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Abstract

In recent years, Internet services have become more and more popular in our daily life.
More and more commercial services are pravided through Internet. According to previous
research, a few minutes of downtime of aicommercial Internet service will lead to a great loss
of money for the company. Furthermore, system failures and system maintenance contribute
to most of the service unavailability.

In order to keep Internet service running permanently, we provide a framework based on
virtual machines to allow zero-loss service recovery and upgrade. The framework can detect
system faults automatically and transparently recover the on-line requests. Moreover, it also
allows on-line requests to be migrated to an upgraded system. We implemented the
framework by modifying an open source virtual machine monitor, Xen, and the Linux kernel
on top of Xen. According to the experimental results, the framework causes little overhead

and has acceptable recovery time.



Acknowledgements

| deeply appreciate the guidance from my advisor, Professor R. C. Change. He taught me
the knowledge of operating system, guided me how to do research, and provided me many
resources for accomplishing this thesis. Moreover, | also appreciate Dr. Da-Wei Chang’s

assistance. He gave me much advice for this thesis and revised this thesis painstakingly.

Besides, | would like to thank my family and my friends for their encouragement and

unlimited love. | also thank them for bringing me laugh and knowledge that inspire my life.

Cheng-En Hsieh
Institute of Computer and Information Science
National Chiao-Tung University

2005/6



TABLE OF CONTENTS

T T 3 R s I
ABSTRACT ettt bbbt b bbb bbbt b et bbb I
ACKNOWLEDGEMENTS ...ttt bbbttt Il
TABLE OF CONTENTS . ....o ittt bbbttt bbbt v
LIST OF FIGURES ..ottt bbb bbbt nn b VI
LIST OF TABLES ...ttt bbb bbb VII
CHAPTER 1  INTRODUCTION ...ciiiiiiiiieieieie ettt 1
CHAPTER 2 BACKGROUND ......oitiiiiiieieie ettt 4
2.1 FT-TCP SYSIBIM ...ttt e bbb e e nbe e e anees 4

2.2 ThE RECOVEIY FIOW ...ttt nre e 5
CHAPTER 3 RELATED WORK ...ttt 7
3.1 Fault Tolerance in APPliCation LAY ........ccvevviieiieieeie e 7
3.1.1 Recursive ReStart (RR)......ccccviiieiieieiieieeie e et sne s 7

3.2 Fault Tolerant in TranSPOrt LAYEN .........ccvveiverieeieseesie e see e e e see e see e sre e anee e nas 7
3.2.1 Fine-Grained FailovVer:SYSteM . it ....ccvoieiiecie e 7
322M-TCP..ooovvvvee o BRI M. 8

3.2.3 TCP SPIICING...... 50 susssssssnessnsssasdanasness catsesseersenseesseessemssessessemssesesssesssessessseessesses 8
324FT-TCP..oooeo ER I .. B ... 9

3.3 SOftware MaINtENANCE ... i Kl rsstsrens s ahasieesves e stesseeseeseeseessestesaestesbessesseeseeeeneennens 10
3.3.1 DeVIrtUAIIZALION ... 0 o fiisusssssssiite et sieeseesee e see st bbbt sbe b 10

B OTNBIS ..t b e bbbt 10

K30 O 4 1= o3 oo [ 1o USSR 10

3.4.2 Recovery-Oriented Computing (ROC).......cccovevieiiieiieiesiese e 11

B3 XBIN ettt 11
CHAPTER 4  DESIGN AND IMPLEMENTATION ....ccocoiiiiiiiiieiinieeeeeiee s 12
4.1 SYSTEM COMPONENTS ....vveieiiieeeitie et stiee sttt e et e b e bb e e s nba e e s be e sab e e e sbeeesnneeas 13

4.2 FAUIT RECOVEIY ... .oiieeeie ettt ettt e et a et ne e s teeaeenaestaeteaneenneeee s 14
4.2.1 Backup SErver BOOT-UD .......ccceiiverieiiesiesiesieseesiesseessee e seesreessesneesneensesneensens 15

4.2.2 ConNection State LOGUING . ..cvevveiierieieiiesieesieseesieesee e see e ssee e e e sneesreeneeas 17

4.2.3 FAUIt DEEECTION .....oviieieiiiieieie e 18

4.2.4 RECOVENY FIOW......iiiiiiiicciice ettt 20

4.3 ONIINE MAINTENANCE. ......ciuiiieiieite ettt bbb 21
4.3.1 MaiNtenanCe FIOW ........c.oociiiiiiiiiicee e 23
CHAPTERS5  RECOVERY TIME REDUCTION .....cccooiiiiiiiniiiiiinisieieee e 24
TN R I PSSR URORRRTRRP 24

5.2 HT TP PrOXY .ottt sttt e e nbb e e s e e e nnne e e 27



CHAPTER 6  PERFORMANCE EVALUATION.......coiiiiiii e 29

6.1 Experimental ENVIFONMENT...........ooiiiiiieiie e 29

6.2 OVEINEAU. .....c.eieiiie ettt e et re e 30
6.2.1 FT-TCP OVEIrNEAU.......cceiiiiiiieieeie et et 30

6.2.2 Squid Performance OVerhead...........ccccovviiieiinie e 31

6.2.2 Proftpd Performance OVerhead ............ccccooviiiin i 33

5.3 RECOVEIY THIMIB...eiiiiiiiieiteeie sttt sttt sttt e bt et se e b e e beenbesb e e naeeneenre e 34
6.3.1 SQUIA RECOVEIY TIME ...ttt 34

6.3.2 Proftpd RECOVENY TIME......eoiiiie et 35
CHAPTER 7 CONGCLUSION ..ottt 37
REFERENGCES ...t bttt b ettt e b et ntesneenbeeneenreas 38



LIST OF FIGURES

o[ I e e I O O OO SOUPTT PR 4
Figure 2 CONNECLION RECOVEIY .....c.oiuiiiieieieieeie ettt stk b e bttt he st e e e b sb e bt s be bt et e e neenee s e benbesbeneas 6
FIQUIE 3 TCP SPHICING ...ttt bbbt bt ae e e e b ek s bt e b e s b e eb e e b e mees e et e beneesbe e 8
FIQUIE 4 FT-TCP 0N XN ...ttt ettt h et b bt h et e b e b bt e b e bt e b e e e e mbesbesbesbe e bt ebeeneenbeneeabenbesneas 10
Figure 5 OUr SYStEM COMPONENTS ........oiuiiiiiiiieieieie ettt ettt et see b besbesbe e e ese e s e seesbesbesbesaeenbeseeabesbesaea 13
Figure 6. An Overview Of FAUIt RECOVEIY ..o bbb 14
Figure 7 The Flow of Booting & BaCKUD SEIVEN ..o e 15
Figure 8 Detecting APPHCAtiON FAUILS ........coiiiiiiiee et bbb sne 18
Figure 9 DeteCt KEINEl FAUIL ...........coo it bbbt et b sne s 19
Figure 10 RECOVENY PFOTOCOL. ........oiiiiieii ettt b e bt bbbt e et et e e e nbenbe b 20
Figure 11 An Overview of the Online Maintenance FIOW ............ccoi it 22
Figure 12 The FIOW Of SErVICE MiIQIration .........cooiiiiiiiiiiie et se et seesne s 23
Figure 13 A Example of Using FTP for SeNding Files .........cooiiiiiee e 24
FIQUIE 14 REIAY SEIVEL ... ittt bttt b e bbbt Rt e Rt e e et e sbe e besbe s b e et e e st enbeneenbenbenbe s 27
Figure 15 Performance of FT-TCP ... i i e bbb se et seesne 30
Figure 16 Performance of Squid (ConneCLIoN RELE) il il i iveeiiieiieee e 31
Figure 17 Performance of Squid (Connection TRrOUGRPUL)...cmt.....ccovirieiiiiciiceseesese s 31
Figure 18 Performance of Squid (ReSPONSE TIHME) it .ot bii et 32
Figure 19 Performance of Proftpd (Connection TAFOUGAPUL):............coooiuiiiiiiiiiieree e 33
Figure 20 Fault Occurs When the First 10KB:0f DataiS SENT...........ccooiiiiiiiiiineesese s 34
Figure 21 Fault Occurs When the First Half of Data is SENt..........ccooiiiiiiiiiiie e 34
Figure 22 Relation between Number of Connections and ReCOVEry TiMe .........ccccverirerecieiienese e 35

VI



LIST OF TABLES

Table 1 System Calls Provided DY OZS ... e 16
Table 2 Wrapper RegISTIation APTIS ... ..ottt et bbbttt bbb 25
Table 3 Application-SPeCifiCc HOOK APIS ..o bbbt b 25
TaDIE 4 CHENT-SIAR APLS ... ettt bbbt b et h e e e e b et e b e et e e bt ebe e e e benbesbe b 26
TADIE 5 SEIVEE SIHE APIS ...ttt bbbt b etk b etk eb e ekt bt ekt e r e bt are e bt nne e 28
Table 6 EXperimental ENVIFONMENT ... ..ottt bbb e bbb e e e sae bt 29

VII



CHAPTER 1
INTRODUCTION

In recent years, Internet services have become more and more popular in our daily life.
However, an Internet service may become unavailable due to transient errors, software bugs,
and system maintenance. According to the previous research [19], a few minutes of downtime
will lead to a great loss of money. Therefore, high availability is very important for Internet
services.

Previous study [20] shows that, software failures lead to a larger portion of system
downtime than hardware faults. Moreover, the latter can be masked by component redundancy;,
such as RAID. Software may crash due te=various reasons. As indicated in previous research
[2][18], human error is the dominant source.-For example, an administrator may misconfigure
an Internet service or kill the service unintentionally, which causes the service to become
unavailable. Moreover, transient faults‘or software aging faults [13][15] may occur on the
Internet services because of their long execution time. Finally, operating systems under the
Internet services can also crash since they are hard to be made error-free due to their high
complexity [5]. In addition to software failures, software maintenance is another dominant
source of downtime for Internet services [14]. For example, an Internet service has to stop
during system maintenance, which may maintain or upgrade the service applications, libraries,
operating system, and drivers. Although the system can be restarted after the maintenance
operation has completed, the service state and the operating system state (such as the TCP
connections) will be lost, which is unacceptable for many commercial or transaction based
services.

Many fault tolerant techniques have been proposed to address the problem. However,



they all have limitations on solving the above problem. Checkpointing [22] can not recover
software aging faults, and it usually causes a high overhead. Connection migration techniques
[1][6][71[23][26] can not recover on-line requests in a server transparent way. Moreover, they
require expensive server replicas. Some connection migration techniques [6][7][23] even
require modifications to the client-side TCP implementations, which limits the feasibility of
the techniques. Recursive Recovery [8][9][10] requires the service to be made up of many
fine-grained components, which both needs application re-design and leads to performance
degradation. Finally, devirtualization [12] can only deal with planned downtime. It can not
cope with unplanned downtime.
In this thesis, we propose a framework to achieve the goal of zero-loss recovery and
upgrade for Internet services. Basically, the framework is based on connection migration
techniques and virtual machine technology. It can solve the software failure and system
maintenance problems mentioned_above.! Specifically, the framework can log the TCP
connection state, detect software-faults,-and.then recover faulty server. Moreover, it requires
neither expensive server replicas nor-large service program modifications. Some service
applications may need to be modified to achieve the goal of zero-loss recovery and upgrade.
However, the modification is little and straightforward.
We implemented the framework by enhancing a client-transparent connection recovery
technique called FT-TCP[1] and modifying a virtual machine monitor (VMM) called Xen[4]
The framework provides the following functionality:
® Fault detection — It can detect faults that occur on service application and the operating
system. When a fault is detected, the service recovery procedure will be triggered.

® Connection state logging — The connection state will be logged into the VMM?’s memory
space, and the state will be used to recover the service during the recovery period.

® Recovery management — Once a fault is detected, the framework will recover the service

application and the TCP connection state.



According to the experimental results, our approach incurs less than 3.5% throughput
overhead. Moreover, it can restart the service with no data loss when the service crashes.
Finally, the recovery time is acceptable.

The rest of the thesis is organized as follows. Chapter 2 describes the background
technique, FT-TCP. Chapter 3 presents the related work. In Chapter 4 and Chapter 5, we
explain our design issues and implementation details. Chapter 6 shows the experimental

results, which is followed by the conclusion presented in Chapter 7.



CHAPTER 2
BACKGROUND

As we mentioned in the Introduction, our zero-loss service recovery framework is based
on FT-TCP. In this chapter, we introduce the FT-TCP [1] technique and the control flow it

uses to recover an Internet service.

2.1 FT-TCP System

Primary Logger Backup
Application Application
NSW "~ P NSW
Y \ / yy
TCP Logger TCP
v L / \ A 4 I
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IP IP
outsiream insiream ouistream instream

Figure 1 FT-TCP

As shown in Figure 1, FT-TCP inserts wrappers around the TCP layer of the primary
machine. The wrappers can intercept all outgoing/incoming TCP packets and record the
packet information to the logger machine. When primary machine fails, FT-TCP recovers the

on-line TCP connections on the backup machine according to the logged content in an



application-transparent way.

Two wrapper layers are used in FT-TCP. The North Side Wrapper (NSW) sits above TCP.
It records socket read/write operations issued by the service application to the logger. During
the recovery period, the NSW communicates with the logger to retrieve the logged data, and
resends all the pending requests to the application. When the service application issues a
socket write operation, NSW is also responsible for returning the same values (which are
logged) to the application to maintain the determinism.

The wrapper layer below TCP is called South Side Wrapper (SSW), which records each
TCP connection to the logger and helps to re-establish the connections during the recovery
period. When TCP sends/receives a packet during normal operations, SSW intercepts the
packet and records the related information such as sequence numbers to the logger. During the
recovery period, SSW re-establishes the on-line TCP connections on behalf of the clients

according to the logged content to enable the service to continue.

2.2 The Recovery Flow

The flow of connection recovery is presented in Figure 2. In order to recover a
connection in a client transparent way, FT-TCP re-establishes the connection on behalf of the
client and replays the corresponding socket read/write operations.

For the connection reestablishment, the SSW sends a fake SYN packet to its local TCP
(i.e., the TCP of the backup machine). When getting a SYN packet, the TCP sends a
SYN/ACK packet back, which is intercepted and then discarded by the SSW. Then, the SSW
calculates the delta_seq, which is the difference between the initial server-side sequence
numbers of the re-established and the original connections. The delta_seq is used for adjusting
the sequence numbers of the following outgoing (i.e., server-to-client) TCP packets and ACK

sequence numbers of the following incoming packets in order to maintain client-side



transparency. Note that the sequence numbers of the incoming packets and ACK sequence
numbers of the outgoing packets are not needed to be adjusted since SSW use a special initial
sequence number, which equals to the last ACK sequence number minus one sent by the
primary server, in the SYN packet it fakes. Finally, the SSW spoofs a fake ACK packet to
complete the TCP 3-way handshake.

After the connection is re-established, the service application will replay the
request-processing flow (i.e, accept the connection, read the request, process the request, and
writes the response), which is controlled by the NSW. For example, NSW will send the
logged request to the service application when the latter issues socket read operations. For

another example, NSW is also responsible for dropping duplicated response data.
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CHAPTER 3
RELATED WORK

The related efforts can be classified into four categories: fault tolerance in application
layer, fault tolerance in transport layer, software maintenance, and others. We will describe

these efforts in the following of this chapter.

3.1 Fault Tolerance in Application Layer
3.1.1 Recursive Restart (RR)

Recursive Restart (RR) [8][9] allows a fine-grained component-based service to restart
a component (instead of the whole service).onee the component fails, and thus reducing the
service restart time. However, RR is not suitable for all Internet services due to the following
reasons. First, the inter-component commumication will degrade the system performance,
which is not allowed for many Internet'services.'Second, RR requires an Internet service to be
composed of fine-grained components, which needs redesigning the legacy Internet service

programs.

3.2 Fault Tolerant in Transport Layer
3.2.1 Fine-Grained Failover System

This approach [7] aims at increasing availability of a web service which is based on a
server cluster. The mechanism can be divided into two parts. First, a HTTP-aware module is
inserted between the application and transport layers to log the interactions between these two
layers. Moreover, this approach uses TCP migrate options to record TCP state for connection

resumption. The advantage of this approach is that it requires no modification to the server



application. However, the TCP migrate options which the approach is based on requires
modification to the TCP implementations of both the server and the clients, reducing the

feasibility of the approach.

3.2.2 M-TCP

Migratory TCP (M-TCP) [23] allows on-line connections to be migrated from one server
to another cooperative server. When a server overloads or fails, it will trigger the migration
process, which makes the client to reconnect to a better performing server replica. A set of
API is provided for the server application to support state transfer between server replicas.
However, same as Fine-Grained Failover System, M-TCP extends both the client-side and the
server-side TCP implementations to accomplish dynamic connection migration. It is difficult

to deploy the TCP extension to all the clients interacting with a service.

3.2.3 TCP Splicing

Client 1

Server 1

proxy

\‘. Server 2

Figure 3 TCP Splicing
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In this approach [17], a virtual TCP connection is composed of two physical
connections, a client-proxy connection and a proxy-server connection. As shown in Figure 3,

all the clients connect to a proxy, which receives and dispatches the client requests to the

8



back-end servers. The proxy records IP addresses, port numbers, and TCP sequence numbers
of both the client-proxy and proxy-server connections. If the server crashes, the proxy can
re-establish a new connection with another server and ensure that the new connection is
consistent with the client’s state. This approach is transparent to both the client and the server.
However, it requires multiple server replicas and an extra proxy machine. In contrast, our
approach does not require the proxy machine, and we address on software fault-tolerance and

thus we perform recovery on a single node.

3.24 FT-TCP

We have described this approach in Chapter 2. FT-TCP [1] requires a primary server, a
backup server, and a logger which can be co-located with the backup machine. If the primary
crashes, the backup can take over the job of serving clients and replay the requests that are
pending when the fault happens: As mentioned befare, our approach is based on FT-TCP.
However, we aim at software fault tolerance and thus perform recovery on a single node
instead.

We use a virtual machine monitor, Xen [4], to consolidate the primary and the backup
servers into a single physical node. However, as shown in Figure 4, simply put the servers
into virtual machines is not practical since the frequent communication between two virtual
machines will degrade the system performance largely. Our framework solves this problem in
two ways. First, we eliminate the primary-backup communication. All the connection state
logging is recorded in the memory of the VMM. As a result, the backup server VM can be
suspended and the system performance can be improved. Second, we propose techniques to

reduce the recovery time of FT-TCP.



Figure 4 FT-TCP on Xen

3.3 Software Maintenance
3.3.1 Devirtualization =

This approach [12] provides a -boot a virtual machine monitor and a new
operating system dynamically wheh | te system needs software maintenance. Once the
software maintenance operation is finished on the newly-boot operating system, the state of
the old system is migrated to the new operating system. Then, the old operating system and
the virtual machine monitor can be shutdown. This approach has good performance in normal
operation since the VMM is only presented when maintenance is needed. However, it only

focuses on decreasing the planned downtime, it can not reduce unplanned downtime.

3.4 Others
3.4.1Checkpointing

Checkpointing [16][21][22][24][25] is a common technique for system recovery. It saves

the state of a running program periodically to a stable storage. When the system crashes, the

10



last checkpointed state can be reloaded to recover the system. This approach has two
drawbacks. First, it can not solve the software aging problem since the checkpointed state is
aged, instead of fresh. Even if the system can be recovered, the software may fail again
immediately. Second, checkpointing usually result in large performance overhead due to the

large volume of state that needs to be stored.

3.4.2 Recovery-Oriented Computing (ROC)

Recovery-Oriented Computing project [20][3] differs from the main stream of previous
fault management approaches in that it concentrates on Mean Time to Repair (MTTR) rather
than Mean Time to Failure (MTTF). ROC assists administrator to find out faults by its tools.
After the fault occurs, it can rewind the system to a previous correct state, repair the fault, and
replays the service. The purpose of ROC is different from ours. We stress on avoiding

connection/service state loss, which is not addressed'on ROC.

3.4.3 Xen

Xen [4] is an x86-based virtual “machine monitor. It allows multiple commodity
operating systems such as Linux, BSD and Windows XP to be hosted on a physical machine
simultaneously. As mentioned before, we implemented our framework on Xen. The reasons

are that it is open source and has little overhead.

11



CHAPTER 4
DESIGN AND IMPLEMENTATION

In general, functionality exported by current operating systems has the following

limitations to achieve the goal of zero-loss service restart.

® Existing systems usually do not provide any mechanisms to recover the state of a service
application when it crashes due to software faults. Instead, the operating system usually
Kills the faulty processes, which causes the internal state of the processes (including the
connections being served) to be lost.

® The connection state in TCP layer will be lost when a fault crashes the service
application or the operating system, iFor-the former, the operating system will clean the
connection state of the service process. For the latter, the system will be rebooted and all
the system information will be lost:

® \When upgrading a system, the administrator has to turn off the service, which causes the
service to become unavailable for a period of time.

In this thesis, we propose a framework to overcome the above limitations.

The rest of this chapter is organized as follows. Session 4.1 explains the system
components in the framework. Session 4.2 describes the proposed fault recovery technique.
We will explain how to recover a service when a fault occurs. Session 4.2 describes the
proposed online maintenance technique. We will explain how to avoid the downtime caused

by system maintenance.

12



4.1 System Components

As shown in Figure 5, in order to achieve:the goals mentioned above, we implement our
framework in both the operating system kernel (i.e., Linux) and the virtual machine monitor

(i.e., Xen). The former part is called OS layer Zero-loss Subsystem (OZS) while the latter part

E .

A

is called VMM layer Zero-loss Subsystem (VZS).

The major components of the framework are: protocol manager, health monitor and
recovery manager. In addition to the components, we also enhance FT-TCP to reduce the
recovery time and provide an API for the service designers to develop their fault tolerant

service. Moreover, the framework provides system calls for the administrators to control the

backup server and the service migration.

13
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4.2 Fault Recovery

Briefly speacking, we use four techniques to achieve the goal of fault recovery. First, we
develop a protocol to create/suspend/resume the backup server. During normal operation, the
backup server is suspended so that it does not contend CPU resources with the primary server.
Once the primary fails, the backup server is resumed to take over the job of the primary.
Second, we provide a log buffer in VMM which allows us to store the connection state
without communicating with the backup server. Third, we provide a fault detection
mechanism, which can detect application or operating system faults and then trigger the

recovery job. Finally, we provide a recovery mechanism to recover the service state.

(a) System boots two OS instances (b) Suspend backup OS
‘ Application ‘ ‘ Application |
I I
‘ Primary OS ‘ ‘ Backup OS | Primary OS
| I
() Dei\ect fault P, (d) Ra&wsr sen}i )
‘ nglicgd‘f)n ‘ ‘ Applicatoin ‘ ‘ I-hsplic;kéin ‘ ‘ Application ‘
X X I
‘ P;iﬁah\os ‘ ‘ Backup OS ‘ ‘ P;Hﬁakos ‘ ‘ Backup OS ‘
7 X ] V4 s ]

recover
VN Monitor_|semice
(e) Recovery complele
Application
Backup OS

VM Monitor

Figure 6. An Overview of Fault Recovery

We give a brief overview of the recovery flow first, which is shown in Figure 6, before
the detailed description of our fault recovery techniques. Before starting an Internet service,
the administrator starts a backup server, including the backup OS and service application.

14



Then, in order to supply the primary server with the whole system resources, the backup
server releases the resources such as CPU time it holds. The primary server then does the
normal operations and logs the connection information in the Virtual Machine Monitor
(VMM). When a fault is detected, VMM wakes up the backup server and recovers the service
state so that the system can provide the service continually.

In the following, we will describe the details of the techniques. Section 4.2.1 describes
the way to boot a second OS instance and release the system resource used by the second OS
instance. The flow of logging connection state is presented in Section 4.2.2. Section 4.2.3

describes the fault detection mechanism, and the recovery flow is presented in Section 4.2.4.

4.2.1 Backup Server Boot-up

Control Xen Primary Backup
domain domain domain

("haﬂge bs- P&
Slongy
o
sus‘)e“d be-Q
(

bs. = backup server

Figure 7 The Flow of Booting a Backup Server
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We define a protocol to manage the boot up of the backup server. The protocol involves
the VMM and three domains: control, primary and backup, which implement the protocol

based on the API, as shown by Table 1, provided by the framework.

Table 1 System Calls Provided by OZS

syscall table

Function name Source/Dest. | Description

sys_ins_auth() confemm Install authentication info. to vmm

sys_boot_backup_server() prim/¥mm Boot backup server

sys_change_backup_ip() prim/backup Change backup ip address

sys_suspend_backup_server()| prim/vmm Suspend backup server

sys_wakeup backup_serverf) | prim/fvmm Wake up backup server

s¥s_migrate_service() prim/¥mm Notif_"‘y recovery manager to migrate
services

Figure 7 shows the flow of booting up a backup-server. Originally, Xen only allows the
control domain to boot up other-domains:“in order to-enable an authorized primary server to
boot up its backup, we allow the administrator to.register the primary servers that has the right
to boot up their backups. Specifically, the administrator can register an entry for each primary
server that has that right in the backup-grant table in advance. The table is stored in VMM
and managed by the protocol manager, and the registration is done by calling the
sys_ins_auth() system call in the control domain. When a primary server boots a backup
server, the protocol manager will check if the primary server has the grant.

The primary server calls the sys _boot_backup_server() system call to ask Xen to create
the backup. As mentioned above, the protocol manager checks to see if the primary server is
granted to boot its backup. If it is, the protocol manager asks Xen to create the backup
domain .

Originally, Xen gives an unique IP address to each guest OS so that each domain can

communicate with external machines. This results in a longer recovery time since the backup
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server has to take over the IP address of the primary server when the latter crashes. Thus, we
provide a sys_change_backup_ip() system call to allow the primary and backup servers to
share a single IP address. When the system call is invoked by the primary server, a signal will
be sent to the backup server through the VZS, and the backup server will get the primary IP
address from the VZS and change its IP address accordingly. The IP address changing is done
by a user-level task which invokes a shell command - ipconfig.

After the IP address is changed, the backup server should release its CPU time so that it
will not affect the performance of the primary server. This is done by calling the
sys_suspend_backup() system call by the primary server. When the system call is invoked,
Xen will remove the backup server task from the run queue of Xen.

From the above description we can see that, although the system calls are implemented
in the OZS, most of them require ,cooperation from the VZS. The communication between

OZS and VZS is through hypercalls.and events.

4.2.2 Connection State Logging

FT-TCP provides a log buffer to record the connection state of the primary server. When
the primary server crashes, the backup server will use the data in the log buffer to recover the
system. In our design, we also provide a log buffer which does not lose data even when the
primary server crashes. We use a memory area of the primary server as the logger buffer.
During the recovery period, backup server will remap the log buffer into its virtual address
space and recover the service state accordingly. In the following, we describe how to
implement the log buffer in our framework.

In order to let guest operating systems manage memory conveniently, Xen provides an
illusional memory area, a continuous range of physical addresses, for each guest OS. However,
physical address is not real machine address. Therefore, there are two problems deserving to

be mentioned. First, as mentioned above, the backup server has to map the log buffer into its
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virtual address space. This mapping requires the starting machine address of the log buffer.
However, a guest OS does not manage machine addresses directly. Thus, we lookup the page
table of the guest OS, which is updated by Xen, to get the machine address of the log buffer.
Once the address is obtained, the OZS issues a hypercall to Xen in order to register the
address. As a result, the backup server can get the machine address of the log buffer during
the recovery period.

Second, if a primary server crashes, its memory area (including the log buffer) will be
released by Xen. To avoid releasing the memory before recovering the service, we increase
the reference count that corresponds to the primary server by 1 after booting the primary.
After the service recovery, the reference count is decreased by 1 and the resources held by the

primary server can be released.

4.2.3 Fault Detection

Software faults, which cause the’ system become unavailable, can happen on service

applications and the operating system:.In the following, we describe how to detect the faults.

Application Application
exit(} user mode exit(} user mode
remeimode ) [———
sys_exlt() Health moniter Health monior
do_exit{) . sig_exit() sys_ exit 0 slg_‘exﬂ'(}
Kernel Kamal
{a) Original path (b} Fauli detection path

Figure 8 Detecting Application Faults

When a fault occurs on an application, the kernel usually invokes the do_exit() function
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to Kkill the application process. As shown in Figure 8(a), two paths lead to the invocation of
do_exit(). One is that application detects the fault itself and calls the sys_exit() system call,
which in turn calls do_exit(). The other is that kernel detects the application fault and sends a
signal to kill the application process. In this case, kernel calls do_exit() through sig_exit().
Originally, we can intercept do_exit(), by kernel binary instrumentation, to detect the faults.
However, such callee-based instrumentation requires more efforts. Therefore, we use the
caller-based instrumentation approach instead. As shown in Figure 8(b), the health monitor
intercepts the exit() system call and the sig_exit() function, which only requires modifying the

destination addresses of two jump instructions.

0S | ozF
FT-PROXY FT-FTF’ll
"1 EFTAPIs '
Enhance FT-TCP

Recovery
Manager

A

XEN | yzF v
|, Recovery
Manager

Figure 9 Detect Kernel Fault

In addition to application faults, operating system faults may also occur. To detect such
faults, we inserted a heartbeat generator in the primary server domain and a heartbeat checker
in Xen. At each timer interrupt, the former sends a heartbeat to Xen by increasing the value of

the heartbeat counter variable by one, which is shared by the primary server domain and Xen.
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The latter checks the variable at each timer interrupt to detect operating system faults. If the
value remains the same during two timer interrupt periods, the operating system is regarded as
failure, and the checker notifies the recovery manager to recover the system. It is worth
noting that the heartbeat mechanism is implemented based on shared memory instead of

hypercall, and thus it eliminates the overhead of frequent privilege mode crossings.

4.2.4 Recovery Flow

Primary Xen Backup
domain domain
detect fauit ¢ famt__ reCOVery

~change nefwork palh

*wake {ip backup sewxver (

map log buffer

recovery start

Figure 10 Recovery Protocol

When a fault is detected, the recovery manager will follow the recovery protocol to
recover the system. Figure 10 illustrates the recovery protocol, which is divided into three

steps. First, the recovery manager must change the network path so that incoming packets
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which are originally delivered to the primary server will now be delivered to the backup
server. Xen stores IP-to-domain mappings for each domain (i.e., in the net_schedule_list list)
in order to perform packet delivery, and thus the network path changing can simply be done
by updating the mapping that corresponds to the IP address of the backup server. Second, the
recovery manager must wake up the backup server so that the backup server can take over the
job of the primary server. Third, the recovery manager must send a signal to notify the backup
server to recover the system. When receiving the signal, the kernel subsystem in the backup
server will obtain the machine address of the log buffer through a hypercall, remap the log
buffer, and then execute the FT-TCP recovery flow.

It is worth mentioning that, if the fault does not crash the kernel of the primary domain,
we can change the IP address and the packet delivery path (in Xen) so that a system

administrator can connect to the faulty server to diagnosis the reason of the fault.

4.3 Online Maintenance

To allow online maintenance, we use some mechanisms that are the same as those we
use for fault recovery. For example, we also provide a backup server and a log buffer.
However, we add a functionality to allow online maintenance. Specifically, we provide a
sys_migrate_service() system call(as shown in Table 1), which is used to migrate an Internet
service when the administrator completes system maintenance. We will describe it in the next

section.
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(a) System boots two OS instances (b) Suspend backup OS instance

Application Application Applicatoin
l [ l
Primary OS Backup OS Primary OS
VM Monitor VM Monitor
{c) System needs maintenance (d) Migrate service
Application Applicatoin Applicatoin Application
| [ & l |
Primary OS Backup OS Primary OS Backup OS
I | | |
N ] migrate
VM Monitor VM Monitor |service

(e) Migration compleie

Application

1
Backup OS

VM Monitor

Figure 11 An Overview of the Online Maintenance Flow

Figure 11 shows a brief overview of the online maintenance flow. Firstly, as shown in
Figure 11(a) and (b), the OZS boots a backup server and then suspend it. When system needs
maintenance, the kernel subsystem wakes up the backup server, and the administrator can
upgrade the system on the backup server, as shown in Figure 11(c). When the system
maintenance is completed, the administrator can use the sys_migrate_service() system call to
migrate the service state from the primary server to the backup server, as shown in Figure
11(d). Finally, as shown in Figure 11(e), the backup server takes over the job and the clients

can continuously be served without interruption caused by system maintenance.
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4.3.1 Maintenance Flow

Primary Backup
domain Xen domain
Wakeup b,
)
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)
[ update backup server ‘
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Figure-12 The Flow of Service Migration

Figure 12 shows the flow for achieving online maintenance. As mentioned above, the
backup server suspends itself after it has initialized, and the IP address of the backup server
has been changed to the IP address of the primary server in order to allow fast fault recovery.
Therefore, to allow online maintenance, the administrator first wakes up the backup server
and restore its IP address by calling the sys wakup backup server() and
sys_change_backup_ip() system calls, respectively. When the system maintenance on the
backup server is finished, the administrator changes the IP address of the backup server to that
of the primary server and calls the sys_migrate_service() system call(as shown in Table 1) to
migrate the service. This system call notifies the recovery manager to migrate the service
through the protocol manager. The recovery manager will use the strategy mentioned in

section 4.2.4 to migrate the service.
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CHAPTER 5
RECOVERY TIME REDUCTION

For some Internet services, FT-TCP may take a long time to recover them. We will
describe these conditions in the following section. Therefore, we provide an API for Internet
services to reduce the recovery time. In the rest of this section, we take two Internet services

(FTP and HTTP proxy) as examples to demonstrate how to reduce the recovery time by using

the API.
| [ Contial comrmand [ | Data command
Client Server Client Server
e—| 220 (Service ready) | {a) control commands
L USER oslab L
e | 331 (UsernameOK) | |
_| PASS 300000 l—b
e | 230 {User login OK) |
I PASV | (b) data commands
l«—| 227 (Enter passive mode) ||
—| RETR oslab.tar.gz [—
e[ 150 (File status is OK) ||
I Records of file —
Data Transfer -
i Records of file —
l«—| 226 (Closing data connection)| ]
| PASV —» (c) data commands
| 227 (Enter passive mode) ||
I RETR crit.tar.gz |—»
le—| 150 (File statusis OK)  |—]
| Records of file E—
Data Transfer ..
- Records of file |—
| 226 (Closing data connection) ||
Control connection Data connection

Figure 13 A Example of Using FTP for Sending Files
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Many Internet service protocols, such as FTP, SAMBA, and HTTP 1.1, uses long-lived
connections/sessions for object transmission. FT-TCP may take a long time when recovering
such services since it replays the connection reestablishment and object transmission from the
beginning. We illustrate such condition with an FTP example. As shown in Figure 13, the FTP
session contains control commands and a sequence of data commands. If a fault happens
during the transmission of the crtt.tar.gz file (i.e., the second data connection), FT-TCP will
re-establish all the control and data commands. However, as shown in Figure 13, the firs data
commands is not needed to be recovered since it has completed successfully before the fault
happens. Removing such data commands from the recovery job could improve the service

recovery time.

Table.2 Wrapper Registration APIs

Wrapper Reglstration APIs

Function name Usage

wr_creaie() Create wrapper struciure. We alsg'use this api io install applicaiion’s port.
wr_ins _nsw) Install north-side wrapper

wr_ing_ssw() Ingtall south-gide wrapper

wir_uning_nsw() Uninstall norih-gide wrapper

wr_unins_sswi( Uningtall south-gide wrapper

Table 3 Application-Specific Hook APIs

Application-Specific Hook APls

Funectlon name Usage

as_remove_request() Remove some data commands that are completed suecessiully.
as_reomove_response() | Remove some response length of successful completed daia commands.
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Table 4 Client-Side APIs

Client-Side South Side Wrapper APls

Function name

Usage

cs_meo syni) Whean a server raceives syn. packel, S8W will initial some values af log buifer through this
function.

cs _mec ack() Yhen a server receives ack. packet SSW will record ack seg. and packet payload during
normal operation. Moreover, SSW wil medify packet during recovery.

cs _rec_finf When a server receives fin packet, 38W will prepare to elese a connectian through this
funetion.

cs rec rst) When a server receives ret packet, S8W will close this cannection through thie funetion.

cs_snd_ack() Y¥hen a server sends ack packet, S8W will record ack seg during nommeal operation. And,

SSW will madify packet during recovery.

cs_snd_saaf)

Yhen a sener receives syn and ack packet in recovery state, S5YW will calkeulate deita
number during recovery.

cs snd fin{) When a server sends fin packet, SSW will prepare to clese a cannection through this
functien.
cs_snd_rstl When a server receives ral packet, S8W will clese this connection through this function.

Client-Side North Side Wrapper APls

Function name

Usage

cn_read request()

When a service reads the request, NS¥V will recard the retumed value during nommal
operation. Moreover, NSW will provide fake requeet during recovery.

en_wfite_Fresponsef)

Whan a sefrice wiites the request; NSW will bypass during nammal operation. And, NSW

will intereapt respanss that had sent during recovery.

Applying such optimization_ on FET-TCP requires digging into the FT-TCP code and
modifying it. Moreover, such optimization-may.only be suitable for a special class of services,
such as FTP and HTTP1.1. Therefore, in order to reduce the effort of the developers, we
decompose FT-TCP into several basic operations and export a function for each operation.
Thus, when implementing a fault tolerant service, the developers can invoke the operations
provided by FT-TCP according to their needs. Table 2, Table 3, and Table 4 show the exported
functions. The functions that correspond to the original FT-TCP implementation can be
divided into two categories. The first category is Wrapper Registration APIs, by which
designers can install wrapper function. The second category is Client-side South-side Wrapper
(CSW) API and Client-side North-side Wrapper (CNW) API, by which designers can log and
recover TCP state, and record interactions between TCP and service application so as to

recover the service state respectively. We added the third category (i.e., Application-Specific
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API), which is add-on functionality for some Internet services. For example, we implemented
a function as_remove_request() for fault tolerant FTP developers to remove requests that are
not needed to be replayed during the fault recovery period.

At the last of this section, we describe how to use the API to implement a fault tolerant
FTP system. First, the developers should register handlers that will be invoked when a packet
reaches the NSW or the SSW (i.e., wr_ins_nsw() and wr_ins_ssw()). Then, they should
invoke the API shown in Table2. For example, if a SYN packet is received, they can invoke
the cs_rec_syn() to log the packet. Finally, the FTP developers should record how many data
connection commands the server has received such as PASV, LIST, RETR, and remove the
commands that correspond to a transmission-completed file. After transmitting a file, the FTP
server will send a 226 command to the client, and hence the FTP developers can call

as_remove_request() to remove the.data connection.commands accordingly.

5.2 HTTP Proxy

F 3

client relay server end server

Figure 14 Relay Server

As shown in Figure 14, some Internet servers such as proxies and email servers act as
both clients and servers, which are called relay servers. The others servers only play the
server role, which are called end servers.

FT-TCP can recover a system in a client transparent way. However, the recovery can not
be done in a server transparent way. Therefore, it is not suitable for relay servers. Specifically,
applying FT-TCP on relay servers would cause the server to establish a number of new

connections with the end servers once the service on the relay server crashes. This results in
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long recovery time and may cause data inconsistency for dynamic-object requests or
transaction based connections. Therefore, we extend the FT-TCP implementation to achieve
server transparency and avoid such connection establishment. A fault tolerant relay service

can use the API shown in Table 3 to achieve sever-side transparency.

Table 5 Server Side APIs

Eerver-Side South Side Wrapper APls

Function name Usage

s5_snd_syn() When a safver sands syn. packat, SSW will initial somes values of log buffer through this
funetion.

gg_snd_ackf) Whean a server sends ack. packet, SSW will record ack seq during nermal eperation. And,
SEW will medify packet during recevery.

gg_snd_finf Whan a server sends fin packest, S8V will prepare (o close a cannection through this
funchian.

gs_gnd_rst) When a serer sends st packet, SSW will close a conneection through this function.

ss_rec_ackf) When a sefver receives ack packet, SSW will will record ack seg. and packet payload
during normal oparation. Morecvar, BSW will modify packet during recovary.

g% _rec_saal) Whan a servarmeceives gyn and ack packet in recovery state during recavery, SSW will
calculate delta numbker.

g8_rec_fing When a server recaves fin packel, SSW will prepare lo close a connection through this
funchion.

ss_rec_rstf] When a sener receives fin packet, S5W will close a eonneetion through this function.

Server-Side North Side Wrapper AP|s

Funetion name Usage

=n_read respanse() When a service reads the response, NSYWY will record the retumed value during nammal
eperation. Moreover, NSW will provide fake data during recovery.

an_wiite_request() Whan a service writes the requast, NSW will bypass during normal operation. And, NSW

will intercept request that had eent during recovery,

This API is a counterpart to the client side APl As shown in the Table 5, the API can be
divided into two categories. The first is Server-side South-side Wrapper (SSW) API, by which
developers can log and recover TCP state. The second is Server-Side North-side Wrapper
(SNW) API, by which developers can record interactions between TCP and the service

application so as to recover the service state. They are similar to functionality of FT-TCP.
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CHAPTER 6
PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness and efficiency of our framework. We
implemented a fault tolerant proxy (i.e., ft_proxy) and a fault tolerant FTP server (i.e., ft_ftp)
based on our framework, and we measure their performance with or without the presence of

faults.

6.1 Experimental Environment

Tahle 6 Experimental Environment

client ET machine end server
Hardware P4 1.6.GHz, P4:2.0 GHz, P4 2.0 GHz,
256MB memary | 1GB memory 256MB memeory
VMM /A Xen'1.2 N/A
Qs Linux 2.4.18 xenolinux 2.4.26 Linux 2.4.18
Guest os N/A control domain-64MB N/A

Primary domain- 256MB
Backup domain-Z256MB

software WebStone 2.5, | Squid-2.5.STABLE4, Apache 2.0.40
dkftpbench 0.45 | Proftpd-1.2.8
woet

As shown in Table 6, we run the experiments by using three machines, one for clients,
one for the fault tolerant system (i.e., the FT machine) and the other for the end server, which
are connected via 100MbpsFast Ethernet links. The client machine runs Linux kernel 2.4.18
and benchmark applications such as Webstone version 2.5, dkftpbench 0.45 and wget. The
end server machine runs Linux kernel 2.4.18 and an Apache server, version 2.0.40. The FT

machine runs Xen 1.2 as the virtual machine monitor, xenolinux 2.4.26 as the guest operating
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system, and Squid-2.5.STABLE4 and a Proftpd-1.2.8 as the applications. Our proxy server is
an Intel Pentium 4 2.0 GHz PC with 1GB of memory, while both the web server and the client
run on Pentium 4 2.0 GHz PC with 256MB of memory and Pentium 4 1.6 GHz PC with
256MB of memory respectively. We give 64MB, 256MB and 256MB of memory for control

domain, primary domain and backup domain respectively.

6.2 Overhead

6.2.1 FT-TCP Overhead

1200 r 1063
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0.00 ' |

ORIG FT-TCP

Figure 15 Performance of FT-TCP

In order to prove FT-TCP architecture is not suitable in VMM, we implement a FT-TCP
architecture in Squid. We use two domains in Xen, one runs as primary server and another rus
as backup server. The primary will send log data to backup server. We download a 5MB file
twenty times by wget in original squid and squid which used FT-TCP architecture. As shown
in Figure 15, the y-axis represents throughput, which is the mean of tests of twenty times. We

can find that squid which used FT-TCP architecture results in 49% overhead degradation.
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6.2.2 Squid Performance Overhead
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Figure 17 Performance of Squid (Connection Throughput)
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Figure 18 Performance of Squid (Response Time)

We use the standard workload of WebStone benchmark version 2.5 to measure the
impact of states logging on Squid performance:The benchmark simulates that many clients
connect simultaneously and make requests.to-a web server within a defined time. Webstone
could analyze the average connection rate, average connection throughput and average
response time from the simulated clients. We set the increased client numbers at the WebStone.
Each client number runs five minutes to test overhead of our framework.

Figure 16, Figure 17 and Figure 18 show the performance comparison between the
original squid and squid used our framework. The x-axis represents the number of clients
simulated by WebStone. Each client establishes a large number of connections with the server
during the experiment. The y-axis indicates the server connection rate, connection throughput
and response time respectively. The dark bars present the performance of Squid running on
the normal operating system and the light bars present the performance of Squid running on
our framework. From the figure we can see that, using our framework results in little

throughput degradation that ranges 1% to 4%. This shows that our framework is quite
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efficient.

6.2.2 Proftpd Performance Overhead

8l6 80.7

20 |

BCOrES

40 ——

30 ——

20 |

orig_fip t_fip

Figure 19 Performance of Proftpd (Connection Throughput)

In addition to the performance overhead of Squid, we also measure performance
overhead of Proftpd. We use dkftpbench 0.45 to measure the impact of Proftpd running on our
framework. This benchmark is run repeatedly with different numbers of simulated users to
determine the maximum number that can be supported. We define a minimum quality of
service that simulated users must receive 100KB/s. If the simulated users reach the throughput,
ftp server get one score. The dkftpbench would show total score by aggregating clients whose
bandwidth excess 100KB/s. We compute an average total score through running 10 times.
Figure 19 show the score comparison between the original proftpd and proftpd used our
framework. The y-axis indicates the scores reported by dkftpbench. From the figure we can

see that using our framework results in about 1.12% throughput degradation.

33



6.3 Recovery Time

6.3.1 Squid Recovery Time
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Figure 20 Fault Occurs When the First 10KB of Data is Sent.
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Figure 21 Fault Occurs When the First Half of Data is Sent

In this section, we measure the performance of Squid which experience failure and
recovery. The client requests one file from the server machine through the proxy in each run.
Squid process is being terminated intentionally when the client receives the first 10KB of data

and the first halt of data in each run. The transmission time is measured in Fast Ethernet
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environment. Figure 20 and Figure 21 show transmission time which the fault occurs when
the first L0KB of data and the first halt of data is sent respectively. The x-axis stands for file
size which is sent to the client from the server and the y-axis indicates the transmission time.
These three lines mean the transmission time sending the different file size in the different
conditions. The blue line represents the no fault condition. The red line represents that a fault
occurs when sending a file and recover the service in the different domain. The green line
represents that a fault occurs and recover the service in the same domain. According to the
result, the recovery latency is about 250ms and 600 ms in the green line and the red line
respective. We can know that recovery in the different domain is more efficient. The reason is
that recovery in the same domain must wait squid to restart. It takes about 300ms. Therefore,
when transient fault or software aging problem occurs, we should recover service in the

different domain rather than in the same domain for.performance consideration.

6.3.2 Proftpd Recovery Time
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Figure 22 Relation between Number of Connections and Recovery Time
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Figure 22 shows the relation between number of connections need to recover and the
total recovery time. Each client connection send six control command requests (include USER,
PASS, SYST, PWD, TYPE I, and CWD) and two data command requests (include PASV and
RETR) to request a 20MB file. We inject a fault when the last data connection sent the first

1MB file. Obviously, recovering 70 connections only takes 3.79 sec. The recovery latency is

acceptable.
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CHAPTER 7
CONCLUSION

In this thesis, we propose a framework that achieves the goal of zero-loss Internet service
recovery and upgrade. We make Internet services become fault tolerant in a single node. Our
framework can detect the faults and recover the faulty Internet service automatically. It can
also reach online maintenance when the Internet service is running in a single node. In
addition, we provide some techniques and APIs to enhance FT-TCP which can reduce
recovery time in some Internet services. Our framework is divided into two parts - OS layer
Zero-loss Framework(OZS) and VMM Zero-loss Framework(VZS). They provide some
functionalities to reach our goal. They implemented in the kernel and VMM layer. The
experimental results show the low,overhead in.the state logging and acceptable performance

during the recovery.
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