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Application of Linear Regression to Effective Potential of Double-Gate and
Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistors

student : Ching-Lan Chang Advisors : Dr. Yow-Jen Jou
Dr. Yiming Li

Department of Institute of Statistics
National Chiao Tung University

ABSTRACT

Within the next decade or so, it is expected that gate lengths will shrink to 45 nm or less
in devices found in integrated circuits. Quantum effects are known to occur in the channel
region of MOSFET devices, in which the carriers are confined in a triangular potential well
at the semiconductor-oxide interface. How might we expect quantum mechanics to arise in
the transport through these small devices?

Typically, these effects are quantified by a simultaneous solution of the Schrédinger and
Poisson equations, which can be a very time consuming procedure if it needs to be
incorporated in realistic device simulations. Besides, different methods are proposed to
include quantization effects in simulation of carrier transport in nanoscale devices. For
instance, Hansch, MIDA, Van Dort, Density Gradient model ... etc. Among these approaches,
Density Gradient method are used generally. However, the quantum potential is defined in
terms of the second derivative of the square root of local density. Such and approach is
highly sensitive to noise in the determination of the local carrier density. Recently, Ferry
propose an efficient method, effective potential, to include quantum effects. This approach
avoids complex computation. Later, an more complicated effective potential is develop, but it
is not included in our discussion.

vii



Effective potential method is quite convenient to calculate. However, one variable,
standard deviation of wave packet, in the model influence the results quite significantly.
Unfortunately, value of this parameter is not known exactly. How to determine the value is
an interesting problem.

In this thesis, we do some simulations with various conditions to calibrate value of the
variable by Schrddinger equation. And try to establish a model of standard deviation of wave
packet by using statistical methods. First, we draw the scattering plots and find that
correlations between outer conditions and value of standard deviation of wave packet are
simple. So we just establish a second order multiple linear model. We get results which are
satisfied through power transformation. The model is established corresponding to
double-gate and silicon-on-insulator (SOI) MOSFET structures. Though the model is not
suitable for any structure, conditions of devices. This method can be expanded to establish
other models more generally.
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Chapter 1

| ntroduction

1.1 Background

Study of advanced nanoscience and nanotechnology has recently been of great interest, in
particular nanoscale semiconductor structures and devices [1][2]. In order to obtain high
chip density, low power dissipation, and high speed for devices [3], the reduction of the
gate oxide thickness (to around 1 nm) is necessary [4]. The ultra-thin oxide leadsto avery
large electric field at the SIO,/Si interface. Thisresultsin anarrow and deep potential well
at the semiconductor-insulator interface. According to quantum-mechanics (QM), elec-
trons are now confined in such a potential well and then quantized to many discrete energy

levels consequently force the motion of the electron in the direction perpendicular to the
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silicon-insulator interface [5][6]. Since the quantum effect becomes noticeablein the deep-
submicron devices and a mere classical description of the physics is not sufficient for an
accurate calculation of the inversion-layer charge, in order to understand the characteristics
of ananoscale device, it isimportant to take quantum mechanical effectsinto account.

In principle, the Schrodinger-Poisson (SP) equations are the most accurate way to handle
the problem of the inversion-layer charge density, but it is not suitable for engineering ap-
plications especially for the two- and three-dimensional cases. This is not only because
it is computationally expensive but also because it is difficult to generalize to the multi-
dimensional case (e.g. how to deal with the boundary condition in the 3-D case). Thusitis
important to find amethod which can produce aresult similar to the quantum mechanically
calculated one but requires only about the same computation cost as that of the classical
calculation. Over the last two decades, various quantum mechanical correction methods
are proposed. Among these approaches, the effective potential has the easiest numerical
computation, but is too sensitive to the fitted parameter. The value usually used is 5 A.ls

the value exact? It is suspect. So determination of this parameter is an important issue.
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1.2 Motivation

There are several approaches have been proposed to replace solving Schrodinger equation
to include the quantum effects. And accuracy is highly believable. However, computa-
tion of algorism is also time-consuming. The effective potential Ferry proposed has been
advanced which has the advantages of easy numerical implementation and amost guar-
anteed convergence. And this approach are widely used and compared with other models
[7][8][9][10]. We calibrate effective potential method by the results from SP equations
to determine the suitable standard deviation of the wave packet, a parameter in the ef-
fective potential formula. Value of the variable people usually use is 0.5 nm. However,
result from effective potential approach is quite sensitive to the parameter. Different ap-
plied voltage, thickness of oxide, doping and other conditions will cause different values
of the parameter. In order to choose better value of this parameter in simulation with
various conditions. The objective of this thesis is to model the correlation between the
parameter and other conditions of devices. In this thesis, we try to use statistica method
to analysis the model of double-gate and SOI (Silicon-on-Insulator) MOSFETs (Metal-
Oxide-Semiconductor Field-Effect Transistor). And these statistical approaches may be

extended to more general structures or devices with other conditions.
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1.3 Outline

Thereare six chaptersin thisthesis. In Chapter 2, classical drift-diffusion model and classi-
cal quantum mechanical transport model-SP will be introduced. Chapter 3 presents Ferry’s
effective potential, including its merit, shortcomings, and comparison between SP equa-
tions and Ferry’s effective potential. Chapter 4 will present some statistical methods used
in our analyzing. In the chapter 5, we will show the results and some discussion according
to statistical analyzing results. Finally, we draw some conclusions and suggest the future

works in Chapter 6.



Chapter 2

Classical and Quantum M echanical

Transport Models

nthelast years, different techniques have been proposed to include quantization effects
I in simulation in nanoscale devices. In this chapter, we will present the classical trans-
port (drift-diffusion model) and quantum mechanical model - Schrodinger-Poisson equa-
tions. We simulate these models by software [I1SE]. We will show the simulation procedure

for these models. Besides, the command used in ISE is shown in appendix B.
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2.1 Double-Gate and Silicon-On-Insulator Metal-Oxide-

Semiconductor Field-Effect Transistors

Figure 2.1 and 2.2 show 3D and 2D schematic diagrams of double-gate MOSFET. Our sim-
ulation focuses on this structure. Figure 2.3 shows the energy band profile for adouble-gate
MOSFET. From Fig. 2.3, we can find there are potential wellsin the direction perpendicu-
lar to the SIO,/Si interface (Regionl). Therefore, quantum effects are often considered in
the direction which is confined [16]. In our simulation, we solve 2D Poisson equation and
2D electron current continuity equation [17]. All quantum mechanisms are considered in
one-dimension (1D) along z direction. So, 1D Schrodinger equation is considered (in the
direction z) [42][18]. Also, effective potential method presented in Chapter 3 is corrected
in one-dimension.

For double-gate MOSFETS, if one of gateisincreased thick enough and gates voltage equal
to 0, then we can treat it as SOI (Fig. 2.4). Because of the thick oxide, there will be only

one potential well.



2.1 : Double-Gate and Silicon-On-Insulator M etal-Oxide-Semiconductor Field-Effect

Transistors

source

e 3

Figure 2.1: 3D double-gate schematic diagram. Scalesin our
simulation are following: thickness of oxide: 1 nm ~ 2 nm;
channel length: 20 nm ~ 50 nm; thickness of film: about
0.5*channel length; doping of source and drain: 1€20/ cm?;
doping of film: 1e16 ~ 5e17 / cm®.
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Ry O

Figure 2.2: 2D double-gate schematic diagram. In our research, we
consider 2D model except quantum correction. And
quantum correction will be consider in x direction for each

Y.



2.1 : Double-Gate and Silicon-On-Insulator M etal-Oxide-Semiconductor Field-Effect

Transistors

source

—mmmmmmmmm——————p X

Figure 2.3: A energy band profile for the double-gate MOSFET in x
direction. When voltage is applied on gate, there will be
potential well (Region 1) if the oxide is thin enough. And
then there will be quantum mechanism. E;;,,, isthe energy
level corresponding to the classical regime.
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Figure 2.4: 3D SOI schematic diagram. If we let one oxidein
double-gate MOSFET isthick enough, then it will become
SOI structure. In thisthesis, we set one of thickness of
oxideisequal to 200 nm. And whose gate voltage is equal
to 0 V. Other conditions are the same asFig. 2.1.
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2.2 Classical Drift-Diffusion Model

Essentidly, the continuity equations and the Poisson equation have to be satisfied when we

consider a device with nonequilibrium applied voltage

AV="L_-L4p _piD), 2.1)
Es  Eg

on 1

Y. — 2.2

G =Vt (Go = By, 22)

op 1

E - —5VJp+<Gp—Rp)

Eg. 2.1 is the Poisson equation, where V' is potential, p is space charge density, ¢, is
permittivity of silicon, n is electron density, p is hole density, and D is doping. Eqg. 2.2
are continuity equations for electron and hole. Where J is current density, G and R are the
generation term and recombination term, respectively [13].

In Poisson equation, Consider the Boltzmann relation. At thermal equilibrium the relation

isgiven by
Y O ek 2 N (el )]
n=n; - exp( T ) =n; - exp| T ], (2.3
s eap(Z By 40— V)
p=ni-eap(ZE) = - eap( 10,

where ¢ isthe potential corresponding to the Fermi level. When the voltage is applied, the

relation becomes

(24)
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where ¢,, and ¢, arethe quasi-Fermi levelsfor electrons and holes, respectively[12]. There-

fore, Poisson equation becomes afunction of potential and quasi Fermi-levels.

In continuity equations, assume (G,, — R,,) = (G, — R,,) = 0 to simplify the equations. At

the stable state, EQ. 2.2 becomes,

where

Jn = —quanVV +qD,Vn,

Jp = —quppVV — qD,Vp.

w is mobility, D,, and D,, are diffusion coefficient for electron and hole.

(2.5)

(2.6)

Thus, we can get the potential, ¢,,, and ¢, self-consistent by solving Eq. 2.1 and Eq.

2.5 repeatedly [12] [13] until the results are convergent [14][15]. The flow is shown as

Fig. 2.5. Potential solved from these equations is classical, without considering any other

mechanism.
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13

Initial guesses of
potential and imref

}

Poisson equation

v

(imref fixed, get new potential)

}

Continuity equation

(potential fixed, get new imref)

!

no

Convergent

Result

Figure 2.5: Flow chart of Poisson and Continuity equationsin ISE
(imref : quasi Fermi-levels). Here, potential and imref are
unknown. First, we have initial guesses of both. Then we
solve Poisson equation by given imref, and solve continuity
equation by given potential. The agorithm will be
terminated until potential and imref are convergent.
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2.3 Quantum M echanical Model

Asthe size of devices decreasing, quantum effects are included in simulation. In principle,
the Schrodinger Equation have to be considered to describe the quantum effects. However,
it is not efficient to solve Schrodinger Equation.

Conventionally, we consider the Schrodinger Equation to include the quantum effects.
Following is 1-D Schrodinger Equation,

*

2m

(£ —V(x))y(x) =0, (2.7)
where ¢ isthe wave function, m* isthe effective mass, 7 isthe Planck’s constant, £ istotal

energy, and V' is potential. We can rewrite Eq. 2.7 as

h? 0?
Com* . @

[ + V(2)[p(x) = Ey(x). (2.8)

From Eg. 2.8, we can know that the Schrodinger equation is an eigenvalue problem
[29]. For given potential, we can get the subbands and wave function. Therefore, we
can get charge density from subbands and wave function. Charge density calculated from
Schrodinger equation includes quantum effects.

Based on the model described above, the charge density in the silicon layer is given by

p=—qn—p+D).
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For the p-type substrate, the hole density p is calculated by the Boltzmann approximation

as before,

whereas the electron density n, contained in the subbands which are lower then E;;,,, and

is given by [19][20][21][22][23][24]:

Ehm)nw (29)
k

where E - isthe electron quasi-Fermi level, g, isthe degeneracy factor of the kthvalley, v,
isthewave function of the jthlevel inthe kth valley and m ;, isthe parallel effectivemassin
the kth valley. For (100) silicon, there is atwo-fold degenerate pair of valleys with alarger
effective mass (along the transverse direction), m* = 0.916m,which comprises the lowest
subband. The four-fold degenerate valleys have a lighter effective mass m* = 0.190my,
and lie higher in the subband ladder. E;,, isthe energy level corresponding to the classical
regime. Treating the density of states classically above the energy level Ej;,,, limits the
j and k values in the summation such E;, < Ej;, in the polycryatalline layer, classical
treatment is usually assumed.

Under quantum effects, We get new charge density from Schrodinger equation. However,
potential will change simultaneously. In order to get potential under quantum effects, we

have to solve Poisson equation by using new charge density. Because potential and charge
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density influence each other. So, we have to solve Poisson and Schrodinger equations
repeatedly until convergent. Flow chart is shown as Fig. 2.6. Fig. 2.7, and Fig. 2.8 show

the comparison of potential and carrier density between classical results and Schrodinger

eguation.
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Figure 2.6: Flow chart of SP Equation in I SE. Steps of Poisson
equation and continuity are the same as statement in Fig.
2.5. Here, we solve Schrodinger equation to correct carrier
density to include quantum effect.
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Potential (V)
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Figure 2.7: Solid lineis potential solved from classical transport, dash

lineis potential solved by SP equations. Potential after
quantum corrected is mush higher than classical. We only
show half curves because of symmetry of double-gate
MOSFET. tox =1 nm,Vd=Vg=0.6V,ts =10nm, Lg =
20 nm, N = 1e22 / m?.
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Figure 2.8: Solid lineis electron density derived from classical

transport; dash lineis electron density derived from SP
equations. The serious change nearby the SiO,/Si interface
arises from quantum effect. We only show half curves
because of symmetry of double-gate MOSFET. tox = 1 nm,
Vd=Vg=0.6V,ts =10nm, Lg=20nm, N = 1e22/ m3.



Chapter 3

Effective Potential

In an effective potential approach, one replaces the quantum distribution function by a
classical distribution function with amodified potential. Thus, all the quantum effectsin the
system are modelled solely through the forces acting on the electron. Effective potentials
are derived from a quantum mechanical description, either directly from the Schrodinger

Equation or from a quantum kinetic transport equation for the Wigner function.

20
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3.1 Fundamental of the Effective Potential

The idea of quantum potential is quite old and originates from the hydrodynamic formula-
tion of quantum mechanics, first introduced by de Broglie and Madelung, and later devel-

oped by Bohm. one begins with the one particle Schrodinger Equation, of the form

U
ma = —(%)v% + V(z), (3.1)

The wave function is written in complex form in terms of its amplitude R(r, t) and phase
S(r,t) as
U(r,t) = R(r,t)expliS(r,t)/h]. (3.2)

When substituted back into the Schrodinger Equation, one arrives at the following coupled

eguations of motion for the density and phase

OR(r,t) 1

5 = g R t)V2S(r,t) + 2V R(r,t) - VS(r,1)], (3.3)
aS(r,t)  [V(rt)? R* V2R(rt)
o~ o VO Ry ) >

It is convenient to write p(r,t) = R(r,t)?, where p(r,t) is the probability density. One

then obtains
p(r,t) 1 B
5 + V- (p(r, t)mVS(r, t)) =0, (3.5)
aS(r,t) i

[VS(r, )] +V(r,t) + Q(p,r,1). (3.6)

ot 2m
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In the classical limit the above equations are subject to a very simple interpretation. The
function S(r,t) is a solution of the Hamiltonian-Jacobi equation. If we consider an en-
semble of particle trajectories which are solutions of the equations of motion, then from a
well-known theorem of mechanics which states that if all of these trgjectories are normal
to any given surface of constant S, then they are normal to all surfaces of constant S, and

VS(r,t)/m equalsthe velocity vector, v. Therefore, Eg. 3.5 can be rewritten as

Op(r,1) _
5 + V- [p(r,t)v] = 0. (3.7)

Since p(r, t) isthe probability density, pv isthe mean current of particlesin the ensemble,
and Eq. 3.7 simply expresses conservation of probability or of particles in the ensem-
ble (continuity equation). Also note that Eg. 3.5, 3.6 arising from this so -called Madelung
transformation to the Schrodinger Equation, have theform of classical hydrodynamic equa-
tions with the addition of an extra potential, often referred to as the quantum or Bohm
potential, written as

h2

Q= V’R ~

R 9yn
- (3.8)

2my/n 022

where the density n isrelated to the probability density asn(r,t) = Np(r,t) = NR(r,t)?,
N being the total number number of particlesin the ensemble. The Bohm potential essen-
tially represents a field through which the particle interacts with itself. Once we know the
field functions, one can calculate the force, os that, if one knows the initial position and

momentum of the particle, one can calculate its entire trgjectory. This effective potential
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approach has been used, for example, in the study of wave packet tunnelling through [35],
where the effect of the quantum potential is shown to lower or smoothen barriers and hence
allows for the particlesto leak through.

An dternative form of the quantum potential was proposed by lafrate, Grubin and Ferry
[30], who derived a form of the quantum potential based on moments of the Wigner-
Boltamann equation.the kinetic equation describing the time evolution of the Wigner dis-
tribution function [31]. Their form for the quantum potential, based on moments of the
Wigner distribution function in a pure state, and involving an expansion of order O(7?), is

given by

Vo = —8—A(ln n), (3.9)

m

and isreferred to asthe Wigner potential, or asthe density gradient correction. Thisform of
the Wigner potentia is better thought of asaquantum pressure term, which worksto modify
the actual potential to allow charge penetration into the classically forbidden regions.

Ferry and Zhou derived aform for a smooth quantum potential [36], based on the effective
classical partition function of Feynman and Kleinert [28], by linearizing an equation for
the equilibrium density matrix. The Feynman-Kleinert effective partition function involves

a smoothed potential of the form

Valo) = [ 2ern(-C ), 310)
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where V is the classical potentia energy, a® o« 8h?/m, 3 = 1/T isthe inverse tempera-
ture, and m is the particle mass. The Ferry-Zhou effective stress represents the difference
between the smoothed and the local quantum potential #2V2n/8mn + V, where n is the
particle density. Their smoothing functionisof theform exp(—(x —vy)?/2a?)/|x —y|. Note

that the off-diagonal entriesin the stress tensor are neglected in [36].

3.2 Ferry’sEffective Potential Approach

In analogy to the smoothed potential representations discussed above for the quantum hy-
drodynamic models, it is desirable to define a smooth quantum potential for usein quantum
particle-based simulations. Ferry [33] has suggested an effective potential that emerges
from the wave packet description of particle motion, where the extent of the wave packet
spread is obtained from the range of wavevectors in the thermal-distribution function. This
form for the effective potential allows oneto build in certain quantum effects that primarily
arise from the non-zero size of the electron wave packet. One arrives at the final result by

noting that the potential, in an inhomogeneous system enters the Hamiltonian as [33]

H, = /V(r)n(r)dr (3.11)
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Using the non-local form(wave packet description) for the charge leads to

v [ave DME (312)
/drV Z/dr exp(— |T_r/|2
—Z/dr&r—n /drV( ") exp(— I =

)o(r' —1:)

/’2

)

where the summation over i is a summation over the carriers themselves. The term in the
primed integration is now the effective potential, V. s, and the finite size of the electron has
been replaced by smoothing of thereal potential. In essence, the effective potential, V., is
related to the potential obtained from the Poisson equation, through an integral smoothing

relation
Vers(z) = / V(z +y)G(y,ao)dy (3.13)

where G is a Gaussian with the standard deviation ay. In two dimensions, the formula

becomes,

Verr(z,y) = / / V(' yeap| - o) G- f/) Jde'dy’ (3.14)

2
2maza, 2a2 2a;

where V' is the actual potential, and a, , are the standard deviations of the Gaussian wave
packet [34][35][36]. The flow of computing the effective potential is shown as below.
However, V., is quite sensitive to the standard deviation of the wave packet. Fig. 3.2

shows potential derived from Ferry’s effective potential with various standard deviation
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of wave packet. Fig. 3.3 shows carrier density derived from Ferry’s effective potential.
From these two figures, we can find that the influence of « is quite significant. So, the
determination of its value is an important issue. We calibrate Ferry’s effective potential by
Schrodinger equation to determine the value of a. Fig. 3.4 shows the comparison between
SP equations and Ferry’s effective potential with five various values of a. Results from
these two methods are closest when a = 5 under following condition: thickness of oxide
= 20 nm, channel length = 40 nm, thickness of bulk = 24 nm, gate voltage = 0.9 V, and
doping concentration = 5e+23 / m3. Unfortunately, the results are not close anymore when
we change the gate voltage from 0.9 V to 1.0 V and keep a = 5. See Fig. 3.5.

In terms of computation, Ferry’s effective potential is a good approach, but not in terms of

sensitivity.
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Figure 3.1: Flow chart of Ferry’s effective potential. Ferry’s effective
potential formula don’t need to solved in the loop. It just
correct the potential which is convergent at last. Algorithm
in the loop we simulate by ISE, and calculate Ferry’s
effective by using our own code.
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Potential (V)
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Figure 3.2: Ferry’s effective potential of double-gate MOSFET in the

direction normal to the semiconductor/oxide interface with
various standard deviation of wave packet, a(A). We only
show half curves because of symmetry. Potential shift down
asaisincreasing. tox=1nm,Vd=Vg=0.6V, ts =10
nm, Lg=20nm, N = 1e22/ m3.
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Figure 3.3: Electron density from Ferry’s effective potential of

double-gate MOSFET in the direction normal to the
semiconductor/oxide interface with various standard
deviation of wave packet, a(,&). We only show half curves
because of symmetry. Carrier density shift down asa is
increasing. tox =1nm,Vd=Vg=0.6V,ts =10nm, Lg =
20 nm, N = 1e22 / m?.
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Figure 3.4: Calibration of electron density of Ferry’s effective potential

by SP equations - I. We only show half curves because of
symmetry. (with tox = 1 nm, Lg = 40 nm, tsi = 24 nm,
Vg=09V, N =5e+23/m?). Weseta =3, 4,5,6,7Ato
solve carrier density by effective potential. Result isthe
most close to the result form SP equations when a = 5 A.
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TheLinear Regression

ost studies and experiments, scientific or industrial, large scale or small, produce
]'\/"[ data whose analysis is the ultimate object of the endeavor. Statistics is a pow-
erful tool. Regression analysis is a statistical technique for investigating and modelling
the relationship between variables. Applications of regression are numerous and occur in
almost every field. It isthe most important step in our analyzing. Besides regression analy-
gis, there are several statistical methods to assist usin model establishing and checking. In
this chapter, we will present statistical approaches will be used in our discussion. Follow-
ing, we will present scattering plot, multiple linear regression, residual analysis and power

transformation.

32
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4.1 Scattering Plot

Scattering Plot is an important tool in statistical analysis. We can approximately know how
the correlation between variables before doing further statistical analysis. For example,
Fig. 4.1 shows population of U.S.A. from 1790 to 1990. The graph suggest the possibility
of fitting a quadratic or exponential trend [37]. Of course, scattering plot is a important

basisin statistical analysis.

3e+8

3e+8

2e+8

2e+8

Population

1e+8

5e+7

0 1 1 1 1
0 5 10 15 20 25

Year (from 1790, unit: 10 years)

Figure 4.1: Population of the U.S.A at ten-year intervals, 1790-1990.
From figure, we find that population increasing as years
increasing. And it appears quadratic or exponential trend.
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4.2 MultipleLinear Regression

4.2.1 Model Expression

A regression model that involves more than on regressor variables is called a multiple
regresson model. Simple linear regression model is a special case of multiple linear re-
gression with only one regressor variables.

In general, the response y may be related to £ regressor or predictor variables. The model

y = PBo+ frxr + Baxa + -+ + Bray + €, (4.1)

is so-called a multiple linear regression mode! with & regressors. The parameters 3;,j =
0,1,..., karecalled theregression coefficients. Thismodel describesahyperplaneinthe k
dimensional space of the regressor variables x;. The parameter 3, represents the expected
changein the response y per unit changein x; when all of the remaining regressor variables
x;(1 # j) are held constant. For the reason the parameters 3;,7 = 0,1, ...k, are often
called partial regression coefficients.

Multiple linear regression models are often used as empirical models or approximating
functions. That is, thetruefunctional relationship betweeny and x1, x», . . ., x; iIsunknown,
but over certain ranges of the regressor variables the linear regression model is an adequate

approximation to the true unknown function [38].
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4.2.2 Estimation of The Model Parameters

The method of least squares can be used to estimate the regression coefficientsin Eq. 4.1.
Suppose that n > k observations are available, and let y; denote the ith observed response
and z;; denote the ;th observation or level of regressor z;. We assume that the error term ¢
inthemodel has E(¢) = 0, Var(e) = o2, and that the errors are uncorrelated. Furthermore,
we assume that the regressor variables zq, s, . . ., x), are fixed variables, measured without
error.

We may write the sample regression model corresponding to Eq. 4.1 as

Yi = Po+ Biza + Boxio + - + Bpar + & (4.2)
k
:60+Zﬁjxij+5i )
j=1
i=1,2... .k

The least-squares function is

S(Bos By -5 Br) 228? (4.3)

n k
= Z(yz — B — Zﬁjl’ij)z-
i j=1
The function .S must be minimized with respect to (3, 31, . . . Bx. The least-squares estima-

torsof Gy, B1, . . . B must satisfy

n

05 N
90 o = 72 > (i o= Baiy) =0 (4.4)
=1 j=1



36 Chapter 4 : The Linear Regression

and

a5 " A
@_ﬁj|ﬁoﬁl ----- B — —2 Z(yz — Po — Zﬁjxij)xij =0 |, (4.5)
=1 j=1

i=12... k.

Simplifying Eqg. 4.4 and Eg. 4.5, we obtain the | east-squares normal equations

nﬁo—l—ﬁ}Zx“—1—322%2—1—---—0—@2:6%:Zyi, (46)
=1 =1 =1 i=1

n n n n n

. . ) . .

Bo E i + B g x; + Bo E TaTio + -+ B g TiTik = E TiYi,
i=1 i=1 i=1 i=1 i=1

n n n n n

5 5 5 0 2

Bo E Tik + B E TikTin + Po E B o it T E Ty, = E TikYi-
i=1 i=1 1 i=1 i=1

Note that there are p = k£ + 1 norma equations, one for each of the unknown regres-
sion coefficients. The solution to the normal equations will be the least-squares estimators
Bo, B, - B

It is more convenient to deal with multiple regression models if they are expressed in ma-
trix notation. This allows avery compact display of the model, data. and results. In matrix

notation, the model given by Eq. 4.2is

y=XpB+e, (4.7)
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where

A1 1 2z 2 -+ ik
Y2 1 w91 o -+ x9
y: s X:

Yn 1 Tp1t Tp2 - Tk

and
ﬁo €1
51 €2

B = : €= : (4.8)
ﬁk? €n

In general, y isann x 1 vector of the observations, X isann x p matrix of the levels of the
regressor variables, 3 isap x 1 vector of the regression coefficients, and ¢ isann x 1 vector

of random errors. We wish to find the vector of least-squares estimators, /3, that minimizes

S(B) =) & =ce=(y—Xp)(y—Xp). (4.9)

%

Note that S(/3) may be expressed as

SB)=yy—-pXy—-yXs+FX'Xp (4.10)

=yy—20'X'y+ X' XB.
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since ' X'y isal x 1 matrix, or ascalar, and its transpose (5’ X'y)" = v’ X5 is the same

scalar. The least-squares estimators must satisfy

oS

2= 92Xy +2X' X5 =0 411

which simplifies to

X'X3=Xy. (4.12)

Eq. 4.12 are the least-squares normal equations. They are the matrix analogue of the scalar
presentation in Eq. 4.6.
To solve the normal equations, multiply both sides of Eq. 4.12 by theinverse of X’ X. Thus,

the least-squares estimator of 3 is
f=(X'X)"'X, (4.13)

provided that the inverse matrix (X’'X)~! exists. The (X’X)~! matrix will always exist
if the regressors are linearly independent, that is, if no column of the X matrix is alinear
combination of the other columns.

The fitted regression model corresponding to the levels of the regressor variables »’' =

1,21, 21,... 2] iS

>

(4.14)

<<
I
H\
@
I
o
+
(1~
£
S
<

<.
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—
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The difference between the observed value y; and the corresponding fitted value y; is the
residual

e = Yi — Y- (4.15)

We may develop and estimator of o from the residual sum of squares
SSEes Z(yz — )" = Z i =y'y— B'X’y. (4.16)
=1 =1

The residual sum of squares has n — p degrees of freedom associated with it since p para-

meters are estimated in the regression model. The residual mean squareis

Mgy = 2Res. (417)

n—p

the expected value of M Sg. iso?, so an unbiased estimator of o2 is given by

T, 4 (4.18)

4.2.3 HypothesisTestingin Multiple Linear Regression

The test for significance of regression is atest to determine if thereis alinear relationship
between the response y and any of the regressor variables x1, x,, . . ., z;. Thisprocedureis
often thought of asan overall or global test of model adequacy. The appropriate hypotheses

are
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H, :3; # 0, for at least one ;.

Rejection of this mull hypothesis implies that at least one of the regressors x4, xs, . . ., 7y
contributes significantly to the model.

The procedure is a generalization of the analysis of variance (ANOVA). The total sum of
squares S St is partitioned into a sum of sguares due to regression, SSy, and a residual

sum of squares, SSk.s. Thus

SSt = SSr + SSRes-

If the null hypothesis is true, then SSx/o? follows a x3 distribution, which has the same
number of degrees of freedom as number of regressor variables in the model. Besides,

SSpes/0% ~ x%_,_, and that SSr., and SSy are independent. By the definition of an F

statistic,
SSr/k MSr
Fy = = 4.19
O SSpes/(n—k—1)  MSges (4.19)
follows the F}, ,,_,— distribution. Therefore, to test the hypothesis Hy, : 5y = 51 = -+ =
Gr = 0, compute the test statistic £y and reject H, if
FO > Fa,k,n—k—l» (420)

where « is significant level. The test procedure is usually summarized in an ANOVA table
asfollow:

Once we have determined that at least one of the regressorsisimportant, alogical question
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Source of Variation Sum of Squares Degrees of Freedom Mean Square Fy

Regression SSk k MSp s
ReS|dU3| SSRes n— k - 1 MSRES
Totd SSt n—1

Table4.1: ANOVA table for significance of regression in multiple
regression. SSgr, SSres, and SSy are square error. From
Degrees of Freedom, we can know there are n cases and k
parameters have to be estimated. Value of Fj isthe criterion
to judge whether the model significant is.

becomes which one(s). Adding a variable to aregression model always causes the sum of
squares for regression to increase and the residual sum of squares to decrease. We must
decide whether the increase in the regression sum of squares is sufficient to warrant using
the additional regressor inthe model. The addition of aregressor also increasesthe variance
of thefitted value g, so we must be careful to include only regressors that are of real value
in explaining the response. Furthermore, adding an unimportant regressor may increase the
residual mean square, which may decrease the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient, such as

B;, are

HO:ﬁj:07

leﬁj#O.
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If Hy : B; = 0 isnot rejected, then this indicates that the regressor z; can be deleted from

the model. The test statistic for this hypothesisis

o= —te = L (4.21)

where C}; is the diagonal element of (X’X)~! corresponding to 3;. The null hypothesis
Hy : 3; = Oisrejected if |tg| > ta/2,,—k—1. Notethat thisisrealy a partial or marginal
test because the regression coefficient 3; depends on all of the other regressor variables
z;(1 # j) that arein the model. Thus, thisisatest of the contribution of x; given the other

regressors in the model.

4.2.4 Variable Selection in Regression Analysis

Because evaluating al possible regressions can be burdensome computationally, various
methods have been developed for evaluating only a small number of subset regression
models by either add or deleting regressors one at a time. These methods are generally
referred to as stepwise-type procedures. They can be classified into three broad categories.
(1) forward selection, (2) backward elimination, and (3) stepwise regression, which is a

popular combination of procedures 1 and 2.
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(a) Forward Selection

This procedure begins with the assumption that there are no regressors in the model other
than the intercept. An effort is made to find an optimal subset by inserting regressors
into the model one at a time. The first regressor selected for entry into the equation is
the one that has the largest simple correlation with the response variable . Suppose that
this regressor is z;. Thisis aso the regressor that will produce the largest value of the F’
statistic for testing significance of regression. This regressor is entered if the F' statistic
exceeds a preselected F' value, say Fy. The second regressor chosen for entry is the one
that now has the largest correlation with y after adjusting for the effect of the first regressor
entered (z;) on y. Werefer to these correlations as partia correlations. They arethe ssimple
correlations between the residuals from the regression y = BO + lel and the residuals
from the regressions of the other candidate regressors on z;, say #; = ap; + g1, =
2,3,..., k. Suppose that at step 2 the regressor with the highest partial correlation with y
iSx,. Thisimpliesthat the largest partial F-statisticis

F: SSR(ZE2|$1)
MSRes(xh x2) .

(4.22)

If this F' value exceeds F7y, then x5 is added to the model. In general, at each step the
regressor having the highest partial correlation with y is added to the model if its partial
F-statistic exceeds the preselected entry level F;y. The procedure terminates either when

the partial F-statistic at a particular step does not exceed F;n or when the last candidate
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regressor is added to the model.

(b) Backward Elimination

Backward elimination begins with amodel that includes all k£ a candidate regressors. Then
the partial F'-statistic is computed for each regressor asif it were the last variable to enter
the model. The smallest of these partial F'-statistics is compared with a preselected value,
Fouyr. If the smallest partial F' valueislessthan Fyy 1, that regressor is removed from the
model. Now aregression model with & — 1 regressorsisfit, the partial F-statistics for this
new model calculated, and the procedure repeated. The backward elimination algorithm

terminates when the smallest partia F' value is not less than the preselected cutoff value

Four.

(c) Stepwise Regression

The two procedure described above suggest a number of possible combinations. One of the
most popular is the stepwise regression algorithm. Stepwise regression is amodification of
forward selection in which at each step al regressors entered into the model previously are
reassessed via their partial F-statistics. A regressor added at and earlier step nay now be
redundant because of the rel ationships between it and regressors now in the equation. If the
partial F-statistic for avariableislessthan For, that variable is dropped from the model.

Stepwise regression require two cut off values, F;y and Foyr. Some analysis prefer to
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choose F;y = Four, dthough thisis not necessary. Frequently we choose F;y > Four,
making it relatively more difficult to add a regressor than to delete one.
Among the three selection procedures, stepwise selection is known to be the most effective

and is therefore recommended for general use [38][39].

4.3 Residual Analysis

Graphical analysis of residuals is a very effective way to investigate the adequacy of the
fit of a regression model and to check the underlying assumptions. In this section, we

introduce and illustrate the basic residual plots[41].

4.3.1 Normal Probability Plot

A very simple method of checking the normality assumption isto construct a normal prob-
ability plot of theresiduals. Thisisagraph designed so that the cumulative normal distribu-
tionwill plot asastraightline. Letep) < e < -+ < e}, betheresidualsranked inincreas-
ing order. If we plot e; against the cumulative probability P, = (i — %)/n, i=1,2,...,n,
on the normal probability plot, the resulting points should lie approximately on a straight
line. Substantial departures from a straight line indicate that the distribution is not normal.
Usually normal probability plots are constructed by plotting the ranked residual e|; against

the expected normal value ®*[(i— 1) /n], where & denotes the standard normal cumulative
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distribution. This follows from the fact that E(ej;) ~ ®*((i — 1) /n].

4.3.2 Plot of Residuals against the Fitted Values

A plot of the residuals e; versus the corresponding fitted values y; is useful for detecting
several common types of model inadequacies. If the scattering plot indicates that the resid-
uals can be contained in ahorizontal band, then there are no obvious model defects. Elseif
the plot has strange pattern , then we may try to transform the response variable to improve
the model. The outward-opening funnel pattern implies that the variance is and increasing
function of response value. A curved plot which is nonlinearity may mean that other re-
gressor variables are need in the model. Transformations on the regressor or the response

variable may also be helpful.
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4.4 Power Transformation

Generally, transformation are used for three purposes: (1) stabilizing the response variance,
(2) making the distribution of the response variable closer to the normal distribution, (3)
improving the fit of the model to the data.

We often find that the power family (Eq. 4.23) of transformation is very useful. Box
and Cox(1964) have shown how the transformation parameter A may be estimated simul-
taneously with the other model parameters. The theory underlying their method uses the
method of maximum likelihood.

)\71 .
y,\ ) )‘#Oa

fly) = (4.23)
o2 - ().

Notice that we cannot select a value of A\ by directly comparing the error sums of squares
from analysis of y after transformation, because for each value of \ the error sum of squares
is measured on a different scale.

In applying the Box-Cox method, we recommend using simple choices for A, because the
practical difference between A = 0.5 and A = 0.58 is likely to be small, but the square
root transformation is much easier to interpret. Fig. 4.2 shows that Likelihood achieves
maximum when A = —0.148 and 95% confidence interval. By the reason above, we prefer

choosing A = 0 [40].
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Figure 4.2: The Box-Cox likelihood plot. x axisisvalue of A\, and y
axisis likelihood function. Likelihood achieves maximum
when A = —0.148. The three vertical dot line indicate 95%
confidence interval. Plot by S-PLUS.



Chapter 5

Results and Discussion

In the chapter, the simulation results are shown and the statistical results are al so discussed.
First of al, the calibration of Ferry’s effective potential isintroduced. We use least square
error to determine value of standard deviation of wave packet. Second, range of variables
we simulation and some constraint of variables will be stated. There is collinearity phe-
nomenon because of these constraint. At last, results will be shown and we will discuss
according to the results, including double-gate and SOl MOSFET. And models will be

presented. We will also compare the statistical results with simulation results.

49
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5.1 Calibration of Ferry’s Effective Potential

Figure 5.1 shows the classical carrier density and carrier density corrected by SP equa-
tions. Fig. 5.2 shows carrier density from Ferry’s effective potential with various standard
deviation of wave packet. However, different values of a cause quite different results. We
calibrate the value by comparing with result from Schrodinger equation. We determine the

value of standard deviation of wave packet by achieving the criterion

Hlaiﬂ Xn:(nsm — Nppai)’ (5.1)
=1
wherengp; iscarrier density of mesh i from SP equations, ngp,, ; iscarrier density of mesh
1 from Ferry’s effective potential .
For every condition of device, we determine a value of a by above criterion. In simulation

procedure, we scan a from 0 to 20 with step 0.001, unit is A. Range of a we get isabout in

the range from four to twelve. The value generally used is5 A, and it is duri ng the interval.
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Figure5.1: Classical electron density and electron density corrected by
SP equations of double-gate MOSFET. And we treat result
from SP equations as reference includes quantum effect.
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Figure 5.2: Electron density corrected by Ferry’s effective potential

with various standard deviation of wave packet of
double-gate MOSFET. We will choose value of a such that
result is close to the result from SP equations.
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5.2 Data Collection by Using Device Simulation Tool

Here, we set several different conditions to find the suit values of standard deviation of
wave packet. Values of standard deviation of wave packet is the dependent variable. And
we consider following independent variables: 1. channel length (Lg), 2. gate voltage (Vg),
3. drain voltage (Vd) , 4. thickness of bulk (tsi), 5. thickness of oxide (tox) , 6. doping
concentration (N). Beside, every variable has limiting of range.

1. Channel length : 20, 30, 40, 50 (nm) [43]

2. Gate voltage: 0.6, 0.7,0.8, 0.9, 1.0, 1.1 (V)

3. Drain voltage : 0.6, 0.7, 0.8, 0.9 (V), if Vg=0.6

0.7,0.8,0.9, 1.0(V), if Vg = 0.7V

1.1,1.2,13,14(V),ifvg=11V
(ensure device isin the saturation region)
4. Thickness of bulk : 8, 10, 12 (nm), if Lg = 20 nm

12, 15, 18 (nm), if Lg = 30 nm

20, 25, 30 (nm), if Lg =50 nm
(only discuss devices whose ratio of Thickness of bulk over Channel length ~ 1/2

[44][45][46][47] proposesthat device whoseratio of Thickness of bulk over Channel length
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~ 1/2 has better characters.)

5. Thickness of oxide: 1, 1.5, 2 (nm)

6. Doping concentration : 1e16, 5e16, 1e17, 5el17 (/cm?)

Here, we only discuss symmetric double-gate MOSFET. Besides, we will set thickness of
one oxide is equal to 200 nm with gate voltage O V. And we will treat the latter be SOI

structure.

5.3 Modelling and Simulation Results

5.3.1 Modelling Double-Gate MOSFET

In this part, we only consider double-gate MOSFET. First, Table 5.1 shows the correla-
tion between every independent variables. Because of our design of experiments, we can
find that there is collinearity phenomenon among some variables. Figs. 5.3, 5.4, 5.5, 5.6,
5.7, 5.8 show the scattering plots : each independent variable against standard deviation
of wave packet. Obviously, we can find that there are not only linear correlations but also
guadratic correl ations between dependent variable and some independent variables. So, we
will add square terms into the model. Because there is collinearity phenomenon, effect of
some variables may be weakened so that variables are not significant. Besides, we also add

interaction terms to check whether there are interaction effects or not.
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All models we establish will be analyzed by stepwise method:
Independent variables: 1. Variables 1~ 6

2. Square terms of Variables 1~ 6

3. Second order interaction terms of Variables 1~ 6
Modél | Dependent variable : Standard deviation of wave packet
Residual analyses of model | are shown as Fig. 5.9 and Fig. 5.10. Clearly, we can know
model | isbad from Fig. 5.10.
We try to transform the dependent variable by power transformation. Fig. 5.11 is Likeli-
hood plot of power transformation. Likelihood achieves maximum when A = —0.148. By
the reason stated before, we prefer to set A = 0. So, wetry to take log of standard deviation
of wave packet.
Model 11 Dependent variable : In(Standard deviation of wave packet)
Figure 5.12 and Fig. 5.13 show the residual analyses of model 11. Obviously, model 11 is
not good, either.
1D quantum correction may be not enough for deviceswith ultra-short channel [48][49][50].Now,
we reduce data and retain data whose channel length longer than 20nm only. Then we get
model 111 and model 1V.
Model 111 Dependent variable : Standard deviation of wave packet

Mode IV Dependent variable : In(Standard deviation of wave packet)
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Residual analyses are shown from Fig. 5.14 to Fig. 5.17.

We find that results of model 1V is good from plots of residual analysis.

Lg Vg Vd ts tox N
Lg| 1]0.808| 0.67|0.881 0 0
Vg 1]0.827 | 0.712 0 0
Vvd 1| 0.607 | 0.016 | 0.022
ts 1 0 0
tox 1 0
N 1

Table 5.1: Correlation Table: pairwise correlation between every
variables. There may be collinearity phenomenon if thereis
high correlation between two variables.

Following are ANOVA table, residua statistics, coefficient table, and formula.

Source SS DF MS F, R?
Regression 9.729 9 1.081 21929.330 0.999
Residual 0.015 314 4.93e—5

Totdl 9.744 324

Table5.2: ANOVA table for significance of regression in multiple
regression in double-gate MOSFET. R? isalmost equa to 1,
so the model is good in terms of explanatory ability.
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Minimum | Maximum | Mean | Std. deviation
Predicted value 1.4146 2.1109 | 1.6934 0.17332
Residual -0.009687 | 0.009424 0 0.00436

Table 5.3: Residual statisticsin double-gate MOSFET: It shows points

have maximum and minimum. Absolute value of residual

are all less than 0.001.

Model Coefficients | Std. Error t
constant 4.297 0.016 | 261.890
Vg -3.372 0.033 | -100.897
tox? 0.196 0.002 93.732
\e 1.372 0.018 78.249
tox -0.339 0.008 | -42.779
Lg -0.02 0.0008 | -41.989
Lg? 0.00018 0.001 32.470
N -0.003 0.0006 | -20.360
Vg*tox -0.143 0.007 | -19.367
Lg*tox 0.0001 0.0002 4727
vd -0.005 0.003 -1.942
tsi 0.000018 0.0002 -2.41

Table 5.4: Coefficientstable in double-gate MOSFET: thefirst frameis
name of variable; second is the coefficient of variable; third
is standard deviation of coefficient; the last frame is value of

t distribution.

In(a) = 4.297 + (1.372Vg* — 3.372Vg) + (0.196tox* — 0.339t0x)

+ (0.00018Lg* — 0.02Lg) — 0.005Vd — 0.003N — 0.000018tsi

+ 0.0001Lg x tox — 0.143V g X tox,

(5.2)
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where unit of N islel7/cm?.

After generating formula, we have to check whether the model is reasonable. From scat-
tering plots, we can find that response variabl e appears monotone decreasing or increasing.
On the other hand, our model is a second order formula. If maximum or minimum occur
during the interval we simulate, then the results are suspect. In our model, there are three
second order terms, Vg, tox, and Lg. Maximum or minimum occur about at Vg=1.23,
tox=0.86, Lg=55.55. All of them are out of range of simulation. So, the formulais rea-
sonable.

Because we used stepwise method to select variables. Variable selected into the model
earlier has larger effect. In table 5.4, effect of variable is decreasing according to the order
of variables. We know that gate voltage, thickness of oxide, and channel length dominate
the variation of standard deviation of wave packet. In fact, effects of drain voltage and
thickness of bulk areinsignificant. It may resulted from collinearity of variables. It doesn’t
mean that drain voltage and thickness of bulk will not influence the results.

Form table 5.3, maximum of residual occurs when In(a) = 2.1112. In the other word,
maximum of residual is 0.08146 when a = 8.258. If we want to simplify the model, we

may del ete some variables whose effects are too small and estimate model again.



5.3: Modelling and Simulation Results

59

14.00001—

E
12.0000(—
10.0000E
B.OOOOE

6.0000(—
°

Standard deviation of wavepacket

4.0000 | | | | | |

20.00 25.00 30.00 35.00 40.00 45.00 50.00
Channel length

Figure 5.3: Scattering Plot : Channel length vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.
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Figure 5.4: Scattering plot : Gate voltage vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.
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Figure 5.5: Scattering plot : Drain voltage vs. Standard deviation of
wave packet. It appears quadratic trend. Therefore, we will
add the quadratic terms into the model.



62

Chapter 5 : Results and Discussion

14.0000 .

bt =]

o °© 5, @

- o

8

%12.0000— ° 5

> e 2 o

© o © @

= o °© o

%S 10.0000— °© 8 ¢

c

g i 5 ;

S 8.0000— °© o

3 88§ ¢ 3

E g !o ) o °
6.0000

i S B ao -]

E 8 a. 8 q

7 ° ol l
4.oooo—| | | =|' T T

5.00 10.00 1500 20.00 25.00 30.00
Thickness of bulk
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doping concentration may be not so evident.
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Figure 5.9: Normal plot of Model I. Y axisis cumulate probability of
normal distribution, and X axisis cumulate probability of
observed residual. The result is satisfied.
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Figure 5.10: Scattering plot : Fitted value against residual of model I. It
appears nonlinear pattern. Therefore, we may conclude
that the model | is not good.
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Figure5.11: Likelihood plot of power transformation. Likelihood
achieve maximum when \ = —0.148. We prefer to set
A =0.
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Figure 5.12: Normal plot of Model 11. Y axisis cumulate probability of
normal distribution, and X axisis cumulate probability of
observed residual. The result is satisfied.
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Figure 5.13: Scattering plot : Fitted value against residual of model I1.
It appears nonlinear pattern. Therefore, we may conclude
that the model 11 is not good.
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Figure 5.14: Normal plot of Model I11. Y axisis cumulate probability
of normal distribution, and X axisis cumulate probability
of observed residual. The result is satisfied.
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Figure 5.15: Scattering plot : Fitted value against residual of model 111.
It appears nonlinear pattern. So the model 111 is not good.



72

Chapter 5 : Results and Discussion

Expected Cum Prob

| | I I
D'B.D 0.2 04 06 08 1.0
Observed Cum Prob

Figure 5.16: Normal plot of Model V. Y axisis cumulate probability of
normal distribution, and X axisis cumulate probability of
observed residual. The result is satisfied.
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Figure 5.17: Scattering plot : Fitted value against residual of model 1V.
It appears flat band pattern, so the model 1V is good.
Combining result of normal plot. The model 1V is good.



74 Chapter 5 : Results and Discussion

5.3.2 Accuracy of Model of Double-Gate MOSFET

In this part, some comparison of characterswill be presented. And the conditions of devices
are: tox=1nm,Lg=40nm, ts =24nm,Vg=0.9V,Vd=1V, and N = 5623 / m?.

First, we show the comparison of electron density among SP model, optimized effective
potential, and effective potential from regression model, Fig. 5.18. From magnified figure,
we can find results from effective potential both shift to right sside. How the degree of

displacement will be produced? Now, we define

- [ andx
f ndx

asthe expectation value of electron density. In caseshowninFig. 5.18, X, = 1.817, X ptimize =
2.031, Xnoder = 2.046. Displacement of X isabout 2A.

Following, we show the comparison of Id — V¢ curves, Fig. 5.31. Drain current solved
form effective potential is always lower than solved from SP equations. Besides, curves
solved from effective potential with optimized a and afrom model are amost equal. Max-

imum of different between SP equations and effective potential about 0.3 mA.
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Figure 5.18: Comparison of electron density: peaks of electron density
solved from Ferry’s effective potentia both shift to right
side.
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Figure 5.19: 1d-Vg curve:solid lineis solved from SP equations while

dash lineis solved from effective potential. curves solved
from effective potential with optimized aand afrom model
are almost equal. Curve of effective potential is some
lower than SP equations. Maximum of different between
SP equations and effective potential is about 0.3 mA.
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5.3.3 Modelling Double-Gate and SOl MOSFETSs

In this part, we will analyze data of double-gate and SOI structure together. In other words,
we want to construct a model more general, suitable for double-gate and SOl MOSFET
simultaneous.

By previous experience, we proceed power transformation (Fig. 5.20). Similarly, we take
log of standard deviation of wave packet and establish model by stepwise method. Scat-
tering plots of response variable against independent variables are shown form Fig. 5.21

to Fig. 5.27. Following are ANOVA table, residua statistics, coefficients table and model

after analyzing.
Source SS DF MS Fy R?
Regression 25.136 14 1.795 43774.815 0.999
Residual 0.026 633 4.107e — 4
Total 25.162 647

Table 5.5: ANOVA table for significance of regression in multiple
regression. 12? is equal to 0.99. Explanatory ability of the
model is good.



78

Chapter 5 : Results and Discussion

Minimum | Maximum | Mean | Std. deviation
Predicted value 1.2254 2.1107 | 1.5999 0.19711
Residual -0.011223 0.01284 0 0.00633

Table 5.6: Residual statistics: It shows points have maximum and
minimum. We can find that residual of new model is some

larger than previous.

Model Coefficients | Std. Error t
constant 4.281 0.02 | 214.278
Vgl -3.295 0.04 | -81.523
tox1? 0.196 0.003 | 77.711
Vgl2 1.341 0.021 | 63.424
Lg -0.0205 0.006 | -36.042
S -0.185 0.005 | -35.941
tox1 -0.338 0.01 -35.2
Lg? 0.00018 0.001 | 27.161
Vgl*tox1l -0.159 0.009 | -17.862
N -0.003 0.0007 | -17.416
Lg*tox 0.0008 0.001 6.65
vd -0.008 0.003 | -2.364
ts -0.0000874 0.0003 0.974

Table 5.7: Coefficients table: thefirst frame is name of variable; second

is the coefficient of variable; third is standard deviation of
coefficient; the last frame is value of ¢ distribution.

In(a) = 4.277 + (1.341V g1 — 3.295V g1) + (0.196t0x1> — 0.338t0x1) (5.3)

+ (0.00018 Lg* — 0.0205Lg) — 0.008Vd — 0.003N — 0.0000874tsi

+ 0.0008Lg x toxl — 0.159V g1 x torl — 0.185S
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In EQ. 5.3, thereisanew variable, S. Thisvariable has only two values, 0 and 1. When
S = 0, it indicates double-gate MOSFET. While S = 1, it indicates SOI structure. Other
variables are the same as before. This formulais extended to suit for two structure. From
Eq. 5.2 and Eg. 5.3, we can find that change of coefficient of variables in both equationsis
not evident. It indicates that trends in these two structures are similarly. However, residual

of Eq. 5.3 is some larger than formula only for double-gate MOSFET.
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Figure 5.20: Likelihood plot of power transformation. Likelihood
achieve maximum when A\ = —0.082. It ismore close to
0. So we till prefer toset A = 0.
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Figure 5.21: Scattering plot : Thickness of oxide vs. Standard deviation
of wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.22: Scattering Plot : Channel length vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic termsinto the model.
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Figure 5.23: Scattering plot : Thickness of bulk vs. Standard deviation
of wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.24: Scattering plot : Gate voltage vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic termsinto the model.
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Figure 5.25: Scattering plot : Drain voltage vs. Standard deviation of
wave packet. It appears quadratic trend. So we will add
the quadratic terms into the model.
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Figure 5.27: Scattering plot : Structure vs. Standard deviation of wave
packet. O indicates double-gate, 1 indicates SOI structure.
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Figure 5.28: Normal plot. Y axisis cumulate probability of normal
distribution, and X axisis cumulate probability of
observed residual. The result is satisfied.
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5.3. It appears flat band pattern, so the model is good.
Combining result of normal plot. The model is good.
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cases of SOI.
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5.3.4 Accuracy of Model of Double-Gate and SOl MOSFET

We establish another model which is suit for double-gate and SOl MOSFETSs at the same
time. We will discuss how accurate the model is. Similarly, we calculate X for the new
model of device with the same conditions used before, Fig. 5.30 . Then we get X000 =
2.067. The change seems not so evident. Result of the new model is some worse than
model in section 5.3.1 inthiscase. Maybe result of new model is better in other case. What
we can say is that variation of residual of new model is larger. Besides, |d-Vg curves are
almost the same, Fig. 5.31.

Of course, we will check accuracy in SOI. X, = 2.07, Xoptimize = 2.157, Xnoaer = 2.136.
Though X040 1S Closer to Xsp, but the error of curve of electron density is larger, Fig.
5.32.

From results of double-gate and SOI structure, we can find that residual of the latter islarger
than the former. Model suit for two kinds of devices is more general, but the accuracy will

be worse. Nevertheless, the accuracy seems acceptable.
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5.4 Discussion

We simulate devices with channel length which is equal to 20 nm, 30 nm, 40 nm and 50
nm, respectively in double-gate MOSFET. We can’'t get a better model if we analyze all
data. However, if we delete data whose channel length equal to 20 nm, then we establish a
model not bad. On the other hand, people have proposed that quantum effective will appear
in channel direction when channel length is shorter than 20 nm. So, 1D Ferry’s effectiveis
not suit for those devices.

From our simulation, we get formula for double-gate MOSFET and SOI structure. And
from formula, we know how the outer factors effect value of standard deviation of wave
packet. Effects of drain voltage and thickness of bulk are not significant in our results.
Collinearity of data may be one of the reason. Their influence may be increasing while
collinearity is decreasing.

In terms of structure, double-gate and SOl MOSFET are similarly. However, characters of
these structure may be some different. So, formula for both structures is not as good as
formula only for one structure.

From scattering plots, we can know there are ssmple correlations between regressors vari-
ables and response variable. So we using the simplest model to fit it first. And results are

satisfied. Therefore, we don't establish model which is more complicated.



Chapter 6

Conclusions

In this thesis, models of standard deviation of wave packet have been established success-
fully. Accuracy was also presented with comparing to the results solved from SP equations,
including electron density and I-V curve. From previous models, we can know what outer
conditions effect the standard deviation of wave packet evidently. Both models have their
own merit and shortcoming. Models seems acceptable in terms of error. In this chapter, the

contributions of the thesis will be addressed firstly, and followed by the future works.
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6.1 Summary

In this thesis, we focus on the Ferry’s effective potential and try to find the behavior of
standard deviation of wave packet with various outer conditions. We use statistical meth-
ods to build multiple linear regression model. We don’'t use advanced model because we
have gotten good results.

Models of standard deviation of wave packet are established under some constraint of con-
ditions. Under these constraint, we know that channel length, gate voltage,and thickness
of oxide dominate the variation of standard deviation of wave packet form models. From
these results, we can’t say drain voltage and thickness of bulk are marginal with certainty
because of collinearity of our data. In addition to model for double-gate MOSFETS, we
also establish a model suit for double-gate and SOl MOSFETSs simultaneously. Perhaps
residual of the latter islarger than the former. But the different seems not so evident. The
model may be not suitable for devices whose conditions exceed these constraint or with
other structures. However, statistical methods presented in this thesis can be extend to

analysis similar problem.
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6.2 FutureWork

Besides double-gate MOSFET and SO, there are still many structures of devices. Inthesis,
we discuss these two structures because of similarity in structure. Recently, ultra thin
barrier deviceis proposed. Its structure is between double-gate and SOl MOSFET. On the
other hand, double-gate structure will become single gateif we set thickness of bulk thicker
and only one gate in our condition. In terms of structure, we can discuss several kinds of
structures or characteristics of devices at the same time to make formula more general. By
experience in this thesis, model more general may lose accuracy. Here, we only consider
those direct outer conditions as regressor variables. Transformation of regressor variables
may be important and efficient factors. Besides, we only use the most popular model -
linear regression model. Advanced model may arise better results for more complicated

data.
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Appendix A

Effective Potential Source Code of

M atlab

We simulate classical transport model and SP model by software-I SE. Thereisno command
of effective potential. So we simulate classical transport model to get potential without

guantum mechanism first. And then use following code to get Ferry’s effective potential .

EP

According to the equation,

Vss(a) = / V(x + )Gy, ao)dy.
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We evaluate 1D effective potential by using potential solved from classical transport model.

Following is code of previous equation:

for i=1:Nr
forj = 1:Nr
potential eff(1,i)=potentialeff (1,i)
+potential 2D (temp,j)* exp(-(i-j)* (i-))* dr* dr/(2* a* a))* dr;
end
forj = 1:Nr-1
potentialeff(1,i)=potential eff(1,i)+
potential 2D (temp,j)* exp(-(2* Nr-i-j)* (2* Nr-i-j)*dr* dr/(2* a* a))*dr;
end
end
potential eff=potential eff/(sqrt(2* pi)* a);
for i=1:Nr
edensity(1,i) = ni*exp((potential eff(1,i)-phin(Nr* (temp-1)+i))/Vt)/1e+6;

end



Appendix B

| SE Commands for Classical Transport

and Schrodinger Equation

We use | SE in most of our ssimulation. Here, we will present commandsin ISE. First part,
we define mesh and doping concentration. Second part, we present the model we used and
some outer conditions. Last, we show keywords of Drift-Diffusion model and Schrodinger
equation. If we want to coupled these models, we have to add these commands into second

part.
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B.1 MDraw Commands

Title ”Untitled”

% Definition of mesh. We can set several commands to build irregular mesh.

Definitions{

#Refinement regions

Refinement” name”

{

MaxElementSize=(0.0005 0.0005)
MinElementSize=(0.0001 0.0001) }

#Profiles

% Definition of Doping. Here, we can set not only doping concentration, but also me-

terial.

Constant”S” {

Species=" ArsenicActiveConcentration”
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Value=1e+20

}

Constant’D” {

Species=" ArsenicActiveConcentration”
Value=1e+20

ki

Constant”B” {
Species="BoronActiveConcentration”

Vaue=le+17

}
}

B.2 DessisCommands

% Here, we can set outer conditions and models.

% Initial setting.

Electrode{
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{Name="source” Voltage=0.0}
{Name="drain” Voltage=0.0}

{Name="gate” Voltage=0.0 Barrier=-0.4}

b

% File need to include.
File{

Grid =" @grid@”

Doping =" @doping@”
Plot =" @dat@”

current =" @plot@”
Output =" @log@”
Param =" @parameter @”
}

%model will be included
Physics{

Mobility(

PhuMob
HighFieldsaturation(GradQuasiFermi)

Enormal
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)
}

%numerical setting
Math{

Extraploate
Derivatives
RelErrControl
Figits=5
ErRef(electron)=1e10
ErRef(hole)=1e10
Notdamped=50
Iterations=30
Newdiscretization
ConstRefPot
DirectCurrent

}

%model will be included
Solve{

#initia solution
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NewCurrentFile="INIT”
CoupledPoisson Electron Hole Quasi stationary(
Initial Step=1e-2 Increment=1.2
Minstep=1e-5 MaxStep=0.5

Goal {Name="drain"” Voltage=0.8}
)

NewCurrentFile=""
Quasistationary(

Initial Step=1e-2 Increment=1.2
Minstep=1e-5 MaxStep=0.5

Goa {Name="gate” Voltage=0.8}
)

}

B.21 keywords

If we want to include Drift-Diffusion model or Schrodinger equation, we can adding follow

code into dessis commands.
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(a) Drift-Diffusion

Solve{ Coupled{Poisson Electron Hole} }

(b) Schrodinger

Physics(Regionl nterface="name of interface”)
{Schroedinger (
Electron

MaxSolutions=8) }



Appendix C

Energy Band of Double-Gate MOSFET

Here, we only consider double gate devices and set device with thickness of oxidel= thick-
ness of oxide2 = 1.5 nm, channel length = 30 nm, gatel voltage = gate? voltage = 0.9V,
drain voltage = 1.0V, doping concentration = 1e16/ cm?, thickness of bulk = 15 nm bethe
reference. And we change thickness of bulk, doping concentration, gate voltage, thickness
of oxide, drain voltage and channel length in turn. We draw plots of energy band corre-
sponding to each condition as follows. When we focus on the neighborhood of SIO,/Si
interface (potential well), we can find that gate voltage, thickness of oxide, channel length
and doping concentration influence the shape of well significantly. Thickness of bulk and
drain voltage just shift the position of well and variation isnot significant. Degree of effects

from these figures and results from statistical analysis are unanimous.
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Figure C.1: Energy band plot of various thickness of bulk. The main

effect of change of thickness of bulk isthe range of flat
band. Change of band nearby the SIO,/Si interface is not
evident.
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Figure C.2: Energy band plot of various doping concentration. As
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Energy band (eV)
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Figure C.3: Energy band plot of various gate voltage. Increase of gate

voltage not only shifts down the energy band, but also
deepens the depth of energy band nearby the interface.
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channel length will deepen the depth of energy band
obviougly.



Appendix D

A Brief Instruction to SPSS

SPSSisaDataAnalysiswith Comprehensive Statistics Software. Itisamodular, tightly in-
tegrated for the analytical process: planning, data collecting, data access, data management
and preparation, data analysis, reporting, and deployment. In this research, scattering plot,
multiple linear regression and residual analysis. In this Appendix, the adopted features are

introduced.
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final data saw - SPES Data Editor
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1:t ax 1
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a3 TITN 200 1 200 200 A 11 11
0 10590570 239 1L 20 2. & b 1
11 B.5780 215 1 200 2.0 7 ] A
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13 11,1060 241 10 200 10,00 b 7 11
14 4,640 16 10 200 10,00 7 b 1l
15 7308 ] 10 200 10,00 4 ] 1
& 11.0730 240 10 200 10,00 & & :l
LILI\ﬁ?ata Vie:wczm‘u’ariable "u’iewl1 ‘/F o B mm| 4 ’ ; [ » ﬂ
SPER Processor isready

Figure D.1: Table of data: every column indicates a variable; and every
row indicates a case.
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final data sav - SPSS Data Editor

File Edit View Data Transform Analyze
s S =] || =k al
T:t ox 1
a | Ina
1 11.3240 243
2 2.2380 218
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4 11,2520 242
5 5.8170 218
[ 74020 200
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a 73770 2
10 105070 239
11 8.5780 215
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13 11,1060 241
14 8,650 216
15 73070 1.99
16 11.0730 240
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A0l Utilities  Window Help
Gallery
Interactive ’|@|
Map
- [ i | Ve | Vv | N.
3_-Dnléla.r 2 & 7 1
Eme 300 7 N 11
Erea... 2 R 4 1
l?i.e... 300 b 8 51
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300 r 1o A
: 1000 b 7 11
Efﬂm 10,00 7 3 fl
0. 10.00 K £ i
Sequeme.. 10,00 B 3 3l
ROC Curye.. T E 7 Lﬂ'
Time Series ot iz ready

Figure D.2: Before processing model analysis, usually we will observe

scattering plotsto assist our variables setting.
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final data sav - SPES Data Editor

Fil: Edit View Data Transfonm N Graphs Utilities Window Help
- Reports 4
= 25 i
|n|§| .| | | I:| Desriptive Statistics L4 ‘| %|@|
1:t ax 1 Tables N
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17 0 CEm a1 1 A1 10 brl Erd -
4| » [\Data View X Wariable Viewr /F 4 Lﬂ
Lingar Regression SPER Processor isready

Figure D.3: Inour analysis, we use linear regression. So, we have to
choose bottom : Analyze/ Regression / Linear.
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final data sav - SPSS Data Editor

File Edit ¥iew Data Transform Anslyze Graphe Dtilites Window Help
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Figure D.4: We have to set response variable into the ” Dependent”
frame, and choose regressor variablesinto the
"Independent” frame. Besides, we can choose methods to
select regressor variables.
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final data sav - SPSE Data Editor
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Figure D.5: After setting model, we can mark Normal probability plot
and choose residual terms to check residua analysis.





