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Abstract

This thesis introduces about the quantum error correcting codes in the viewpoint
of classical error correcting codes. We also introduce some construction and charac-
terization of quantum error correcting codes. Thereafter, we give a construction of
quantum error correcting codes associated with graphs, which generalizes a previous
result that excludes the binary case so that it is valid for all cases.
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Chapter 1

Introduction

Quantum communication like quantum coding theory and quantum cryptogra-
phy has been developed in the recent decades. This is a great improvement in com-
munication theory. Its concepts are based on quantum mechanics, but we will not
mention anything about quantum mechanics in this thesis. We will give the strict
mathematical definition of quantum error correcting codes based on [3]. The results
from [6] and [7] will be introduced. Thereafter, we give a construction of quantum
error correcting codes associated with graphs, which generalizes a previous result in

[7] that excludes the binary case so that it is valid for all cases.

The thesis is organized as follows: Chapter 2 introduces the notations which will
be used in this thesis. To compare the similarities and differences between classical
error correcting codes and quantum error correcting codes, chapter 3 recalls the
definitions and propositions of classical error correcting codes; those of quantum
error correcting codes will also be introduced in parallel. Chapter 4 introduces a
method to characterize quantum error correcting codes by logic functions from F} to
[, introduced in [6]. Chapter 5 introduces about the construction of quantum error
correcting codes using the graph-theoretical method introduced in [7], in which only

non-binary quantum codes are discussed. Thus we will generalize the result in [7].



Chapter 2

Preliminaries

In this section, we will introduce the notations which will be used in this thesis.
Throughout the thesis, let F, = {0,1,--- ,p — 1} be the finite field of p elements.
Sometimes we also treat an element ¢ € I, as its corresponding integer. Let w be
the p-th primitive root of unity. Let A = (a;;) be an m x n matrix and B an s X t
matrix. Then the Kronecker tensor product A ® B of A and B is defined by the

following ms x nt matrix

anB  apB - a,B
PRV TN B
a'mlB amQB e amnB

Note that (A ® B)(C @ D) = AC ® BD for matrices A, B,C, D of suitable sizes.
The n-th Kronecker tensor power of a vector space V over a field F' is defined
by

VO = span{v; ® 0, @ - - @ v,|v; € V}.

The Hermitian inner product of complex vectors u = (uy, -+ ,u,)7,0 = (vy, -+ ,v,)7

is defined by
<U, U> = ZlTﬂ)h
i=1

where ~ stands for complex conjugation. In the the last two sections, we will fre-

quently use the block notations of matrices. Therefore we should introduce the



following notation of a matrix M and a column vector u:

Ay JAD)

M- Ay [ M[AJA] M[A|A,] ’u:(u[Al})’

Ay \ M ulA.)
2 [Ag|Aq]  M[Ag|A]

where M[A1|As] means the sub-matrix of M with rows indexed by elements in A4
and the columns by elements in Ay, and u[A;] means the sub-column vector with

entries are indexed by A;.



Chapter 3

Comparison between Classical and
Quantum Error Correcting Codes

In this chapter, we are going to recall the definitions and propositions of classical
error correcting codes and introduce those of quantum error correcting codes to

compare the similarities and differences between them.

3.1 Basic Definitions and Structures of Classical
Codes and Quantum Codes

The classical (linear) codes are vector spaces over finite fields; whereas the quan-
tum codes are vector spaces over the complex number field C.

Definition 3.1. A classical (linear) [n,k],~code (or a classical (n,K),-code,

where K = p* = |C|) is a k-dimensional subspace C' of F}.

Definition 3.2. A quantum [[n, k||,-code (or a quantum ((n, K)),-code, where

k =log,K) is a K-dimensional subspace @) of (C?)®".

Remark 3.3. Error-correcting coding theory depends on what basis of a vector

space is chosen.
(i) Classical coding theory:
{e;=(0,---,0,1,0,--- , 00" € F! | 1 <i<n},
where 1 appears in the ¢-th position.
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(ii) Quantum coding theory:
{en1® - ®ei41 |4 €{0,1,...,p—1}}

It is a convention in Quantum coding theory (Dirac notation) to write |7) for e;

and |i1i2 cee Zn> for €i1+1 &® €Cig+1 """ (24 €in+1-

3.2 Error Detection and Correction of Classical
Codes and Quantum Codes

An error can occur when passing a message, so we have to correct it to the right
one. Here we introduce the error detection and correction of classical codes and
quantum codes in an algebraic point of view.

An error in classical codes is simply a vector over a finite field, and the codewords

is interrupted by an error under addition.
Definition 3.4. An error is a nonzero vector e independent to C.

The quantum codewords may be interrupted by the errors under matrix multi-

plication. Here is the definition of the errors in quantum codes.

Definition 3.5. (i) For a,b € [F,, define two linear operators X (a) and Z(b) on
CP by

X(a)lz) = |z +a), Z(b)|z) = w*|z),
where z € F),. Then X (a) is called a bit error; Z(b) is called a phase error.

(i) For a = (a1, ,a,)", b= (by,--- ,bn)" € Fy,

X@)=X(a)® - ®X(a,),Z(b)=2Z(b) @ - ® Z(by)-

(iii) &, == {w'X(a)Z(b)[0 <t < p—1,a,b € F}} is called the quantum error

group.



An element of E € &, is called an error of quantum code. Note that Eju) =
w'Pu+a) for u € Fj and E = w'X(a)Z(b). In fact, from the previous definition,

we have the following proposition.
Proposition 3.6. The following (i)-(ii) holds.

(i) With respect to the basis {|0),|1), - ,|p — 1)}, the operator X (1) is a cyclic
matriz, and the operator Z(1) is a diagonal matriz as follows.
0 1 1 0
10 w
X(1) = 1 -

(ii) X(a) = X(1)%, Z(b) = Z(1)%, X(a) = X(—a) = X(a)™!, Z(b) = Z(~b) =
Z(b)™, and Z(b) X (a) = w=2X (a)Z(b) for all a,b € F,.

Moreover, &, is a group of order p*"*!. ]
Here we compare the Hamming weight with the quantum weight.

Definition 3.7. (i) The Hamming weight wty(e) of an element e € F} is the
number of nonzero entries in e. The Hamming distance of u,v € F is
defined by d(u, v) := wty(u—v). Note that the Hamming distance is a metric
(i.e. its value is always nonnegative, and it satisfies the symmetry and the

triangle inequality).

(i) The quantum weight wtg(E) of an element E = w'X(a)Z(b) € &, is the

number of nonzero pairs (a;, b;) in the two vectors a, b € F}.

For classical codes, the Hamming distance is used to describe the ability of
error detection and correction. As for quantum codes, we use the Hermitian inner
products of quantum codewords in a quantum code ). The orthogonality is usually

used to describe the ability of error detection and correction.
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Definition 3.8. For two quantum codewords u, v € (). Then

(i) If u = ~o for some nonzero v € C, then we say u,v are totally indistin-

guishable.
(i) If (u,0) = 0, then we say u, v are totally distinguishable in Q.

Here is the comparison between the definitions of error detection of classical

codes and of quantum codes.
Definition 3.9. C can detect an error e if d(u,v + e) > 0 for distinct u,v € C.

Definition 3.10. For a quantum ((n, K)),-code ) with K > 2 and an error E € &,
@ can detect an error E if u, v are totally distinguishable implies that u, Ev are

totally distinguishable.

Note that 3.10 is equivalent to (u, Ev) = Ag(u,v), where A\g € C depends only
on E but is independent of u, v.
Here is the comparison between the definitions of error correction of classical

codes and of quantum codes.

Definition 3.11. C' can correct an error e if d(v,v + e) < d(w,v + e) for all

distinct v,w € C.

Definition 3.12. For a quantum ((n, K)),-code @), where K > 2. ) can correct
errors of weight at most t if, for any totally distinguishable u, v € ) and any errors
E|.E; € &, with wtg(E;), wtg(Es) < ¢, Eju, Eyp are totally distinguishable; in

other words, (Eju, Eop) = 0.

Here is the comparison between the definitions of minimum distance of classical

codes and of quantum codes.

Definition 3.13. The minimum distance of C' with |C| > 2 is at least d if C' can
detect errors of Hamming weight at most d — 1; in other words, 0 < wty(e) < d

implies that d(u, e + v) > 0 for distinct u,v € C.

7



Note that the previous definition is equivalent to the common one; that is,
d = min{d(u, v)|u,v € C are distinct.}.
This can be verified by the triangle inequality of Hamming distance.

Definition 3.14. A quantum ((n, K)),-code @) with K > 2 has minimum dis-
tance at least d if () can detect errors of quantum weight at most d — 1; in other

words, (u,v) =0 implies (u, Ev) = 0 for any error E € &, with wtg(E) <d — 1.

Note that the definitions of the minimum distance of classical codes and quantum
codes are similar because the minimum distance d is given by the detection of
classical errors of Hamming weight d — 1 in classical case and the detection of
quantum errors of quantum weight d — 1 in the quantum case.

Here is a special property often used in quantum codes.

Definition 3.15. A quantum code @ is a d-pure code if for any u,v € ) and any
errors E € &, with 0 < wtg(E) < d, u, Ev are totally distinguishable; in other

words, (u, Ev) = 0.

This property can help us to distinguish a codeword from another one interrupted

by an error of quantum weight less than d.

Remark 3.16. (i) A (quantum or classical) code has minimum distance ex-
actly d if it has minimum distance at least d, but does not have minimum

distance at least d + 1.

(ii) From definition 3.14, a quantum ((n, K)),-code @) (or a quantum [[n, k]],-code)
is an ((n, K, > d)),~quantum code (or an [[n, k, > d]],-quantum code) for some
d > 1 means a p*-dimensional (or K-dimensional) quantum code in (CP)®"
with minimum distance at least d; if () has minimum distance exactly d, then

@ is a quantum ((n, K, d)),-code (or a quantum |[[n, k, d]],-code).

From definitions 3.14 and 3.15, we have the following propositions:

8



Proposition 3.17. A d-pure quantum ((n, K)),-code Q with K > 2 has minimum

distance > d.

Proof. Suppose E € &, with wtg(E) < d — 1. Let ¢;,c5 € Q be codewords with
(c1,¢9) = 0. Now if E = w¥I, then wtg(e) = 0. Thus (c;, Ecy) = w¥{cy, co) = 0. If
wto(E) # 0, then 1 < wtg(E) < d — 1, and so (¢1, Ecy) = 0 by definition 3.14. [

Note that, by definition 3.15, for K = 1 (i.e. k = 0), @ is a d-pure quan-
tum ((n, 1, d)),-code (or a d-pure quantum [[n, 0, d]],-code) since any two vectors in
{Ec|E € &,,0 < wtg(E) < d — 1} are orthogonal, where ¢ is the non-zero vector
that spans Q).

Here is the comparison between the abilities of error correction of classical codes

and of quantum codes.
Theorem 3.18. An [n, k, d],-code C' can correct errors of weight at most |41].

Proof. Let e be an error of weight at most [%J From the triangle inequality, we

have

dw,v+e)>dw,v)—d(v,v+e)>d— L%J > (%W > d(v,v+e).

(The inequality d(w,v) > d comes from the definition of minimum distance; the

other one wty(e) = d(v,v+e) < |41] is from the hypothesis.) O

Theorem 3.19. If Q) is an quantum ((n, K,d)),-code with K > 2, then Q) can

correct errors of weight at most L%J

Proof. Let Ey, Ey € &, with wtg(E;), wtg(Es) < [%J It is clear that wtg(E1Ey) <
wto(E1) + wtg(Ey) < d— 1. Since @ has minimum distance d, () can detect E;Eo;
that is, for any totally distinguishable ¢1,¢s € @, we have (¢, E{Escs) = 0, com-

pleting the proof. O]



3.3 Bounds in Classical Codes and Quantum codes

In classical and quantum coding theory, the parameters (n, K, d) or (n, k,d) de-
termine the efficiency of communication (k/n) and the ability of error correction(d),
but there are some restrictions called the Hamming bound and the Singleton
bound, causing that we can not obtain both high efficiency of communication and

good ability of error correction. For the proofs, please see [3] in detail.

Theorem 3.20. (classical Hamming bound) If C is an (n, K,d), code, then

2]
(n
"> K- - 1) . A
pzie S o)) 3.1)
Theorem 3.21. (classical Singleton bound) If C' is an (n, K, d), code, then
K < prdtt (3.2)

Theorem 3.22. (quantum Hamming bound) If Q) is a d-pure quantum ((n, K, d)),-

code, then
=
LD S (). (33)
Theorem 3.23. (quantum Singleton bound) If Q is a quantum ((n, K,d)),-code,
then

K S pn—2d+2. (34)

3.4 Some Simple Lemmas

In this section, we provide some simple lemmas, which will be used many times

in the thesis.

Lemma 3.24. Let p be a prime and w the p-th root of unity. Then ) pn WY =0
P

Jor all non-zero vectors v € .
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Proof. For u = (uy,--- ,u,) € Fy and v = (v, ,v,) € F} \ {0}, we have

E : wu~v — E : wulvl+-~~+unvn — § wulvl . .wunvn

uely (u1,,un)€FY (u1, un)€Fp
— E (JJUI v1 L. E wunvn
u1 €Fp un €Fp

For v # 0, there is some v; # 0, which is certainly an inverse of some other element

in F,. Thus v;F, =F,, andso 3_, . w"" =0 (because 1 f+w+---+wP™' =0). [

Lemma 3.25. Let p be a prime, w a p-th primitive root of unity and V,, = (wi‘j)i,jeﬂi‘p

a p X p Vandermonde matriz of the form

1 1 1

1 w wpl
=

1 WPl ... D)2

Then V), is invertible with V;l = (1/p)V,, and so the Kronecker tensor product

Vo @V, ®---®V, of mV,’s is invertible.

Proof. (i) By lemma 3.24, we have

p—1 p—1 0 if i .
(VoVplig = D whw™ =3 "ok = ¢ ! #J.
k=0 k=0 p, ifi=j.

Thus V, is invertible with V7' = (1/p)V,,.
(ii) By the multiplication rule of the Kronecker tensor product, we have

VeV, eV)(V, eV, e eV,
=V, e WV, e e 1)
:[p@[p@...@[p:[pm7
andso (V,@V,®---@V,) ' =V 1@V '@ .- @V, !, completing the proof.
[l

11



Chapter 4

The Characterization of Quantum
Codes Using Logic Functions

In this chapter, we introduce a characterization of quantum codes using logic

functions introduced in [5] and [6] (for logic functions, see [1] and [2]).

Throughout this section, let @ be a K-dimensional quantum code of (CP)®" with
an orthonormal basis {v; = Y g vi(u)ju)|1 <7 < K}, where v; : F — C,1 < <
p

K are functions.

Theorem 4.1. Assume K > 2. Then Q is a quantum ((n,K,> d)),-code if and
only if for any subset E C {1,2,--- n} with |E| =d—1,d >2,E°={1,2,--- ,n}\

E |E\=n—d+1 andW,W’EFg”J <i,j < K, we have

S ulwu) = {0’ yi 7 (4.1)

N e
u[E<]=u’[E°] U(Wa w )a if i =7,
where the sum is indeed over u,u' € F} with u[E°] = 0'[E°] and u[E] = w,u'[E] =

w', and n(w,w') € C is a constant independent of i (depends on w,w’).

Proof. 7 = 7 : Let E = X(a)Z(b) € &, be an error of quantum weight at most
d — 1, where a satisfies a[E] = w — w', a[E°] = 0, and b € F} is a vector of d — 1

variables satisfying b[E¢] = 0. Then by definition 3.10,

Apdi; = (0, Eoj) = Y WP N g () (u), (4.2)

xR ulBe]=w[B°]

12



where 0;; = 0 if ¢ # j; 0;; = 1 otherwise, Ag depends only on E and is independent
of 7,7, and the second sum is indeed over u,u’ € F} with u[E°] = u'[E°] and
u[E]| = x,W'[F] = x — a[E]. In matrix form, (4.2) becomes

0, if i o ]
Qy = T ape e
)\E(1717 7]-> ) le:j,

where € is an p?~! x p?~! matrix indexed by Iﬁ‘zfl with b[E], x-entry wPF* and
y = Z vi(u)v;(a) (being indexed depending on x")
u[Ec]=u’[E°]

is a (d — 1)-dimensional column vector over F, . Since the matrix 2 is invertible by
lemma 3.25, we find the column vector
o, if i
N {AEQ—l(l,l,--- DT, ifi=g,

Hence the result follows by considering the x = w entry of vector y.

7 < 7 To show that @) has minimum distance at least d, let E = w'X (a)Z(b) €
&, be an error of quantum weight at most d — 1. Without loss of generality, we can
assume t = 0. Choose £ such that |E| = d—1 and a, b € F} satisfy (a[E°], b[E]) =

(0,0). Pick two totally distinguishable codewords v = S35 a;v;, 10 = ZJI; Bjv; €

Q. Note that
K K K
Ew =Y Beo; =Y 6 > v(w)efu) =35 > v;(u)w" 0’ +a).
=1 j=1  weFp j=1  weFp

Thus for u[E] = x,u'[E] = x — a[E], we have

2,7=1 u=u’+a
K

=S @ 3 WPt STy ()
s E—— u[Ee =[]
K

S ws Y WIS )
=1 xepdl ulBe)=w/[E¢]

= > nex —a[E)wP 2 o, ) = 0
erFg_l

13



(The last equality is obtained by the condition: when i # j, Zu[ Fel—w/[B¢] vi(u)v;(u) =
0; when @ = j, >~ pemw(pq Vi(@)vi(0') = n(x,x — a[E]), which is independent to i),

completing the proof. O]

Theorem 4.2. Let K > 1. Then Q is a pure quantum ((n, K,> d)),-code if and
only if for any subset E C {1,2,--- n} with |E|=d—1,d >2,E°={1,2,--- ,n}\

E |E|=n—d+1 and w,w' € F&', we have

Y wlwy) =

u[Ec|=u’[E*°]

4.3
5i,jp17d7 wa = le ( )

{0, if w#w

where the sum is indeed over u,u’ € F} with u[E°] = w'[E°], and u[E] = w,u'[E] =

/ d—1
w G]Fp .

Proof. 7 = 7 : Let a set E of cardinality d — 1 and w,w’ € Fg_l be given. Choose
E = X(a)Z(b) € &, be an error of quantum weight at most d — 1, where a satisfies
a[l] = w —w, a[E°] = 0, and b € F} is any vector satisfying b[E°] = 0. Since @

is a pure ((n, K, d)),-quantum code, for all 1 <i,j < K,

Swiomo = (i e05) = > WPE N (a)e; (). (4.4)

x'=x—alE]| u[Ec]=u’[E°]

Note that

Yoo D ulwy) =) vlwuy(u) =6y

xeFy ! u[Ee]=u’[EC] ueky

In matrix form, (4.4) becomes

0);
0),

where (2 and y are as described in the proof of theorem 4.1. Note that the first

ol

Ov — (5i,j7 0, O, ce ,O)T, if w= Wl(a[E]
v (070707"' 70)T7 1fW7§W,(a[E]

column of Q! is p*~4(1,1,--- ,1)T. Thus

. 5i,jp1_d(17 17 Tty 1)T7 if w= W/(a[E] = 0)7
Y730,0,0,---,07, if w £ w'(a[E] #0),

proving the necessary condition.

14



7 < 7 To show that Q is d-pure, let E = w'X (a)Z(b) € &, with 1 < wtg(E) <
d — 1. Without loss of generality, we can assume ¢t = 0. Choose F = {i|l < i <
n, (a;,b;) # (0,0)} so that |E| = d — 1, (a[E],b[E]) # (0,0) and (a[E°],b[E]¢) =
(0,0) for a,b € . Pick two codewords v = Zfil ;0,10 = Zjil Bv; € Q. Then
for u[F] = x,u'[F] = x — a|E], we have

1,7=1 u=u’+a
K
LD DRCCLECI o
ij=1 erFd ! u[E<]=u'[E°]
e 0 B Y e P =0, ifaE] =0
0, if a[E] #0
(The last equality is obtained by the second condition: when a[FE] # 0,
> ulw)y)=0;
u[Ee]=w|Ee]
when a[E] = 0, b[E] # 0 and
> wlwu(a) =6;;p ),
u[Ec¢|=u’[E°]
completing the proof. O

In fact, the functions v; : I, — C can be obtained simply by v;(u) = wli  where
1<i< K and u € ]F;} and f; are functions from ]FZ to ), so that the functions
v;(u) = wfW satisfy the conditions (4.1) and (4.3) in the previous theorems (see
[6]). Hence these functions can be used to construct (pure) quantum codes. Such

function is called a logic function (for p = 2, a Boolean function).

15



Chapter 5

Graph-theoretical Method

In this chapter, we will discuss about a method to construct quantum error
correcting codes introduced by Schlingemann and Werner in [7], in which only the
case for the odd primes is discussed, therefore we are going to improve the method
by applying v;(u) = W BYW AW for 4, € F¥ (1 <@ < K) to theorem 4.2 so that it

is valid for all primes.

Throughout this section, we assume the following hypotheses: Let p be a prime
and w the p-th primitive root of unity. Let X,Y be sets with cardinality | X| = k
and |Y| = n. Let d > 2 and (n, k,d) satisfy the quantum Singleton bound n >
k+2(d—1). Let A be an n x n matrix with rows and columns indexed by Y, B an
k x n matrix with rows indexed by X and columns indexed by Y. Define a linear

function f : (CP)®* — (CP)®" by

flw) =Y W BviwiAv)y) (5.1)

welFp

for u = (21,29, - ,21)" € Fy. Let Q = f((CP)®*), the image of f. Here we will

use the function (5.1)to reprove the result in [7] in three steps.

In step 1, we shall give a definition and prove two lemmas, which give a necessary

condition and a sufficient condition of quantum pairs, respectively:

Definition 5.1. The pair (A, B) is an [[n, k, d]],-quantum pair if for any £ C Y

16



with |[E|=d—1,u e F']‘;’ and e € ]F;f_l, the following implication holds:
u’ B[X|E“] — e"(A+ AT)[E|E‘) =0 = u =0 and B[X|E]e = 0, (5.2)
where E¢ =Y \ E.
First we prove the necessary condition:

Lemma 5.2. If (A, B) is an [[n, k, d]],-quantum pair, then the sub-matriz B[X|E°|
of B has rank k over F,, and the intersection of row space of B[X|E°| and (A +

AT)[E|E€] is the zero space for any (d — 1)-subset E of Y.

Proof. Taking e = 0in (5.2), we find that B[X|E] has rank k. Suppose u” B[X|E*] =
el (A + AT)[E|E€] is a vector in the intersection of row spaces of B[X|E°] and

(A + AT)[E|E€]. Then u= 0 by (5.2). Hence the vector u” B[X|E‘] = 0. O
Now we prove the sufficient condition:

Lemma 5.3. If the sub-matriz B[X|E€] of B has rank k over F,, the sub-matric
(A+ AT)[E|E°] of A+ AT has rank d — 1 over F, and the intersection of row spaces
of B[X|E°] and (A+ AT)[E|E*] is the zero space for any (d—1)-subset E of Y, then

(A, B) is an [[n, k, d]],-quantum pair.

Proof. Suppose that u? B[X|E‘] — e (A + AT)[E|E°] = 0. Then u’B[X|E‘] =
el (A + AT)[E|E¢] = 0 since it is in the intersection of row spaces of B[X|E¢] and
(A + AT)[E|E€]. Since rank(B[X|E¢]) = k, the row vectors of B[X|E¢] are linearly
independent, thus u = 0. And rank((A + AT)[E|E¢]) = d — 1 implies that e = 0 by

similar argument. [

We shall call such a pair (A, B) in lemma 5.3 a pure [[n, k, d]|,~quantum pair.

In step 2, we shall prove

Theorem 5.4. For any v,0’ € C*, if (A, B) is an [[n, k, d]],-quantum pair, then
(f(0")|f(0)) = p™(v'|v). In other words, f preserves orthogonality. In particular,
Q = f((CP)®%) has dimension p*.

17



Proof. Let

o= o(wu) e ¢,

ueFk

v = v)) e

u’€Fx
where v(u),v'(u’) € C. Then

w=f(0) =D D v(wu FIAw),

ueFk weFp

o’ :f(nl) _ Z Z U/(u/)wu/TBw/+w/TAw/|W/>.

u'eFk welp
Now, we can compute the Hermitian inner product:

() = 3 [va (z w>] |

u,u’ w=w’

where
t = (u—u)’Bw.

Since (A, B) is an [[n, k, d]],-quantum pair, rankB[X|E¢] = k. Hence, by lemma

3.24, we have

otherwise.

Zw(u_u/)TBw _ {pn7 ifu=nu,
w 0’
This follows that
(' ) =p" > v'(u)o(u) = p"(v,v).

u=u’

Hence f preserves the orthogonality, and so f maps the basis of (CP)®* to that of

(CP)®". Hence f is 1-1, which means the image of f has dimension p*. O
In step 3, we shall prove
Theorem 5.5. If (A, B) is an [[n, k,d]],-quantum pair, then Q = f((CP)®*) has

minimum distance at least d.
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Proof. Let

= D> v W) € Q.

uclFk weFp

_ Z Z U/(u/)wu’TBw’+w’TAw”W/> c Q

w/eFk w'eFy
be totally distinguishable (hence v’,v are totally distinguishable). For any E =
X()Z(s) € &, with wtg(E) < d — 1, we have E|w[E], w[E]) = wSFIVIE|w[E] +
1[E], w[E*]) for all (d — 1)-subset E of Y and s,1 € F with s[E°] = 1[E°] = 0. It
follows that

Ew = Z Z v()w? BV AV )

ueIF"C weFz
— Z Z WSEIWIEl+uT B(w,w[E))+(wE],w[E])T A(w[E],w[E])

uelFk w(E],w[E]

w(E] +1[E], w[E]),

and so

(', Etv) ZZwvu’

u,u’€Fk w'=w+l
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where

r =s|E] - w[E] + u’ B[X|E]w[E] — u” B[X|E][E] + u’ B[ X|E|w[E“]

+w[E|" A[E|Elw[E] - 1[E]" A[E|Elw|E] — w(E]" A[E|E|[E] - 1[E]" A[E|E]I[E]
+w[EA[E°|Elw[E] — w[E°]" A[E°| E]I[E]
+wE|" A[E|Elw[E] - 1[E]" A[E|E|w[E°]
+w[E|"A[E|E°lw|E°] — u” B[X|E|W'[E] — u" B[X|E|w'[E°]
— w/([E]"A[E|E|W[E] — w'[E]" A[E| E°|w'[E°]
— wW(ETA[E|E|W'[E] - w/[EF]" A[E°| E|w'[E°]

=s[E] - w[E] + (u— u)" B[X|E]w([E] + (u — v)" B[X|E|w[E]
—u' BIX|EN[E] - 1[B]" A[B|ENE] - 1[E]"A[E|E|w|E] - w|E]" A[E|EI[E]
—[E]" A[E|E|w[E] - w[E]T A[E°|E]1[E]

=s[E] - w[E] + (u — w)" BX|E]w([E] + (u — v)" B[X|Ew[E]
—u? B[X|EN[E] — |[E|" A[E|E|I[E]

—1[E]"(A+ AT)[E|Elw[E] = 1[E]" (A + A" [E| E|w(E°]

(because w' = w + 1 in the summation.). Then by the definition of quantum pairs
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and the previous lemmas, we can simplify the inner product (w’, Eto) as follows:

(W, Ew) = Y > w'(uw)o(u)
u,uw’ €Fy w=w’
= @ UETAEIENE N (o ()

u,u’

Z ws[E]-w[E}+(u—u')TB[X|E}w[E}—1[E}T(A+AT)[E|E]w[E}-uTB[X|E]1[E]]

L w[E]

Z w(uu’)TB[XlEC]W[EC]I[E]T(AJrAT)[EIEC]W[EC]]

L w[E<]

_ BT AELENE] S Gy ) [ 3 w(s{E}—l{E]T(A+AT)[E|E}>w[E1]
w[E]

u,u’

_ pn—d+1w—1[E]TA[E|E]1[E] [Z w(s[E}—l[E]T(A—i-AT)[EE])w[E]] (v',v) = 0.

wlE]

]

The result of theorems 5.4 and 5.5 shows that if (A, B) is an [[n, k, d]],-quantum
pair, then @ is a quantum [[n, k, d]],-code. Below we quote Theorem 4.1 and 4.2 to

prove a stronger result, which was given in [6].

Theorem 5.6. If (A, B) is a pure [[n, k, d]],,-quantum pair, then Q is a pure quantum
[[n, k, > d]],-code.

Proof. Order the vectors in IF’; as up, Uy, ..., Wy, and define functions v; : ) — C

by

ulTBw—f-WTAw

for w € F). Then by Theorem 5.4, @ has the following orthonormal basis

;= v(w)w)|l <i<ph

welp

By theorem 4.2, it suffices to show that

Y2

i Z wuZTBw+wTAwwujTBW’+W’TAW’ _ {07 /[E] 7& W[E]
w[Ec]=w'[E°]

21



where the sum is over w,w’ € I such that with w[E°] = w'[E°], and the two
prefixed parts w[E] and w’[E] of E. This follows by the following computation
vi(w)v;(w')
:wujTBW/—l-W/TAW/—(uiTBW—i-WTAw)
— oY% BWELw[E])—uf B(wW[E],w[E])+ (W [E],w[E)T A(W'[E],w[E])—(w[E],w[E])T A(W[E],w[E])
oT BIX|EJw/[E]—ul BIX| EJw[E}+w'[E]" A[E|EJw'[E]—w[E]” A[E|E}w[E]

=W J

. (Wi —w) T BIX|E|+(wW/[E]-w[E]) T (A+AT)[E| B }w([E]

Now we take the part related to £¢, and we have

Z Wi —u) T BIX|E+(W [El-w[E])T (A+ AT)[E| E]}w[E°]
w[E°]
Since (A, B) is a pure [[n, k, d]],-quantum pair, then (5.2) implies that u; = uj,

n—d+1

w/[E] = w[E] and the summation becomes p Otherwise, the summation

becomes 0 by lemma 3.24 again, completing the proof. O]

Actually, the previous result also shows that, by defining f; : F; — [F, by
fi(x) = u] Bx + x"Ax for u; € Fi(1 < i < p¥), we can obtain an [[n, k,d]],-
quantum code @ = span{>_, g, wi®|x)[1 < i < p*} (see [6]). Now, let R be the

(k +n) x (k+ n) matrix with rows and columns indexed by (X UY) of the form

R:(;ﬁAfﬂ). (5.3)

Then lemma 5.3 is equivalent to that the sub-matrix

R[XUE|EC]:(( BIX|E¥] )

A+ AT)[E|E9
of R has rank k+d—1 for any £ C Y with |E| = d—1. Hence we have the following
corollaries from the previous theorem. The corollaries are used for MDS quantum

codes (i.e. the codes reaching Singleton bound).

Corollary 5.7. Suppose n = k + 2(d — 1), and the square (k+d—1) x (k+d—1)
sub-matriz R X U E|E| is invertible for any E CY with |E| =d—1. Then Q is a

pure quantum [[n, k, d]],-code.
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Proof. By Lemma 5.3 and Theorem 5.6, @) is a pure quantum [[n, k, t]],-code for
some t > d. By using quantum Singleton bound and the assumption, we have

n—2d+2=k<n-—-2t+2,sot=d. O]

Here we give examples for the applications of theorems 5.4 and 5.5 and corollary

5.7.

Example 5.8. Let X = {z0},Y = {yo,v1,¥2, 93,94} and E a 2-subset of Y. Con-

sider the graph G with vertex set V(G1) = X UY as below:

n

Y2 Yo

Ys Ya
Figure 1. G

Then its adjacency matrix is
o Yo Y1 Y2 Y3 Y4
x| O 1 1 1 1 1
|l 1 0 1 0 0 1
w1 1 0 1 0 0
wl 1 0 1 0 1 0
ys1 1 0 O 1 0 1

which is of the form (5.3) with

, B

111 11)

e

I
coocoo
coo o~
coor— o
cor~o o
[ e R
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Then we can check that

Fla)) = 7wttt Taw gy — 37 v s et ),

welF) wely
where a = 0,1,2,--- ,p — 1, form a basis of @ = f((CP)®!), and dim Q@ = p by the
orthogonality. Also, we check that for any subset F of Y with |E| =2 and |E¢| =3
the sub-matrix R[X U E|E°] is invertible. According the the edge relation between

X U E and E°, there are only two situations of R[X U E|E‘]:
1 11 1 11
00 1],[10 1],
1 00 1 10

both of which have determinant 1. Hence we can construct a pure quantum [[5, 1, 3]],-

Here is an example from [1]. We interpret it with the graph-theoretical method.

Example 5.9. Let X = ¢,Y = {yo, 1, Y2, Y3, Y4, Y5} and G} be the graph with

vertex set V(G}) =Y as below.

n

Y2 Yo

Y3 Ys

Figure 2. G}
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Then consider its adjacency matrix

w0 1 0 0 1 1
w1 0 1 0 0 1
R=A+AT= % ,
plo 0 1 0 1 1
wl1 0 0 1 0 1

$s\1 1 1 1 1 0

with

S OO O o o
S OO O O
O OO OO = O
O OO RO o
OO~ OO
O = = =

For any £ C Y with |E| = 3, we have rank(R[E|E°|) = 3 since the row vectors of
R[E|E€| are never linearly dependent for any choice of E. Hence we can construct
a pure quantum [[6, 0, 4]]>-code
= span{ Z 1D x)1,
x€F§

where
f(X) = XTAX = ToX1 + T1T2 + T3 + T3X4 + TyTo + $5(.Z‘0 +x1 + 22+ 23+ Z‘4).

Example 5.10. [4] For (n, k,d) = (6,2, 3), we can not construct binary(p = 2) quan-
tum code this way, because these parameters violates Hamming bound when p = 2.
However, we can use this method to construct non-binary quantum codes with these
parameters as follows: Let (n,k,d) = (6,2,3),p = 3 and consider the graph G5 with
vertex set V(Gy) = X UY, where X = {zo,21},Y = {vo, Y1, Y2, Y3, Ys, Y5} and the

solid edge has weight 1 and the dashed ones has weight —1 as below:
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Figure 3. G,

Then its weighted adjacency matrix is

o T1 Yo Y1 Y2 Y3
o O 0 1 1 1 1
z1| 0 0 1 -1 1 -1
| 1 1 0o -1 1 0

0 B w1 -1 -1 0 1 -1
BT A4+ AT ) —
w1l 1 1 1 0 1

=y
I

pl 1 -1 0 -1 1 0
wl1 1 1 0 -1 -1

s \1 -1 1 0 0 -1

which is in the form (5.3) with

0 -1 1 0 1 1
00 1 -1 10 0
00 0 1 -1 0 111
A=10 0 0 0 -1 -1 andB_(1 -1 1 -1
00 0 0 0 -1
00 00 0 0

Ya

Ys

For any E = {y;,y;}(0 < i # j <5), it is clear that rank(B[X|E¢]) = 2. The column

space of (A+ AT)[E|E] is spanned by {(1,0)7, (0,1)7}. So rank((A+ AT)[E|E*)]) =

2. In addition, the intersection of their row spaces contains only the zero vector,

we can conclude that (A, B) is a pure [[6, 2, 3]],-quantum pair for p = 3. Hence
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Q = span{}, Wi B A 3 1 < < 9,u; € F2} is a pure quantum [[6, 2, 3]]s-

code. As for the verification of the case p > 5, please see [4].
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