BRPERL A REZAT

A Study of Detecting RNA H-type Pseudoknots

Moy oAl REs

B R A Foe

PoE RN RA4 e g 2D



WoRP TR H AR STy
A Study of Detecting RNA H-type Pseudoknots

Foyod g Em Student : Chun-Hsiang Huang

hERE pH R K& Advisor : Prof. Chin Lung Lu

A Thesis Submitted to Institute of Bioinformatics
College of Biological Science and Technology
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master in

Biological Science and Technology

June 2005

Hsinchu, Taiwan, Republic of China

PEARY e &R



AR AR ER 1 AR TR,

Bk REA FEEFAR: SR Fu

SRR RS A A R A AT AR

1# =3

€, Jo J BT A ARAA HHE AT 3 9| P T8 T R EVPT 38 a0 1685 1k My BIEAY 38
R i A AR E TR f 6, a2 Ih, BRTA S B9 HNE
VB AR5 7 1 A, Bk, RIS 86 H 6918 LA A Bhad AP AR Mok A
B L5 AAR B 6 Sh Ak, A, AT AR X BN AE 1 AUS S a0 BB AR AR

PIA F — & fo LA H RUSEEHEAEZIR - 7| R RIK 3580 HPknotter 89
AR,



A Study of Detecting RNA H-type Pseudoknots
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ABSTRACT

RNA H-type pseudoknots are ubiquitous pseudoknots that are known to be found in
almost all classes of RNA sequences and thought to play a functionally important role
in variety of biological processes. Hence, detecting these RNA H-type pseudoknots will
enhance our understanding of RNAstrueturés.and their associated functions. However,
the currently existing progranis for detecting such RNA H-type pseudoknots are still
time-consuming and sometimes even ineffective. Therefore, efficient and effective tools
for detecting the RNA H-type pseudoknots are needed. In this thesis, we propose
a heuristic approach to develop “a/novel:-tool, called HPknotter, for accurately and
efficiently detecting RNA H-type pseudoknots in a given RNA sequence. In addition,
we demonstrate the applicability and effectiveness of our HPknotter by testing it on

several RNA sequences with known H-type pseudoknots.
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Chapter 1

Introduction

RNA pseudoknots are found in almost all classes of naturally occurring RNA sequences
and play very important roles in variety of biological processes, such as RNA replica-
tion, transcription and translation [34, 16]. According to the positions of pseudoknots,
their associated functions are reflected because pseudoknots fold locally in RNAs [20].
For example, 5'-pseudoknots of anRNAs (message RNAs) are tend to be involved in
translation control and 3'-pseudoknots of them control the signals for replication. In
addition, RNA pseudoknotszare well-known to/be important roles for programmed
—1 and +1 ribosomal frameshift signals in overlapping ORFs (open reading frames)
[3, 14, 18]. Usually, functional RNA"pseudoknots are also evolutionally conserved in
rRNAs (ribosomal RNAs), the catalytic core of group I introns and RNase P RNAs by
comparative analysis.

The majority of pseudoknots that have been described to date are of the so-called
H-type (or classical) pseudoknot in which (as illustrated in Figure 1.1) nucleotides
from a hairpin loop pair with a single-stranded region outside of the hairpin to form
a helical stem that is adjacent or almost adjacent to the hairpin stem [23, 24, 34, 25].
For instance, there are 246 different RNA pseudoknots in PseudoBase [39, 38] with 224
of them being H-type. Therefore, the detection of H-type pseudoknots could improve
our understanding of RNA structures and their associated functions. However, com-
putational methods of predicating RNA H-type pseudoknots are still time-consuming

and even ineffective. Hence, efficient and effective tools for detecting the RNA H-type
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Figure 1.1: An H-type pseudoknot located within the BCV 3" UTR.

pseudoknots are needed.

In the standard thermodynamic model, a pseudoknot-free RNA secondary structure
of minimum free energy (MFE) can be computed using dynamic programming in O(n?)
time [44, 43, 42, 12]. However, when (general) pseudoknots are allowed in the RNA
secondary structure, the computation bécomes intractable since it has been shown to be
an NP-hard problem [17, 2]. ‘Currently, several polynomial-time algorithms have been
proposed to find an MFE secondarystructure with a restricted class of pseudoknots
(27, 2, 17, 9]. Rivas and Eddy [27] first propeséd the dynamic programming algorithm
that could handle a large class of special pseudoknotted structures. However, the major
limitation of this algorithm is its high running time of O(n%) and space of O(n*), where
n is the length of RNA sequence. With other more restricted classes of pseudoknots,
Lyngss and Pedersen [17] proposed an algorithm of O(n®) time and O(n?) space,
Akutsu [2] designed an algorithm of O(n?) time and O(n?®) space, Dirks and Peirce
[9] described an algorithm of O(n®) time and O(n*) space, and Reeder and Giegerich
28] gave an algorithm of O(n?) time and O(n?) space. All these algorithms above
are able to be used to predict an MFE secondary structure of an RNA sequence with
h-pseudoknots [6]. However, they are not yet practical for large-scale sequences due
to their high running time and/or space. In addition, our experimental results showed
that these algorithms may not be effective to detect an h-pseudoknot that is actually
present in the native structure of a long RNA sequence. On the other hand, our finding
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showed that when they were applied to the sequence fragment exactly harboring the
h-pseudoknot in a long RNA sequence, they gave a very high probability of successfully
folding this fragment into the h-pseudoknot structure.

Based on these above observations, in this thesis we propose a heuristic approach to
design a novel tool, called HPknotter, by integrating the currently existing programs
for efficiently and accurately detecting the RNA H-type pseudoknots. The key idea
of our approach is as follows. For a given RNA sequence, RNAMotif is first used to
search all the subsequences (called hits) that meet the criteria dictating the structural
motifs. Second, a hit filter is designed to discard those sequences that are not possible
to fold into a stable pseudoknotted structure. Third, PKNOTS/NUPACK/pknotsRG
is used to determine if these hits indeed fold into a stable h-pseudoknot. Fourth, h-
pseudoknot filter is used to filter the hits that do not meet the criteria dictating the
structural motifs. Fifth, based on the concept of maximum weight independent set,
the mutually disjoint h-pseudoknots with minimum total free energy are computed.
Finally, the remaining hits capable of folding mto stable h-pseudoknots to serve as the
final output of HPknotter. We will demonstrate the practicability and effectiveness of
HPknotter by testing it on several RNAsequences, most of which have been proven to
contain the H-type pseudoknotted structures.in-laboratory approaches.

In addition to the above thermodynamic approaches, several other approaches for
predicting RNA secondary structures with (H-type) pseudoknots have been proposed,
such as maximum weighted matching [8, 32, 15], quasi-Monte Carlo searches [1, 10],
genetic algorithms [37, 11, 31|, stochastic context free grammar [4, 5], and others
[15, 33, 29]. Particularly, Shapiro and Wu [31] developed a parallel genetic algorithm
for detecting h-pseudoknots on a massively parallel supercomputer MasPar MP-2 with
16,384 processors. Recently, this parallel genetic algorithm has been adapted to MIMD
parallel machines [30], such as SGI ORIGIN 2000 with 64 processors and CRAY T3E
with 512 processors, which seem to be hardly accessible to the ordinary users.

The rest of the thesis is organized as follows. In Chapter 2, we give an introduction
to the RNA H-type pseudoknots as well as a database of collecting a lot of naturally

occurring RNA pseudoknots. In Chapter 3, we describe our heuristic approach and our



implemented program, called HPknotter, for efficiently and effectively detecting RNA
H-type pseudoknots. In Chapter 4, we demonstrate the applicability and effectiveness
of our HPknotter by testing it on several RNA sequences with known H-type pseudo-
knots. Finally, we make some conclusion as well as a couple of future works in Chapter

d.



Chapter 2

Preliminaries

In this chapter, we first introduce the H-type pseudoknots (h-pseudoknots) and their
classifications. Then we introduce PseudoBase [39, 38], a database of maintaining the
naturally occurring RNA pseudoknots. Finally, we introduce the currently existing
programs of predicting RNA pseudoknots, including RNAMotif [19], PKNOTS [27],
NUPACK [9] and pknotsRG |28}

2.1 RNA H-type Pseudoknots

In principle, an H-type pseudoknot (¢alled h-pseudoknot) may contain two stems (re-
gions A and C' in Figure 2.1) and three loops (regions B, D and F in Figure 2.1), where
such stems and loops are usually represented in the 5 — 3’ direction as S; (Stem 1),
Sy (Stem 2) and Ly (Loop 1), Ly (Loop 2), Ly (Loop 3), respectively. However, Ly is
absent in most of pseudoknots due to the coaxial stacking of stems.

H-type pseudoknots have simple loops in which all nucleotides are unpaired and
complicated loops that contain substructures, such as several stems with their own
internal, hairpin and multi-branch loops. Both simple and complicated loops are re-
ferred to as pseudoknot loops. For simplicity, all the nucleotides in a pseudoknot loop
are counted and the number of them equals to the size of this loop, whether they are un-
paired or not. The pseudoknot stems adopted here are those that are “pseudoknotted”

with other stems. They may be interrupted by some bulge loops (or interior loops).
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Figure 2.1: Schematic representation of the H-type pseudoknot.

By convention, the unpaired nucleotides in these loops are, however, not counted for
determining the size of a pseudoknot stem.

For our purpose (introduced later), the h-pseudoknots are classified into four classes
as shown in Table 2.1 based on the sizes of their stems and loops, where the case of

size(S1) = size(Ss) and size(Ly) = size(Ls) is allowed to belong to any of four classes.

2.2 PseudoBase

PseudoBase! is a pseudoknot database maintained:by the Leiden Institute of Chemistry
and the Institute of Theoretical Biology at'the L.¢iden University. Currently, there are
246 different pseudoknots in PseudoBase; with 224 of them being H-type. Among these
224 h-pseudoknots, 123 (respectively, 30, 65 and 6) h-pseudoknots belong to class 1 (re-

spectively, 2, 3 and 4). To further understand the structure elements of h-pseudoknots,

!PseudoBase is at http://wwwbio.leidenuniv.nl/~Batenburg/PKB.html.

Table 2.1: The conditions of four classes of h-pseudoknots.

Class Condition 1 Condition 2
1 size(S1) < size(Ss) size(Ly) < size(Ls)
2 size(Sy) < size(Ss) size(Ly) > size(Ls)
3 size(Sy) > size(Ss) size(L1) < size(Ls)
4 size(S1) > size(Ss) size(Ly) > size(Ls)
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Table 2.2: The default values of pseudoknot stem- and loop- sizes of four classes pre-

defined h-pseudoknots descriptors.

Class Stem 1 Stem 2 Loop 1 Loop 2 Loop 3
1 3~ T 4~ 8 0~5 0~6 2~ 30
2 3~8 3~ 11 1~20 0~ 2 0~ 18
3 4~ 15 3~ 10 1~11 0~ 34 1~ 20
4 3~ 14 3~T 5~ 24 0~ 2 0~ 7
General 3~ 12 3~ 12 0~ 15 0~ 35 0~ 15

we count the frequencies of stem- and loop- sizes of naturally occurring h-pseudoknot
recorded in PseudoBase. The stem- and loop-size distributions of Si, Sy, L1, Ls and Ls
are shown in Figure 2.2, where 4 (respectively, 1 and 3) pseudoknots with big loop-size

(> 100 bp) are omitted in the case of Ly (respectively, Lo and Ls).

2.3 RNAMotif

RNAMotif? is an RNA structtral motif scaxching tool that is able to find the frag-
ments of a given RNA sequence which conform to a predefined descriptor of defining a
particular structural motif [19]. For example, Figure 2.3 presents a descriptor to allow
RNAMotif to identify the sequence fragments that are able to fold themselves into
h-pseudoknot depicted in Figure 2.1. To define the descriptor that fits as closely as
possible to the naturally occurring pseudoknots, we have further counted the frequen-
cies of the occurring stem sizes and loop sizes of all h-pseudoknots in each class that are
maintained in PseudoBase (as shown in Table 2.2). Figure 2.4 shows an example of a
descriptor of class 2 in which an interior loop or bulge loop is allowed in the pseudoknot

stems.

2RNAMotif whose current version is 3.0.4 is at http://www.scripps.edu/mb/case/.



parms

wc += gu;
chk_both_strs = 0;
descr

h5(tag=’S1’, minlen=3, maxlen=8) for 5’ side of stem 1
ss(tag="L1’, minlen=1, maxlen=20)
h5(tag=’S2’, minlen=3, maxlen=11)
ss(tag="L2’, minlen=0, maxlen=2)

h3(tag="S1’ )

for loop 1
for 5’ side of stem 2
for loop 2
for 3’ side of stem 1

H OH OHF OH H OH H*

ss(tag="L3’, minlen=0, maxlen=18) for loop 3
h3(tag="52") for 3’ side of stem 2
score
{
s1 = length(h5(tag="S1")); # for stem 1
s2 = length(h5(tag="S82")); # for stem 1
11 = length(ss(tag="L1")); # forrloop 1
12 = length(ss(tag="L2")); # for loop 2
13 = length(ss(tag="L32)); # for loop 3
if (s1 > 8) # violate the size of range of stem 1
REJECT;
if (s1 < 3)
REJECT;
if (s2 > 11) # violate the size of range of stem 2
REJECT;
if (s2 < 3)
REJECT;
if (s1 > s2) # violate the rule of class 2
REJECT;
if (11 < 13)
REJECT;
}

Figure 2.3: An RNAMotif descriptor used to describe the pseudoknotted structure of

class 2 as depicted in Figure 2.1.



parms

wC += gu;
chk_both_strs = 0;
descr

h5(tag=’S11’, minlen=1 , maxlen=7) # for 5’ side of stem 1

ss(tag="LL1’, minlen=0, maxlen=1)

h5(tag=’S12’, minlen=1 , maxlen=7)

ss(tag="L1’, minlen=1, maxlen=20)

# for loop 1

h5(tag=’S21’, minlen=1 , maxlen=10) # for 5’ side of stem 2

ss(tag="LL2’, minlen=0, maxlen=1)

h5(tag=’S22’, minlen=1 , maxlen=10)

ss(tag="L2’, minlen=0, maxlen=2)
h3(tag="512")
ss(tag="LL3’, minlen=0, maxlen=1)
h3(tag="S11")
ss(tag="L3’, minlen=1, maxlen=18)
h3(tag=’S22")
ss(tag="LL4’, minlen=0, maxlen=1)
h3(tag="521")
score
{
sl1
sl12
s21
s22

=+

length(h5(tag="811");
length(h5(tag="S12"));
length(h5(tag="S21")); - #
length(h5(tag="S22"));
11 = length(ss(tag=’L1%)); #
12 = length(ss(tag=’L2")); #
13 = length(ss(tag=’L3"))5 #
if ((s11 + s12) > 8) #
REJECT;
if ((s21 + s22) > 3)
REJECT;
if ((s11 + s12) < 11) #
REJECT;
if ((s21 + s22) < 3)
REJECT;
if ((s11 + s12) < (s21 + s22)) #
REJECT;
if (11 > 13)
REJECT;

# for loop 2
# for 3’ side of stem 1

# for loop 3
# for 3’ side of stem 2

for stem 1
for. stem 2
for loop 1
for doop 2

for:1loop 3
violate the size of range of stem 1

violate the size of range of stem 2

violate the rule of class 2

Figure 2.4: An extension of RNAMotif descriptor in Figure 2.3 by allowing an interior

loop of size 2 or a bulge of size 1 to appear in stems 1 and 2.
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2.4 PKNOTS, NUPACK and pknotsRG

PKNOTS?, NUPACK* and pknotsRG? are the currently existing and most widely used
programs for the prediction of RNA secondary structures with pseudoknots. They
are implemented based on the Rivas & Eddy [27], Dirks & Peirce [9], and Reeder &
Gieger [28] algorithms, respectively. All these algorithms can be used to predict the
h-pseudoknots of an RNA sequence. However, as mentioned before, they are still not
practical particularly for large-scale RNA sequences, due to their high running time
and/or space. For example, PKNOTS and NUPACK can only deal with the RNA
sequences of length less than or equal to 220 and 180 bp, respectively, on IBM PC
with 3.06 GHz processor and 2 GB RAM under Linux system. Another weakness of
these programs is that they may not be effective for detection of real h-pseudoknots
in a long RNA sequence. It is worth mentioning that expect for pknotsRG, both
PKNOTS and NUPACK can be used to predict more general pseudoknots and the
class of pseudoknots predicted by, NUPACKris more restricted than that by PKNOTS.

SPKNOTS 1.04 is available at http://selab.wustl.edu/index.html.
4NUPACK 1.2 is available at http://www.acm.caltech.edu/ niles/software.html.
SpknotsRG 1.2 is available at http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/.
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Chapter 3

Materials and Method

In this chapter, we present our heuristic approach and our implemented program, called
HPknotter, for efficiently and effectively detecting the h-pseudoknots of a given RNA
sequence. Our approach is to integrate four existing programs, such as RNAMotif,
PKNOTS, NUPACK and pknotsRG, as well as our designed and implemented programs
into a pipeline as shown in Figure 3.1. For a given RNA sequence, RNAMotif is first
used to search all the subsequences (called hits)-that meet the criteria dictating the
structural motifs. Second, a‘hit filter-is'desighed to discard those sequences that are
not possible to fold into a stable pseudoknot. Third, PKNOTS/NUPACK/pknotRG
is used to determine if these hits indeed ‘fold into a stable h-pseudoknot. Fourth,
h-pseudoknot filter is designed to filter out the hits that do not meet the criteria
dictating the structural motifs specified in the descriptor. Fifth, based on the concept of
maximum weight independent set, the mutually disjoint h-pseudoknots with minimum
total free energy are computed. Finally, the remaining hits capable of folding into

stable h-pseudoknots are served as the final output of HPknotter.

3.1 Structural Motif Search by RNAMotif

In the first phase, our HPknotter runs RNAMotif on the input RNA sequence with a
user-specified descriptor for a class of h-pseudoknots, which produces a list of sequence

fragments, called hits, that match the user-specified descriptor. See Figure 2.3 for an
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Input sequence data in FASTA format — 0 Hit Filter

Filtered hits

Y

0O RNAMotif J Pseudoknot Prediction
Options: Options:
e PKNOTS

e Class 1 descriptor

e Class 2 descriptor e NUPACK
e Class 3 descriptor e pknotsRG
e Class 4 descriptor h-pseudoknot candidates

Y
U h-Pseudoknot Filter ‘

Hit sequences Filtered h-pseudoknots
Y

’ [0 Min Weight Independent Set ‘

e General descriptor ’

Predicted h-pseudoknots

Figure 3.1: The flow diagram of HPknotter.

example of describing the h-pseudoknot of class 2. As mentioned before, RNAMotif is
an RNA structural motif search toolto find the fragments of a given RNA sequence
that conform to a predefined -des¢riptor -of defining a particular structural motif. To
define the descriptor of each-class of h-pseudoknots that fits as closely as possible to
the naturally occurring pseudoknots, we further.choose the size ranges that cover the
most parts of the stem- and loop-sizedistributions (as shown in Figure 2.2) to serve as
the default size ranges of the stems and loops in HPknotter (as shown in Table 2.2),
where these default size ranges can be modified by the users to meet their requirements

according to their biological knowledge about the tested data.

3.2 Hit Filter

The hit sequences contained in the output of the first stage then serve as input to
the next phase. Note that at this moment, each hit has the possibility of folding into
the pseudoknotted structure of the H-type as defined in the descriptor of RNAMotif
(herein, the h-pseudoknot of this kind is referred to as an RNAMotif h-pseudoknot
for convenience). However, whether or not this RNAMotif-pseudoknotted structure is
the native structure of the hit, i.e., the stable structure with minimum energy, is still

13



unknown. The simplest verification way is to apply the currently existing prediction
program (like PKNOTS/NUPACK/PKNOTSRG) to each hit sequence and examine
whether it indeed folds into a stable h-pseudoknot conforming to the descriptor. How-
ever, such a verification for all hit sequences is impractical. The reason is that even
for a short RNA sequence, a great number of hit sequences are usually produced by
RNAMotif and hence the verification of each hit sequence using PKNOTS or NU-
PACK costs much time, which leads the overall process of verification above to being
badly time-consuming. Therefore, a more efficient verification is needed to improve
the overall performance, especially in speed. From the thermodynamic viewpoint, a
pseudoknotted structure of a hit sequence with very low energy (or the lowest energy)
is more likely to form in the native structure of the hit sequence. For a hit sequence,
on the other hand, if the energy of the pseudoknotted structure with possible stems in
their loops (defined by the descriptor) is much greater than that of its pseudoknot-free
secondary structure with minimum energy, then this hit sequence is unlikely to fold into
a native pseudoknot that conforins to the deseriptor. And as a result, this hit sequence
can be discarded directly without any verification. Based on this observation, a hit fil-
ter is designed herein to filterout those hit sequences whose energies calculated based
on their RNAMotif-pseudoknotted ‘structures' with possible stems in their loops are
greater than the minimum energies of their pseudoknot-free secondary structures pre-
dicted by the pseudoknot-free secondary structure prediction programs. To make this
comparison, the energies of the above pseudoknotted and pseudoknot-free structures
are recalculated using the energy computation program provided by NUPACK such
that the computed energies are based on the same energy rules and thermodynamic
parameters. Note that when computing the energy of the pseudoknotted structure of
each hit sequence, we also count the possible energy contributed by the interaction
between the hit sequence and the flanking sequences. Currently, the cost of calculat-
ing a secondary structure without pseudoknots is much less than that of predicting a
secondary structure with pseudoknots. For example, PKNOTS and NUPACK both
cost O(n?) time for predicting the pseudoknot-free secondary structures of an RNA

sequence fragment of length n, while they as well as pknotsRG cost O(n®), O(n°) and
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O(n*) time, respectively, for the case with pseudoknots. With aid of the hit filter,
most hits are determined within O(n?) time, instead of O(n®), O(nf) or O(n*). In the
second phase, the HPknotter extracts the hit sequences from the output of the first
stage and passes them to the hit filter to check if they have the possibility of folding
into stable h-pseudoknots. We call as the filtered hits for those hit sequences passing
through the hit filter. According to our experiments (described later in next section),
the hit filter significantly speeds up the overall performance of verification because a

large number of hit sequences have been filtered out.

3.3 Pseudoknot Prediction

In the third phase, the filtered hits are further double-checked by the pseudoknotted
prediction program PKNOTS/NUPACK/pknotsRG to check whether or not they in-
deed fold into the stable pseudoknots. A filtered hit is then called as an h-pseudoknot
candidate if PKNOTS/NUPACK/pknotsRG is able to fold it into a stable pseudoknot.

3.4 h-Pseudoknot EFilter

It is worth mentioning that each h-psendoknot candidate generated in the third phase
may not be of h-pseudoknot, or may be an h-pseudoknot not capable of conforming
to the user-specified descriptor. The reason of the former case is that PKNOTS and
NUPACK can predict a more general class of pseudoknots that causes the former case.
As to the latter case, one reason is that one of its h-pseudoknot stems may contain a long
loop that violates the known biological knowledge. According to the h-pseudoknots
maintained in PseudoBase, most of them contain no loop in their pseudoknot stems.
Only few h-pseudoknots contain one loop in their pseudoknot stems and most of them
contain either an interior loop of size 2 or a bulge of size 1. Another possible reason
is that the candidate is indeed a stable h-pseudoknot, but it belongs to a different
class of h-pseudoknots. Based on these observations, in the fourth phase we further

design an h-pseudoknot filter to filter out those h-pseudoknot candidates that are not
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the desired h-pseudoknots or contain a long loop in their stems. We call as the filtered
h-pseudoknots for those remaining h-pseudoknot candidates passing through the h-

pseudoknot filter.

3.5 Minimum Weight Independent Set

In fact, several filtered h-pseudoknots may overlap among their ranges in the sequence,
which means that they cannot exist in the stable structure of a given RNA sequence
simultaneously. Among the filtered h-pseudoknots, hence, we further find the mutually
disjoint h-pseudoknots whose total free energy is minimum in the fifth phase. Actually,
this problem becomes a well-known combinatorial problem, called as the mazimum
weight independent set problem on interval graphs, if the range of each filtered h-
pseudoknot is considered as an interval in the sequence associated with the magnitude
of its free energy as the weight. The maximum weight independent set problem on
interval graphs can be solved indinear time [13]. In HPknotter, we have implemented
this algorithm to compute the mutualy: disjeint- h-pseudoknots with minimum total
free energy among the filtered h-pseudoknots and use them as the final output of

HPknotter.
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Chapter 4

Results and Discussion

In this chapter, we introduce to our HPknotter web server and describe how to use
it with an example. Besides, we demonstrate the applicability and effectiveness of
our HPknotter by carrying out experiments on several RNA sequences with known

h-pseudoknots.

4.1 HPknotter Web Server

The HPknotter! was implemented in Java; Perl and PHP. It is available for online
analysis and can be easily accessed via a simple web interface (see Figure 4.1). To run
HPknotter, the users first input their RNA sequence with FASTA format. Second, the
users select one of classes 1, 2, 3 and 4 (see Table 2.1 for their definitions) to which
the h-pseudoknots belong, if they have such a knowledge in advance; otherwise, they
just choose the general class. After the users have picked up the class, the default
size ranges of the structural motifs (such as stems and loops) for the selected class of
h-pseudoknots will be then shown and notably they are able to be further modified
manually. Third, the users need to select “NOT Allowed” (default) if an interior or
bulge loop is allowed in the pseudoknot stems; otherwise, select “Allowed”. Fourth,
the users can choose PKNOTS, NUPACK or pknotsRG as the kernel of our HPknotter

for predicting h-pseudoknots. Finally, the users click the submit button to start the

'HPknotter web server is at http://BioAlgorithm.life.nctu.edu.tw/HPKNOTTER/.
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HPKknotter: A Heuristic Approach for Detecting RNA H-type Pseudoknots (Help)

Enter your RNA sequence with FASTA format below:

Fill in yvour EINA sequence with FASTA format below (copy & paste):

Or upload your ENA sequence file:

Select the H-type psendoknot class below:

Class: “

Default size range of each structural motif for the selected class of h-psendoknots (modifiable):

STEM 1: Min |0 Max 0 STEM 2: Min [0 Maz |0

LoOP 1: Min |0 Max |0 LOOF 2: Min 0 Mazx |0 LOOF 3: Win |0 Max |0
Allow if an interior or bulge loop in the pseudoknot stems:

@ HOT 4llowed O allowed

Select the kernel for predicting H-type pseudoknot below:

@ PRNOTE (ver 1.01) O PENOTE (var 1.04) O WPAE (ver 1.2) O phnotsky (ver 1.2)

Enter your e-mail address below:

E-mail address- |Please type your e-mail address here.

[ Submit ] [ Reset form ]

Figure 4.1: The interface of HPknotter.
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Position : 2 - 33 (32)
SEI]IIEIICE s UGACCAGCUAUGAGGUCAUACAUCGUCAUAGC
Bucket-view

CCCCCTITIIID Y)Yy 2222221111111

Span-view :

MFE:-10.90 kcal/mol
Class : 1

Figure 4.2: An example of a detected h-pseudoknot by HPknotter.

execution of HPknotter.

Figure 4.2 shows an example of a detected h-pseudoknot in which the sequence
location, sequence length, sequence content, base pairings, minimum free energy (MFE)
of the detected h-pseudoknot in the given RNA sequence are listed. We offer two kinds
of the structural presentations, sayibucket-view and span-view, for the detected h-
pseudoknot. In the bracket-view way, the base pairings of stems 1 and 2 are indicated
by “(” and “)” and “[” and |7, respectively, and each unpaired base is indicated by
“: 7. In the span-view, two stem-halvesiconnected with a horizontal line are considered

as one stem.

4.2 Tested RNA Sequences

We compared our HPknotter program with three well-developed programs PKNOTS,
NUPACK and pknotsRG by carrying out experiments on a number of RNA sequences
with known h-pseudoknots. Unless otherwise specified, all programs were run with
default parameters on IBM PC with 3.06 GHz processor and 2 GB RAM under Linux
system. The tested sequences were taken from the 5S rRNA of Escherichia coli (5S-
rRNA) [7], the RNA sequence inhibiting human immunodeficiency virus type 1 (HIV-
1-RT) reverse transcriptase [36], the 3" UTR of tobacco mosaic virus (TMV-3") [40], the
turnip yellow mosaic virus (TYMV-3") sequence [26], the 5 UTR of human parechovirus
(HPeV1-5') [22], the bacteriophage T2 and T4 gene 32 mRNA sequences (T2 and T4)
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Table 4.1: The sequence and h-pseudoknot information of the tested sequences, where
the accession number of HIV-1-RT is not available and TMV-3-down contains two

h-pseudoknots with one in class 2 and the other in class 3.

RNA Sequence  Accession No.  Length (bp) H-Pseudoknots No.  Class

5S-TRNA V00336 120 0

HIV-1-RT N/A 35 1 1
TMV-3"-up AJ011933 84 3 1
T2 X12460 946 1 1
T4 J02513 1340 1 1
TYMV-3 X16378 86 1 2
BCOV-3/ AF220295 345 1 2
MHV-3' AF201929 315 1 2
SARS-TW1-3'  AY291451 341 1 2
TMV-3-down  AJ011933 105 2 2,3
HPeV1-5' 102971 45 1 3

[21], and the 3" UTRs of several coronaviruses (BCV-3', MHV-3' and SARS-TW1-3')
including severe acute respiratory syndrome virus (SARS) [41, 35] (see Table 4.1 for the
information of the tested sequences”and their h-pseudoknot numbers). All sequences
above, except 5S-rTRNA, are known ‘to contain at least one h-pseudoknot as reported

in the literature.

4.3 Experimental Results and Discussions

A summary of the overall sensitivity and specificity for all experiments, which were

run using the general class of the descriptor without an interior or bulge loop in the

pseudoknot stems, is shown in Tables 4.2, in which we let S, (Sensitivity) = :lp(;g:;f]’\j, P,

(Specificity) = %ﬁi}{}lj and IT=(number of correctly predicted h-pseudoknots)/(number
of predicted h-pseudoknots) (i.e., the fraction of the correctly predicted h-pseudoknots),
where TP = true positive (i.e., the number of the correctly predicted base-pairs in the

predicted h-pseudoknots), FN = false negative (i.e., the number of the base-pairs in
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the published h-pseudoknots that were not predicted) and FP = false positive (i.e., the
number of the incorrectly predicted base-pairs in the predicted h-pseudoknots).

In this set of experiments, PKNOTS and NUPACK were not able to deal with
the cases of T2, T4, BCV-3', MHV-3' and SARS-TW1-3', due to running out of
memory. For the other sequences, PKNOTS and NUPACK exhibited almost the
same prediction results in which the h-pseudoknot of HIV-1-RT was identified, but
the h-pseudoknots of TMV-3"-up, TYMV-3' and HPeV1-5 were missed®. (Note that
PKNOTS could predict two real h-pseudoknots of TMV-3'-down, if the version of
PKNOTS was 1.04, instead of 1.01.) Notably, most of the above results were improved
when we conducted all the experiments using pknotsRG. However, the h-pseudoknots
of T4, SARS-TW1-3' and TMV-3'-down were still missed by pknotsRG. The inabil-
ity of detecting the real h-pseudoknots described above evidences the fact that for
the long RNA sequence, the MFE model might miss the h-pseudoknots that are ac-
tually present in the native structure. In our experiments (as shown in Table 4.2),
however, this situation was significantly impteved by our HPknotter because most
of the real h-pseudoknots of TMV-3"-up, T4, TYMV-3’, SARS-TW1-3' and TMV-3'-
down were detected with high sensifivity and specificity. The key point lies in the
fact that our HPknotter first uses RNAMotif $6 search for all fragments of the given
RNA sequence that have the possibility of folding an h-pseudoknot and then applies
PKNOTS/NUPACK/pknotsRG to these fragments for determining if their MFE struc-
tures are indeed h-pseudoknots. In this situation, without effect on the nucleotides
outside the fragments, PKNOTS/NUPACK/pknotsRG seems to give a higher proba-
bility of successfully recognizing the pseudoknotted structures of fragments. In our
experiments (as shown in Table 4.2), however, this situation was significantly im-
proved by our HPknotter because most of the real h-pseudoknots of TMV-3"-up and
TYMV-3" were detected with high sensitivity and specificity. The key point lies in the
fact that our HPknotter first uses RNAmotif to search for all fragments of the given

RNA sequence that have the possibility of folding an h-pseudoknot and then applies

2Actually, PKNOTS and NUPACK both predicted an h-pseudoknot for HPeV1-5', but with zero

sensitivity and specificity due to incorrect basepairings.
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Table 4.2: Summary of prediction results on several RNA sequences, where all experiments are run using the general class of the

descriptor and the version of PKNOTS is 1.01.

GG

HPknotter

PKNOTS NUPACK pknotsRG | PKNOTS-kernel NUPACK-kernel pknotsRG-kernel
Experiment Sty Py I Sy Py ISy, Py II| S, B, II Sty Py 11 Sty Py I
1. 5S-rRNA - - 0/0 - 0/1 - - 0/0 - - 0/1 - - 0/1 - - 0/2
2. HIV-1-RT 100 100 1/1 100 100 1/1 100 100 1/1| 100 100 1/1 100 100 1/1 100 100 1/1
3. TMV-3"-up 0 0 0/0 0 0 0/@71.4 62.5:8/3| 100 77.8 2/2 100 77.8 3/3 71.4 625 3/3

71.8| 87.5 0 0 88.9 100 77.8 87.5

88.9 100 66.7 66.7 88.9 100 88.9 100
4. T2 - = /- - ~/—» 100100, 1/+| 100 100 1/4 100 100 1/10 100 100 1/16
5. T4 - = /- - P 0 0.0/1| 100 100 1/3 100 100 1/17 100 100 1/17
6. TYMV-3 0 0 0/0 0 0 0/1 "10007%80 1/2| 100 80 1/1 62.5 55.6 1/2 100 80 1/2
7. BCV-3 - = /- - —-/— 100 100 1/1| 100 100 1/1 944 100 1/3 100 100 1/3
8. MHV-3' - = /- - -/— 100 100 1/3| 100 100 1/3 100 100 1/5 100 100 1/6
9. SARS-TW1-3 - = /- - —/- 0 0 0/0/93.8 100 1/2 93.8 100 1/3 100 100 1/5
10. TMV-3-down| 0 0 0/0 60.9 424 1/1 0 0 0/0| 100 100 2/2 100 100 2/2 100 100 2/2

91.3 91.3 95.7 100 100 95.7
11. HPeV1-5 0 0 1/1 0 0 1/1 54.5 54,5 1/1| 100 100 1/1 100 100 1/1 100 100 1/1

It should be noted that PKNOTS of version 1.04 can successfully predict two h-pseudoknots of TMV-3’-down. The reason that HPknotter
with PKNOTS-kernel missed the second h-pseudoknot of TMV-3'-up is that PKNOTS is not able to fold its corresponding sequence

into a pseudoknot.



PKNOTS/NUPACK /pknotsRG to these fragments for determining if their MFE struc-
tures are indeed h-pseudoknots. In this situation, without effect on the nucleotides out-
side the fragments, PKNOTS/NUPACK /pknotsRG seems to give a higher probability
of successfully recognizing the pseudoknotted structures of fragments. This approach,
of course, inevitably increases the number of incorrectly predicted h-pseudoknots, be-
cause it ignores the global effect of all input nucleotides by considering just the local
fragments of the input RNA sequence. In fact, our experiments showed that the num-
ber of the incorrectly predicted h-pseudoknots was reasonable because among all these
predicted h-pseudoknots, HPknotter at the last stage applies the concept of maximum
weight independent set to compute the mutually disjoint h-pseudoknots with minimum
total free energy.

Generally speaking, as shown in Table 4.2, our HPknotter greatly improves sensitiv-
ity, specificity and the fraction II of correctly predicted h-pseudoknots when compared
with original PKNOTS, NUPACK and pknotsRG. It should be noted that the num-
bers of incorrectly predicted h-pseudoknots in‘the cases with PKNOTS-kernel are not
greater than those in the caSes with " NUPACK-kernel and pknotsRG-kernel, which
seems to imply that PKNOTS itself is:more accurate than NUPACK and pknotsRG,
even though PKNOTS is moré. time-consuming than NUPACK and pknotsRG from
the computational point of view.

It is worth mentioning that as shown in Table 4.3, the overall prediction accuracy
will be further improved if we rerun all tested RNA sequences above, except 5S-rRNA
containing no h-pseudoknot, by choosing the specific class to which the predicted h-
pseudoknots belong, instead of using the general class of descriptor. Particularly, the
IT values (as shown in Table 4.3) and the performance of running time (as shown in
Table 4.4) were greatly improved. These experiments indicate that our HPknotter can
be served as an effective tool for validating if the tested RNA sequences have the same
kind of h-pseudoknots as other closely related RNA sequences whose h-pseudoknots are
already known in advance. For instance, SARS, BCV and MHYV are all coronaviruses,
and the h-pseudoknots of BCV-3" and MHV-3’, both of which belong to class 2 of

h-pseudoknots, are already known and have been proven by previous experiments [41].
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Table 4.3: Summary of prediction results on several RNA sequences, where experiments 1-4, 5-9 and 10-11 are run using the descriptors
of classes 1, 2 and 3, respectively. Notice that TMV-3'-down contains two h-pseudoknots with one in class 2 (that was tested in

experiment 9) and the other in class 3 (that was tested in experiment 10).

HPknotter
PKNOTS NUPACK pknotsRG | PKNOTS-kernel NUPACK-kernel pknotsRG-kernel
Experiment Sty Pop I Sy, By I Sy Py 11| Sy, FBy IS, B, 1 Sp Py 11
1. HIV-1-RT 100 100 1/1 100 100 1/k%100 100.1/1| 100 100 1/1 100 100 1/1 100 100 1/1
2. TMV-3"-up 0 0 0/0 0 0 0/0;p 74 62.5 3/3| 100 87.5 2/2 0 0 2/2 0 0 2/2
TT:878F:D 0 0 88.9 100 77.8 87.5
88.9 100 66.7 66.7 88.9 100 88.9 100
3. T2 - = /- - — %/~ 100 100 4/1| 100 100 1/3 100 100 1/6 100 100 1/14
4. T4 - = /- - - —/= 0 0 0/1| 100 100 1/3 100 100 1/11 100 100 1/11
5. TYMV-3 0 0 0/0 0 0 0/1 100 80 1/2| 100 &80 1/1 625 625 1/1 100 80 1/1
6. BCV-3 - = /- - - —/- 100 100 1/1| 100 100 1/1 944 100 1/2 100 100 1/1
7. MHV-3 - = /- - - —/- 100 100 1/3| 100 100 1/1 100 100 1/3 100 100 1/4
8. SARS-TW1-3 - = /- - - —/- 0 0 0/0/93.8 100 1/1 93.8 100 1/3 100 100 1/3
9. TMV-3'-down 0 0 0/0 0 0 0/0 0 0 0/0| 100 100 1/1 100 100 1/3 100 100 1/1
10. TMV-3’-down| 0 0 0/0 60.9 424 1/1 0 0 0/0{91.3 91.3 1/1 95.7 100 1/1 100 957 1/1
11. HPeV1-% 0 0 1/1 0 0 1/1 54.5 54,5 1/1| 100 100 1/1 100 100 1/1 100 100 1/1

The first h-pseudoknot of TMV-3-up was missed by HPknotter with NUPACK-kernel and pknotsRG-kernel because it was filtered out

due to the incorrect class.



It is reasonable to expect that SARS-TW1-3’ may contain an h-pseudoknot of class 2.
Therefore, we can apply our HPknotter to SARS-TW1-3" by specifying the descriptor
to be class 2 so that we are able to quickly obtain the same result as the general

descriptor.

4.4 CPU Time Usage

In fact, our HPknotter is not CPU intensive at all because based on our experiments, a
great number of the hit sequences produced by RNAMotif were filtered out by the hit
filter. Take the experiments with SARS-TW1-3’ in Table 4.2 for an example. In the
first phase, RNAMotif in total found 2,132 hits that conform to the descriptor of general
class. If we directly apply PKNOTS to all of these unfiltered hits to check if they fold
into a stable h-pseudoknot, then the program will require about 51 hours to finish the
job. However, after running the hit filter, only 43 different hit sequences were remained,
which then cost the following PKNOTS only'about 5.2 minutes to determine if they
are stable pseudoknots. As aresult,the third.phase of running pseudoknot prediction
with PKNOTS left us with only 11 pseudoknot candidates that could fold into stable
pseudoknots. Next, only 7 candidates were remained after running the h-pseudoknot
filter in the fourth phase. In fact, ‘some of these filtered h-pseudoknots may have an
overlap among their ranges in the sequence, which suggests that they can not exist
simultaneously in a stable pseudoknotted structure in SARS-TW1-3'. Finally, only 2
h-pseudoknots with minimum free energy were selected in the phase of computing the
maximum weight independent set. Table 4.4 lists the CPU usage time for PKNOTS,
NUPACK, pknotsRG and our HPknotter, where all tests were run on IBM PC with
3.06 GHz processor and 2 GB RAM under Linux system.
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Table 4.4: CPU usage time for PKNOTS, NUPACK, pknotsRG and HPknotter, where in our testing computer environment, PKNOTS

and NUPACK cannot deal with the sequences of length greater than 220 bp and 180 bp, respectively, due to running out of the memory.

Length (bp)

PKNOTS NUPACK pknotsRG

HPknotter (General Class)

PKNOTS:kertiel. | NUPACK-Kernel pknotsRG-kernel

HPknotter (Specific Class)

PKNOTS-kernel

NUPACK-kernel pknotsRG-kernel

84

105

200

341

946

1340

7.3 min

35 min

72 hr

13.1 sec  0.05 sec

44.7 sec 0.1 sec

— 0.8 sec

- 7.4 sec

- 10.1 min

- 43.5 min

31 sec

2.2 min

5.2 min

7.1 min

13.8 min

35.3 min

27 sec

35:8ec

1.8 min

2.4 min

7.5 min

11.6 min

26 sec

29 sec

1.5 min

2.3 min

6.9 min

10.9 min

9 sec

38 sec

1.6 min

2.2 min

4.1 min

11.6 min

7 sec

10 sec

33 sec

46 sec

2.2 min

3.1 min

6 sec

8 sec

30 sec

45 sec

2.1 min

2.5 min




Chapter 5

Conclusion and Future Works

In this thesis, we designed a heuristic approach for efficiently and accurately detecting
RNA h-pseudoknots, the ubiquitous pseudoknots in the naturally occurring RNAs.
The currently existing thermodynamic-based programs, like PKNOTS, NUPACK and
pknotsRG, are useful for finding stable h-pseudoknots. However, most of them are very
time- and memory-consuming, which limits them to predict short sequences of a couple
of hundred bases long. Another main- weakness of these programs is that they may
not be effective to detect the actuallyexisting h-pseudoknots that are contained in a
long RNA sequence, as evidenced by our experiments. Based on our heuristic approach
mentioned in this thesis, we implemented a novel program, called HPknotter, capable
of efficiently and accurately detecting the h-pseudoknots of a given RNA sequence by
incorporating four existing programs RNAMotif, PKNOTS, NUPACK and pknotsRG.
In summary, we demonstrated the practicability and effectiveness of our developed
HPknotter by testing it on several RNA sequences, most of which have been proven to
contain the h-pseudoknotted structures. By several experiments, our HPknotter has
shown to be practical for the detection of h-pseudoknots in RNA sequences because it
is not computationally expensive and has much better sensitivity and specificity than
PKNOTS, NUPACK and pknotsRG.

In the following, we describe a couple of interesting problems for future researches.
First, how to reduce the number of the sequence fragments hit by RNAMotif by con-

sidering the GC ratio of the pseudoknot stems, the conserved sequence patterns in
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the structural motifs of the h-pseudoknots, etc., or even by designing a new and more
efficient algorithm for identifying the sequence fragments. Second, how to develop a
more efficient program for detecting the h-pseudoknots of RNA sequences so that it
can replace the kernel programs used by our HPknotter, such as PKNOTS, NUPACK
and pknotsRG. Finally, how to extend our heuristic approach to detecting more general

classes of pseudoknots for a given RNA sequence.
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