go = 0)

nr(nr + 1)
e

— ha(Hoe® [HZL,Go = 0) +

+ nrA(ng, 1) + log 2)

E[|Ho||?|Go =0
+(1—5)”2R10g+ (:L; [H 01H_‘60 ]>}

o (E[HHO\H> LB o etog ey

log& log &

X [PO ?5‘” ’] (Ho;H:éo‘GO =1) —loglogé'} (6.63)
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Go=0) — h(Ho|H_,Go = 0)

—K? —00)

< T L (Froei® {11,001
_51%10{ A (Hoe' 0 [{H,;e1 ),
— log2 + ngrE [log HHOHQ‘GO = O] + 51(57€min) + 52(Hafmin) + €

E [log [|ELo|12|Go = 0
+75(log5+loglog5 1Og1,)_l/ [OgHIOOgHg‘ 0 ]

v viog€2. St loeT v v? tu+ v?
—_— v
elogf  logé& & logE™ Elog & Elog&

E[IHol|?] E[l[Holl?] -
+Hb< log &£ + log & Cip (& log £)

4 Ul|0 OEH ]I(Ho;H:éo‘GO =1) - loglogz‘f} (6.64)

Here, in (6.64), we try to find the value of 5 that achieves the supremum: note that we
found that first, Hy,(f) and those terms with 1 — 3 are constant with respect to &; second,
the remaining terms do not grow with £ except logf(@, %) since

v v?
im {1 r ~logl 5}:1 1—e™) —logw, 6.65
eoo 108 <log€ €log€> CI: og(l —e™) —logv ( )
which means logI'(-) grows as fast as loglog €. So logT'(+) is the only term inside the sup
that grows with £. Therefore, the supremum is achieved if 8 = 1. Actually, this is related
to the property called “escaping to infinity” (see [10, Corollary 2.8]).
Next, note that

E[|Ho|?] E[|Ho|?]
£—oo  logé Cup(€log€) = 61—>oo log & (log log(€ log €) + const) (6.66)

E[|Ho[*]

Eﬁoo 10 &
=0,

(log(log & + loglog £) + const)

and
I(Ho; HZL|Go =1) = h(Ho|Go = 1) — h(Ho|HZL,Go =1) < (6.67)

Moreover, we drop Gy = 0 because as £ — co and ¢t = log £, the conditioning on Gg = 0
is implicitly satisfied. As the result, (6.64) becomes

xrs({Hx}) = ha (Hoe' [{Hie'® )2 ) — h(Ho[H™,) —log2 + nrE [log | Ho||’]
+ 01 (K, Emin) + 02(K, Emin) + €, + v +1og(l —e™) —logr + v (6.68)

In a next step, we let v go to zero. Note that ¢, — 0 as v — 0 as can be seen from the
definition of €, in Appendix B. Note further that

1—eV 1—eV
lim {log(1 —e™) —logr} = lim {log(e)} log lim {(e)} =0 (6.69)
v—0 v

v—0 v—0 14
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Therefore, we get

xes({He}) < ha(Hoe'® [{Hie® ) — h(Ho[HZL)
—log 2 + nrE[log [|Ho||*] + 61(%, &min) + 02(K, Emin)- (6.70)

Next, we let £min tend to infinity, then it is shown in Appendix C that d1(k, {min) — 0 and
92(Ky &min) — 0. Finally, we let k£ tend to infinity and the fading number without feedback
becomes

xre({Hp}) < hy (Hoe® [{H; e}, ) — h(Ho|HZL)

l=—00

— log 2 + nrE[log || Hol?] . (6.71)

6.2 Detailed Derivations for Three Terms in (6.24)

6.2.1 First Term

The second term on the RHS of (6.24) is bounded as follows:

I(Xi; Y| By =1,G = 0)

< I(Xk; Yi, Hp Xi | By = 1,G = 0) (6.72)
= I(Xp; Hp Xp | Ep, = 1,G, = 0)
+ I (X Hp X, + Zyp|Hp X, B, = 1,Gj, = 0) (6.73)
=0 see Appendix D
H; X}, >
— T Xp: [Hu X0, —22F By = 1,6 = 0 6.74
( ks [ HE Xkl x| P k (6.74)
H, X,
1 (Xk; PR X, X gy 1 @ = o) (6.75)
[ Hg ||| X |
= 1 (X [ FI || X, Flge™ | B = 1, G = 0) (6.76)
= 1 (X [ || X |, Fye™™, 94| B = 1,6 = 0) (6.77)
=1 (Xk§ [ HLL || X g€, Hye 608 O | By = 1, Gy = 0) (6.78)
-y (Xk; [ EL|[| X 4 |©*, FL,, (@00 B = 1,G), = 0) (6.79)
= I (Xp; [|Hyl|| X5 |e"®* | By = 1,Gy = 0)
) (Xk; L el (e 00 ||| Hy ||| X4, €€, By = 1, Gy = 0) (6.80)

In (6.76), Hy £ k7, and @, denotes the phase of Xy; in (6.77), {©4} is IID ~ U((—, 7))
and independent of {Hjy} and {Xj}; (6.79) follows because we can get back © from
| H1||| X1|e?®*; (6.80) follows because of the chain rule.

We continue to bound (6.80) using a duality-based bound, for detail we refer to Ap-
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pendix B:
I (X | Hy ||| Xi|e™* | By = 1,G), = 0)
1 (X0 e 0 [ H [ X, €%, By, = 1,6 = 0)
< —log2 — h(Hy|Xy, B, = 1,Gj, = 0) + (2ng — 1)E[log [|Hy|||E), = 1, Gj = 0]
~ Eflog [Hu[|Bx = 1.Gy = 0] + plogn + logT (M, n)
+ (1 — p)E[log |[Hy| | Ex = 1, Gk = 0] — uE[log | Xx|*|Ex = 1,Gr = 0] + €14
+ 117E“|Hk”2|Xk|2|Ek =1,G,=0] + % + hy (ﬂkei@k

Ep—=1,Gf = 0) (6.81)

Arithmetically rearranging the terms in (6.81), we have the second term on the RHS of
(6.24) be bounded as follows:
I(Xi; Yi|Ep =1,G = 0)
< hy (flkeie’“ E,=1,Gf = 0) — h(H| Xy, By = 1,G = 0) — log 2
+ ngE [log [[Hg || Ex = 1,Gy = 0]
+un (logn — E[log ||Hk||2’Ek = 1,Gk = O] i E[log |Xk|2’Ek = 1, Gk = OD

1% 1 v
+ logT <u, n> + €k + EE[HH%MX,JQ\E;C =1,G,=0] + = (6.82)

6.2.2 Second Term
The third term on the RHS of (6.24) is bounded as follows:

I(HY Y| Xy, By = 1,G), = 0)

< I(H} 'Yy, Hy | Xy, By = 1,Gy = 0) (6.83)
= I(H} ™' Hy | X, By, = 1,G = 0)
+ I(Hy ™Y Y| Hy, Xy, B, = 1,Gy = 0) (6.84)
=0 see Appendix D
= h(Hg| Xy, B, = 1,G = 0) — h(Hy|H{ ™, Xy, B, = 1,Gy = 0) (6.85)
= h(Hg| Xy, B, = 1,Gx = 0) — h(Hy[HY , G, = 0), (6.86)

where the last step follows because conditional on G = 0 and all the past values H]f_l of
{Hy}, Hy, is independent of Xj and E}.

6.2.3 Third Term

Recalling the definition of Ej in (6.25), we lower-bound the fourth term on the RHS of
(6.24) as follows:

1YY Y,|GL=0)
> I(Y}L Y| Gr=0) (6.87)
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=I(Yu Y} ) Ey|Gr =0) — I(Yy Bx|Y,—L, G, =0) (6.88)
= I (Y E|Gr = 0) + I(Yi; Y7~} | By, G, = 0)
>0
H(Ey[Y, ), Gy = 0) + H(E| Y}, Gr = 0) (6.89)
< Hy(Ey) >0

> Bl (Y YL By = 1,G, = 0)

+ (1= Br) 1Y Y~ L B = 0,Gy = 0) —Hy(Br) (6.90)

>0

> Bl (Yi; YiZ | Ex = 1,Gr, = 0) — Hy(B) (6.91)
— Byl (Yk, Oyl fO ‘E —1 Gk — 0) - Hb(ﬁk) (6.92)
— Bl (Hkae'@k + Zg, 69 {H X 4 2} {9 ‘Ek — 1,64 = 0)

— Hy(B) (6.93)
> GBI (er'ekxk + g {H, X690+ Zl}l:,:_H’Ek —1,G) = o) “Hy(By)  (6.94)

k—1

(
i i k=1
= Bl (Hk\Xk’ff@’“ + Zy; {Hy | X[ + Zl}l:k_H‘Ek =1,Gp = 0) — Hyp(Be) (6.95)
I=k—k’ (

:17Gk20) Hy,(B)
B =1, Gk—()) (6.96)

= B1 (Hk|Xk|ei®’“ + Zy; {H1|Xz\ei91 + 7 Zi_i Ey

k 1

i + Zl

— Bl <Hk|Xk|elek +Zi; 2}

Here, (6.90) follows because the first term and last term in (6.89) are equal or greater than
zero and Hb(Ek|Yk e Gk = 0) < Hb(Ek) Hb(ﬁk); in (6.92), we add {@k}, which is IID
~ U((—m,n]) and independent of Y. Because {O} is uniformly distributed, it destroys
the phase of {Hy} and let {He®*} becomes circularly symmetric. (6.94) follows because
we drop €¢®* on both side of mutual information.

By Appendix C.1, we have

Bel (Hk\Xk]e'Qk +Zy Zh Oz B=1,Gp = 0)
< 1(K, &min) + Hu(Bk), (6.97)

so we further bound (6.96) as follows:

1(vi, Yk‘Gk —0)

> Bl (Hk|Xk’€i®k + Z; {H| X0 6® + Z )0 ZE LB = 1,6y = 0)

— 2Hy(Bk) — 61(K, &min) (6.98)
= Bl (Hk|Xk’€|@k + Z; {HY X e©) 2B B = 1,6y = 0)

— 2Hy(Bk) — 61(K, &min) (6.99)
> Bl (Hk|Xk;!€i@’“ + Zy; {H1|Xl|€i®l}f:_kl,,€‘Ek =1,Gy = 0)

— 2Hy(Bk) — 61(K, &min) (6.100)

- 0 k-1
= Byl (Hk|Xk!€'@’“ + Zy, Zy; {H1|Xl!€'@l}l:k_H’Ek =1,Gf = 0)
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9, k1 i
— Brl (Zk; {Hz\Xzfegl}l:k_n Hy| X¢|e€F + Zy, By = 1,Gf, = 0)

— 2Hy(Br) — 61(#, Emin)- (6.101)

Here, in (6.100), we drop {Z’Z:}i}, so the mutual information becomes smaller.
By Appendix C.2, we have

Bl ({101 Y3 Zo |G Xkl + Z, By = 1,6 = 0)
< 02(K, &min) + Hp(Br), (6.102)

and we further bound (6.101) as follows:
I (Y’f‘l;Yk‘Gk = 0)
i 9 k1
> Bl (Hk|Xk’€®k + 2y, Zy; {Hl\Xl’fi@l}l:k_K’Ek =1,G = 0)

— 3Hp(Bk) — 01(k, &min) — 02(K, Emin) (6.103)
> Bl (Hk|Xk!€i®’“; {Hlleleiel}f:_klfﬁ)Ek =1,G = 0)

— 3Hy(Bk) — 01(K, &min) — 02(K, &min) (6.104)
= Al (I, B s QRN (e} | =160 =0)

— 3Hy(Bk) — d1(~, §min)k— d2(K, &min) (6.105)

A . g —1

> Bl <er'@k; {Hle'@l}l:k_ﬁ E,=1,Gy = 0)

— 3Hy(Bk) — 01(K, &min) — 02(K, &min) (6.106)
= Biha (ﬂkei@k Ey=1,Gf = o) N (ﬂkei@k {ﬁlei@l}:_ﬁ By =1,G), = o)

- SHb(Bk’) - 51(”» gmin) ~ 52(”, gmin) (6107)
N . ~ . < 4 k—1
= Biha (Fke'® | By = 1,Gr = 0) = Behy <er'@k {Hle'@l}l_k By =1,Gj = o>

i) k—1 u B
Hie Ik L E,=0,G, =0

— (1 — Bk)h)\ (I:Ikeigk

N . A k—1
+ (1 — Br)hy (er"@k {Hl(j'@l} B JE, =0,G = 0)
- 3Hb(ﬁk) - 51 (I‘L, gmin) - 52(”7 gmin) (6108)
~ . ~ . PO k—1
= ﬂkh)\ (erlgk Ek = 1,Gk = 0) — h,\ (er@k {HleI@l}l—k ,Ek, Gk = 0>
N . A k—1
+ (1 — Br)hy (erlek {Hle'@l}l_k JE, =0,G = O)
- SHb(ﬁk) - 51 (I‘L, gmin) - 52(”7 gmin) (6109)
~ . ~ . PO k—1
> ﬂkh)\ (erlgk Ek = 1, Gk = 0) — h,\ (erlgk {HleI@l}l:k—n s Gk = 0)
N . A k—1
- 3Hb(ﬁk) - 51(’@ gmin) - 52(’@ gmin) (6110)
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Here, (6.105) follows from taking the magnitude from Hy|Xy|e®*; (6.106) follows be-
cause we drop some terms in mutual information; (6.107) follows from the definition of
differential entropy for unit vectors (see Section 3.1.2); (6.110) follows because dropping
conditioning increases entropy.
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Chapter 7

Discussion and Conclusion

In this thesis, we have shown that the asymptotic capacity of general regular SIMO fading
channels with memory remains unchanged even if one allows causal noiseless feedback.
This once again shows the extremely unattractive behavior of regular fading channels at
high SNR: besides the double-logarithmic growth [8] and the very poor performance in a
multiple-user setup (where the maximum sum-rate only can be achieved if all users apart
from one always remain switched off [16]), we now see that any type of feedback does not
increase capacity in spite of memory in the channel.

Possible future works for the general regular fading channels with memory and feedback
might include the following:

e Considering the case with multiple-input single-output, i.e., having several mobile
phones (each having one antenna) communicating with one base station (having only
one antenna). The difficulties for this case lies in the fact that now we not only need
to optimize the phase and magnitude of the inputs, but also the direction of them.

e Considering the case with multiple-input multiple-output.

e The situation where both transmitter and receiver have access to causal partial side-
information S; about the fading, where by partial we mean that

lim lI( 1 HY) < o0 (7.1)

n—oo N
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Appendix A

Upper Bound (6.46)

In this appendix, we derive the following upper bound:

Y k—1 B B
Hie . L E,=0,G =0

=k—kK

I(Xk,Hlffl;YHEk =0,G = 0) — hy (Iilkei@’€

—ngE [log | H|[*|E, = 0, Gy = 0]
< Cip (€min| G = 0) — (ng — l)h(Ho‘H_1 Go =0)

— h (Hoe® [HZL, Go = 0) — h(Ho|HZ}, |,Go = 0)
1 E[||Hol/?|Go =0
—I—nR(nj—i_ )~I—n2R10g+ <7re [H i” ’50 }> +nrA(nR, 1). (A1)
- Mk

We bound the first term as follows:

I(Xe, B Y| By = 0,6y = 0)

= I(Xp; Yi|Ep = 0,Gp, = 0) + T(HY 1, Y| Xy, B), = 0,Gi = 0) (A.2)
< I(Xi; Y| B, = 0,Gy = 0) + I(H} ', Y, Hy | X, By = 0,Gy = 0) (A.3)
= I(Xp; Yi|Ep = 0,Gj, = 0) + I (Hf ' Hy | Xy, By = 0,Gf, = 0)

+ I(HY Y| Hy, Xy, By = 0,Gr = 0) (A.4)

— 0 see Appendix D

= I(Xp; Yi|Ep = 0,Gj, = 0) + I (Hf ' Hy | Xy, By = 0,G), = 0) (A.5)
= I(Xi; Yi|Er = 0,Gy = 0) + h(Hy| Xg, B = 0,Gj, = 0)

— h(H[H} ™, Xy, B, = 0,Gy = 0) (A.6)

< Cuip (€min |G = 0) + h(Hy| Xi, By = 0,Gy = 0) — h(H,[HY ™!, Gy = 0), (A7)

where in (A.7), Ciip(-) denotes the capacity without feedback or memory for a given power.
Because Crip(+) is nondecreasing, and under the condition that Ey = 0, i.e., | Xg| < &min,
CHD(fmin‘Gk = 0) is the upper bound. Therefore, we get

I(Xe, B Y| By = 0,G = 0) — hy, (I:Ikei@k

eV B 0.6 =0
le l:k—n’ k— Y k —
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—ngE [log |[Hy|?|Ey, = 0, Gy, = 0]
< Cip (émin |Gk = 0) + h(Hy| X, By = 0,Gj, = 0)
RNy |
{HlC'GZ} L EL=0,G = 0>
l=k—kr
— nrE [log |H || B, = 0,Gx = 0] — h(H[H} ™, G}, = 0) (A.8)
< Cup (€min| G = 0) + h(Hy|Er = 0,Gf, = 0)

— h), <I:Ikei®’C

P . k-1
— h,\ (er@k {Hlelgl }l—k ,Hlf_l, Ek = 0, Gk = O)
— nrE [log ||Hy || B, = 0,Gr = 0] — h(H,[H} ™, G}, = 0) (A.9)
= CIID(fmin’Gk =0)+ h(Hk’Ek =0,G = O) - hk(ﬂkei@k‘H’ffl, Gr = 0)

— nrE [log ||[H || B, = 0,Gx = 0] — h(H[H} ™, G}, = 0). (A.10)

Here, (A.9) follows from conditioning that reduces entropy; and (A.10) follows because
P k-1

conditional on H'f_l, H,. is independent of {Hle'el }l_k and Fj.

Next we will bound the term E [log | Hg||? ‘Ek =0,G = 0]. We first have the following
inequality:

1
E [log |[Hy||*| Ex, = 0,Gr = 0] > —gff (Hy|E), = 0,G), = 0) — A(ng, €) (A.11)
by Lemma 3.2 where h™(+), &, and A(ng,§) are defined in Section 3.1. Because
h(Hg|Ep =0,Gr =0) = h* (Hgy|Er = 0,G, = 0) — h™ (Hg|E, = 0,G, =0), (A.12)

where both A" (-) and h™(+) are nonnegative (see Section 3.1.1), we further bound the first
term in (A.11) as follows:

—ih (Hk‘Ek =0,G = O)

= 2h(H1€‘Ek =0,Gi = 0) — 2_h+ (Hk‘Ek =0,G = O) (A.13)
1 Ing+1

> -h(Hg|Er, =0,G, =0) — =

=y ( k‘ k k ) £ e
- %Rlog+ <$E[|H;€|2|Ek =0,G}, = 0]) (A.14)
1 lng+1 ngr e E[HH()HQ‘G():O]

> —h(Hi|E, =0,G =0) — = — —logt | — . (A.15

_E(k‘k k ) ¢ e gog (nR 1— By ( )

Here, (A.14) follows from Lemma A.12 in [10, Appendix A.4.2]; and (A.15) follows because

E [ Hx|?| Ex = 0,Gr = 0]

=1 jﬁk(E[IIH;ﬂIIQ\Gk = 0] — BE[|H|*| Ex = 1,Gx = 0]) (A.16)
1

1— B

< E[[H |G =0]. (A17)

36



Appendix A

Choosing ¢ = 1, we then get from (A.15) and (A.11)

E [log |[H||*|Ex = 0, G, = 0]

> h(Hy|Ep = 0,Gy = 0) —

ng + 1 N (weEUHOHQ\Go:O]
—nglog™ [ —
e nR 1— Bk

) — A(ng, 1)(A.18)

We put this back into (A.10), and get

(X, HY 5 Y| By = 0, Gy, = 0) — hy (Hye'©*|[H, e, By = 0,Gy = 0)
—ngE [log |Hy||?| Ex = 0,Gk = 0]
< Cip (min |G = 0) + h(Hy| By = 0,Gj, = 0) — hy (He' | H 1, Gy = 0)

1
- h(Hk}Hlf_l, Gk = 0) - nRh(Hk‘Ek = 0, Gk = O) + w

E[IIH||2|Go = 0
+nilog” (m e ]> +nrA(ng, 1) (A.19)
n 1 — By
< Cip (min|Go = 0) — (ng — 1)h(Hy| By, = 0, G, = 0) — hy (Hoe'®°|HZL,, Gy = 0)
E[||Hol|[?|Go =0
B[, Gy = 0) 4 PRORAD (we [I1Ho || Go })
€ nR 1 — B
+ nrA(ng, 1) (A.20)
< Cip (émin| Go = 0) = (nr = 1)h(Ho[HZL,, Go = 0) — hy (Hoe'®[HZL,, Go = 0)
- N — nr(e+1) o, o we E[[Hol*|Go = 0]
h(Ho[H,,,, Go = 0) + . + ng log " ) -
+rrAmg, 1) (A.21)

where (A.20) follows because we shift the time index in hy(-) by k using the stationarity
of {Hy}, and add more terms to it; we also shift Gx to G in Crp(+) since Crp(+) is IID.
(A.21) follows because {H}} is a stationary process, h(H|HY 1) is nonincreasing in k,
and therefore, we have

h(Hi|Er = 0,G =0) > h(Hk‘H’ffl, E;,=0,G,=0) (A.22)
= h(Hy[H{ ™', G}, = 0) (A.23)
> h(H,H" !, Gy = 0) (A.24)
= h(Ho/H-L,,Go = 0). (A.25)
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Appendix B

Upper Bound (6.81)

In this appendix, we derive the following upper bound:
I (X | Hy ||| Xk|e™* | By = 1,Gf, = 0)
1 (X Fe O [y Xy, €%, By = 1, G, = 0) (B.1)
< —log2 — h(Hg| Xy, By = 1,Gy, = 0) + (2ng — 1)E[log || Hy|||E, = 1, G), = 0]
~ Eflog [Hyll|Bx = 1, G = 0] + plogn + logT (u, n)
+ (1 — p)E log [[Hy||*| By = 1,Gx = 0] — pE [log | Xy |*|Ex = 1,Gr = 0] + €1k
+ ;E[Hﬂkn%wlm =1,Gp=0] + 5 + (A By =1,Ge = 0), (B2)

using a similar approach as in [9, Appendix D].

First, we apply Lemma 11 in [9] to the first term in (B.1), i.e., we choose S = X} and
T = ||H||| X%|e'®*. Note that we need to condition everything on the events Ej = 1 and
G =0.

I(X; | H ||| Xg| €% | B, = 1, Gy = 0)
< —h(||Hk|||Xk]ei@k’Xk,Ek =1,G, =0) +logm + plogn +logT <,u, :)
+ (1 — w)E [log(|Hg||*| Xi|* + v)|Ex = 1, Gy, = 0]
+ L E (P X P8 = 1,61 = 0] + 2 (B.3)

where p,n > 0, and ¥ > 0 can be chosen freely. Note that from a conditional version of
Lemma 2 in [9] with m = 1 follows that

(|| ||| X5 |9 | Xy, = 2y, By = 1, G, = 0)
= h(Ok| Xy, = 25, By = 1,Gr = 0) + h(||Hy ||| Xi| €%, X = 2, Bx = 1,G), = 0)

—i—E[lOgHHkH’XkHXk =x, B = 1,Gk20] (B4)
= log 27 + h(|Hy ||| Xk|| Xk = zx, Bx = 1,Gy = 0)
+ E [log |Hy ||| Xk || Xk = 2k, By = 1,G = 0], (B.5)
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where we have used that O is independent of all other random quantities and uniformly
distributed on the unit circle. Taking the expectation over X conditional on E, = 1, Gy =
0 and noting that by the law of total expectation

Ex, [E[log |[Hyl|| Xk|| Xk = 2k, Bx = 1,G, = 0] |Ex =1,Gj, = 0]
= E[log [[Hy|[| Xk|[Ex = 1,G) = 0], (B.6)

we then get
h(|[H ||| X5 | | Xy, By = 1,Gr = 0)
= log 2w + h(||Hk|||Xk|’Xk,Ek =1,G = O) + E[log ||Hk|||XkHEk =1,G = 0] (B?)

= log 27 + h(|[Hg||| Xk, Ex, = 1,G = 0)
+ E[log | Xk||Ex = 1,Gr = 0] + E[log |H|||Ex = 1,Gj = 0]

+ E[log | Xy||Ex = 1,Gf, = 0] (B.8)
= log 27 + h(|[Hy ||| X, B, = 1, Gy = 0)
+ 2E [log | X || Ex, = 1,G), = 0] + E[log |[Hy|||Ex = 1,Gx = 0] (B.9)

where (B.8) follows from the scaling property of entropy with a real argument.
We choose 0 < p < 1 (recall that p is a free parameter!) such that 1 — x> 0. Then
we define

k2 sup {E g (B[22 + 1) Ex = 1, Gy = 0]
72 min

— E [log(|HIxI*)| B = 1,G = 0] }, (B.10)
e = sup {E[log(|[Ho|*y* +»)[Go = 0] — E[log(|[Ho|[*y*)|Go = 0]}, (B.11)

YZSmin

such that

(1 — wE [log(|Hy|I?|Xk[* + )| By = 1,Gy = 0]
= (1 — p)E [log(||Hg||*|Xk|*)| Ex = 1,Gj, = 0]
+ (1 — p)E [log(|Hk|I*| Xk + v)|Ex = 1, G, = 0]
— (1~ p)E [log([Hx|[2[X4[%) | By = 1, G = 0] (B.12)
= (1 — pE[log(|Hg[|*)| Ex = 1,Gx = 0] + (1 — p)E[log(|Xx[*)| Ex = 1,G, = 0]
+ (1= ) (E[log (B 2| X4/ + )| B = 1,G = 0]

1
1

~ Elog(|[H 12| X4/%) [ Bk = 1, G = 0] ) (B.13)
< (1 = p)E[log(|Hy[*)| Ex = 1, Gx = 0] + (1 — p)E [log(|Xx|*)| Bx = 1, Gy = 0]
+(1—p) sup {E[log(HHkH2|a?k|2 + )| By = 1,Gg = 0]

|xk‘2£min
— € [log (I1H | X4/%) | B = 1,Gr = 0] } (B.14)
= (1 — p)E[log [H||?|E, = 1,Gx = 0] + (1 — p)E[log | X¢|?| B, = 1, Gy = 0]
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+ (1 = pevk (B.15)
< (1 - p)Elog |Hg|?|Ex = 1,Gr, = 0] + (1 — p)E [log | X¢|*|Ex = 1, Gy, = 0]
+evk - (B.16)

Note that in (B.14) we use our knowledge Ej = 1, i.e., | Xg| > &min. Plugging (B.9) and
(B.16) into (B.3) yields

I(X; || Hg ||| X | €% | B, = 1,Gr = 0)
< —log2 — h(||Hy||| Xy, Ex = 1,Gx = 0) — E[log | X3 || E} = 1, Gy = 0]
— E[log |Hy|||Ex, = 1,G), = 0] 4 plogn + logT’ <,u, :)
+ (1 — p)E[log [|Hy|?| B = 1,Gy = 0] + (1 — p)E [log | X1 [*|Ex, = 1,G = 0] + e
+717E[|Hk]\2\Xk|2|Ek =1,Gj, = 0] +% (B.17)
= —log 2 — h(|[Hgl| Xy, Ex = 1,G) = 0)
— E[log HHkH‘Ek =1,G;, = 0] + plogn + logT (,u, Z)
+ (1 — p)E[log |Hy||?|Ex = 1, Gk = 0] — pE[log | Xy || Ex = 1,G), = 0] + €,
+leEUHkHQ\XkIQ{Ek:1,Gk:0] +%. (B.18)
Next, we continue with the second term in (B.1):

I(X; Hy e (PeTO8) || H ||| X |, €95, B, = 1, Gy = 0)
— Dy (Bl (®HOR) ||| HL || X4 |, €%, By, = 1, Gy, = 0)

— I (B PO || g [[| X |, €%, X, B = 1, G = 0) (B.19)
< hy (Hpe @O0 | By = 1, Gy = 0) — hy (Fi || H ||, X3, B, = 1,Gx =0)  (B.20)
= hy (Hye'®*| By, = 1, Gy = 0) — hy (Hy ||| Hy ||, Xi, Ex = 1,G), = 0). (B.21)

Hence, using (B.21) and (B.18) we get the following upper bound for (B.1):
I(X; || H ||| Xg| €% B, = 1, Gy = 0)
+ I (X Hye P00 | FL ||| X, €%, By = 1, G, = 0)
< —log2 — h(|[Hg|| X, By = 1,G), = 0)
— E[log |Hy|||E, = 1,G), = 0] + plogn + logT’ <u, ;)
+ (1 — w)E[log |[Hy|*| By = 1, Gy = 0] — pE[log | Xi[*| By = 1,G) = 0] + e,
+ 717E[HH1§H2|X1€|2|E1<: =1,G,=0] + %
+ by (Hpe® | By = 1,G) = 0) — hy (Hy|[|Hy||, X&, B, = 1,Gj, = 0) (B.22)
= —log2 — h(Hy| Xy, Ey, = 1,Gj, = 0) + (2ng — 1)E[log |Hy ||| Ex = 1, G), = 0]

14
— E[log [[Hy ||| Ex, = 1,Gr = 0] + plogn + log T (u, n)
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+ (1 — pE[log |Hy|*| By = 1,Gy. = 0] — pE[log | Xi|*|Ex = 1] + e, n

+ 717E[HHkHQ’Xk’2‘Ek =1] + % + hy (Hpe'®* | By = 1,Gy = 0) (B.23)

Here, (B.23) follows from a conditional version of Lemma 2 in [9] similar to (B.4)—(B.9)
which allows us to combine the second and the last term in (B.22).
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Upper Bounds (6.97) and (6.102)

In this appendix, we will find bounds (6.97) and (6.102).

C]- 51('%;5111111)

We first derive upper bound (6.97):

Bl (Hk]Xk\ei@’“ + Zp ZE L {HX) €O + 2} ) By =1,Gy = o)
< 01(K, Emin) + Hy(Br)- (C.1)
We start as follows:
Brl (Hk|Xk\€ie’“ + Zy; 2L | {Hy | X | + Z f:_,:,ﬁ,Ek =1,Gy = 0)
= Byh (ZE L [{HUIXE® + 20} 5, Bk = 1,6y = 0)
Bk (Z'E;ﬁ (H|X,[6® + 2} By =1,G) = 0) (C.2)
< Buh (z’,g:; Ep=1,G) = 0)
— Brh (Zﬁii {H,| X)) + Zl}f:k_,.C X Zi, B, = 1, G = 0) (C.3)
— Byh (254 BL=1,Gh = 0)
. 7, k-1 .
— Bk (zg_; {Hle'@l + ’Xl” }l_k_n,er'@k, IXiFy o Er=1,Gp = o) . (C.4)

Here (C.3) follows from conditioning that reduces entropy. The reason why we do not
drop Ej is because we have (§; in front of the mutual information, if we drop Fj now, we
will not be able to get rid of 5 later. In (C.4) we drop Zj, since {Zy} are IID. In order to
get rid of the dependence on input, we take an infimum:

Birh (ZQ:,I{

— Bih (Zif,:i

Ekzl,szo)

k—1
{Hlei@l + l} JHe x| X|F By =1,G = 0)
l=k—kKk
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C.1 61(K, Emin) Appendix C

< Brh (Z’Z:i E,=1,G) = 0)

. 7., k1 .
{Hle'el + l} Hee® B, =1,G = 0) (C.5)
m

— By inf h(ZQ;

Y12 &min I=k—k
= Bih (Z4=L B =1,Gr = 0)
. 7, k1 .
— Bih <z’,§—; {Hle'@l + ’} JHie'9% B =1,G = o) (C.6)
i l=k—k
Z k;—l i
= Bil <zg b {H o + — : } JH e By =1,G), = o) : (C.7)
min J j=f—g

Here (C.6) follows because the smaller 4; is, the more Zi .. can reflect in H,c'® +
thus the smaller the entropy of Zk ! .. would be. From this stage, the dependence on 1nput
inside mutual information is gone (except Ex), but we still have i in front of mutual
information, therefore we add 1 — B to get rid of §; as follows:

Zl,Gk:())

< Bl { } 5 {Hlelel e } ,erlgk E.=1G,=0
gmin l=k—k gmin l=k—k

. 7, k1 .
Bl (Zﬁi; {Hle'gl + l} ,Hye'®% | E,
inJ =gk

7, 15! 7, 15! _
-+ (1 — ﬁk)f { } {Hlelel T } ,erlek E,.=0G,=0
gmin l=k—k §mln l=k—K
(C.8)
VA k—1 Z k—1 )
=1 { ! } {Hlelel + — } ,erlek E..G,=0 (C.9)
gmin l=k—kK €m1n I=k—kK
Now it is time to deal with Ej:
7 k—1 Z k-1 .
I { L } {Hlelel + — } ,erl@k E., G, =0
Smin l=k—k fmm l=k—x
Z k—1 )
< I { {Hlelel + — } ,erlek, Ek Gk =0 (C.lO)
min ) |=f—x Emin J =g
7 Z k—1
=1 { d {Hlelel + — } Gr,=0
min J j—g—x Emin J j—p—
Z . Z
+1 L erle’“ H; + ! ,GrL=0
gmm I=k—k fmin
Z . 7, 15! .
+1 - B, {Hle'@l + } JHe©F QL =0 (C.11)
gmln l=k—kK i I=k—k
-1
<h ({Hle'@l + L } Go = o) —h ({me®}, " |Go=0)
l=—k
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Appendix C Upper Bounds (6.97) and (6.102)

. Z, !
+h (Hoe'®° {Hlelgl + — 3 } ,Go = O)
min ) |—_x
—h <Hoei@o {Hlei@l};:_,f ,Go = 0) + Hb<ﬁk) (C.IQ)
£ 61(, &min) + Hy(B)- (C.13)

Here, (C.12) follows because the last term in (C.11) is smaller than Hy(8) and {Hy} and
{Z;} are stationary processes.

-1
If &min goes to infinity, h <{Hl€'®l + }l
=—K

mln

Gy = O) converges to

h({He® ) | Go=0) and b (Hoe'®| {Fe® + 2oyt
h (Hoeleo‘{HleIGI}l:—ﬁ ,Go = 0), therefore, 51(H,€mm) — 0.

Go = O) converges to

C.2 (52(/43, §mm)

Next, we derive upper bound (6.102):
Brl ({Hl|Xz|€i@l};:,:_,_c s Zy, ’ Hy,| Xy |9 + Zy, By = 1,G = 0)
< 62(K, &min) + Hp(B)- (C.14)
The derivation is similar to (C.2)—(C.13).
Bl ({H1|Xl|ei@l}f:_kl% 7, ‘ Hy| X4|e'® + Zy, By = 1,6, = 0)
= Buh (Zp | Hy| Xp|€'®* + Zi, By, = 1,Gf, = 0)
— Bk (zk ‘ Hy | Xy + Zy, {H|X)[e©) ) B =1,G) = 0) (C.15)
< Brh (Zi|Ex = 1,Gy, = 0)
— Brh (Zk‘Hk|Xk|€|®k + Zy, {H1|Xz\€'el
= Bih (Zg|Ex = 1,Gy, = 0)
— Bih (zk Hye'©F + m {H,e®

Here (C.16) follows from conditioning that reduces entropy and for the same reason as in

s IXEL) B = 1,6 = 0) (C.16)

l k— n’|Xk‘ wl Be =1, Gk—()) (C.17)

Section C.1, we keep Ej, = 1. In order to get rid of the dependence on input, we take an

infimum:
Brh (Zy|Ey, = 1,Gy = 0) — Brh <Zk Hy,e'%F + m , {H; e z o | XE L By =1,G) = 0>
< Brh (Zy|Ex, = 1,G = 0)
i Zy 0 1k-1
— By %ggm h (zk Hj el + == o AHE® Y, Be=1,Gp = o) (C.18)
= Brh (Zr|Ex = 1,Gf, = 0)
. 7 ol
— Bh <Z1C Hk(i'@k + gik, {Hlelel}f:]jfﬁ7Ek =1,Gk = O> (019)
= Bl <zk,er'9k + ™ L {H, '@l} ‘Ek =1,G = o) . (C.20)
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Here, (C.19) follows because the smaller ~; is, the more Zj can reflect in Hje© + %,
thus the smaller the entropy of Z; would be. Next, we want to get rid of §; as follows:

Bil (zk; He©x + gz’“ {Hlei@l}f:‘,j_ ’Ek =1,G = 0)
Z;.
< Brl <§mm'H Or 4 =2 o  {H e z k Bk =1,Gr = 0)
Z Z;. . _

+ (11— B! <€ k ; Hye O 4 8 e { le'@l}f:kl_ E,=0,G) = 0) (C.21)

=7 < . |@k 4 =5 & {Hlelel}l L ‘EkaGk = O> (022)
Zy
<i(fm '@k+£ (O kakzo) (C.23)
-7 Zk H O G, = H i H (ST Zk G, =
é— B + — € k 0 é. { }l k & k€ + £ T k 0
Z O Z i0;

+I{ g B [Hge™ 4 AHEON T Gr=0 (C.24)

<h <I‘Ik€|®’C R 7 Zy G = 0) —h erlek‘Gk = 0

+h ({Hleigl};:,:ﬁ H,e© 4 7 ’“ T 0) _h ({Hleiel};:,:fﬁ H,e% G, = 0)

+ Hy () (C.25)
=h <H0€'60 + Z' Gy = 0> —h (Hoelgo}Go = 0)

+h ({Hleiel}_i‘ﬂoeieo + 5 ,Go = 0) ({Hleiel}i‘Hoei@O, Go = 0>

+ Hy(Br) (C.26)
£ 52('%, gmin) + Hb(ﬁk) (027)

Here, (C.25) follows because the last term in (C.24) is smaller than Hy,(8) and {Hy} and
{Z},} are independent of each other; (C.26) follows because {Hy} and {Zj} are stationary
processes.

If &min goes to infinity, h (Hoe'®0 + 20 = O) converges to h(Hoe'eo‘Go = 0)
and h ({Hlei@l}j1 Hye©0 + %7 Gy = 0) converges to h ({Hle'gl}_H‘Hoe'Qo, Go = 0),
therefore, d2(K, {min) — 0.
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Causal Interpretations for
Independence

In Figures D.3-D.5 we prove the following independence claims used in (6.21), (6.73), and
(6.84).

o (M, Y"1y 1L Y}, when conditioned on (X, H¥1);
e X; 1L Yy when conditioned on (HyXy);

° Hlf_l 1 Y}, when conditioned on (Xj, Hy).

M

Zy

Figure D.3: The relevant subgraph of V showing the independence of (M, Y’f_l) and Yy,
when conditioned on (X, H¥71).
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Z1 Zk
Fi X1 Yy Fo Xo Yo F3 X3 Y3 Fr1 Xp 1 Y Fp X Yy
H, H, H; H;, H;,

Figure D.4: The relevant subgraph of V showing the independence of X, and Y, when
conditioned on (HyXy).

Z, Zy,
Fi X1 Yy Fo Xo Yo F3 X3 Y3 Fr1 Xp 1 Y Fp X Yy
H; HQ H3 Hk—l Hk

Figure D.5: The relevant subgraph of V showing the independence of H]f_l and Y when
conditioned on (X, Hg).
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